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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

TECHNICAL NOTE D-1509 

PROPELLER SLIPSTREAM EFFECTS 

AS DETERMINED FROM WING PRESSURE DISTRIBUTION 

ON A LARGE-SCALE SIX~PROPELLER VTOL MODEL 

AT STATIC THRUST 

By Matthew M. Winston and Robert J. Huston 

SUMMARY 

During static-thrust tests of a large-scale general research model having a 
tilting wing and double-slotted flaps, static-pressure measurements were made on 
a wing segment behind one propeller to survey the effects of the slipstream. For 
the conditions of highest slipstream energy, the hovering end point of aerodynamic 
parameters for aircraft having vertical and short take-off and landing capability 
(V/STOL), the effect of the slipstream on the tilt-wing configuration (zero 
flap deflection) was a 60 spanwise variation in effective angle of attack in a 
span of slightly less than 1 propeller diameter • Effective changes in camber 
on the tilt-wing configuration as a result of slipstream rotation, the radial 
velocity gradient, and the resultant spanwise flow were negative and had a maximum 
magnitude of less than 2-percent chord. For the deflected-slipstream configura
tion (double-slotted flaps deflected), effects important to the hovering perform
ance were found, including a 40-percent spanwise variation in effective thrust 
recovery and a 200 spanwise variation in effective thrust turning. 

INTRODUCTION 

Propeller slipstreams have been studied throughout the history of aviation, 
and the problems associated with the slipstream for conventional aircraft have 
been adequately defined and/or solved. (For example, see ref. 1.) The evolution 
of the VTOL aircraft, however, has introduced a broader range of parameters than 
had previously been investigated for conventional aircraft. One change has been 
to extend the free-stream velocity range to zero, where, unlike a hovering heli
copter rotor, the VTOL propeller produces a slipstream of relatively high energy. 
A number of theoretical studies have been made on the effects of a high-energy 
slipstream at low forward speeds (for example, see refs. 2, 3, 4, and 5), and 
some limited experimental results have been obtained at low forward speeds 
(refs. 3, 5, and 6). Missing from these results is a sample of the propeller
slipstream effects at zero forward speed. Such a sample is important as an end 
point in the aerodynamic parameters for VTOL aircraft, where the effects of the 



high-energy slipstream are at a maximum, and for determining the significance of 
the effects of the slipstream on hovering characteristics. 

During studies with a large-scale V/STOL model at static thrust (ref. 7), 
measurements of the chordwise and spanwise pressure distribution were made on a 
wing segment behind one propeller. This paper presents a sampl~ of these results 
and an analysis of the effect of the slipstream on the force distribution. The 
local flow effects due to the slipstream are' considered herein to result in a 
spanwise variation in angle of attack and camber. For a higblY flapped wing, the 
local slipstream effects can also be considered as a lateral variation in the 
thrust-recovery factor. No attempt was made to determine the entire spanwise 
force distribution including wing-tip and fuselage effects. However, the data 
presented are adequate as a sample of the general nature of the effects of the 
slipstream on a wing at static thrust. 

COEFFICIENTS AND SYMBOLS 

The force and moment conventions employed are shown in figure 1. 

b propeller-blade chord, ft 

C wing chord forces, including thrust, Ib 

Cm wing-pitching-moment coefficient about wing quarter chord, 

c 

c c f n, W' n", 

2 

Pitching moment 
qSc 

wing chord, ft unless otherwise noted 

vector summation of section-chord-force coefficients for wing and flap, 
resolved parallel to basic-wing-chord plane 

section-chord-force coefficients for wing and flap, respectively, 

l (t/c)max .6Pb - &a di 
(t/c)min qs c 

section-pitching-moment coefficient about wing quarter chord, 

1 (x/c)max .6P1 - .6Pu {lO' x\ x 1 (t/c)max &JJ - .6Pa (t\ t 
\ .25 - -; d'- - -') d-

