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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1359

A WIND-TUNNEL INVESTIGATION OF PRESSURE FLUCTUATIONS ON
THE UPPER VERTICAL TAIL OF THE X-15 WHEN
MATED TO THE B-52 CARRIER AIRPLANE

By John W. McKee and Thomas A. Byrdsong
SUMMARY

A wind-tunnel investigation has been made to obtain the character-
istics of the fluctuating pressures acting on the upper vertical tail of
the X-15 alrplane when carried by the B-52 alrplane, the tail passing
through a large notch in the trailing edge of the B-52 wing. The effects
of various modifications in the vicinity of the notch that were made in
an effort to lower the magnitude of the pressure fluctuations are
presented.

The predominant frequency of the fluctuating pressures on the notch
faces from flight and model tests were approximately the same when scaled
to a common basis. The root-mean-square values of the pressure fluctu-
ations on the X-15 upper vertical taill obtained with the original con-
figuration were very much higher than those obtalned when the same tail
surface was tested in unobstructed flow. The root-mean-square values of
the fluctuating tall pressures were reduced by modifications such as wing
notch covers that created a "cleaner" aerodynamic configuration but were
generally not reduced by modifications such as spoilers in the vicinity
of the wing notch that were intended to create a region of "dead" air
at the tail.

INTRODUCTION

In captive flight the X-15 airplane is carried on a rather blunt
pylon under the wing of a B-52 airplane, the X-15 upper vertical tail
passing through a notch in the tralling edge of the B-52 wing. After
the third captive flight an examination of the X-15 revealed internal
damage to the upper vertical tail surface. The nature of the damage
and of the general arrangement of the configuration suggested that pres-
sure fluctuations were a probable cause of the problem. To establish
the magnitude and frequency of fluctuating pressures and to identify
their source, pressure transducers were installed in the B-52 wing in



the vicinity of the notch and measurements of pressure fluctuations were
made 1in flight. Data obtained with and without the X-15 in place indi-
cated that the wing notch was the primary source of the pressure fluctu-
ations. Pressure fluctuations with large amplitudes were found to be
present at orifices on both the inboard and outboard faces of the notch
and their amplitude was primarily a function of flight dynamic pressure.

To ald in devising a modificatlion that would reduce the pressure
fluctuations, tests were made in the Langley 300-MPH T7- by 10-foot tunnel
by using 0.049-scale models of the B-52 and X-15 with pressure trans-
ducers Installed 1in the wing notch and X-15 upper vertical tail. The
data from the wlnd-tunnel tests are presented in this report in terms of
root-mean-square values of the fluctuating pressures and power spectral
densities of some of the data.

Although the flight problem was solved by the use of more rugged
construction of the upper vertical tail and a change of flight profile
to perform the climb-to-launch altitude at a lower dynamic pressure, it
1s thought that the data are of interest in indicating the magnitudes of
some unsteady loads on the original conflguration and in illustrating
the effect of wvarious modifications.

SYMBOLS
=2
Aﬂp fluctuating pressure coefficient, —%—
ﬁz root-mean-square value of pressure fluctuations from the
mean, lb/sq f't
q dynamic pressure, 1b/sq ft
o /v Strouhal number
f frequency, cycles/sec
b dismeter, ft
v free-stream velocity, ft/sec

t thickness
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DESCRIPTION OF MODELS

The general arrangement of the 0.049-scale models of the B-52 and
X-15 airplanes is shown in figure 1 and the relative positions of the
B-52 wing, wing notch, support pylon, and X-15 are shown in figure 2.
As shown in figure 1, the B-52 model did not have engine pods or tail
surfaces. The wing root angle of incidence of the B-52 model was 6°
relative to the fuselage reference line, and the angle of incidence of
the X-15 model was 29 relative to the B-52 fuselage. The vertical-tail
airfoil section of the X-15 model was a wedge having a 10° included angle
at the leading edge. Also shown on figure 2 are the locations of pres-
sure transducers in the upper vertical tail surface of the X-15 model
and in the B-52 model wing notch. The locations of the pressure trans-
ducers in the B-52 model wing notch (fig. 2) corresponded to the orifice
locations that had been used in the flight tests except that the inboard
gage was positioned somewhat forward to have sufficient wing thickness
to accommodate the transducer.

Several modifications to the original B-52 and X-15 models were
investigated. The modifications were intended to effect changes in the
flow about the upper vertical tail of the X-15 model and in the B-52 model
wing notch. The modifications, some of which are designated as configu-
rations A to E, are described in table I and shown in figure 3.

