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Abstract 

Tidal stream energy projects involve high amounts of capital, for which ex-ante economic 

assessments are crucial. Unfortunately, the existing models to estimate the capital costs of 

a tidal stream energy project are often oversimplified. Focused on single estimates on a per 

installed power basis, such models fail to capture the all-important sensitivity of the capital 

costs to project site-specific characteristics (water depth, distance to the shoreline, etc.) 

The objective of this work is twofold: (1) to develop a new formulation for estimating the 

capital costs of a tidal stream farm, and (2) to implement this formula in a Matlab-based 

tool coupled with a Navier-Stokes solver and thus deliver the spatial distribution of this 

cost. As a case study, the new tool is applied to the Bristol Channel – the single largest 

resource area for tidal energy in the UK. Here, the best areas to install tidal stream farms 

are identified, with a cost comparable to that of offshore wind energy. Simulation results 

show that the proposed method is more efficient than the existing approaches. The results 

of this work have relevant policy implications in that they serve as decision criteria for 

allocating tidal stream projects and for designating supporting mechanisms.  
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1. Introduction  

As a result of public concerns about sustainability and growing legislation aimed at 

mitigating the effects of global climate change, utilities around the world are looking for 

new sources of clean power [1-4]. Tidal stream energy, which taps the kinetic energy of 

tidal currents, is arguably one of the most promising renewables for meeting future energy 

needs [5-7]. The predictable character of the tidal resource is a great advantage with 

respect to other renewables such as wind energy [8]– highly weather-dependent and thus, 

more unreliable [9-11]. Recent studies on tidal stream energy also suggest that this 

renewable is associated with a significant availability in a number of areas worldwide [12-

16] and with lower environmental impacts relative to tidal barrages [17-20] – a crucial 

prerequisite for ensuring public acceptance [21] and positive externalities [22,23]. 

Notwithstanding, tidal stream energy is not without downsides. Above all else, its cost is 

arguably the main barrier to market penetration [24-27]. The required scale of capital, 

together with the uncertainty and unpredictability of the costs and future revenue streams, 

weighs on potential investments, which are crucial to the development of this emerging 

sector [28,29].  

In this context, the development of cost modelling tools for tidal stream energy, with 

particular emphasis on estimating capital expenditures (CAPEX), is called to play a 

decisive role in strengthening the confidence of potential investors [28]. Capital costs are 

vital elements of the overall and relative economics of electricity technologies [30]. 

Actually, they represent more than 70% of the levelised cost of tidal stream energy 

(LCOE), while the remaining percentage corresponds to operating and maintenance 

expenditures (OPEX) [31,32]. It is also of importance that the capital investment is 

incurred before tidal stream installations start operating, which compromises a debt that 

has to be paid back during the lifetime of the installation, expected at 20 years [33,34]. 
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Thus, the timescale for achieving a return on these capital investments is long and 

surrounded by uncertainties over market regulations and prices, which are quite volatile.  

Previous works used CAPEX quotations on a per kW or MW basis to estimate LCOE for 

tidal stream energy [30,33-35] and to perform cross-technological comparisons [31,36] 

(Table 1). Using average cost values that are normalised to the installed capacity (Table 1) 

is an effective approach, especially given the lack of project- or device- specific cost data 

in the public domain [30]. However, considering the database on which such cost 

assessments are based  consisting of the technology development at the kW and MW 

scale, across different continents (Europe, North America, etc.) [35]  it is clear that new 

methods are needed to improve the specificity of the assessments, since such costs will 

depend upon the specific site [34,34]. Site considerations include water depth, mean water 

speed, rated power and rotor diameter of the turbine. The location, and in particular the 

distance to the shoreline, will also dictate the electrical cable length and the size and design 

of the foundation [37], as will be discussed later. Above all, water depth and distance to 

shore are two of the main cost drivers in offshore projects, for they reflect the level of 

environmental loads to which a tidal stream energy converter is exposed, determinate the 

rotor size and affect the electricity loses, among others [38]. Hence, these variables have a 

significant impact on cost figures and must be carefully considered. 

The overarching objective of this work is to develop a new formula for estimating the 

capital costs of a tidal stream energy project, located at a given place. In this new formula, 

the CAPEX are obtained on the basis of the water depth and the distance to the shoreline, 

rather than on a per MW basis. Therefore, the relationship between the capital costs and 

the location is taken into account. In this new formula, the capital investment is balanced 

with the energy production, in line with the LCOE approach. In this manner, we define the 
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levelised capital cost of energy (LCaOE), which incorporates all of the specifics and 

available data – plant characteristics (diameter, distance from the shoreline, and number of 

turbines) and energy produced – in a single figure. The LCaOE thus defined constitutes an 

indicator of the capital investment in relation with the revenues (energy produced) over the 

entire life of the tidal stream installation, and can therefore serve as a decision criterion 

parameter. In addition, this formula is implemented in an ad hoc Matlab-based tool 

coupled with a Navier-Stokes solver which offers a unique spatial distribution of the 

different input parameters, and the LCaOE itself, in the form of maps. The Bristol Channel 

(UK) is used as a case study to illustrate the new method.  

