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Abstract 14 

Marine energy is one of the most promising solutions to attempt the ambitious 15 

renewable energy target of 20% by 2020 due to its very substantial energy resource. 16 

However, it is often considered uneconomical and difficult, and this may hinder its 17 

development. Combined energy systems, such as co-located offshore wind turbines and 18 

wave energy converters, have recently emerged as a solution to increase the 19 

competitiveness of marine energy by taking advantage of the synergies between 20 

renewables; which would lead to reductions in the energy cost and improvements in the 21 

power output variability and security. On this basis, finding viable locations for 22 

combined offshore renewable energies is fundamental to boosting their development. 23 

The objective of this paper is to determine suitable locations for deploying a co-located 24 

wind and wave energy farm in the North Sea ⎯ an area with several characteristics that 25 

make large-scale integration of renewable energy sources attractive. In this assessment 26 

we investigate not only the existing resource but also other parameters such as its 27 

variability and the correlation between waves and winds by means of the CLF index. In 28 

addition, inter- and intra-national user conflicts are considered, while balancing 29 

environmental conservation and economic development.  30 
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 35 

Nomenclature 36 

c (τ): cross-correlation factor between two variables for a time lag τ 37 

c (0): instantaneous correlation 38 

c.i.: confidence interval 39 

CLFi: Co-Location Feasibility index of the i-th site point 40 

E: energy density (Jm
-3

) 41 

EEZs: Exclusive Economic Zones  42 

g: gravity acceleration (ms
-2

) 43 

GHG: Green House Gas 44 

Hm0: significant wave height (m) 45 

Hm0: average significant wave height (m) 46 

Hm0,max: maximum value of the significant wave height (m) 47 

ICZM: Integrated Coastal Zone Management  48 

IMO: international shipping lanes 49 

J: raw wave power (kWm
-1

) 50 

J: average raw wave power (kWm
-1

) 51 

mn: spectral moment of order n 52 

MSP: Maritime Spatial Planning  53 

P: raw wind power (kWm
-2

) 54 

P: average raw wind power (kWm
-2

) 55 
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 R
2
: coefficient of determination 56 

RMSE: Root Main Square Error  57 

Te: energy period (s) 58 

Te: average energy period (s) 59 

Te,max: maximum energy period (s) 60 

Tp: peak wave period (s) 61 

Uw: wind speed (ms
-1

) 62 

U10m: wind speed at 10 m above the sea level (ms
-1

) 63 

U10m: average wind speed 10 m above the sea level (ms
-1

) 64 

U10m,max: maximum value of the wind speed 10 m above the sea level (ms
-1

) 65 

UNCLOS: United Nations Convention on the Law of the Sea  66 

WECs: Wave Energy Converters 67 

α: coefficient depending on the shape of the wave spectrum that relates Te and Tp  68 

αx: weighted factor of the parameter x when calculating the CLF index 69 

γ: peak enhancement factor in the standard JONSWAP spectrum 70 

ρa: air density (kgm
-3

) 71 

ρw: sea water density (kgm
-3

) 72 

σ: standard deviation  73 

σJ : standard deviation of the wave raw power (kWm
-1

) 74 

σp : standard deviation of the wind raw power (kWm
-2

) 75 

𝜃: wave propagation direction 76 

θwave,mean: mean wave direction (º) 77 

θwind,mean: mean wind direction (º) 78 

μ: average value 79 

 80 
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 85 

1. Introduction  86 

Marine energy, carried by ocean waves, tides, salinity, ocean temperature differences 87 

and also offshore winds [1], has emerged as one of the most attractive solutions to meet 88 

the major energy challenge of transforming Europe into a highly energy-efficient and 89 

low-GHG economy [2]. The main argument that supports the substantial use of this 90 

energy is its enormous potential for electricity production [3, 4]. Nevertheless, there are 91 

several barriers that may hinder the development of marine energies, such as the early 92 

stage of technology development of some marine renewables such as wave energy [5-93 

7], the higher costs involved relative to onshore installations [8-10] or  uncertainties 94 

regarding the environmental impacts [11-13].  95 

Among the different alternatives of marine energy, this work focuses on two of them: 96 

offshore wind and wave energy. As for the former, investment in offshore wind systems 97 

has been growing rapidly throughout Europe in order to achieve EU targets for 98 

renewable energy in 2020 [2], due to the powerful available resource [14] and its 99 

similarities to its onshore counterpart. However, there exist some limitations that could 100 

hinder its introduction into the energy mix, such as the higher investment implied, more 101 

demanding maintenance tasks or power variability. For its part, wave energy presents 102 

extensive possibilities for the future thanks to its enormous potential for electricity 103 

production [15, 16]. In fact, the global gross wave energy resource has been estimated at 104 
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about 4TW [17]. Nevertheless, wave energy is still in its infancy and its levelised cost is 105 

high. 106 

In recent years, taking advantage of various marine renewables at the same time through 107 

combined systems has been regarded as a good solution to promote and accelerate the 108 

development of marine energy [21-23]. There are many synergies to be realised, such as 109 

the more rational use of the marine resource [24], the reduction in the intermittency 110 

inherent to renewables [25-28] or the opportunity to reduce costs by sharing some of the 111 

most expensive elements of an offshore project [29]; as well as other technology 112 

synergies such as the so-called shadow effect [30, 31].  113 

 According to the degree of connectivity between the offshore wind turbines and Wave 114 

Energy Converters (WECs) combined wave-wind systems can be classified into: co-115 

located, hybrid and islands systems [32]. Due to the current state of development of 116 

both technologies, the co-location of WECs into a conventional offshore wind farm is 117 

regarded as the best option [32], which combines an offshore wind farm and a WEC 118 

array with independent foundation systems but sharing the same marine area, grid 119 

connection, crafts and crews involved in operation and maintenance tasks, etc.  120 

As was proved in [33], the possibility of taking advantage of the above synergies will 121 

depend on the location considered for the deployment of the co-located farm. Therefore, 122 

finding adequate locations is a prerequisite to the large scale deployment of these 123 

combined systems [34]. This work focuses on the Central and Southern North Sea, one 124 

of the most promising areas for offshore marine energy parks [35] thanks to the large 125 

available resource and the relatively shallow waters – about 40% of this area has a water 126 

depth below 50 m [36] in line with the current technological limit and helps to keep 127 

costs down. However, significant portions of the North Sea are already used by 128 

traditional non-wind functions such as shipping or military activities. This can, in effect, 129 
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create competition for space between the comparatively new marine space user that is 130 

offshore marine energy and existing users.  131 

On this basis, the aim of this study is to find the most convenient area to deploy a co-132 

located wind and wave energy farm in the North Sea with a view to maximising the 133 

benefits of the combination of the marine resources while minimising effects on other 134 

uses. Previous studies (e.g. [35], [37]) analysed the available wind and wave energy 135 

resource in the North Sea, but as independent renewables. Only a few works , e.g. [34], 136 

assess both resources in conjunction and these are focused on a specific area of the 137 