INSTRUMENTATION AND DATA REDUCTION

Shown in figure 4 is a schematic of the instrumentation used to
obtain the fluctuating pressure data. The pressure transducers were
model 53-T NACA miniature electrical pressure gages similar to the
model 49-TP gage described in reference 1; they were flush mounted with
their reference side connected to a static reference source. The acous-
tical and mechanical resonance frequencies of the gages were approximately
12,000 cps and thelr frequency response was essentially flat to approxi-
mately 4,000 cycles per second.

The output of the pressure gages was amplified by a 20-kilocycle
carrier amplifier. A 27-kilocycle frequency-modulated tape recorder was
used to record the amplified pressure signal; a calibrate signal of
1,000 cycles per second at 1 volt was also recorded periodically. Time-
history records were obtained from playbacks of the data to an oscillo-
graph. Example records are shown in figure 5.

The randomly fluctuating data as recorded on magnetic tape were
reduced to power spectral density by the use of an electronic analog
analyzer as described in reference 2 for selected representative cases.



The data were analyzed in the frequency range from O to 4,000 cycles per
second using a 60-cycle-per-second band-pass filter. Because of the
inherent limitations in the data-reduction equipment, the analysis from
zero frequency to approximately 120 cycles per second should be consid-
ered as relatively inaccurate.

Root-mean-square values of the pressure fluctuations from the mean
were obtained by an overall electronic analysis of the tape recordings
and converted to fluctuating pressure ccefficlent ACP by dividing by

the free-stream dynamic pressure.
TESTS

The tests were made in the Langley 300-MPH 7- by 10-foot tunnel.
Al]l tests were made at a dynamic pressure of 100 pounds per square foot,
corresponding to an alrspeed of about 290 feet per second and a Reynolds
number per foot of 1.8 X 106 except for one test made at a dynamlc pres-
sure of 50 pounds per square foot (205 ft/sec). The B-52 fuselage refer-
ence line was set at an angle of attack of 0° and an angle of sideslip
of 0° for all tests.

RESULTS AND DISCUSSION

The root-mean-square pressure data are presented in figures 6 and 7
in bar graph form, the data for the various tail and notch transducers
being arranged in their relative positions as viewed from the rear. It
will be seen that in some instances more than one value 1s presented
for individual gages; these values were obtalned from tests that were
repeated.

The power spectral densities that were obtained from selected data
samples are presented in figure 8. Parts (a) to (1) of figure 8 corre-
spond to the oscillograph records (a) to (1) of figure 5.

Inverted Tail

The data for the inverted-tail modification (see table I) were
obtained to provide a measure of the minimum or background level of pres-
sure fluctuations. The data were obtailned with essentially undisturbed
flow past the tail because the instrumented upper vertical tail was

mounted in the position of the lower vertical tail.
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The fluctuating pressure coefficients (fig. 6(a)) were all less
than 0.01, or the root-mean-square values of the pressure fluctuations
were all less than 1 percent of the free-stream dynamic pressure.

The power spectral density for the middle outboard gage, typical of
all gages for this configuration, is shown in figure 8(a) and the corre-
sponding oscillograph record in figure 5(a).

A very low level of power is shown through most of the frequency
range up to 4,000 cycles per second. Increased power of the pressure
fluctuations is shown near zero frequency. As previously mentioned,
the data analysis at very low frequencles 1is subject to some loss of
accuracy.

Tail Alone in Notch

The root-mean-square data obtained with the isolated X~15 upper tail
held in position in the notch (support pylon and X-15 removed) are shown
in figure 6(b); power spectral densities, in figures 8(v) to 8(g); and
oscillograph records, in figures 5(b) to 5(g). High levels of pressure
fluctuations are shown (fig. 6(b)) particularly for the inboard side of
the notch and the middle-inboard tail gage. It is very noticeable on
some of the oscillograph records (see fig. 5(b), inboard notch) that the
pressure data had a periodic content with very sharp pressure peaks at
a frequency of about 900 cycles per second. The spectral analyses
(figs. 8(b) to 8(g)) all show this periodic content with a pesk response
at 930 cycles per second. The spectral analyses of pressures on the
inboard side also show peaks at harmonic values of the fundamental fre-
quency. The multiple peaks were obtained because the pressure fluctua-
tions were not sine waves but were characterized by very sharp peaks.

An exact response to the indicated type of pressure fluctuations would
require a gage respomnse flat to a very high frequency. The characteris-
tics as presented do therefore include to some extent unknown distortions.

It is apparent that with the tail surface in the wing notch, radi-
cally different pressure fluctuations on the tall were obtained compared
with those with the inverted tail. The maximum values of the fluctuating
pressure coefficient (on the tail) for these two cases were 0.1192 and
0.0091, respectively.

Original Configuration

The root-mean-square data obtained with the original configuration
are shown in figure 6(c) and figure 6(d); spectral analyses, in fig-
ure 8(h) to figure 8(k); and oscillograph records, in figure 5(h) to
figure 5(k). The data obtained with a dynamic pressure of 50 pounds



per square foot (fig. 6(d)) show values of the fluctuating pressure coef-
ficient approximately equal to those obtained with a dynamic pressure of
100 pounds per square foot (fig. 6(c)).