Apart from its novelty, the present work has added value for a number of reasons. First, the 

location chosen for the case study, the Bristol Channel (UK), is the single largest resource 

area for tidal energy in the UK, and is considered of national strategic significance to meet 

the future demand for low carbon energy [39]. However, it is a complex hydrodynamic 

system which supports a wide range of marine habitats, marine communities and economic 

interests, as well as providing a major sea transport route into the UK heartland [39]. By 

means of the LCaOE maps, it is possible to identify the optimal locations for tidal stream 

systems, where they can be considered a more profitable option than other marine 

renewable technologies. The current tools based on graphs and tables do not allow these 

zones to be detected. Therefore, the results here presented can help in policy- and decision-

making. Second, costs are not static measurements, and in this regard our approach allows 

for flexibility. The integration of the LCaOE formula in a Matlab-based tool allows the 

user to specify and update the assessment parameters (LCaOE inputs), as data become 

publicly available. Third, thanks to the alignment of the LCaOE (new parameter defined 

here as such) with the LCOE, the latter can be easily derived by considering a given 

percentage of participation of the capital costs in the overall costs.  
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This article is structured as follows. Section 2 deals with the presentation and 

implementation of the new formula to estimate the LCaOE in a Matlab-based tool designed 

ad hoc. This implementation is illustrated by means of a case study in the Bristol Channel. 

Section 3 presents the results and discussion. Finally, conclusions are drawn in Section 4. 

2. Materials and methods 

Capital expenditures (CAPEX) are costs incurred before the plant starts operating. They 

include all expenses associated with the construction of the elements of the plant, their 

deployment and connection to the electrical grid, and are typically composed of different 

cost categories, namely: (1) rotor costs (CR), (2) cable costs (CC), (3) costs of foundations 

(CF), (4) installation costs (CI) and (5) grid connection costs (CG) [24,30,57]. Not all the 

categories have the same level of participation in the overall CAPEX value (Figure 1). 

 

2.1 LCaOE formulation 

In economic assessments, capital expenditures (CAPEX) are usually included as a LCOE 

input parameter [30,33,34,40,41]: 

𝐿𝐶𝑂𝐸 =
𝑃𝑉(𝐶𝐴𝑃𝐸𝑋)+𝑃𝑉(𝑂𝑃𝐸𝑋)

𝑃𝑉(𝐴𝐸𝑃)
.     (1) 

In line with the LCOE parameter, a new variable can be defined: the levelised capital cost 

of energy (LCaOE), which represents the sum of capital expenditures with respect to the 

lifetime generated energy (AEP), in terms of present value equivalent:  

𝐿𝐶𝑎𝑂𝐸 =
𝑃𝑉(𝐶𝐴𝑃𝐸𝑋)

𝑃𝑉(𝐴𝐸𝑃)
.     (2) 
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Capital expenditures are normally a one-time cost, incurred in the year zero or at the end of 

the first period considered; whereas the energy is produced during the lifetime of the 

installation. To make the assessment consistent, the present value of the stream of the 

capital costs is calculated and converted to an equivalent annual cost using a standard 

annuity formula [25,30,42]: 

𝐿𝐶𝑎𝑂𝐸 =
𝑃𝑉(𝐶𝐴𝑃𝐸𝑋)

𝑃𝑉(𝐴𝐸𝑃)
=  

∑ (
𝐶𝐴𝑃𝐸𝑋

(1+𝑟)𝑡 )(
𝑟

1−(1+𝑟)−𝑇)𝑡=𝑇
𝑡=0

(∑ 𝑂𝑡
𝑡=𝑇
𝑡=1 ) 𝑇⁄

,   (3) 

where r is the interest rate that takes into account both the time value of money and the risk 

of the investment (aspects that vary by circumstance, location and time period [40]), Ot is 

the electrical output in year t, and T is the lifetime of the installation (20 years) [33,34]. 

Nowadays energy projects involve high capital costs and, due to their novelty, are 

associated with high technological risks. In this respect, current analyses typically consider 

a discount rate of the order of 10% [33,34].  

