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SUMMARY

An investigation has been conducted in the Langley full-scale tunnel
to determine the aerodynamic characteristics of two four-place, light
observation helicopter fuselage models designed for improved performance.
The investigation included tests of the basic fuselage shapes, and the
fuselage with flve rotor hubs, three pylons, two landing skids, several
antennas, door Junctures, and door handles. However, the present tests
did not permit exploration of the effects of a rotor flow field on the
aerodynamic characteristics of these components.

The results are compared with available methods of predicting the
parasite drag of the large components, and an estimate is made of the
total parasite drag area of a helicopter of the 1light observation
category. This estimate indicates that, with improved design and con-
struction of all components, a parasite drag value less than half that
of current light observation hellcopters 1s attainsble.

INTRODUCTION

Recent studies discuss the feasibility of attaining efficient heli-
copter operatlon at higher speeds and point out the necessity of
obtaining an aerodynamically clean fuselage with minimum downloads.
(see, for example, refs. 1 and 2.) Although there has been relatively
little attention glven to high-speed aerodynamic problems of the heli-
copter, there are many alrplane-drag studies from which valuable guid-
ance may be obtalned. Also available are investigations of the drag
penalties incurred by rotor hubs, pylons, and helicopter fuselages; how-
ever, these studies are usuaslly limited to small scale or isolated
components. (See refs. 3 to 10.)
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The present investigation was conducted in connection with the devel-
opment of a light observation hellcopter. The results, however, are
applicable to the development of any high-performance helicopter. The
full-scale tests, reported herein, were conducted to obtain drag and
download characteristics of two helicopter fuselage models snd their
appendages. These tests are supplemented by l/5—scale model tests of
four fuselage shapes, including the two shapes of this program. (See
ref, 11.) The present investigation included tests of two fuselages,
five rotor hubs, three pylons, two landing skids, several antennas, door
Junctures, and door handles. However, the present tests did not permit
exploration of the effects of a rotor flow field on the aerodynamic char-
acteristics of these components. The results are compared with available
methods of predicting the parasite drag of the large components, and an
estimate i1s made of the total parasite drag area of a helicopter of the
light observation category.

SYMBOLS

The positive directions of forces, moments, and angles are shown
in figure 1 and are referred to the wind system of axes.

q dynamic pressure, pv2/2, 1b/sq ft

V'l velocity, ft/sec

R radius

Fp drag, 1b

Fy, 1ift, 1b

MYW pitching moment, ft-1b

o angle of attack of fuselage reference line, deg
B angle of sideslip, deg

0 mass density of air, slugs/cu ft

A incremental force or moment
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Subscripts:
mesas measured
calc calculated

MODELS

General views of the models mounted in the Langley full-scale tunnel
are shown in figures 2 and 3, and the configurations tested are listed
in table I.

Fuselage Models

The models tested were full-scale mock-ups of a four-place, light
observation helicopter with cabin dimensions conforming to military
specifications. The two models, designated C and D, were identical
except for the increased cargo volume of model D. (See fig. L4.) A
transition strip was placed around the nose section of the models as
shown in figure 2(a).

Rotor Hubs

Five rotor hubs representative of current designs were tested and
are shown in figure 5. The 4O-inch-diameter discus hub (fig. 5(c)) was
intended to enclose both the hub assembly and blade shanks, whereas the
small faired hub (18-inch diameter) would enclose the hub assembly only.
None of the hubs were complete with control rods and linkages.

As pointed out in reference 1, fuselage downloads and drag can be
minimized by tilting the rotor shaft forward so as to maintain a level
fuselage attitude in crulsing flight. The rotor shaft was inclined 50
forward for the present tests.

Preliminary tests, as well as the tests of reference 7, indicated
that hub drag is essentially independent of rotational speed. The
measurements presented are for a hub speed of approximately 200 revolu-
tions per minute.