(x/c)min qs c c (t/c)min qs c c 

vector summation of section-normal-force coefficients for wing and 
flap, resolved normal to basic-wing-chord plane 

section-normal-force coefficients for wing and flap, respectively, 

1 (X/C)max .6P1 - .6Pu -..::.....--=- d~ 
(X/C)min qs c 



D propeller diameter, ft 

F resultant force, ~C2 + N2, lb 

h propeller-blade thickness, ft 

iw wing incidence angle, angle between wing chord line and ground, deg 

N wing normal forces 

p 

Pa 

q 

R 

r 

s 

T 

t 

v 

x 

y 

z 

a 

static-differential pressvre, p - Pa' lb/sq ft 

local static pressure, lb/sq ft 

atmospheric pressure, lb/sq ft 

free-stream dynamic pressure, 

slipstream dynamic pressure, 

radius to propeller tip, ft 

pv2 
--, 

2 
lb/sq ft 

q + _T_, lb/sq ft 
61rR2 

radius to any propeller-blade section, ft 

wing area, sq ft 

total propeller thrust, including body drag (longitudinal force with 
wing and flaps undeflected), lb 

perpendicular distance from undeflected-wing chord line to any point 
on wing or flap surface, positive upward, ft 

free-stream velOCity, ft/sec 

any distance from wing leading edge parallel to chord line of 
undeflected wing, ft 

any distance from center of rotation of propeller along wing span, 
positive in region of upward slipstream flow, ft 

distance from ground to wing pivot, ft 

free-stream angle of attack measured from wing chord line, deg 

flap deflection, deg 

thrust turning angle, inclination of resultant-force vector from 
propeller-thrust axis 
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p mass density of air, slugs/cu ft 

Subscripts: 

a ahead of airfoil maximum ordinates 

b aft of airfoil maximum ordinates 

1 airfoil lower surface 

max maximum 

min minimum 

u airfoil upper surface 

30 30-percent-chord flap 

55 55-percent-chord flap 

MODEL, TESTS, AND METHODS 

Basic dimensions of the model are shown in figure 2, and photographs of the 
model are shown in figure 3. Locations of the pressure orifices are given in 
figure 4. The wing has a rectangular planform, a span of 35 feet, a chord length 
of 4.375 feet, and an NACA 63~2l5 airfoil section. A pivot at the 35-percent
chord station permits rotation of the wing to incidence angles from 00 to 900 • 

The wing is equipped with double-slotted flaps (55- and 30-percent wing chord) 
which are manually adjustable in 100 increments. The propellers have four solid 
aluminum blades with manually adjustable pitch. Propeller diameter is 5 feet, 
and the blade pitch at the 0.75 radius was set at 16.30 for all tests. Propeller
blade-form curves are presented in figure 5. The right center propeller, behind 
which the orifices are located, rotates clockwise as viewed from the front. (See 
fig. 2.) A more detailed description of the model and static-thrust test program 
is given in reference 7. 

Pressure distributions for the wing without propellers were obtained from 
measurements in the Langley full-scale tunnel at a dynamic pressure of approxi-
mately 16 lb/sq ft and at a Reynolds number based on wing chord of 3.22 X 106 • 
Wing geometry was the same as for the static tests of reference 7. 

In both static and wind-tunnel tests, pressures were indicated on a fluid 
manometer and were photographically recorded. The data from these records were 
reduced to pressure coefficients which, in turn, were plotted and integrated to 
obtain force and moment coefficients. 
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PRESENTATION OF DATA 

Wing-pressure-distribution data for a propeller disk loading of 29.7 lb/sq ft, 
which were tabulated in reference 7, are shown in figures 6 to 21. In these fig
ures, the ratio of static pressure to slipstream dynamic pressure is plotted 
against the airfoil chord and thickness to obtain the normal- and chord-force dis
tributions, respectively. The arrows in the center sketch of these figures indi
cate the row of orifices from which a given distribution was obtained. Pressure 
distributions for the wing without propellers (full-scale-tunnel tests) are pre
sented in figure 22 for a range of angles of attack. Pressure distributions from 
the data with propellers off were plotted for four spanwise stations but, since 
close agreement of integrated forces and moments between stations was indicated, 
only the pressure distributions of a representative station are presented. Due 
to uncertainties in the region of the nacelle, portions of the curves in fig-
ures 23(b) to 28 are shown by dashed lines. 