North Sea, e.g. [21]. In the present study, different parameters are considered in 138 

determining the best location: (i) the available wave and wind resource, their variability 139 

and the correlation between them, (ii) the bathymetry and distance to land, (iii) 140 

restricted and protected areas such as shipping routes, fishing zones, military areas or 141 

natural protected sites, and (iv) economic considerations resulting from factors such as 142 

distance to land and grid connection or distance from the meanest suitable port.  143 

2. Methodology 144 

This paper is structured in three steps. First, the available wave and wind resource is 145 

assessed through buoy data and numerical hindcasts along the North Sea coast. The best 146 

10 locations in terms of potential power output, variability and correlation between 147 

waves and winds are identified. Second, economic considerations, overlap with other 148 

uses of the marine space and natural protected areas are considered in selecting the most 149 

suitable locations. Third, a thorough analysis of these sites is carried out in order to 150 

determine the best location for a co-located wind-wave farm in the Central and Southern 151 

North Sea.  152 

2.1. Study area 153 



 
 

7 
 

The Central and Southern North Sea – approaching half a million square kilometres in 154 

size [38] – is bordered by 6 countries: Belgium, Denmark, Germany, the Netherlands, 155 

Norway and the UK (Figure 1). It is one of the most promising areas for large scale 156 

deployment of offshore marine energy. In fact, a capacity of 135 GW of offshore wind 157 

energy might be feasible by 2030 while the current capacity of operational offshore 158 

energy is lower than 5 GW [39]. The total capacity of the study area is divided into 44% 159 

in the UK, 27% in Germany, 13% in the Netherlands, 7% in Denmark, 6% in Norway 160 

and 3% in Belgium [40]. 161 

  162 
Figure 1. The North Sea and its bordering countries. The red framed area represents the 163 
area considered in this study [from (50º N, -4º W) to (59º N, 11º E)]. 164 

Among the reasons that make the North Sea a great area for offshore projects, the 165 

abundant wind and wave resource are maybe the most important [39]. Moreover, the 166 

water depth and soil conditions are in line with the current technological requirements. 167 

Besides, this sea basin has numerous ports and harbours situated on its coasts, which is 168 

important for the construction of the offshore farms and their maintenance tasks during 169 

their lifetime. Nevertheless, currently marine renewable energy is still a marginal sector 170 

in the North Sea waters. In fact, only wind power is commercially developed (Figure 2), 171 
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while there are only some not commercial wave energy installations for research and 172 

development.  173 

 174 
Figure 2. Planned, authorised and operational wind farms in the North Sea area (source: 175 

adapted from [41]).  176 

2.2. Available wind and wave resource 177 

The wave and wind data was obtained from a combination of hindcast data from 178 

WaveWatch III, a third  generation wave model [42], and buoy data along the North Sea 179 

coast, encompassing the period from February 2005 to January 2015 with an hourly 180 

temporal resolution ⎯ in wind energy applications, 5 or more years of data are suggested 181 

to give a reasonable wind energy assessment [43]. These data sets were implemented 182 

into the third generation models SWAN (Simulating WAves Nearshore) [44] and WAsP 183 

(Wind Atlas Analysis and Application Program) [45] to simulate wave and wind 184 

propagation within the study area, respectively.  185 

The former model (SWAN) computes the evolution of random waves accounting for 186 

refraction, wave generation due to wind, dissipation and non-linear wave-wave 187 

Operational 
 

Authorised 
 

Planned 
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interactions [44]. It was successfully applied in recent studies such as [46] or [47]. The 188 

evolution of the wave field is described by the action balance equation,   189 

𝜕

𝜕𝑡
 𝑁 +  

𝜕

𝜕𝑥
 𝑐𝑥𝑁 +  

𝜕

𝜕𝑦
 𝑐𝑦𝑁 +  

𝜕

𝜕𝜎
 𝑐𝜎𝑁

𝜕

𝜕𝜃
 𝑐𝜃𝑁 =  

𝑆𝑡𝑜𝑡

𝜎
  ,  (1) 190 

where t is time (s), cx and cy are spatial velocities in the x and y components (ms
-1

), cθ 191 

and cσ are rates of change of group velocity which describe respectively the directional 192 

(θ) rate of turning and frequency (σ) shifting due to changes in currents and water depth, 193 

N is wave action density, and Stot are the energy density source terms which describe 194 

local changes to the wave spectrum.  195 

For its part, the WAsP software is an implementation of the so-called wind atlas 196 

methodology [48]. The program employs a comprehensive list of models for projection 197 

of the horizontal and vertical extrapolation of wind climate statistics [49]. It is a linear 198 

numerical model based on the physical principles of flows in the atmospheric boundary 199 

layer, capable of describing wind flow over different terrains, close to sheltering 200 

obstacles and at specific points. Moreover, WAsP models the estimated power loss in 201 

wind farms due to the wind speed reduction in wakes from up-wind turbines [50]. In 202 

terms of wind farm modelling, the wake model in the commercial version is based on 203 

Katic et al. [51], using a linear expansion of the wake diameter set with a wake decay 204 

coefficient ⎯ a value of 0.04 or 0.05 is recommended for offshore applications [52].The 205 

model has been amply validated through a number of comparisons between measured 206 

and modelled wind statistics and wind farm production [53].  207 

Both models (SWAN and WAsP) were implemented in conjunction on a computational 208 

grid encompassing an area of approx. 10.6 × 10.6 º with a 0.025 º spatial resolution and 209 

the North as the open boundary. Bathymetric data from the European Marine 210 
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Observation and Data Network (EMODnet) were interpolated onto this grid. The study 211 

of the available wave and wind resource was focused on 60 points along the North Sea 212 

coast (Figure 3, Table 1). The model output was calibrated with measured wave and 213 

wind data provided by buoys along the North Sea coast (Figure 3, Table 2). 214 

  215 
Figure 3. Location of the 60 points (red circles) considered in this study and the 6 buoys 216 

(green beacon) used to validate the hindcasts.  217 
 218 

Table 1. Coordinates, distance to coast and water depth of the 60 points considered in 219 
this study. 220 

Site 

no. 
Coordinates 

Distance 

to coast 

(km) 

Water 

depth 

(m) 

 Site 

no. 
Coordinates 

Distance 

to coast 

(km) 

Water 

depth 

(m)  

1 58.5º N, 5.5º E 11.7 266 

 

31 51.5º N, 2.5º E 39.9 27 

2 58.0º N, 6.0º E 38.2 295 

 

32 51.5º N, 2.0º E 41.1 43 

3 58.0º N, 6.5º E 11.0 327 

 

33 51.5º N, 1.5º E 12.9 18 

4 57.5º N, 7.0º E 53.5 149 

 

34 52.0º N, 2.0º E 36.7 28 

5 58.0º N, 8.0º E 5.3 185 

 