Pylons

Three pylons were tested and are shown in figure 6. The curved
element pylon, teardrop in shape, was large enough to enclose a turbine
engine and transmission assembly. (See fig. 6(a).) Tests were also
made with a small ramp attached to this pylon in an attempt to isolate
possible flow disturbances of the hub. (See fig. 6(b).) The linear
element pylon, a small airfoll shaped falring, was intended to house
only the rotor shaft and control rods. (See fig. 6(c).)

Landing Skids

The faired and tubular type landing skids tested are shown in fig-
ure 7. Identlcal runners were used for both skids; however, the cylin-
drical support struts of the tubular skids were replaced with stream-
lined tubing on the falred skids. These support struts were located
nearly normal to the fuselage surface as recommended in reference 12.

Minor Appendages

The antennas tested, shown in figure 8, are representative of those
required on a military light observation helicopter. Window and door
Junctures, representative of good construction techniques, were simulated
with tape 2 inches wilde by 1/8 inch thick. (See fig. 2(b).)

TESTS AND ACCURACIES

The tests were conducted in the Langley full-scale tunnel at an
average dynamic pressure of 17 pounds per square foot corresponding to

a Reynolds number of 20.6 X 106 based on fuselage length. The aserody-
namic forces and moments were measured on the tunnel balance over an
angle-of-attack range from -12° to 8° for 0° and 6° of sideslip.

Both fuselages were tested without appendages and then various com-

ponents were added to assess thelr contribution to the model aerodynamics.

It should be noted that no attempt was made to simulate leakage, prac-
tical construction techniques, or results of engine inlet and exhaust

flow.

The data presented herein have been corrected for horizontal buoy-
ancy, blockage, stream angularity, and strut interference.

OO o+
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The sccuracies of the results are believed to be as follows:

FL,/Qy SQ FE « o o v o v v o o v i v b v e e e e e e e . . 7030
Fp/Qy ST Ft « o v v v o 0 o v o v s v e s e e v e e e e e . s $0.05
Myw/q, CUFE « v v v v v o e v s s s e s s e e e e e s e e s .. 22,00
ANgles, GEE « « o « o o & s s e 4 v e s e e e e e s e e . . F0.2

RESULTS AND DISCUSSION

The results of the investigation, in terms of forces and moments
divided by free-stream dynamic pressure, are presented in the followi
order:

ng

Figure

Longitudinal aerodynamic characterlistics:

Test conflgurations of model C . + + « &« ¢ ¢ « « « o & 9

Test configurations of model D . .« . . . . s s e s e s 10

Comparison of basic and complete configurations of

models Cand D . . « « « & e e s e e e e s 11 to 13

Effect of trimming pitching moments of mdel C . + « « - . 1l and 15

Effect of sideslip on model € .+ + « « s« + o &« s« s o « « » 16 to 18
Incremental aerodynamic characteristics of the appendages:

gkids . . . . T T T 19

ROtor HUDS & « « o o o o o s o 5 s o s o« s s ¢ s o o o » 20

Hub-pylon combinations . + « « + s = + = o o o ¢« » s+ « « « 21 &and
Minor appendages . . +« « « o« s s s ¢ o ¢ s o o s 8 v 4 e »

Table I is used to identify the test configurations for the data pre-
sented in figures 9 and 10.

Longitudinal Aerodynamics of the Test Models

22
23

b
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In figures 11 to 13, models C and D are compared without appendages
and then with an identical set of appendages. The drags of the two baslc
shapes (fig. 11) were nearly equal and are predictable within 10 percent
by using a wetted area drag coefficient (pp. 6 to 16 of ref. 13). The
measured and calculated parasite drag areas of the two baslc shapes
compare as follows:



Model (Fp/q) geass 5q Tt (Fp/4)calces sa ft
C 0.82 0.77
D .88 .79

The good agreement of the calculations with the measured data is indic-
ative of only a small amount of pressure drag due to flow separation.