From the breakdown of capital costs categories (Ci) and their associated percentages i 

(Figure 1), the CAPEX in Eq. (3) can be obtained: 

𝐶𝐴𝑃𝐸𝑋 = (𝐶𝑖 𝑖⁄ ).     (4) 

These categories of costs (Ci) can be estimated by means of functions of site-specific 

characteristics and tidal farm parameters, as explained below. In particular, the distances to 

the shoreline and the water depth have the greatest bearing on the CAPEX values. Note 

that these variables are directly related with the diameter of the turbines and the length of 

the exporting cable, respectively, in that the diameter is usually calculated as a percentage 

of the water depth [43] and the exporting cable connects the tidal stream farm with a land-

based electrical substation.  
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Rotor costs, CR, are mainly influenced by the rotor diameter (D). This relationship is not 

linear. Upscaling turbine blades imposes higher thickness to increase the mass, the stability 

and resistance of the structure, which is exposed to harsh environments. Punctual estimates 

were reported for a range of diameters (Bryden, 1998) which were converted in a smooth 

function (Eq.(5)). Taking into account that a farm is composed by a number of converters 

n, the total rotor cost function can be expressed as: 

𝐶𝑅 =  80.388(2010)𝑛 D2.687.     (5) 

Note that the adjustment coefficient is expressed in cost (GBP) per meter of diameter and 

this cost is referred to 2010. It is important to take into account the reference year of the 

costs in order to ensure that all CAPEX categories are being calculated on an equitable 

basis. Data from earlier years should be converted according to the appropriate year [30]. 

As regards the cable costs (CC), they are mainly estimated on the basis of the exporting 

cable cost, which is the cable that allows delivering the electricity produced to a land-based 

electrical substation [44,45]. They are highly sensitive to the cable length, which is directly 

related to the distance to shoreline[46]. Previous works have assessed this relationship 

[43], which can be adjusted to a function for the cable costs as: 

𝐶𝐶 =  169.79(2010)𝐿,     (6) 

where L is the length of the extorting cable in meters. Note that the function to estimate the 

cable costs refers also to 2010 GBP. 

The cost of the foundations, CF, (construction and installation) represents from 20% to 

25% of an offshore project cost [47]. The water depth has a strong impact on the 

foundation type structure and the geology also affects the choice of the foundation [48]. An 
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estimation of the cost including the water depth (d) in main input parameter can be done as 

follows [47]: 

0 < d < 30 m   𝐶𝐹 = 0.1875 + 1.25 10−5 𝑑3 

              30 < d< 60 m                      𝐶𝐹 = 0.4375 + 5 10−5 𝑑3          (7) 

d > 60  m                                            𝐶𝐹 = 0.1875 + 0.02 𝑑 

These costs are given in GBP per MW. 

On these grounds, the LCaOE formula of Eq. (3) can be rewritten: 

𝐿𝐶𝑎𝑂𝐸 =
(

(80.388 𝑛 𝐷2.687+ 169.79 𝐿+𝐶𝐹 𝑓 (𝑑)+(∑ 𝐶𝑖
𝑐
𝑖=𝑐−3 ))

(1+𝑟)𝑡 )(
𝑟

1−(1+𝑟)−𝑇)

(∑ 𝑂𝑡
𝑡=𝑇
𝑡=1 ) 𝑇⁄

.    (8) 

Note that CF is introduced in the formula as a function of the water depth (d). 

The above mentioned categories of cost can be used to extend the estimations to the total 

capital costs, as follows:  

𝐶𝐴𝑃𝐸𝑋 = (∑ 𝐶𝑖) =
(𝐶𝑅+ 𝐶𝐶+𝐶𝐹)

(𝑅+𝐶+𝐹)
,     (9) 

where (C+R+F) is combined percentage of rotor, cable and foundation costs.  

This relationship can be incorporated in the LCaOE, which in turn results: 

𝐿𝐶𝑎𝑂𝐸 =

(

(80.388 𝑛 𝐷2.687+ 169.79 𝐿+𝐶𝐹 𝑓 (𝑑))( 
1

(𝑅+𝐶+𝐹)
)

(1+𝑟)𝑡 )(
𝑟

1−(1+𝑟)−𝑇)

(∑ 𝑂𝑡
𝑡=𝑇
𝑡=1 ) 𝑇⁄

.    (10) 
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As regards the electrical output (Ot), it is a function of the flow velocity (v (t)), the power 

efficiency of the system (Cp), water density (ρ), swept area (A) and number of converters 

(n): 

𝑂𝑡 =
1

2
𝐶𝑝𝜌𝐴𝑛 ∫ 𝑣3 (𝑡) 𝑑𝑡,     (11) 

where the area can be expressed in terms of the diameter D as follows: 

𝐴 =
𝜋

4
𝐷2.      (12) 

Substituting in the general LCaOE formula, Eq. (10) yields: 