The results of this investigation are presented in the follOwing figures: 

Pressure distributions in slipstream flow • . • . • • 
Pressure distributions in uniform flow • • • • • • 
Section-normal-force and moment variations for wing 
Spanwise force variations with flaps neutral 
Spanwise force variations with varying iw 

and of,55' of,30 = 38.60 
•••••••••••• 

Summary of turning effectiveness of wing section 
behind propeller • • • • • . • . • • • • • • • • • • • . . • . • . . . 

DISCUSSION 

Effective Angle of Attack and Camber 

Figure 

6 to 21 
22 
23 

24, 25 

26 

27 to 29 

In order to obtain a measure of the relative magnitudes of the slipstream 
effects on the effective angle of attack and camber, the pressure characteristics 
of the wing (propellers removed) obtained from unpublished wind-tunnel pressure 
data (fig. 22) were compared with the pressure characteristics obtained in the 
slipstream from the present test. The method of analysis applied to the data is 
included in appendix A. The analysis does not account for the effects of the 
nacelles; however, a qualitative idea of how the nacelle affects the spanwise 
loading may be obtained from reference 8. 

Results from the wind-tunnel tests are shown in figure 23(a) as the variation 
of Cn and cm with ~ for the wing without propellers. The pitching-moment 
values measured with a strain-gage beam are included with the integrated pressure 
data to indicate the agreement obtained from the two different measurement methods. 
The spanwise variation of cn and cm behind the propeller in the slipstream for 
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a comparable wing configuration at static thrust is given in figure 23(b). Data 
for wing incidence angles of 00 and 900 are included to show the small effect of 
large variations in wing attitude on the force and moments for the tilt-wing con
figuration. From the appended method of analysis and the data included in fig
ure 23, the effective angles of attack and effective camber changes have been 
calculated for four spanwise wing sections. The results of these calculations 
are summarized in the following table: . 

Basic tilt wing (Of, 55 and 0f,30 = 00
) 

y 
Effective angle 

Effective camber change, of attack, 
R deg percent chord 

-0.867 -3·2 -1.3 
-.267 -3.4 -·3 

.267 .6 -1.5 
·750 2.8 -1.8 

The results given in the preceding table indicate the relative magnitudes 
and nature of the slipstream effects on the wing of the test model. The effec
tive angle-of-attack variation was about 60 in a span of slightly less than 
1 propeller diameter, and the camber change was negative at every spanwise sta
tion. It should be noted that the effective changes in camber as a result of 
slipstream rotation, the radial velocity gradient, and the resultant spanwise 
flow were of the order of magnitude of the geometric camber (1.5 percent). (Note 
also p / 28 of ref. 9.) This is in contrast to the results of reference 6, wherein 
the maximum spanwise variation in effective camber is of the same order of magni
tude. as in this test but varies from positive increments on wing sections behind 
the·;'upgoing blade to negative increments on the wing section behind the downgoing 
blade. It is believed that the difference in effect of slipstream on effective· 
camber in this investigation and in reference 6 is primarily due to the vertical 
position of the propeller with respect to the wing. In reference 6, the pro
peller was installed on the wing chord line in contrast to the below-the-wing 
propeller center line of the present investigation. 

The magnitudes of the slipstream effects are also believed to depend upon 
several other factors such as propeller-blade pitch, longitudinal propeller loca
tion, mode of propeller rotation, lateral spacing of propellers, and other design 
changes that are sometimes associated with changes in disk loading. The present 
results, however, are believed adequate to show that the order of magnitude of 
the effective camber changes is small compared to the effect of flap deflection. 
Similarly, the present results are believed to provide a basis for judging the 
order of magnitude of effective angle-of-attack variation which must be dealt 
with in VTOL designs of this general class. 
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Thrust Recovery and Turning 

Tilt-wing configuration.- The spanwise-force distributions on the wing 
behind the propeller for four different wing attitudes and with flaps neutral 
are given in figure 24. The wing incidence angle had only a small effect on the 
magnitude and distribution of forces at the upper ground height (z/D = 2.4), and, 
for the conditions investigated, only at a wing incidence angle of 00 was there 
an appreciable difference in magnitude at the lower ground height (z/D = 1.0). 
This difference was due to ground proximity effects, which are further illus
trated in figure 25. 