The addition of the same appendages to both models had only a small
effect on the drag of each. (See fig. 11.) The small lncrease in the
drag of model D at nosedown attlitudes may result from the susceptibllity
of this shape to flow separation as was indicated by the 1/5-scale model
tests of reference 11. It is expected that the drag increase would be
more pronounced if practical construction techniques were used.

The model 1ift characteristics, presented in figure 12, indlcate
that the downloads of the basic fuselages are not excessive (20 to
%0 pounds for 110 knots at a = 0° to a = -5°). The addition of appen-
dages more than doubled these downloads at an angle of attack of =40,
However, a large part of this variation was due primarily to the unfavor-
able incidence setting of the faired skld supports.

The pitching moments of both basic and complete configurations were
large with respect to the normal longitudinal control avallable for a
helicopter of thls size. (see fig. 13.) The slopes of these pitching-
moment curves for the basic models, calculated in reference 11, show
reasonable agreement with the present measurements:

oy o
Model a q
da da

meas calc

C 3.6
k.0

L.2
bk

Although the appendages decreased the pitching-moment slopes for

both models slightly, there are still large moments which must be trimmed.

If a horizontal tall were used to trim these fuselage moments to zero,
additional drag and downloads would be incurred. The lift and drag
curves of model C are compared for trimmed and untrimmed pitching moments
in figures 14 and 15 by using estimated values of tall loads.

OO O
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As would be expected, the horizontal tall does not greatly affect
the drag characteristics. However, the downloads on the trimmed complete
configuration are more than double those of the untrimmed configuration
(122 pounds for 110 knots at a = -3°). Downloads of this magnitude
could result in a significant performance penalty, particularly at larger
nosedown attitudes. Furthermore, these additional rotor loads reduce the
stall margin of the retreating blade.

Effect of Sideslip on Longitudinal Aerodynamics

The longltudinal aerodynamic characteristics of model C at 0% and
6° of sideslip are compared in figures 16 to 18. A sideslip angle of 6°
resulted in approximately a O.4-square-foot increase in parasite drag
area for the basic fuselage and a 0.5-square-foot increase (15 percent)
for the complete configuration. (See fig. 16.) Thus, it appears that
the appendages would have very little effect on the actual drag increase
in sideslip, at least if the fuselage 1s clean.

The unexpected lift-force reversal of the basic fuselage, shown in

'figure 17, is belleved to be a result of the suberitical crossflow

Reynolds numbers of the fuselage. References 14 and 15 indicate that
large variations in both megnitude and direction of forces with Reynolds
number occur on bodies of nonclrcular cross section. These varlations
were found to be dependent upon the body cross section and orlentation
with respect to the free-stream flow. The additlion of appendages, how-
ever, tends to nullify this phenomenon.

The pitching-moment characteristics, presented in figure 18, show
an increase in nosedown moment of the basic fuselage at 6° sideslip.
However, this change 1s of little significance since the appendages,
required on the complete configuration, negate this moment increase.

Incremental Effects of Appendages

The incremental data discussed herein were obtained by subtractlng
the measured data without the appendage from that with the appendage
included. Hence, these increments include the mutual interference
effects between the appendages and the fuselage.

Landing skids.- Figure 19(a), a comparison of tubular and falred
skid drag, illustrates that, by streamlining the skid supports, the
drag of tubular skids can be reduced by a factor of 6. This large




reduction 1s explicable when the high drag of a cylinder at subcritical
Reynolds numbers is compared with that of a streamlined shape at a super-
critical Reynolds number. (See ref. 13.) The fact that the calculated
skid drag, particularly the tubular skids, is greater than the measured
value 1s believed to be assoclated with an increase in local Reynolds
number due to fuselage interference velocities.

As previously mentioned, the faired skids contributed large down-
loads as compared with the fuselage and the other appendages. (See
fig. 19(c).) These loads, of course, could be eliminated by merely
increasing the incidence of the supporting struts. In fact, it is pos-
sible that by careful selection or deslign of supports, they could be
employed as a 11fting surface to reduce downloads and nosedown fuselage
moments.