35 52.0º N, 2.5º E 64.2 30 

6 57.5º N, 8.5º E 47.1 77 

 

36 52.5º N, 2.0º E 15.8 26 

7 57.0º N, 8.0º E 22.0 33 

 

37 53.0º N, 1.5º E 12.9 21 

8 56.5º N, 8.0º E 7.5 20 

 

38 53.0º N, 2.0º E 37.0 26 

9 56.5º N, 7.5º E 39.4 31 

 

39 53.5º N, 1.0º E 18.9 11 
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10 56.0º N, 8.0º E 7.5 19 

 

40 53.5º N, 1.0º E 51.4 18 

11 56.0º N, 7.5º E 41.1 27 

 

41 53.5º N, 1.5º E 65.8 21 

12 55.5º N, 8.0º E 19.0 8 

 

42 53.5º N, 2.0º E 76.5 20 

13 55.0º N, 8.0º E 21.3 16 

 

43 54.0º N, 0.0º E 12.5 19 

14 54.5º N, 8.0º E 29.8 15 

 

44 54.0º N, 0.5º E 44.9 47 

15 54.0º N, 8.5º E 13.7 10 

 

45 54.0º N, 1.0º E 73.0 40 

16 54.0º N, 8.0º E 21.7 28 

 

46 54.5º N, 0.0º E 33.7 59 

17 54.0º N, 7.5º E 26.9 30 

 

47 55.0º N, 0.5º W 55.1 68 

18 54.0º N, 7.0º E 34.3 29 

 

48 55.0º N, 0.0º E 85.7 70 

19 54.0º N, 6.5º E 46.0 28 

 

49 55.5º N, 1.0º W 36.6 99 

20 54.0º N, 6.0º E 59.0 32 

 

50 55.5º N, 0.5º W 69.4 57 

21 53.5º N, 5.5º E 6.5 12 

 

51 56.0º N, 2.0º W 17.0 67 

22 53.5º N, 5.0º E 23.1 23 

 

52 56.0º N, 1.5º W 41.8 72 

23 53.5º N, 4.5º E 38.6 24 

 

53 56.0º N, 1.0º W 66.6 69 

24 53.5º N, 4.0º E 66.4 28 

 

54 56.5º N, 2.0º W 33.6 47 

25 53.0º N, 4.5º E 11.3 22 

 

55 57.0º N, 1.5º W 36.0 67 

26 53.0º N, 4.0º E 49.5 26 

 

56 57.5º N, 1.5º W 16.1 73 

27 52.5º N, 4.0º E 38.7 20 

 

57 58.0º N, 3.0º W 34.2 56 

28 52.0º N, 3.5º E 38.0 23 

 

58 58.0º N, 2.5º W 35.8 61 

29 52.0º N, 3.0º E 56.7 29 

 

59 58.0º N, 2.0º W 32.1 82 

30 5º.5º N, 3.0º E 29.5 22 

 

60 58.5º N, 2.5º W 30.7 66 

Table 2. Location of the 6 buoys situated along the North Sea coast used in this work. 221 

Name Coordinates Country Provider 

Dowsign  53.5310º N, 1.0528º E UK Cefas 

Fino 1 54.0143º N, 6.5877º E Germany Alpha Ventus 

Horns Rev D 55.6500º N, 7.7000º E Denmark Horns Rev 3 

Moray Firth  57.9663º N, 3.3332º W UK Cefas 

Tyne/Tees  54.9188º N, 0.7488º W UK Cefas 

West Gabbard  51.9828º N, 2.0818º E UK Cefas 

The most relevant parameters during the study period are shown in Tables 3 and 4 for 222 

waves and wind, respectively, on the basis of the model output ⎯ these are shown for 15 223 

representative points of the total 60 points analysed in this study.  224 

Table 3. Most relevant statistics of wave energy resource for 15 representative sites of 225 

the total considered in this study (𝐻̅𝑚𝑜: average significant wave height, σ: standard 226 

deviation, Hm0,max: maximum value of the significant wave height, 𝑇̅𝑒: average energy 227 

period, Te,max: maximum energy period and θwave,mean: mean wave direction). 228 

Site no. Location 𝐻̅𝑚𝑜± σ (m) Hm0,max (m) 𝑇̅𝑒 (s) Te,max (s) θwave,mean (º) 

2 58.0ºN, 6.0ºE 1.56 ± 1.03 8.31 6.71 19.57 233.21 

7 57.0ºN, 8.0ºE 1.82 ± 1.66 15.78 5.86 19.52 230.45 

11 56.0ºN, 7.5ºE 1.56 ± 0.95 8.14 6.03 19.56 237.87 

12 55.5ºN, 8.0ºE 1.35 ± 0.87 7.21 5.76 18.44 247.49 
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14 54.5ºN, 8.0ºE 1.26 ± 0.75 6.17 5.41 16.43 239.74 

19 54.0ºN, 6.5ºE 1.41 ± 0.83 6.93 5.75 17.46 237.04 

22 53.5ºN, 5.0ºE 1.21 ± 0.71 5.54 5.63 13.56 238.98 

27 52.5ºN, 4.0ºE 1.15 ± 0.72 5.37 5.26 17.40 226.64 

30 51.5ºN, 3.0ºE 0.95 ± 0.60 4.33 4.89 16.36 220.50 

33 51.5ºN, 1.5ºE 0.84 ± 0.53 3.83 4.37 24.69 153.10 

38 53.0ºN, 2.0ºE 1.14 ± 0.64 4.49 5.44 16.01 189.18 

44 54.0ºN, 0.5ºE 1.20 ± 0.69 4.95 5.97 25.13 149.81 

49 55.5ºN, 1.0ºO 1.29 ± 0.79 6.53 6.53 24.56 121.43 

55 57.0ºN, 1.5ºO 1.38 ± 0.83 6.53 6.74 24.47 120.70 

60 58.5ºN, 2.5ºO 1.33 ± 0.81 6.70 6.16 24.58 144.28 

Table 4. Most relevant statistics of wind energy resource for 15 representative points of 229 

the total considered in this study  (𝑈̅10𝑚: average wind speed at 10 m above the sea 230 

level, σ: standard deviation,  U10m,max: maximum wind speed at 10 m above the sea level 231 
and θwind,mean: mean wind direction). 232 

Site no. Location 𝑈̅10𝑚± σ (m s
-1

) U10m,max (m s
-1

) θwind,mean (º) 