The data of figure 24 are repeated in figure 25 to show the effect of ground 
proximity for the four wing attitudes. For wing incidence angles of 560 , 750 , 

and 900 , favorable ground effect was observed. At a wing incidence angle of 00 , 

however, the effect of ground proximity was detrimental. Reference to the pres
sure distributions of figures 6 and 14 reveals that this result is primarily due 
to more negative pressure coefficients on the lower wing surface at the lower 
ground height than for the upper height; the result was a "suck down" effect 
similar to the effect observed for the jet and buried-fan configurations of 
reference 10. 

Deflected-slipstream configurations.- Spanwise force distributions for sev
eral flapped configurations having vertical take-off and landing capability, that 
is, vertical resultant force, are given in figure 26. The results shown indi
cate larger forces at the upper ground height than at the lower ground height. 
In addition, greater decreases in wing incidence angles were afforded by a given 
increment in flap deflection while a vertical resultant was maintained. These 
results are indicative of increased flap effectiveness at model positions away 
from the ground. 

Evaluation of deflected-slipstream configurations in hovering is made prin
cipally through comparisons of thrust recovery and thrust turning angles. Because 
thrust recovery factor F/T and thrust turning angle 8 are normally and more 
conveniently obtained from force measurements, as in reference 7, it was necessary 
to devise a method of obtaining comparable results from pressure data. The devel
opment of this method is covered in appendix B. 

Figure 27 gives the turning effectiveness of wing sections behind the pro
peller. Spanwise variations in effective thrust recovery and effective turning 
were the result of slipstream flow at both model heights above the ground. At 
the upper ground height, there was approximately a 40-percent variation in effec
tive thrust recovery over the span segment behind the propeller. A variation of 
200 in effective thrust turning angle occurred Simultaneously. These values were 
about twice as large as the variations at the lower height; the difference is due 
partially to losses in flap effectiveness because of changes in the flow near the 
ground. These large changes in thrust recovery and turning with ground height 
may be the source of unstable moments for a VTOL aircraft that is upset in roll 
while hovering near the ground. 
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The spanwise variations in thrust recovery and turning, due to spanwise 
angle-of-attack variations, agree with the results of references 11 and 12, 
wherein results indicated that increased turning was obtained by lowering the 
thrust axis below the 'wing-chord plane. A wing design utilizing a leading-edge 
slat with spanwise variable incidence to give a more uniform load distribution 
and with an optimum thrust-axis angle may more fully realize the potential of the 
deflected-slipstream VTOL aircraft than have previous designs. . 

Figure 28 gives a comparison of the turning effectiveness of the wing seg
ment, based on its mean loading, to the turning effectiveness of the entire model. 
Good agreement between pressure and force data was obtained for the upper model 
position considering the unknown effects of the wing tips and fuselage. The dif
ferences at the lower height are believed to be due to the separation of ground 
effect into two components for a hovering VTOL aircraft. The first component, a 
favorable ground effect on propeller thrust, resulted in an apparent increase in 
thrust recovery. (See definition of propeller thrust in the section entitled 
"Symbols.") The second component, an unfavorable ground effect on wing pressures, 
resulted in decreased turning angles. 

The effects of wing attitude and ground proximity on turning effectiveness 
for a deflected-slipstream configuration having constant 55- and 30-percent-chord 
flap deflection are shown in figure 29. These effects are generally the same as 
those previously discussed for the unflapped wing in figures 24 and 25. 

CONCLUSIONS 

An analysis has been made of static-pressure measurements on the wing and 
flaps of a vertical take-of1' and landing model to determine the effect of the 
propeller slipstream on the load distribution at zero free-stream velOCity. The 
results are as follows: 

1. For a tilt-wing airplane configuration (zero flap deflection) in a hov
ering pOSition, the spanwise variation in effective angle of attack for wing sec
tions in the slipstream was about 60 in a span of slightly less than 1 propeller 
diameter. Effective changes in camber as a result of slipstream rotation, the 
radial velocity gradient, and the resultant spanwise flow were negative and had a 
maximum magnitude of less than 2-percent chord. 