𝐿𝐶𝑎𝑂𝐸 =

(

(80.388 𝑛 𝐷2.687+ 169.79 𝐿+𝐶𝐹 𝑓 (𝑑))( 
1

(𝑅+𝐶+𝐹)
)

(1+𝑟)𝑡 )(
𝑟

1−(1+𝑟)−𝑇)

(∑ (
𝜋

8
𝐶𝑝𝜌 𝑛 𝐷2 ∫ 𝑣3(𝑡))𝑡=𝑇

𝑡=1 ) 𝑇⁄
.    (13) 

Note that this expression is based on a number of considerations, in addition to the cost 

parameters. Site-specific characteristics are included via the tidal stream resource (velocity, 

v), the water depth (d) and the distance to the shoreline (L). Among the technical 

specifications, the rotor diameter (D), number of converters (n) and power coefficient (Cp) 

are considered. When it comes to assessing a tidal stream project, all the previous variables 

have to be considered together, since they are in close relationship. For example, the 

number of converters is subject to bathymetric constraints, and so is the rotor diameter 

[34]. The distance to the shoreline depends on the particular location of the tidal stream 

site, restricted to energetic tidal sites. To account for these relationships, the previous 

expression (Eq. (13)) is implemented in a new spatial tool, as explained below. 
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2.2 LCaOE implementation 

The previous formulation was implemented in a Matlab-based tool designed ad hoc, which 

was conceived to be coupled with a Navier-Stokes solver producing (hydrodynamic) 

numerical modelling results. Therefore, this tool takes into account the all-important spatial 

and temporal variability of the tidal resource, offering a specific value of LCaOE for each 

grid cell within the domain (Bristol Channel, UK). 

The hydrodynamic model is based on finite-difference approximations of the Reynolds-

averaged Navier-Stokes equations. Flow conditions at potential tidal energy sites are 

usually modelled by two-dimensional (2D) depth-averaged models, which are based on the 

shallow water equations (e.g. [5]). They provide reliable information about current 

strengths and the feasibility of the site for tidal energy development. The governing 

equations of this model are shown below. First, Eq. (14) represents the conservation of 

mass under the assumption of incompressibility. 

𝜕

𝜕𝑡
+

𝜕[(𝑑+)𝑈]

𝜕𝑥
+

𝜕[(𝑑+)𝑉]

𝜕𝑦
= 𝑄    (14) 

Second, the conservation of momentum is expressed by means of Eq. (15). 

𝜕𝑈

𝜕𝑡
+ 𝑈

𝜕𝑈

𝜕𝑥
+ 𝑉

𝜕𝑈

𝜕𝑦
− 𝑉 = −𝑔

𝜕

𝜕𝑥
−  

𝑔

𝜌0
 ∫

𝜕𝜌′

𝜕𝑥



−𝑑
𝑑𝑧 +  

𝜏𝑠𝑥− 𝜏𝑏𝑥

𝜌0(𝑑+)
+ ℎ∇2U   

 

(15) 
𝜕𝑉

𝜕𝑡
+ 𝑈

𝜕𝑉

𝜕𝑥
+ 𝑉

𝜕𝑉

𝜕𝑦
− 𝑈 = −𝑔

𝜕

𝜕𝑦
− 

𝑔

𝜌0
 ∫

𝜕𝜌′

𝜕𝑦



−𝑑
𝑑𝑧 +  

𝜏𝑠𝑦− 𝜏𝑏𝑦

𝜌0(𝑑+)
+ ℎ∇2V   

 

Finally, the transport equation, which is solved for both salinity and temperature is:  

 
𝜕(+𝑑)𝑐

𝜕𝑡
+

𝜕[(𝑑+)𝑈𝑐]

𝜕𝑥
+

𝜕[(𝑑+)𝑉𝑐]

𝜕𝑦
= 𝐷ℎ∇2c −  d(𝑑 + )𝑐 + 𝑅  (16) 
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These equations involve a number of parameters. The terms U and V stand for the 

vertically integrated velocity components in the east (x) and north (y) directions, 

respectively; d is the local water depth relative to a reference plane; Q represents the 

intensity of mass sources per unit area; f is the Coriolis parameter, υh is the kinematic 

horizontal eddy viscosity, ρo is the reference density, ρ' is the anomaly density, τsx, τsy, τbx 

and τby are the shear stress components. As regards the transport equation, c stands for 

salinity or temperature, Dh is the horizontal eddy diffusivity, λd represents the first order 

decay process, and R is the source term per unit area [5]. 

The hydrodynamic model in the present study used a staggered grid (the Arakawa-C grid). 

In the cells of this grid, the water levels ζ are computed at the centres, whereas the flow 

velocity components (U and V) are defined at the mid-points of the grid cell faces to which 

they are perpendicular. The horizontal advection terms in Eqs. (1)-(3) are discretized by 

means of the Cyclic method [49]. For its part, the temporal discretization the model resorts 

to a semi-implicit ADI algorithm with two time levels per iteration.  