The fluctuating pressure coefficients of the original configuration
(complete models and pylon, fig. 6(c)) were very different from those
with the tail alone in the notch (fig. 6(b)), and rather than having
sharp peaks, the spectral analyses (figs. 8(h) to 8(k)) show relatively
broad single peaks with maximum values falling between 650 and 1,050 cycles
per second. The largest fluctuations were present at the top outboard
tall gage rather than the inboard notch gage. The oscillograph records
(figs. 5(h) to 5(k)) also show less evidence of regularly spaced peaks.

Comparison of Model and Flight Results

The flight data of the fluctuating pressures on the notch faces
which were obtalned as film records at the NASA Flight Research Center
were not sultable for analysis to obtain root-mean-square values or
power spectral densities. An example film record is shown in figure 9.
Effective peak-to-pesk values of the pressure fluctuations were deter-
mined arbitrarily, as shown by the horizontal lines in figure 9, for
records obtained with and without the ¥X-15 attached to the pylon for
many flight conditions: Mach number of 0.34 to 0.84k, altitude of
10,000 feet to 50,000 feet, dynamic pressure of T7 pounds per square
foot to 288 pounds per square foot, and normal load factor of 1.0 to
1.6. The flight values of these peak-to-peak pressure fluctuations are
shown in figure 10. It can be seen that all the data correlate reasonably
well with dynamlc pressure, the peak-to-peak pressures for the inboard
notch face averaging somewhat higher than 40 percent of the dynamic pres-
sure and the outboard somewhat lower.

Peak-to-peak values of the pressure fluctuations on the notch faces
were determined from the oscillograph records (figs. 5(h) and 5(3))
obtained from the model tests of the original configuration (B-52 with
X-15); these values are shown on figure 10 to be only one-third to
one-half as great as flight data. It is not known why the difference
shown between pressures obtained from flight and model tests should
exist but the big difference between the Reynolds numbers of flight and
model tests could be a contributing factor.

The example flight film record (fig. 9) shows definite indications
of sharp-peaked periodic pressure fluctuations, partlcularly for the
inboard notch face, and in general appearance (except for the frequency
of the fluctuations) this flight record closely resembles the model
record of figure 5(b) which was obtained with the tail alone in the
notch. The frequency of the pressure fluctuations shown on the flight
record is approximately 100 cycles per second, and the record was obtalned

@O N e



at a flight speed of about 700 feet per second. If the frequency was a
function of velocity divided by a characteristic length, the model fre-
quency of 930 cycles per second (fig. 8(b)) would correspond

(930x QiQ%Q X %g%) to a flight frequency of 110 cycles per second.

The periodic content of the pressure fluctuations might have resulted
from an alternate shedding of a double row of vortices from the upper
and lower surface of the B-52 wing at the front face of the notch.
Von Karman has shown (ref. 3) that such a vortex system is stable when
the distance between the vortex rows equals 0.281 times the distance
between successive vortices in each row. If the assumption is made that
the distance between the vortex rows would be equal to the average depth
of the front face of the notch and that the vortlces would move downstream
at free-stream velocity, the resultant vortex frequency (in each TOW)
would be 930 cycles per second for the conditions of the model tests.
Some experimental measurements of the frequency of vortices shed by
cylinders are given in reference 4. The Strouhal number fb/V at sub-
critical Reynolds numbers (high drag coefficient, maximum flow separation)
was found to be approximately 0.2. Assuming that flow separation at the
front of the notch would be a condition comparable to separation from a
cylinder with a diameter equal to the average wing thickness at the notch
would result in a frequency of 660 cycles per second for the conditions
of the model tests. From comparison of the frequency of the pressure
fluctuations obtained in the model tests with values obtained experimen-
tally and theoretically for the frequency of alternately shed vortices,
it seems that such a flow condition may indeed have been the source of
the periodic fluctuations.

Other Configurations

The root-mean-square pressure data for the other model configurations
are presented in bar graph form in figures 6(e) to 6(1) and figure T.
Modifying the original configuration by refairing (as shown in fig. 3)
the blunt aft end of the pylon had some effect on the results for all
gages (compare fig. 6(e) with fig. 6(c)), the most significant effect
being a large reduction for the top outboard gage. The general effect
of the faired pylon on the power-spectral-density results, except for the
outboard notch gage which was relatively unaffected and for the top out-
board gage, was to produce a somewhat sharper peak than that of the orig-
inal configuration (figs. 8(h) to 8(k)) at approximately TOO to 800 cycles
per second. The power spectral densities for the top outboard gage, with
(fig. 8(1)) end without the pylon fairing, were very similar in appearance
except for a general lowering with the faired pylon.