2 58.0ºN, 6.0ºE 8.31 ± 4.06 29.55 191.02 

7 57.0ºN, 8.0ºE 7.90 ± 3.54 27.73 176.96 

12 55.5ºN, 8.0ºE 7.81 ± 3.52 25.46 173.82 

14 54.5ºN, 8.0ºE 8.45 ± 3.77 25.72 171.88 

19 54.0ºN, 6.5ºE 8.41 ± 3.75 26.54 168.24 

22 53.5ºN, 5.0ºE 7.69 ± 3.50 22.88 164.45 

27 52.5ºN, 4.0ºE 7.44 ± 3.64 26.52 161.91 

30 51.5ºN, 3.0ºE 7.01 ± 3.34 22.67 156.24 

33 51.5ºN, 1.5ºE 7.47 ± 3.48 23.35 152.88 

38 53.0ºN, 2.0ºE 7.36 ± 3.50 23.75 160.98 

44 54.0ºN, 0.5ºE 7.66 ± 3.58 25.96 154.79 

49 55.5ºN, 1.0ºO 7.68 ± 3.63 26.65 158.60 

55 57.0ºN, 1.5ºO 7.60 ± 3.77 29.26 156.03 

60 58.5ºN, 2.5ºO 8.56 ± 3.98 30.13 162.63 

 233 

The available resource was quantified in terms of wind (P) and wave (J) raw power, 234 

which can be calculated according to the following expressions [56, 57]: 235 

𝑃 =  
1

2
𝜌𝑎𝑈𝑤

3        (2) 236 

where Uw is the wind speed, and ρa is the air density, assumed as equal to 1.23 kg/m
3
, 237 

considering an average air temperature of 5 °C; and 238 
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𝐽 =  
𝜌𝑤𝑔2𝐻𝑚𝑜

2 𝑇𝑒

64𝜋
      (3) 239 

where ρw  is the sea water density (it was assumed equal to 1027 kg/m
3
 considering an 240 

average water salinity concentration of 33 ppm and an average water temperature of 241 

7 °C), g is the gravity acceleration (g = 9.82 m/s
2
), Hm0 is the significant wave height, 242 

and Te is the energy period which is defined in terms of spectral moments as: 243 

𝑇𝑒 =
𝑚−1

𝑚0
      (4) 244 

where mn represents the spectral moment of order n, which is given by 245 

𝑚𝑛 = ∫ ∫ 𝑓𝑛𝐸(𝑓, 𝜃)𝑑𝑓𝑑𝜃
∞

0

2𝜋

0
    (5) 246 

where f is the wave frequency and E = E(f,  𝜃)  is the energy density with 𝜃  the 247 

propagation direction. 248 

 249 

The energy period Te can be estimated based on the peak period (Tp) as [58]: 250 

𝑇𝑒 = 𝛼𝑇𝑝           (6) 251 

The coefficient α depends on the shape of the wave spectrum. For instance, α = 0.86 for 252 

a Pierson–Moskowitz spectrum, and α increases toward unity with decreasing spectral 253 

width [58]. In this study, the assumption of α = 0.90 or Te = 0.9Tp was adopted, which is 254 

equivalent to assuming a standard JONSWAP spectrum with a peak enhancement factor 255 

of γ = 3.3.  256 

The variability of the available power was analysed through statistical indicators such as 257 

the standard deviation (σ) or confidence intervals [59]. The variability of waves and 258 

winds is relevant in choosing a location since the peak-to-average ratio has been 259 
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identified as a major cost driver in renewable energy systems [60]. Moreover, the 260 

correlation between wave and wind energy farms, the analysis of the existing 261 

correlation between waves and winds was analysed through the cross-correlation factor, 262 

c(τ), which gives the correlation between two generic signals x(k) and y(k) at a time lag 263 

τ (Eq. 7) [33]. The instantaneous correlation, c(0), is of particular interest in this study, 264 

since it focuses on the opportunity to smooth the power output and avoid downtime 265 

periods through co-located wind-wave energy farms.  266 

𝑐(𝜏) =
1

𝑁
∑

[𝑥(𝑘)−𝜇𝑥][𝑦(𝑘−𝜏)−𝜇𝑦]

𝜎𝑥𝜎𝑦

𝑁−𝜏
𝑘=1     (7) 267 

where μx, μy and σx, σy are the mean and the standard deviation of x and y, respectively. 268 

In this work, x(k) and y(k) are, respectively, the wind and wave raw power , P and J. 269 

To encompass all these factors when searching for the best location for a co-located 270 

wave and wind energy farm, the CLF index (Co-location Feasibility index) was defined 271 

(Eq. 8). Since these factors are not equally important, different weighting factors were 272 

assigned for each parameter: 𝛼𝐽 ̅and 𝛼𝑃̅  = 0.35 for the available wind and wave power ⎯ 273 

the most relevant parameters, 𝛼𝑐(0)= 0.2 for the instantaneous correlation, and 𝛼𝜎𝐽̅,𝑃̅
= 274 

0.05 for the wave and wind power variability: 275 

𝐶𝐿𝐹𝑖 =  𝛼𝐽 ̅
𝐽𝑖̅− 𝐽𝑚̅𝑖𝑛

𝐽𝑚̅𝑎𝑥− 𝐽𝑚̅𝑖𝑛
+ 𝛼𝑃̅ 

𝑃̅𝑖− 𝑃̅𝑚𝑖𝑛

𝑃̅𝑚𝑎𝑥− 𝑃̅𝑚𝑖𝑛
+ 𝛼 𝑐(0)

𝑐(0)𝑚𝑎𝑥−𝑐(0)𝑖

𝑐(0)𝑚𝑎𝑥−𝑐(0)𝑚𝑖𝑛
+276 

𝛼𝜎𝐽̅

𝜎𝐽̅,𝑚𝑎𝑥−𝜎𝐽̅,𝑖

𝜎𝐽̅𝑚𝑎𝑥−𝜎𝐽̅,𝑚𝑖𝑛
+ 𝛼𝜎𝑃̅

𝜎𝑃̅,𝑚𝑎𝑥−𝜎𝑃,𝑖

𝜎𝑃̅𝑚𝑎𝑥−𝜎𝑃̅,𝑚𝑖𝑛
   (8) 277 

where xi is the value of the parameter x in the point i for the study period, xmax 278 

corresponds to the value of the parameter x at the point where it enhances the maximum 279 

value, and the same for xmin but for the minimum. The general parameter x could 280 
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correspond to the mean wave power during the study period (𝐽)̅, the mean wind power 281 