The computational domain consisted of 500 m × 500 m cells, and the bathymetry for the 

model was interpolated from GEBCO data. Along the open boundary (at Celtic Sea), a 

Dirichlet boundary condition was imposed with the sea level prescribed as a function of 

time using nine tidal harmonics (M2, S2, N2, K2, K1, O1, P1, Q1, M4). These tidal 

harmonics were obtained from the global ocean tide model TPXO 7.2 [50], which has been 

shown to produce good results in previous works [5,17,18,33,51,52]. Salinity and 

temperature at the open boundary were imposed using data from the British Oceanographic 

Data Centre [53]. At the land margins the boundary conditions were free slip (i.e. zero 

shear stress) and null flow. The shear stress at the sea-bed was computed from: 

𝜏𝑏𝑥 =  
1

𝐶2𝐷
2 𝜌0𝑔𝑈√(𝑈2 + 𝑉2) ,    𝜏𝑏𝑦 =  

1

𝐶2𝐷
2 𝜌0𝑔𝑉√(𝑈2 + 𝑉2) ,   (17) 
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where C2D is the 2D Chézy coefficient, which depends on the water depth and bottom 

roughness. This dependency can be written, in terms of the Manning coefficient, n, as: 

𝐶2𝐷 =  
√(𝑑+)

6

𝑛
.      (18) 

The value of the Manning coefficient was determined as a function of the water depth 

following Dias and Lopes [54]. 

The model was run for 50 days, being the first 31 days the spin-up period, which aims to 

adjust dynamically the flow field so that the initial conditions do not affect the numerical 

results during the period of interest (a spring neap cycle from 14 March 2011 to 28 March 

2011) [33]. The initial hydrodynamic conditions were null velocity and surface elevation 

throughout the grid (cold-start) [55]. The model was validated against measured tide levels 

at four gauge stations obtained from the UK tide gauge network [53] and tidal stream data 

given at five tidal diamonds taken from the Admiralty Chart No. 1165. A high level of 

correlation between observed and predicted data was obtained (R2 > 0.87) [34]. 

Upon validation, the numerical model results were coupled with the Matlab-based tool. 

This tool resolves the spatial distribution of the LCaOE, on the basis of the following 

inputs:  

- Diameter (D). The rotor diameter is constrained by the water depth. In this regard, the 

tool imports the lowest astronomical tide levels (LAT) at each grid cell from the numerical 

model, and calculates the maximum diameter as the 70% of the LAT [43]. Since the 

diameter is normally expressed in steps of 0.5, the tool rounds the diameter to the nearest 

0.5 point.  
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- Total number of turbines (n).This is based on the maximum number of turbines that a 

grid cell can accommodate and so it also subject to spatial constraints. Device interactions 

can cause reductions in the available tidal stream energy at a downstream rotor, as 

demonstrated [18,33]. Therefore, it is recommended to leave a lateral spacing of at least 5 

diameters and a longitudinal spacing of 10 diameters to avoid negative effects [56]. On 

these grounds, the tool estimates the size of the farm on the basis of the diameter (Figure 

2).  

- Cable length (L). The energy output is normally exported to a land-based electrical 

infrastructure, which corresponds, preferably, to the nearest shoreline point to the farm . In 

this case, the length of the exporting cable is calculated on the basis of the nearest land 

point for each grid cell.   

- Electrical ouptut (Ot): it is estimated for each grid cell by means of the numerical 

integration of a time series of velocity covering a spring-neap cycle (see Eq. (11)). This 

velocity is estimated through the hydrodynamic numerical model.   

3. Results and discussion 

3.1 Spatial distribution of capital costs: LCaOE map 

The LCaOE tool was applied with the input data shown in Table 2. The combined 

percentage of the rotor, cable and foundations costs (λ(R+C+F)) was stablished on the basis 

of the breakdown of capital costs found in a number of sources [24,31,57]. The power 

coefficient (Cp) represents the percentage of power that can be extracted from the fluid 

stream taking into account losses and Betz’s law [58], and for marine turbines has typically 

a value in the range 0.30-0.50 [59]. Additionally, a discount rate of 10% was used [60]. 