0O o+t

The calculated 1ift curves for the faired skids (fig. 19(c)) are
for two fineness ratios (ref. 16) inasmuch as section data for the -
correct fineness ratlo were unavailable. Both the measured and calcu-
lated 1lift curves indicate a trend toward lift reversal on the skid sup-
port similar to the results of reference 11.

Figures 19(d) and 19(e) present the pitchlng-moment characteristics
of the tubular and falred sklds, respectively. Neither of the sklds
contributed large moments as compared with fuselage moments; however,
the falred skids contribute less than the tubular skids and also offer
the possibllity of producling a restoring moment to the large fuselage
moments at nosedown crulse attitudes.

Because of the low drag of the falred landing skids (about
0.5 sq ft), any aerodynamic gains which might be obtalned on a light
helicopter, by using retractable landing gears, would require careful
evaluation with regard to the increased welght, complexity, and leakage
drag of the retractable gears.

Rotor hubs without pylon.- The drag increments of four of the test
hubs (including the drag of the exposed shaft) are shown in figure 20.
These increments are compared with calculated parasite areas, for an
angle of attack of 0°, in the following table:

Disk plane
Type of hub heighz, in. (FD/q)meas (FD/Q)calc Reference

Three-blade articulated 9 1.05 1.03 T

15 1.10 1.10 T

21 1.15 1.1h 7 -
Two-blade teetering 17 .70 .68 T
Direct tilt 15 2.35 1.56 7 *
18-inch-diameter faired 9 .56 .48 13
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It should be noted that the descriptions used are for identifica-
tion of the hub types tested and do not necessarily represent the rela-
tive drags which might be attained for other deslgns of these basic
types. For example, the drag ascribed to the direct tilt hub in this
table includes the drag of the large unfaired cylinder beneath the blade
roots. A more practical instellation of this hub type might be to employ
a fairing both in front of and behind this cylinder or to embed a part
of 1t in the fuselage.

Since the data used for.these calculations were obtained with neg-
ligible interference velocities of the supporting body, their practical
application depends on the evaluation of local dynamic pressures. In
the present case, measurements indicated that the fuselage increased
the dynamic pressure in the vicinity of the various hubs by 1k to 18 per-
cent. These percentage corrections were applied to the hub calculations.
TInterference effects of the hub on the fuselage were neglected; however,
in most cases, the calculations indicate that these effects were small.
Thus, it appears that consideration of the local interference veloclties
of the fuselage account for the major interference effects of the
fuselage-hub combination and that the resultant hub drag can be pre-
dicted very accurately.

Test hubs with curved element pylon.- The addition of the curved
element pylon to model C resulted in approximately a 25-percent increase
in dynamic pressure in the hub region. The inclusion of local dynamic
pressure in the hub drag calculations resulted in the following agree-
ment with the measured parasite areas of figure 21.

Type of hub (Fp/) pess (Fp/d) caic Reference
Three-blade articulated 1.20 1.10 T
18-inch-diameter faired .72 .52 13
40-inch-diameter dlscus .78 o 13

It is of interest to note that fuselage-pylon interference veloclties
accounted for the increase in parasite area of the three-blade articulated
hub over that measured without the pylon. On the other hand, the dynamic-
pressure increase accounted for only 25 percent of the measured drag
increase of the 18-inch-diameter faired hub. Hence, 1t appears that the
faired hub, as well as the 4o-inch-diameter discus hub, have more pro-
nounced interference effects than the three-blede articulated hub.

A
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Provided no flow separation exists, at least for the conditions of
these tests, the drag of the various hub configurations can be closely
predicted if only the effects of velocity increase in the hub region due
to the fuselage are consldered.

Pylons with three-blade articulated hub.- To ascertain the installed
drag of the three pylons, all were tested in combination with the three-
blade articulated hub. (See fig. 22.)

