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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1599

A METHOD FOR COMPUTING THE EFFECT OF AN ADDITIONAL

OBSERVATION ON A PREVIOUS LEAST-SQUARES ESTIMATE

By Patrlck A. Gainer

SUMMARY

In the application of the method of least squares to data reduction, it may

be desired to compute the effect of a single additional observation on the regres-

sion coefficients and their covariance matrix obtained previously. Simple exact

formulas by which the new observation may be included are derived in this report

for the case where the observation errors are uncorrelated. The starting point

for the derivation is the matrix formulation of the well-known least-squares

solution, and succeeding steps in the derivation do not require any further

application of statistical theory. The resulting recursion expressions are iden-
tical to those developed from statistical filter theory for the case of uncor-

related errors.

INTRODUCTION

In the application of the method of least squares to data reduction, it

would be desirable to be able to calculate the effect of an additional observa-

tion on a previous estimate of the (so-called) regression coefficients without

resorting to the lengthy process of matrix inversion. Also, if one or more of

the observations which have entered into the solution should appear, upon later

examination, to be "wild," a simple procedure for removing these observations

would be useful. Such procedures would permit rapid calculations of the type

needed for smoothing and extrapolating time histories, as is done in the proc-

essing of radar measurements, for example.

This report describes how simple recursion formulas for both adding and

subtracting observations maybe derived from the well-known least-squares normal

equations by simple applications of matrix algebra. In the derivation, the

unknown quantities to be estimated are assumed to be constants. It is possible,

however, to extend the formulas to the problem of estimating the state variables

of a simple form of dynamic system. The resulting formulas are then the same as

those derived by the application of optimal control theory to the problem of

estimation and filtering in reference 1. References 2 and 3 present different

derivations of the recursion formulas and applications of them to space naviga-

tion. Reference 4 is an early treatment of the application of least squares to

data reduction.
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SYMBOLS

known coefficients in regression equation

coefficients of weighted regression equation

true regression coefficients

original least-squares estimate of regression coefficients

revised estimate of regression coefficients

observed quantities from which xn was determined

weighted observations

additional observation

weighted value of y*

known coefficients corresponding to added observation

weighted values of a*

true errors in observed quantities Y*

true error in y*

probable error in y*

original covariance matrix

revised covariance matrix

difference between _n] and _n+l]

identity matrix

weight for added observation equation

time
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Matrix symbols:

()

LJ

column matrix

row matrix

II II

E]

L-1

rectangular matrix

square matrix

diagonal matrix

Prime denotes transposition of a matrix. (Example: The notation {a'}

denotes the column matrix formed by transposing the row matrix [aJ.)

DERIVATION OF METHOD

The derivation of the method of this report begins with a brief statement of

the least-squares solution. Succeeding steps in the derivation are elementary

matrix operations.

Let the system of simultaneous equations relating observations

unknowns _X_ bethe
_ J

{Y*} = IA*I{X} + {cy_ (1)

The number of observations n is greater than the number of elements of {X),

and the errors Cy* are assumed to be random with a Gaussian distribution, zero

mean, variance ay, and not correlated. Under these conditions, the probable

value of {X}, obtained from n equations and denoted by {Xn}, is obtained by

weighting each observation equation by multiplying it by the reciprocal of the

variance _y of the corresponding observation, and then solving for coefficients

Xn} which will minimize the sum of the squares of the weighted residuals. If
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the weighted observations are denoted by {Y} and the weighted observation

coefficients by IIAII,the probable value of {X} is (see ref. 5)

<_n} E_]iliali{_} (2)

The matrix [A'A_ -1 in equation (2) is the covariance matrix of {Xn}. A

proof of this statement appears in the appendix. For convenience, it will be

denoted by ECn]. Statisticallyj the covariance matrix is the expected value of

the product formed by postmultiplying the difference between {Xn} and its

expected value by the transpose of the difference. The diagonal elements of the

covariance matrix _n] are the squares of the probable errors in the corre-

sponding elements of {Xn}. Because of its statistical significance, it is

generally desirable to compute the covarlance matrix_ even though the solution

for {Xn} could be performed without actual matrix inversion (by Crout's method,

for example).

It will be assumed that a set of observation equations has been solved, as

in equation (2), to obtain {Xn} and the covariance matrix [Cn]. Suppose that

an additional observation is then made and it is desired to compute the effect of

this observation on the probable value of {X} and on the covariance matrix.