The lifetime of the installation was set to 20 years, which is the expected time that a tidal 
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stream energy installation will be working prior to the occurrence of gradual degradation 

due to the environmental conditions [33]. As a result, the LCaOE map was obtained, in 

which the maximum values of LCaOE in the color scale were set to £ 1 kW h–1 for better 

visualization (Figure 3). According to the LCaOE values, the study domain was classified 

into three areas (I, II and II) (Table 3): 

- Area I encompasses an extension of~ 1/3 of the total assessed space. Here, LCaOE values 

are below £0.21 per kW h. This is considered a “strike price”, i.e. the maximum LCaOE to 

provide adequate returns for investors over a 20-year period (lifetime of tidal stream farms) 

and to maintain momentum in the tidal stream energy sector [37]. On this basis, Area I 

represents the “viable” area for tidal stream energy projects. Indeed, the most frequent 

LCaOE values herein obtained are between £0 kW h1 and £0.050 kW h1 (Figure 4), 

which are comparable to onshore wind energy capital costs (Figure 5). Note that wind 

energy is considered, among the marine renewable energies, the most mature and cost-

effective nowadays [31]. The highest LCaOE range in this area would deliver LCOE 

values in accordance with the central capital cost estimate for tidal stream energy (Figure 

5). As regards the LCaOE input parameters, Area I is characterized by mean spring tide 

velocities in the range 1-2 m s–1, and up to 3 m s1 in some areas (Figure 4). These values 

are typical of areas for first generation devices [61]. Rotor diameters in Area I have values 

mostly between 10-25 m (Figure 4), which correspond to shallow water depths (Figure 6). 

This is in line with previous predictions to the effect that tidal team farms in deep waters 

would be very costly if compared with shallow waters, since the structure, foundation and 

moorings impose higher structural requirements [62]. Besides, the resource located in 

water depths of 10-30 m is generally more accessible for energy extraction than deeper 

offshore tidal sites (where it may be technically difficult to harness a large fraction of the 

available energy). In shallow areas, a turbine can be designed to occupy a greater 
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proportion of the vertical water column. Moreover, shallow waters are commonly closer to 

the shoreline. The distance to shore is a significant parameter in offshore installations, and 

short distances may be desirable, since both cable costs and transmission losses are 

reduced. Indeed, Area I has cable lengths (shoreline distances) below 20 km (Figure 7). In 

particular, the most frequent cable lengths are 5 and 10 km (Figure 4), in the range of the 

offshore distance of the greater part of offshore wind energy projects in the UK ([63].  

- Area II delimitates a zone with LCaOE values between £0.21 kW h–1 and £0.42 kW h–1 

(Figure 3). The upper boundary (£0.42 kW h–1) corresponds to the highest value estimated 

in the literature for tidal stream energy (Figure 5), and therefore this area covers tidal sites 

in which the exploitation may not be competitive now, and may depend on future cost 

reductions brought about by economies of scale, learning rates, etc. LCaOE values in this 

area have a distribution in which all the values between £0.21 kW h–1 and £0.42 kW h–1 

have more or less the same frequency (Figure 4). Area II is characterized by lower mean 

spring tide velocities than Area I (Figure 4), approximately 1 m s–1, with maximum values 

near 1.5 m s–1. These values are typical of areas for second generation devices [61]. Area II 

is still in the shallow water region (Figure 6), which may compensate for the lower 

velocities experienced here in that lower structural requirements (less costly) would be 

imposed. The rotor diameters in this area are mainly in the range of 20-25 m (Figure 4), in 

line with commercial designs such as the SeaGen turbine from marine current turbines [64] 

Cable lengths are greater than in Area I, typically between 5km and 20 km (Figure 4). 

Greater distances to shoreline impose a challenge the maintenance operations, since the 

weather windows are reduced with the increase of the offshore distance [3]. 

- Area III includes the remaining space, characterized by LCaOE values above £0.42 kW 

h–1 (Figure 3), with LCaOE values predominantly above £1 kW h–1 (Figure 4). This 
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constitutes a high value, especially considering that operational expenditures must be 

added to obtain total LCOE values. Indeed, velocities within this area are below 1 m s–1, 

which in principle would not be attractive for tidal stream energy harnessing [61] (Figure 

4). Therefore, Area III delimitates spaces that would be left for other purposes, as 

discussed in Section 3.3. Besides, water depths in Area III correspond to deep water (rotor 

sizes in the range of 30-40 m) (Figure 4), and constructing in deep offshore sites far from 

the shoreline is very challenging due to short weather windows and large travelling 

distances (indeed, in this area cable lengths reach no less than 35 km (Figure 7)). 

3.2 Traditional vs. new approach 

To demonstrate the application of the new approach, we obtained the LCaOE on the basis 

of CAPEX quotations per installed power unit, by using the following expression (see 

Appendix for further details)  

𝐿𝐶𝑎𝑂𝐸 = (𝐶𝐴𝑃𝐸𝑋)
𝑃𝑉(𝑉𝑟3)

𝑃𝑉 (∫ 𝑣3𝑇
1 )

.  (19) 

To this aim, a CAPEX value of £4.30 m/MW (Table 1) was used. The installed power per 

grid cell was based on the rated velocity (Vr), calculated as the mean spring velocity at the 

given grid cell. Results show significant differences between the estimates obtained with 

the new and conventional approaches (Figure 3 and 8, respectively), both in terms of 

LCaOE values and spatial distribution.  