Although the curved element pylon had three times the frontal area
of the linear element pylon, it 1s significant that the curved element
pylon in combination with the rotor hub had only a slightly higher drag
than did the linear element pylon with the same hub (about 0.05 square
foot). Thus, the larger pylon affords an appreciable increase in usable
volume without a severe drag penalty. The addition of the ramp to the
curved element pylon had no effect on the drag characteristics of this

hub-pylon configuration.

Minor appendages.- Figure 23 shows the drag characteristics of the
antennas, door junctures, and door handles. Although none of these
items contributed more than 0.25 square foot of parasite area individ-
ually, cumulatively they account for about 25 percent (0.80 square foot)
of the drag of the complete configuration. Thus, 1t becomes increasingly
important to streamline small appendages if the fuselage and large com-
ponents are clean. Flush mounting or fairing the antennas would produce
worthwhile reductions in parasite drag, particularly on a streamlined

fuselsage.

The drag increment of the door Jjunctures and door handles (see
fig. 23) is probably optimistic inasmuch as the simulated junctures were
much smoother than those on most production helicopters, and since the
fuselage was sealed there was no drag contribution from leakage.

Rotor considerations.- Although none of these tests were made in the
presence of a rotor flow field, it is conjectured that the application of
these results would be valid provided that the fuselage and pylon were
either very clean or very dirty but not with marginally clean shapes. The
case for very dirty configurations is supported by data obtained with the
R-4 helicopter wherein good egreement of calculated and measured powers
is shown when the drag of the fuselage as measured without the rotor
is used in the calculations. (See, for example, ref. 17.)

Drag Estimate for a Light Observatlon Helicopter

The parasite areas of the components of a representative light
helicopter configuration are given in the following table. In addition

0O Mt
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to the test results, estimates of the drag contributions of items not
determined from the tests are included.

Component Fp/q, sq ft Reference
Fuselage (Model C) 0.82 )
Pylon (curved element) .20
Hub (three-blade articulated) 1.20
Skids (faired) .50 P &
Antennas, door junctures .80 ¢ Present paper
Induced drag (3° nosedown) .15
Sideslip (3°) .30
Horizontal tail (estimate) .15 J
Main rotor controls (estimate) .20 7
Tail rotor (estimate) .75 18
Leakage (estimate) T3 L
Transmission cooling (estimate) .30 20
Total 6.10

The total paraslte area does not include drag resulting from the
engine Installation and operation or that resulting from rough surfaces
due to practical construction techniques. However, with proper design,
a large part of the engine installation drag can be offset by the resid-
ual engine thrust. On the other hand, reference 13 indicates that sur-
face imperfectlons could approximately double the drag of the test
fuselage. In such a case, the incluslon of this consideration brings
the total estimated drag of the hellcopter to about 6.9 square feet.

Often neglected in helicopter performance calculations are addi-
tional power requirements resulting from effective gross weight increases
due to downloads on the fuselage and trim surfaces. Expressing this
additional power requirement for a 110-knot cruising speed at 3° nose-
down as an equivalent parasite area would Increase the total drag to
about 7.4 square feet. This total for a complete helicopter is less
than half that for current light helicopters.

Thus, it is obvious that considerable drag reductions can be
obtained when clean design is emphasized in the initial design stages,
for it is here that most effective steps can be taken to provide com-
ponents which, when combined into a complete helicopter, will incur
lower drag penalties. The performance gains made possible by such drag
reductions are pointed out 1n references 19 and 20.
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SUMMARY OF RESULTS

The results of an investigation wherein measurements were made of
the drag and download characteristics of two helicopter fuselage models
and their appendages without the presence of a rotor flow fileld indi-
cate the following:

1. The equivalent parasite areas of the two baslc fuselages were
less than 1 square foot and were predictable within 10 percent.