2. For a deflected-slipstream configuration at static thrust, the slipstream 
caused a 40-percent spanwise variation in effective thrust recovery and a 200 

spanwise variation in effective thrust turning, with the model at the greatest 
height from the ground. A substantial variation in turning was also obtained at 
the low ground pOSition, but the spanwise variation in effective thrust recovery 
was only about half of that found for the upper height. 

3. For the deflected-slipstream configuration, hovering in the presence of 
the ground resulted in increased effective thrust recovery due to a favorable 

8 



ground effect on propeller thrust and decreased effective thrust turning due 
to a lowering of wing and flap pressure forces near the ground. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., August 29, 1962. 
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APPENDIX A 

EFFECTIVE ANGLE OF ATrACK AND CAMBER 

With the use of cambered airfoil theory (see ref. 13, pp. 97 and 98), the 
quarter-chord pitching moment cm and the angle of zero lift ~ s can be found , 
if the airfoil camber is specified. Conversely, to obtain the magnitude of the 
slipstream induced effects from a measured quarter-chord pitching moment, the 
effective airfoil-section camber and angle of zero lift can be determined from 

(Al) 

and 

Cl.o,s (A2) 

where f is the height of camber, c is the airfoil chord, and Cl.o s is in , 
radians. If it is assumed that the variation of airfoil normal force with angle 
of attack (measured from the zero-lift angle) has the same slope for a wing sec
tion in nonuniform slipstream flow as in uniform flow, the following relation
ship can be written for a constant normal-force coefficient: 

0. - Cl.o = Cle - ~,s 

where 0. is the free-stream angle of attack measured from the wing chord line; 
0.0 is the angle of zero lift of the airfoil section in free-stream flow measured 
from 0.; Cle is the effective angle of attack of the airfoil section in slip
stream flow measured from CLo s; and ~ s is the angle of zero lift in the , , 
slipstream flow. With the variation of cn with 0. and the value of ~ known 
from wind-tunnel tests, the effective camber and effective angle of attack in 
slipstream flow are obtainable from equations (Al), (A2), and (A3). It should be 
noted as shown in reference 5 that the airfoil lift-curve slope is affected by 
the vertical position of the wing in a two-dimensional slipstream; however, any 
change in the slope of the normal-force curve will be reflected in the effective 
angle of attack. 
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APPENDIX B 

EFFECTIVE-THRUST-RECOVERY FACTOR 

An effective-thrust-recovery factor can be obtained by dividing the vector 
sum of the resultant section pressure force and the mean thrust per unit pro
peller diameter by the mean thrust per unit propeller diameter. The normal- and 
chord-force components of this effective-thrust-recovery factor may be expressed 
as 

c q c 
Normal loading per unit thrust loading = n s 

T/6D 

Chord loading per unit thrust loading 

Equations (Bl) and (B2) may be simplified to 

Normal loading per unit thrust loading = ~n 
:rcR 

Chord loading per unit thrust loading 

(Bl) 

(B2) 

(B4) 

If it is assumed that the mean resultant pressure force is typical of the 
load on the wing behind all six propellers (ignoring wing-tip and fuselage 
effects), the ratios of normal force to thrust and chord force to thrust can be 
expressed as 

and 

I Y/ R=0.750 
cn d;r 

y/R~-0.867 R 

j Y/R=0.750 y 
cc ~ 

C Dc y/R=-0.867 - = 1 + --- ~~--,---~-----
T :rcR2 J. Y /R=O ·750 

dl. 
y/R=-0. 867 R 

(B6) 
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The effective-thrust-recovery factor can be obtained from equations (B5) and (B6) 
and expressed as 
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Figure 2.- Three~view sketch of model. All dimensions are in inches. 
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(a) Deflected-slipstream configuration. z/D = 1.0. L-59-7989 

Figure ).- Photographs of model on test stand. 
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(b) Configuration with wing in horizontal position. z/D = 2.4. L-59-4897 

Figure 3.- Continued. 
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Figure 3.- Concluded. 
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Figure 4.- Locations of pressure orifices on wing and flaps. All dimensions are in inches. 
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