(𝑃̅), the instantaneous correlation (c(0)) or the standard deviation of wave and wind 282 

power (σJ and σP, respectively).  For instance, the site with the maximum mean wave 283 

power will correspond to a value of 1 in the first term of the right-hand side of the 284 

equation, whereas the site with the greatest power variability will have a zero value in 285 

the last term. 286 

Once the best locations for a co-located wave and wind energy farm have been 287 

identified on the basis of the CLF index’s results, the assessment of the available 288 

resource can be extended by analysing the wave and wind roses, the correlation between 289 

waves and winds for different time lags (τ) and the variation in the mean raw power on 290 

inter- and intra-annual time scales for the study period. 291 

2.3. Overlap with other activities, restricted areas and other considerations 292 

The North Sea, surrounded by densely populated and highly industrialised countries, is 293 

under increasing pressure on the marine space. In fact, this is one of the most crowded 294 

marine areas in the world [61], and marine energy projects will have to share space with 295 

other activities such as shipping, fishing, sand and gravel extraction, military activities 296 

and the exploitation of oil and gas reserves [39]. Not only do the characteristics of each 297 

use of the marine space differ, but many of these uses overlap with each other. Besides, 298 

the different uses are not stable but change from year to year (e.g. fishing depends on 299 

the available resource), and their future development is uncertain. At the same time, 300 

energy farms have to deal with the conservation of the marine environment and its 301 

living natural resources.  302 

Therefore, establishing a management strategy for the marine space is fundamental to 303 

avoiding conflicts between offshore parks and other sea uses. However, there is no EU 304 
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legislation that directly regulates offshore energy. All marine legislation is dependent on 305 

the United Nations Convention on the Law of the Sea (UNCLOS), which defines the 306 

different maritime zones at sea and the legal status of these zones. UNCLOS authorises 307 

coastal states to extend their jurisdiction up to 200 nm to create Exclusive Economic 308 

Zones (EEZs), in which the coastal state is allowed to deploy offshore renewable energy 309 

projects. It is worth specifying that UNCLOS provides only general rules. Detailed 310 

regulation is organised through specialised bodies and specific agreements [62]. In this 311 

sense, the European Commission has recently proposed directives for Maritime Spatial 312 

Planning (MSP) and Integrated Coastal Zone Management (ICZM), which should be 313 

cross-cutting policy tools for public authorities and stakeholders to apply a coordinated 314 

and integrated approach [63]. In September 2012, the Commission presented the 315 

Communication Blue Growth as part of the EU Integrated Maritime Policy. The 316 

Communication stated that the Commission will assess options for giving industry the 317 

confidence to invest in marine renewable energy [41] .  318 

Moreover, the sea use functions are commonly present near shore or in shallow depths, 319 

which are at the same time the suitable areas for low cost offshore renewable farms. The 320 

majority of offshore wind projects have been installed using monopile foundations, 321 

which currently is feasible for water depths of up to 35 m. For deeper water other 322 

foundations, including floating systems have been tested and used, but remain a costly 323 

option and still require development. In this study, a maximum water depth of 50 m was 324 

considered as in [64] or [65]. This limit restricts the available area for deploying a co-325 

located farm considerably, especially in some countries of the study area such as 326 

Norway (Figure 4). 327 
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 328 
Figure 4. Size of sea basin by country and depth (source: adapted from [39]). 329 

Therefore, the challenge is to find space for offshore renewable projects that balances 330 

the need for low cost renewable energy against the needs of these other, so called, non-331 

wind sea uses.  332 

3. Results and discussion 333 

3.1. Wave and wind available resource 334 

The models used in this study were validated with real data provided by buoys located 335 

along the North Sea coast (Section 2.1) in terms of the significant wave height (Hm0) 336 

and wind speed at 10 m above the sea level (U10m). In all cases, a good correlation was 337 

observed (Figure 5) as shown by the values of the coefficient of determination (R
2
) and 338 

the Root Main Square Error (RMSE) (Table 5). 339 
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340 
Figure 5. Correlation between simulated and observed data from Dowsing buoy in terms 341 

of significant wave height (Hmo) from January to December 2013.  342 

Table 5. The coefficient of determination (R
2
) and Root Main Square Error (RMSE) 343 

between simulated and observed significant wave height (Hm0) and wind speed at 10 m 344 

above the sea level (U10m) from February 2005 to January 2015. The average value of 345 
Hm0 and U10m  is included. 346 

Buoy 
Hm0 U10m 

Mean (m) R
2
 RMSE (m) Mean (m) R

2
 RMSE (m/s) 

Dowsign 1.23 0.96 0.22 8.02 0.95 0.28 

Fino 1 1.44 0.94 0.31 8.43 0.94 0.29 

Horns Rev D 1.39 0.93 0.31 8.71 0.94 0.32 

Moray Firth 1.07 0.90 0.32 7.89 0.92 0.30 

Tyne/Tees 1.34 0.91 0.36 8.12 0.91 0.34 

West Gabbard 1.15 0.90 0.29 7.32 0.91 0.31 

When validating the models, the results of the simulations were used to analyse the 347 

available wind and wave resource (Table 6) in the 60 points along the North Sea coast 348 

considered in this study. With regard to the wave energy resource, the largest available 349 

power corresponded with the site no. 7 with a mean value over 16 kW/m, whereas the 350 

worst location was the site no. 15 with only 1.59 kW/m. A value of 4−5 kW/m is 351 

commonly set as the limit for possible location of an offshore wave farm [17, 66]. In 352 

this study, approx.. 70% of the points analysed exceeded this value, and even more, the 353 

10 best locations in terms of 𝐽 ̅(Table 7) had values of wave power greater than 8.8 354 

kW/m. These points were located in the Danish and Norwegian coasts of the North Sea 355 

and in the northern coast of the UK, which is in accordance with the highest values of 356 

significant wave height due to its exposure to the large fetch from North. The other sites 357 

are sheltered by the coast itself so the potential decreases clearly. As for the mean wind 358 
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power density, 𝑃̅ , it ranged between 0.26 and 0.71 kW/m
2
 (Table 6). The 10 best 359 

locations (Table 7) had values over 0.58 kW/m
2
 and 5 of them ⎯ around the Norwegian 360 

and Danish coasts ⎯ were at the same time good locations in terms of wave power. 361 

Although the potential power production is one of the most important parameters when 362 

selecting the best location, there are other factors to be considered. One of them is the 363 

correlation between both resources; if there is phase shift between them the inherent 364 

variability of the power output may be smoothed and the non-operational periods may 365 

be avoided. The points with greater variability with regard to wave power corresponded 366 

to the Norwegian part of the North Sea and the North of Denmark, which were 367 

important areas in terms of the available resource, as noted previously. The same 368 

applies to wind power, whose largest standard deviation was found in the points of the 369 

northern coast of the UK. Therefore, the locations with the greatest resource had also 370 

the largest power variability, implying high balancing costs to connect the co-located 371 

farm to the electric grid. In view of the values obtained for the instantaneous correlation, 372 

c (0), in some of these areas this challenge could be overcome with co-located farms by 373 

combining both resources. This was the case of some points in the Danish coast and the 374 

North coast of UK, e.g. the site no. 51 and 54, that presented very low values of c (0): 375 