2. Downloads and large nosedown pltching moments encountered in
these tests emphasize the importance of malntalning a level fuselage
flight attitude if the accompanylng performance penaltles at higher
speeds are to be minimized.

3. Because of the low drag of well-designed skid gear, any aero-
dynamic gains which might be obtalned for a light helicopter by using
retractable landing gears would require careful evaluation with regard
to the increased welght, complexity, and leskage drag of the retractable
gears.

4k, Rotor hub drag was primarily a function of projected frontal
area and, in most cases, was predictable by sccounting for increases in
local velocities due to the fuselage and pylon.

5. The parasite drag area attributed to the minor appendages, such
as antennas, was equal to that of the basic fuselage. Therefore, on a
streamlined fuselage, flush mounting or falring the antennas would pro-
duce worthwhile reductions in parasite drag.

6. An equlvalent parasite area of approximately 7 square feet can
be achieved for a light observation type helicopter. Thils value 1s less
than half that for current light helicopters.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., April 16, 1962.
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TABLE I.- LIST OF CCNFIGURATIONS TESTED

Configuration Model configuration

1 Basic fuselage.

2 Fuselage and curved element pylen.

3 Fuselage, curved element pylon, and three-blade
articulated hub.

L Fuselage and three-blade articulated hub.

5 Complete configuration fuselage, curved element
pylon, three-blade articulated hub, faired landing
skids, F.M. homer, A.D.F. sensor, F.M. conmunica-
tion, V.H.F. communication, V.0.R. split loop,
door outlines, and door handles.

6 Fuselage and falred landing skids.

T Fuselage, curved element pylon, three-blade articu-
lated hub, and faired landing skids.

8 Fuselage, curved element pylon, three-blade articu-

lated hub, and conventional tubular skids.
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(a) Model C; basic (b) Model D; complete

configuration. L-60-7875 configuration.

Figure 3.- Models C and D as viewed from above.

L-60-7775
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Projected frontal area =32112 sq in

|
|
o

. 80GT-1T

— 30w ‘-;

(b) Direct tilt hub.

Note:
Projected fronto! area = 275.04 sg.in

(c) 40-inch-diameter discus hub.

Figure 5.- Continued.
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Note: Projected frontal orea = 153.6 sq.in.

18" DIA >

(d) 18-inch-diameter faired hub.

e c=Tort— —
o

Note: Projected frontal area = {399 sq.in.

|
!

(e) Two-blade teetering hub.

- Figure 5.- Concluded.
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(b) Faired skids.

Figure 7.- Geometry of the landing skids tested.
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(¢) F.M. homer.

(b) F.M. communication.
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(4) V.0.R. split loop.

Figure 8.- Geometry of antennas tested.
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Figure 9.- Aerodynamic characteristics of model C.
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Figure 10.- Aerodynamic characteristics of model D.
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Figure 13.- Comparison of pitching moment for basic and complete
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7 ———
— - — - N Model C {pitching moments untrimmed) —t
6 : i _ Ll ] —— Model C (pitching moments trimmed) I
5 1 S N B L
= [0S S [ - 1
S
o q A, b L R — | -
(] I‘\- t = ——
- N et -
T = — T — M.
Olw ST T 1]
3 i 4
2 — 4 B -
| |
0
-2 -8 -4 0 4 8 i2

a, deg

Figure 1h.- Comparison of drag for the complete configuration of

model C with and without piltching moments trimmed.
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(c) Measured and calculated 1ift increments of the faired skids.

Figure 19.- Incremental characteristics of the landing skids tested on
model D.
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Figure 19.- Concluded.
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Figure 20.- Incremental drag of test hubs on model C fuselage.
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Figure 21.- Incremental drag of test hubs and curved element pylon
on model C fuselage.
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Figure 22.~ Incremental drag of pylons in combination with the three-
blade articulated hub on model C.
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Figure 23.- Incremental drag of the antennas and door outlines and
door handles tested on model D.
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