Comparison of figures 6(f) and 6(g) with figure 6(c) shows that,
although no major reducticns of the fluctuating pressures were obtalned
by the use of a top cover on the notch, a large reduction of the top
outboard value was obtained when, in addition, the pylon was faired.

The effect obtained with the pylon fairing (compare figs. 8(m) and 8(n))
was the elimination of a broad peak at 2,000 cycles per second resulting
in a power spectral density with most of the area at the low-frequency
end of the curve.

With the top and bottom notch covers (figs. 6(h) and 6(i)), the
fluctuating pressures of the gages that remained exposed to the airstream
were reduced, and again the pylon falring lowered the values for the top
outboard gage. The effect of the pylon fairing on the power spectral
density was similar to that obtained with the top cover, elimination of
a broad peak at 2,000 cycles per second.

Although it would seem that the B-52 wing discontinuity (the notch)
and the bluntness of the pylon would be the sources exciting pressure
fluctuations, it is difficult to visualize how the effects of the pylon
fairing on the top outboard gage, with and without notch covers, could
have been created.

In figure 7 the fluctuating pressure coefficients of configurations A,
B, C, D, and E are compared with the average values of the original con-
figuration. Although low-speed tuft studies made wlth some of these con-
figurations seemed to indicate that an effective region of low-energy air
had been created in the area around the notch and tail, none of the con-
figurations show much general reduction in the pressure fluctuations.

CONCLUDING REMARKS

From the results of an investigation of the fluctuating pressures
acting on the upper vertical tail of the X-15 airplane when carried by
the B-52 airplane, the tall passing through a large notch in the trailing
edge of the B-52 wing, the followlng conclusions can be drawn:

1. The predominant frequency of the fluctuating pressures on the
notch faces from flight and model tests were approximately the same when
scaled to a common basis.

2. The pressure fluctuations on the X-15 upper tail obtained with
the original configuration were very much higher than those obtalned
when the same tail surface was tested in unobstructed flow.

3. The fluctuasting taill pressures were reduced by modifications
such as wing notch covers that created a "cleaner" aerodynamic
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configuration but were generally not reduced by modifications such as
spoilers in the vicinity of the wing notch that were intended to create
a region of "dead" air at the tail.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., April 9, 1962.
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L-2028

7

Figure 1l.- Relative position of the 0.049-scale models of the B-52 and
. X-15 airplanes. The connecting pylon is not shown.
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Faired pylon Configuration A, square-ended pylon
Configuration B, A+ upper - surface
spoiler

Configuration C, perforated pylon spoiler

Figure 3.- Model modifications.
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Configuration D, serrated spoilers.

Configuration E, screen wire wedge and side walls.

Figure 3.- Concluded.
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(a) Inverted tail; middle (d) Tail alone in notch; bot-
outboard tail pressure tom inboard tail pressure
transducer. transducer.
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(b) Tail alone in notch; (e) Tail alone in notch; out-
inboard notch face board notch face pressure
pressure transducer. transducer.

' |

! Lo

| | N Yl s b mA! l
T M A

—»{ 0.02 sec }4——

(¢) Tail alone in notch; mid- (f) Tail alone in notch; top
dle inboard tail pressure outboard tail pressure
transducer. transducer.

Figure 5.- Time-history records of fluctuating pressures on X-15
upper vertical tail and faces of B-52 wing notch for various
model modifications.
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(g) Tail alone in notch; bot- (j) Original configuration; out-
tom outboard tail pressure board motch face pressure
transducer. transducer.

5

\‘L [N‘x w" fWM Wil M NW‘WM‘W»WMM

(h) Original configuration; (k) Original configuration;
inboard notch face pres- top outboard tail pres-
sure transducer. sure transducer.

MM bt

le—002 sec —»]

;;I

i)

(i) Original configuration; (1) Original configuration with
bottom inboard tail pres- faired pylon; top outboard
sure transducer. tail pressure transducer.

Figure 5.- Concluded.
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(b) Tail alone in notch.

Figure 6.- Fluctuating pressure coefficients for X-15 upper vertical
tail and notch faces of B-52 wing for the original configuration
and various modifications shown in relative position as viewed
from the rear (outboard to the right).
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Figure 6.- Continued.
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(h) Original configuration with top and bottom cover.
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(i) Original configuration with top and bottom cover and faired pylon.

Figure 6.- Concluded.
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Figure 8.- Power spectral densities of fluctuating pressures on X-15
upper vertical tail and faces of B-52 wing notch for various model
modifications.
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Figure 8.~ Continued.
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Figure 9.- Film record of fluctuating pressures on faces of B-52 wing nrotch obtained
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