The new approach distributes the cost according to diameter size, available resource and 

length from the shoreline; whereas the conventional approach distributes the cost mainly 

on the basis of the velocity ratio (𝑃𝑉(𝑉𝑟3) 𝑃𝑉 (∫ 𝑣3𝑇

1
)⁄ ), see Eq.(19)). Thus, for areas with 

similar ratios, the LCaOE will be similar, irrespective of whether these areas are far from 

the shore or impose higher restrictions from an economic point of view. In other words, no 
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explicit sensitivity to rotor diameters and cable lengths is captured with the traditional 

approach. Indeed, in the nearshore areas, where diameter and cable length are small and 

the tidal resource is more abundant (Figure 8, selected areas) the conventional method 

overestimates the price, since such areas present the highest values (around £0.18 kW h–1), 

which contradicts the expected price results. With the new method, for example, the prices 

of Area I are more convenient (from £0.01 kW h–1 to £0.10 kW h–1 most of them (Figure 

4)). In areas far from the shore, where diameters can be longer and the resource is not so 

abundant, the conventional approach underestimates the cost. Whereas in our approach the 

values in low resource areas, far from the shoreline and allowing for large diameters are 

above £1 kW h–1, the conventional approach estimate maximum values of around £0.25 

kW h–1.  

Points a and b (Figure 8) have similar velocity rates, with only a difference of 1%. Thus 

the traditional approach predicts similar cost values of £0.1431 kW h–1 and £0.1414 kW h–

1, respectively. However, based on their characteristics (water depth and distance to 

shoreline) they are not likely to have the same cost value [38], as predicted by the new 

approach: £1 kW h–1 and £0.1419 kW h–1, for point a and b, respectively (Table 4). Note 

that for point b both methods yield nearly the same value. In conclusion it can be said that 

the conventional approach fails to capture the important influence of distance from the 

shoreline. On the other hand, it estimates higher values for the areas where the resource is 

good, the diameters small and distance to the shoreline low, which are good areas for tidal 

stream harnessing.  

The previous insights are relevant in that following the conventional approach would lead 

to biased information for policy makers, and thus investments for tidal stream energy in the 
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wrong (not economic) areas could occur – when such areas could be used for other 

purposes, as discussed in the following section. 

3.3 Policy implications 

The present study has implications for policy- and decision-making at different levels. At a 

regional level, the results can contribute to designating a balanced technology approach to 

harnessing the energy production opportunities in the Bristol Channel [39]. This location 

has a massive marine renewable energy potential (Figure 9), and thus new concepts such as 

tidal lagoons and tidal fences, deployed in conjunction with tidal stream technology, wave 

and wind power would provide a good balance between the urgent need to generate low 

cost energy and to protect the environment [39]. Developing an energy strategy for the 

Bristol Channel requires a number of factors to be considered, including the cost of energy. 

Tidal stream energy planners must therefore find ways to harness this energy at an 

acceptable cost. So far, pre-allocation of future renewable projects has been done on a 

resource basis (Figure 9). The results presented in this work agree well with previous 

studies in that the areas pre-selected for tidal stream energy projects coincide with the areas 

associated with lower LCaOE (see Figure 3 and Figure 9). In addition, our study provides a 

spatial distribution of costs which can serve as a decision criterion towards a narrower 

delimitation of the optimum areas to install tidal stream energy farms. It can serve as well 

to resolve conflicts of use, when two options seem to be feasible (areas with high potential 

on both tidal range and tidal stream energy), by applying a comparative analysis for 

example. Thus our contribution addresses both the role of spatial information in coastal 

research, and its potential to bridge the gap between research and coastal zone management 

[7]. 
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At a higher level, capital costs are also a source of significant concern for governments all 

over the world. It is important for policy makers and those ocean energy investors to have 

a picture of the current costs for ocean energy generation and how these are likely to 

reduce over time [57]. As shown in the previous sections, capital costs are major a 

component of the total costs and, therefore, require financial support, which can be 

provided through several instruments, including feed-in tariffs [65]. Feed-in tariffs are 

subsidies per kW h generated paid in the form of guaranteed premium prices, combined 

with a purchase obligation by the utilities. Therefore, they are costs related to energy 

production, which is in line with the approach presented in this work. Thus, governmental 

bodies involved in the design or selection of the support mechanisms for building 

momentum in the tidal stream energy sector may benefit from the results of the present 

paper. 