25% and 28%, respectively. The largest correlation values, around 80% were found in 376 

areas of Germany and the Netherlands characterised by a soft wave climate. The time 377 

required for waves to develop is relatively shorter for low energies and, thus, the time 378 

lag between waves and winds is also low, increasing the correlation between them.379 
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Table 6. Main statistics of wave (J) and wind (P) power: mean, 380 

median, standard deviation (σ) and 90% confidence interval (c.i. 381 

90%). The instantaneous correlation c(0) between wave and wind 382 

power is also included.  383 

Site no. 
J (kW m

-1
) P (kW m

-2
) 

c (0) 
Mean Median σ c.i. 90% Mean Median σ c.i. 90% 

1 10.01 4.05 16.30 ± 0.158 0.40 0.17 0.62 ± 0.006 0.52 

2 10.89 4.85 17.40 ± 0.169 0.63 0.31 0.90 ± 0.009 0.61 

3 8.68 3.61 15.23 ± 0.156 0.46 0.22 0.65 ± 0.006 0.47 

4 10.48 5.33 15.12 ± 0.147 0.71 0.42 0.88 ± 0.009 0.71 

5 2.99 1.22 5.36 ± 0.052 0.31 0.17 0.40 ± 0.004 0.61 

6 6.29 2.72 10.56 ± 0.102 0.62 0.36 0.79 ± 0.008 0.39 

7 16.04 4.20 35.80 ± 0.366 0.50 0.28 0.66 ± 0.006 0.27 

8 7.12 3.24 10.76 ± 0.104 0.44 0.23 0.61 ± 0.006 0.74 

9 9.63 4.87 13.75 ± 0.133 0.61 0.34 0.79 ± 0.008 0.76 

10 15.37 4.10 32.80 ± 0.336 0.44 0.24 0.61 ± 0.006 0.15 

11 9.16 4.71 12.60 ± 0.122 0.62 0.35 0.80 ± 0.008 0.76 

12 6.80 3.22 9.92 ± 0.096 0.49 0.26 0.65 ± 0.006 0.74 

13 6.20 3.29 8.35 ± 0.081 0.58 0.32 0.76 ± 0.007 0.77 

14 5.32 2.81 7.20 ± 0.070 0.60 0.35 0.77 ± 0.007 0.77 

15 1.59 0.78 2.31 ± 0.022 0.35 0.19 0.49 ± 0.005 0.10 

16 3.50 1.84 4.81 ± 0.047 0.47 0.26 0.62 ± 0.006 0.76 

17 5.25 2.59 7.61 ± 0.074 0.50 0.28 0.63 ± 0.006 0.72 

18 6.52 3.33 9.11 ± 0.088 0.55 0.31 0.71 ± 0.007 0.71 

19 7.00 3.75 9.38 ± 0.091 0.60 0.33 0.77 ± 0.007 0.73 

20 7.77 4.28 10.22 ± 0.099 0.61 0.34 0.79 ± 0.008 0.72 

21 3.29 1.88 4.29 ± 0.042 0.46 0.24 0.64 ± 0.006 0.74 

22 5.22 2.90 6.67 ± 0.146 0.47 0.25 0.63 ± 0.014 0.76 

23 6.87 3.80 8.62 ± 0.084 0.56 0.30 0.75 ± 0.007 0.74 

24 7.02 3.97 8.64 ± 0.084 0.53 0.28 0.72 ± 0.007 0.77 

25 4.63 2.47 5.96 ± 0.058 0.47 0.24 0.66 ± 0.006 0.79 

26 5.11 2.64 6.77 ± 0.067 0.52 0.26 0.72 ± 0.007 0.67 

27 4.32 2.26 5.71 ± 0.055 0.45 0.22 0.67 ± 0.007 0.78 

28 3.85 2.07 5.05 ± 0.049 0.48 0.23 0.69 ± 0.007 0.78 

29 4.33 2.46 5.41 ± 0.052 0.55 0.29 0.73 ± 0.007 0.79 

30 2.73 1.45 3.73 ± 0.036 0.37 0.18 0.53 ± 0.005 0.74 

31 3.27 1.81 4.29 ± 0.042 0.48 0.26 0.65 ± 0.006 0.75 

32 2.79 1.58 3.53 ± 0.034 0.54 0.29 0.72 ± 0.007 0.80 

33 1.91 1.04 2.46 ± 0.024 0.44 0.23 0.59 ± 0.006 0.77 

34 3.12 1.81 3.88 ± 0.038 0.49 0.26 0.65 ± 0.006 0.45 

35 4.16 2.38 5.12 ± 0.050 0.55 0.30 0.72 ± 0.007 0.51 

36 3.03 1.73 3.88 ± 0.038 0.34 0.18 0.47 ± 0.005 0.40 

37 2.72 1.46 3.85 ± 0.037 0.31 0.16 0.44 ± 0.004 0.38 

38 4.22 2.43 5.31 ± 0.051 0.42 0.22 0.60 ± 0.006 0.43 

39 2.96 1.56 4.23 ± 0.041 0.39 0.19 0.55 ± 0.005 0.35 

40 4.35 2.36 6.07 ± 0.059 0.47 0.24 0.66 ± 0.006 0.40 

41 5.01 2.83 6.49 ± 0.063 0.48 0.25 0.66 ± 0.006 0.44 

42 5.96 3.42 7.50 ± 0.073 0.48 0.25 0.66 ± 0.006 0.45 

43 3.42 1.71 5.23 ± 0.051 0.26 0.13 0.38 ± 0.004 0.32 

44 5.24 2.80 7.34 ± 0.071 0.47 0.24 0.66 ± 0.006 0.37 

45 6.44 3.55 8.80 ± 0.085 0.52 0.28 0.71 ± 0.007 0.41 

46 6.07 3.01 9.33 ± 0.090 0.38 0.20 0.54 ± 0.005 0.32 

47 6.94 3.46 10.65 ± 0.103 0.50 0.26 0.72 ± 0.007 0.31 

48 8.62 4.48 12.75 ± 0.124 0.55 0.30 0.75 ± 0.007 0.37 

49 6.90 3.40 10.63 ± 0.103 0.48 0.25 0.70 ± 0.007 0.32 

50 8.90 4.62 12.98 ± 0.126 0.58 0.31 0.81 ± 0.008 0.36 

51 3.58 1.72 5.81 ± 0.056 0.40 0.19 0.60 ± 0.006 0.25 

52 6.60 3.32 9.82 ± 0.095 0.52 0.27 0.76 ± 0.007 0.32 

53 8.85 4.60 12.68 ± 0.123 0.59 0.31 0.82 ± 0.008 0.35 

54 5.00 2.50 7.64 ± 0.074 0.47 0.22 0.73 ± 0.007 0.28 

55 8.28 4.14 12.25 ± 0.119 0.49 0.23 0.73 ± 0.007 0.33 

56 8.82 4.33 13.10 ± 0.127 0.42 0.21 0.60 ± 0.006 0.40 

57 3.52 1.59 6.07 ± 0.059 0.48 0.22 0.75 ± 0.007 0.32 

58 5.79 2.72 8.97 ± 0.087 0.56 0.27 0.82 ± 0.008 0.37 

59 8.26 4.05 12.23 ± 0.119 0.57 0.30 0.81 ± 0.008 0.40 

60 7.02 3.40 10.99 ± 0.106 0.65 0.35 0.88 ± 0.009 0.41 
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384 

Table 7. Best locations in terms of: mean wave power (𝐽)̅, mean wind power (𝐽 ̅),  385 

instantaneous correlation (c(0)) and standard deviation of wave and wind power (σJ  and 386 

σP, respectively).  387 

Parameter 10 best locations (site no.) 