4. Conclusions  

A correct decision-making regarding tidal stream energy exploitation should be based on 

the accurate knowledge of the different factors affecting its exploitation. Amongst them, 

the capital costs (CAPEX) are paramount. In this work, a new formulation for estimating 

the levelised capital costs of tidal stream energy (LCaOE) farms is proposed. This 

approach, unlike the conventional method, accounts for the most relevant site-specific 

characteristics of a tidal stream energy project, namely the tidal stream resource, water 

depth (rotor size) or distance to the shoreline (cable length), and shows that tidal energy 

assessments that consider costs solely on the basis of installed power may represent both 

an order-of-magnitude overestimation of the resource and a significant oversimplification 

of CAPEX estimates. To account for the spatio-temporal character of these variables, the 
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formulation is implemented in a Matlab-based tool, which is coupled with a Navier-Stokes 

solver. The Bristol Channel is used to illustrate the capabilities of the new tool. 

As a result, a unique spatial distribution of the capital cost within the study domain was 

obtained, in the form of an LCaOE map. Three areas were identified within this study 

domain, in order of higher LCaOE values. Area I encompasses a number of promising 

sites, with costs comparable to the offshore wind energy sector. Area II includes 

potentially viable locations. Locations within area III may be used for other purposes, since 

both the tidal stream resource and the costs are not particularly attractive.  

Simulation results showed the proposed method to be more accurate than the existing 

approach. The results here presented are relevant for policy makers, for they serve to 

manage the resources in the study area and they provide insight about the level of 

subsidisation required to maintain momentum in the tidal stream energy sector.  
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Appendix 

The LCaOE formula in terms of installed power (nPr) is defined as follows: 

𝐿𝐶𝑎𝑂𝐸 =
𝑃𝑉 (𝐶𝐴𝑃𝐸𝑋 𝑃𝑟 𝑛)

𝑃𝑉(𝐴𝐸𝑃)
 ,  (A1) 

where CAPEX is a cost quotation on a per kW or MW basis, AEP is the annual energy 

production and Pr is the rated power, which is function of the rated velocity vr: 

𝑃𝑟 =
1

2
𝐶𝑝𝜌

𝜋

4
𝐷2𝑣𝑟

3. (A2) 

The annual energy production corresponds to the electrical output generated in one year, 

Ot:  

𝑂𝑡 =
1

2
𝐶𝑝𝜌

𝜋

4
𝐷2𝑛 ∫ 𝑣3 (𝑡).  (A3) 

Simplifying, the LCaOE formula on the basis of the traditional approach can be expressed 

as follows: 

𝐿𝐶𝑎𝑂𝐸 = (𝐶𝐴𝑃𝐸𝑋)
𝑃𝑉(𝑣𝑟

3)

𝑃𝑉 (∫ 𝑣3(𝑡))
.  (A4) 
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Figure captions 

Figure 1. Breakdown of capital costs (own elaboration on the basis of Allan et al. [25], 

Carbon Trust [24] and SI Ocean [57]).  

Figure 2. Tidal stream farm layout and spatial constraints. 

Figure 3. LCaOE map [values below £0.21 kW h1 correspond to Area I; values between 

£0.21 kW h1 and £0.42 kW h1 correspond to Area II; and values above £0.42 kW h1 

delimitate Area III]. 

Figure 4. Histograms of LCaOE, diameter, cable length (distance to shoreline), and mean 

spring velocity for areas I, II and III (defined in Table 3). 

Figure 5. LCaOE for other technologies (own elaboration on the basis of Mills (2015)). 

Figure 6. Shallow and deep water areas within the Bristol Channel (UK) (“Diameter” values 

represents the 70% of LAT, Lowest Astronomical Tide). 

Figure 7. Cable length (distance to shoreline). 

Figure 8. LCaOE map on the basis of the conventional approach. 

Figure 9. Main potential resource areas for wind, wave and tidal energy (own elaboration on 

the basis of Regen SW ([39]).  
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Table 2. LCaOE input parameters 
    

  Parameter Value   
  (R+C+F) 70%   
  Cp 0.4   
  r 10%   
  T 20 years   
        
 

Table 2



  Table 3. LCaOE ranges across the study domain   
  Area LCaOE (£ per kWh)   
  I < 0.21   
  II 0.21 - 0.42   
  III > 0.42   
        
 

Table 3



 

   Table 4. LCaOE estimates: traditional vs. new approach.   
  Point a  Point b    

  
Coordinates 

(x 105, y 106) (3.7093, 5.6597) (4.3443, 5.6777)   
  D (m) 41 15   
  L (km) 28 3   

 
LCaOE (£ per kWh)  traditional 
approach 0.1431 0.1414  

 LCaOE (£ per kWh)  new approach > 1 0.1419  
         
 

Table 4