𝐽 ̅ 7, 10, 2, 4, 1, 9, 11, 50, 53, 56 

𝑃̅ 4, 60, 2, 11, 6, 9, 20, 14, 19, 53 

c (0) 15, 10, 51, 7 54, 47, 52, 43, 57, 46 

 σJ  15, 33, 32, 30, 37, 34, 36, 39, 31, 21   

σP  43, 5, 37, 36, 15, 30, 46, 39, 33, 38 

In view of the above, there was not a location with optimal conditions with regard to all 388 

the parameters considered. Assessing the results with the CLF index (Figure 6), the 10 389 

best locations were found to be in the northern coast of the UK and the Norwegian and 390 

Danish areas (Figure 7). Site no. 7 was the best location with CLFi = 0.75, followed by 391 

site no. 10 with CLFi = 0.68.  392 

 393 

Figure 6. CLFi of the 60 sites along the North Sea coast considered in this study.    394 
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 396 
 397 

Figure 7. The 10 best sites for a co-located farm in the North Sea with based on the CLF 398 
index.  399 

3.2. Technological and economic limitations 400 

As explained in Section 2.3, current commercial substructures are limited to maximum 401 

water depths of 50 m (Figure 8). There are prototypes suitable for depths up to 200 m 402 

[67], but this technology is still at a very early stage of development. For that reason, 403 

the sites of the Norwegian coast were discarded in this study. When the technology for 404 

deep waters becomes a reality the feasible areas for offshore farms will increase 405 

considerably, especially in Norway and the UK (Figure 8).  406 

Apart from the technical limitations, the water depth and distance to land are 407 

fundamental for the economic assessment of the installations. On this basis different 408 

zones were distinguished in the North Sea (Figure 9). It was found that the more 409 

convenient areas for co-located offshore installations were the Southern and Eastern 410 

North Sea. The westerly sites were discarded for their high levelised cost values (Figure 411 



 
 

23 
 

9). Instead, the sites along the Danish coast corresponded to areas where the deployment 412 

of an co-located offshore park would be more economical.  413 

 414 
Figure 8. Water depth (m) in the study area. 415 

 416 

 417 
Figure 9. Location of the 10 best sites for a co-located farm in terms of resource in a 418 

distribution map of the levelised cost (source: adapted from [38]). 419 

3.3. Overlap with other activities and nature protected areas 420 

Shipping takes up 10-25% of the North Sea [39] with some routes with important traffic 421 

density (Figure 10(a)) and it is expected to undergo significant growth over the next 422 

      Low                High 
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decades [39]. In International shipping lanes (IMO) a 2 nm safety zone is considered, 423 

which constitutes an exclusion area for offshore energy farms. Similarly, anchorage 424 

areas involve exclusions zones, and in this case a 4 nm margin is required. Major 425 

shipping routes are also exclusion zones [68, 69].  Moreover, it is of particular interest 426 

for the offshore wind farm operators to minimise the cable length in the area of shipping 427 

routes. In many cases conflicts of interest could be resolved by measures such as 428 

altering maritime routes or establishing corridors between wind turbines [62].  429 

For their part, military areas cover 14% of the North Sea (Figure 10(b)). Munitions 430 

dumping areas are not available for offshore parks. All remaining military use 431 

categories are possibly available for coexisting with energy farms. In the case of zones 432 

designated for military aircraft manoeuvres the offshore farm should not use more than 433 

20% of the area [64].  434 

With regard to cables and pipelines (Figure 10(c)), a 500 m safety zone to either side 435 

cable or pipelines is considered as an exclusion zone for offshore installations [70] to 436 

protect them and provide maintenance access. Sand extraction is a minor and stable sea 437 

use function (Figure 10(d)), but it represents access limited areas that have to be 438 

considered when deploying an offshore farm. Oil and gas extraction activities (Figure 439 

10(e)) are declining through decommissioning, but nowadays still cover 11% [39] of the 440 

sea area. Around sub-surface installations a 500 m safety zone is considered [64], as 441 

well as in the case of surface installations not accessible by helicopter. As for fishing 442 

activities (Figure 10(f)), they are present in almost all the North Sea in some form or 443 

another, but the greatest conflict with offshore projects would come from heavy fishing, 444 

especially for the cables of the energy parks.  445 

 446 

 447 
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 471 

 472 
Figure 10. Location of the 10 best sites for a co-located farm in terms of resource in 473 
distribution maps of: (a) shipping routes, (b) military activities, (c) cables and pipelines, 474 
(d) sand extraction activities, (e) oil and gas platforms and (f)fishing. (source: adapted 475 

from [62, 64, 71]). 476 
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 Therefore, with all these activities in the development of offshore renewable projects 478 

requires the compatibility of some of these sea use functions (Figure 11). In this sense, 479 

the need for including regeneration corridors between wind parks to avoid turbulence 480 

and inter-park effects [39] provides opportunities for co-use/co-existence with other sea 481 

uses such as shipping and fishing. 482 

 483 

 484 

Figure 11. Interactions between sea use functions (source: adapted from [72]). 485 

Among the 10 best locations identified previously by means of the CLF index (see 486 

Section 3.1), some of them were rejected (Section 3.2.) for technical limitations and/or 487 

economic considerations. At this point of the study, sites no. 7 and 10 remain as the best 488 

locations for deploying a co-located farm. When they were analysed with regard to the 489 

overlap with other sea activities (Figure 10), it was found that site no. 7 was near a 490 

major shipping route, but with a good design of the co-located farm both activities could 491 

coexist without disturbing each other. The same applied to sand extraction areas. In the 492 

case of site no. 10 there were no interferences with shipping routes or sand extraction; 493 

however, this location was close to a military zone designated for firing activities – 494 

which is not an exclusion area, but far enough to avoid conflicts between both activities. 495 

Furthermore, both sites did not interfere with any oil and gas platforms or pipelines in 496 
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the near vicinity, while they were close to offshore cables that could be harnessed to the 497 

electrical installation of the co-located farm, particularly site no. 10. 498 

As for nature conservation, EU countries are required by the EIA Directive to conduct 499 

environmental impact assessments before developing offshore renewable energy 500 

installations. Several protected areas were defined through directives and initiatives 501 

such as Natura 2000 (Figure 12).  These directives do not exclude offshore renewable 502 

energy installations within protected areas; however, the developer must show that the 503 

activity will not harm the conservation goals set out for the particular area [62], and this 504 

may slow down the approval process. The distribution of the protected areas is not 505 

equitable (Figure 12). Indeed, in Germany about 45% [61] of the waters in the North 506 

and Baltic Seas are marine protected areas, whereas there are no special protection areas 507 

designated entirely in the Scottish marine environment. Even, if all Natura 2000 and 508 

other areas designated for nature protection were theoretically excluded from marine 509 

energy development, there would still be enough wind energy available to supply 3-7 510 

times the total estimated energy demand in 2020 and 2030 [73]. Furthermore, offshore 511 

energy farms must be in accordance with the EU Marine Strategy Framework Directive, 512 

whose aim is to ensure good environmental status for the EU’s marine waters by 2020; 513 

and with the Guidance on Environmental Considerations for Offshore Wind Farm 514 

Development published by the OSPAR Commission [41]. 515 
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 516 
Figure 12. Nature 2000 sites (source: adapted from [74]). The ref framed area represents 517 

a zoom of the Danish coast. 518 

In light of Figure 12, site no. 7 and 10 were not in natural protected areas, although a 519 

detailed environmental impact assessment is advisable since they are near Habitats 520 

Directive Sites.  521 

3.4. Best location for a co-located farm 522 

With regard to the wave and wind resource site no. 7 emerged as the best location for 523 

deploying a co-located farm, followed by site no. 10. These points were located in the 524 

Danish coast in water depths around 20-30 m, and with distances to shore of 10 km and 525 

35 km for sites no. 10 and 7, respectively, which is similar to operational wind farms. 526 

Both sites are in line with current technical and economic limitations, and do not 527 

overlap with traditional sea activities, which is important for avoiding conflict between 528 

users. Moreover, these sites are close to a number of Danish ports (Figure 13), e.g. 529 

Esbjerg, which is important both for construction and maintenance.  530 
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 531 
Figure 13. Danish ports and their relative size.   532 

Although both locations showed numerous favourable characteristics for installing a co-533 

location farm, the proximity to shore and offshore cables makes site no. 10 stand out as 534 

the best location for a co-located wave and wind farm in the North Sea. It was found 535 

that the predominant wave direction (Figure 14) in this location during the study period 536 

was 315º, which also corresponded to the predominant wave production (Figure 14). 537 

The east side is sheltered by the Danish coast itself so the potential decreases clearly 538 

from this direction. The mean significant wave height was between 1 and 2 m. The 539 

analysis of the wind direction (Figure 15) is also important to planning wind turbine 540 

installations. The predominant wind direction, as well as the directions with higher 541 
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contribution to the wind power, corresponded with northern winds.542 

 543 

Figure 14. Wave rose (left) and wave power rose (right) for site no. 10 for the total 544 

study period (from February 2005 to January 2015). 545 

 546 

Figure 15. Wind rose (left) and wind power rose (right) for site no. 10 for the total study 547 
period (from February 2005 to January 2015). 548 

The average raw wave and wind power during the study period were 15.4 kW/m and 549 

0.44 kW/m
2
, respectively. Both the inter- and intra-annual power variability are shown 550 

in Figures 16 and 17. The inter-annual variability was low both for wave and wind 551 

power. However, the intra-annual variability shows that the soft climate during spring 552 

and summer caused a clear decrease in the available power, which would translate into 553 

low power output.  554 
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 555 

 556 
Figure 16. Variability of the mean wave power on inter- and intra-annual time scales for 557 

the study period. 558 

 559 

 560 
Figure 17. Variability of the mean wind power on inter- and intra-annual time scales for 561 
the study period. 562 

The low cross-correlation factor between waves and wind power in this area (Figure 18) 563 

presents an opportunity to smooth power output through the co-located farm if 564 
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compared with independent energy systems. The maximum value of the cross-565 

correlation factor was obtained for a time delay of one hour, which demonstrated the 566 

existence of a phase shift between waves and winds that could be used to reduce the 567 

power variability and avoid non-operational periods. If wind speeds were outside limits 568 

of power production, wave energy could cover the power demand during this period.  569 

 570 

Figure 18. Correlation between wave and wind power in site no.10 for the study period. 571 
c(τ) is the cross-correlation factor and τ the time lag.  572 

4. Conclusions 573 

The aim of this work was to identify the best location to deploy a co-located wave and 574 

wind energy farm in the Central and Southern North Sea, based on both the capacity for 575 

a combined farm development – influenced by factors such as the wave and wind 576 

power, their variability and correlation, and other physical or economic constraints – 577 

and the suitability as a function of the overlap with traditional sea uses and nature 578 

conservation interests. With regard to the mean wave power, the best results were found 579 

in the Danish and Norwegian coasts of the North Sea, with values over 8.8 kW/m. 580 

These areas stood out also as the best locations in terms of the mean wind power density 581 

together with the northern coast of the UK (values between 0.58 and 0.71 kW/m
2
), due 582 

to the higher exposure of these locations to the predominant winds coming from the 583 
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North. In exchange, these areas presented higher power output variability that those 584 

with milder climate. This variability could result in important costs when connecting the 585 

farm to the electric grid. However, co-located wave and wind farms may be an 586 

opportunity to overcome this challenge thanks to the existing phase shifts between 587 

waves and winds. In fact, the lowest correlation (even lower than 25%) between them 588 

was found in the areas with the highest power variability. Balancing all the above 589 

considerations, 10 of the total 60 points analysed were identified as the most convenient 590 

locations for a co-located farm, all of them located in the northern UK coast and the 591 

southern Norwegian and northern Danish areas of the North Sea. Some of these points 592 

were discarded for being in deep water, exceeding the current technical limitation of 50 593 

m. Moreover, the sites in the UK coast were located in areas that involve high levelised 594 

cost for an offshore installation, and were also discarded. The remaining points for the 595 

deployment of a co-located farm were off the Danish coast, in water depths between 20-596 

30 m. These points were analysed with regard to the overlap with other activities, and 597 

no relevant interferences were found. In addition, they were close to submarine cables 598 

that could be used as part of the electric installation of the co-located farm, leading to 599 

savings. Moreover, it was noticed that these points were not in natural protected areas. 600 

Finally, site no. 10 (56ºN, 8ºE) was chosen as the best location. Apart from having great 601 

available resource, with mean values of wave and wind power around 16 kW/m and 0.5 602 

kW/m respectively, this location presented other advantages that made it the best 603 

option, such as the low correlation between waves and winds, which could smooth the 604 

power output, or its proximity to land.  605 

All in all, the North Sea was demonstrated to be a good area for the deployment of co-606 

located farms due to the available wave and wind resource and the existing shallow 607 

waters. Moreover, the bordering countries are at the head of marine energy with plans 608 
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for an important development of these renewables in the following years, and have the 609 

necessary technology and installations to achieve this goal. However, it was found that 610 

the North Sea is subject to many demands of use, and an accurate regulatory framework 611 

for marine planning would be necessary given that some of the activities concurred are 612 

mutually exclusive. Furthermore, promoting deep offshore technology could result in 613 

new opportunities for marine energy farms, which could be located in areas farther 614 

away from, coast with higher available resource and less interference with other sea 615 

uses.  616 
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