The additional observation y* is related to {X} by the equation

__- b_j{x} -,-_:,-_ (3)

The weighted equation corresponding to equation (3) is:

_y__- LaJ(ix} +_ _4)
_y

Revising the Estimate of {X} Without Matrix Inversion

The least-squares solution for the revised estimate {Xn+l_ may be written:
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(xn+_)= _:a A a

where partitioning has been used to show the added elements. The matrix

iir A' " a' A_ is the revised covariance matrix _n+l]" This matrix may,,
be written as

or

_n+l_ = _A'A, + <a'}La_ -1

_n+l_ = _Cn] -1 + {a'} La_ -1

(6)

(7)

Equation (5) may then be written

(Xn+l} = [_n]-i + (a'} La_-I<[A'I <Y} + <a'}y)
(8)

ox_reos_o__or#_n+__ntermso_(x_may_e_r_te__s_o_ow_.
_ d

Equation (8) may be written as

(9)

If equation (9) is multiplied through by [gn], there is obtained the equation

(i0)

By equation (2),

_nDII_'II@} : <x¢ (zz)

For convenience, let _n] <a'} = <k'} . Then equation (lO) may be written

_I] + (k'} LaJ]<Xn+l} = <Xn} + {k'} y
(12)
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From equation (12),

(Xn+l) = _LI] + (k')La] -I (Xn) + ILl] + (k '} LaJ] -l (k '} Y
(,13)

By making use of the identity,

simple expressions for the terms

÷(_)Lg]=b] (14)

in equation (13) may be obtained. Expansion of equation (14) gives:

_q +(_)Ld]-_

Postmultlpllcatlon of equation (19) by (k'} gives:

(15)

-1 -1

(16)

The product LaJ (k') is a scalar quantity. Let this quantity be denoted

by B. Then equation (16) may be written

[Lq+(='}L=J-]-I(k') (i + B) - (k'} (17)

Therefore,

[LI]+ {='}L=]](='}- _+._{='}

Postmultiplicatlon of equation (19) by (Xn) gives

[LI]+ {k'} Laj]-l(xn} + _I]+ (k')L.]]-_O,)BJ (Xn) = (xn)

By equation (18), equation (19) may be written

[Lfl Lg]-_ _ {k'}La_](Xn} " {xn}* (k') (xn) + 1 + B

(18)

(19)

(20)
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from which

_q+(_,}Ld]-_{xn)= (Xn) i {k'} LaJ {Xn}I+B

By equations (18) and (21), equation (13) may now be written as

(21)

(_n+O= (Xn} i {k ,} LaJ {Xn} + i {k'}y
I+B I+B

(22)

or

(_n+O= ('n)+I+B

Equation (23) furnishes the means for revising the estimate of {X}. However,

the matrix {k'} and the scalar B are derived from the covariance matrix of

the previous estimate. Therefore, if another observation is to be added, the

revised covariance matrix _n+l] must also be computed. This computation can

also be done without matrix inversion.

Evaluating _n+l_

EhC] be the difference between _n+J andLet

ECn+l]= _n] + ,_]

By definition of the inverse of a matrix,

_n+l_-l_n] + _n+I]-IEAc] = b]

From equation (7) it is seen that

ECn+_-I = [_n]-i + {a'} LaJ]

Therefore, equation (25) may be written

Lq + (a') LaJl_n]+ I_@-1_1]

_n] so that

+(_,}LaJ_]--Lq

(24)

(25)

(26)

(27)
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or

Multiplication by _n] and solving for [AC] gives:

-i

[AC_ =-Ib] + _n] (a')LaJ_] [Cn] (a')LaJ_n]

But _n] (a') = (k') by previous definition. Also, because

metrical, Laj_n] = _]. Thus, equation (29)may be written:

By use of equation (18), equation (30) becomes

C] = I+B

The expression for calculating _n+l_

be written

(28)

(29)

_n] is sym-

(30)

(31)

without matrix inversion may therefore

1

In order to keep the weighting process flexible, the final equations may be

written in terms of the unweighted observation equation and a weighting factor

w by making the following substitutions in equations (23) and (32):

y =wy*

Laj = w_*J

B - w2ta*J_n] (a*')

Now let

L *J --L *J

8



and

La*JECn](a*,}-- _*
Equation (32) may then be written

Equation (23) becomes

-w2 Ek.) ,k*]
[Z_C] = 1 + w2B *

G+l} = (Xn} +
1 + w2B *

(33)

(34)

When the weighting factor is chosen to be the reciprocal of the probable error

of the observation _y*, equations (33) and (34) become

and

_n+l} : {Xn} + gy.2 + B*
(36)

Recursion Formulas for Deleting an Observation

These formulas are derived by assuming that" _n+l] and (Xn.l} are

known and solving for [Cn] and (Xn}. The observation to be deleted is y_

and its corresponding observation coefficients are LaJ. From equation (7), it

may be seen that

[_ Lag]-1_n] : n+l_ -I - (a'} (37)

where LaJ is now the row of coefficients in the observation equation to be

deleted.

By equation (2),

(Xn} = _n+l_ -I - '(a'>bJ]"_-I1_'I1@ (58)
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or

_n+_-_- (_,)LaJ](_) = I1_'11(_)

_no_ertoo_ta_nano_res_o__n_o_n_(x_+¢, t_ematrix(_')
added to and subtracted from the right-hand side of equation (39), and the

resulting expression is multiplied through by _n+l]" Thus, equation (39)
becomes

(39)

is

ELI] - _n+l] (a') LaJ] (Xn) =

By equations(7) and (8),

_n+l](1t_'11(¢ (4O)

Therefore 3 equation (40) may be written

(a') y) = (Xn+l) (41)

(42)

Let _n+l] (a') = (kl') . Then equation (42)becomes

_I] + (kl') bJ] (xn) = (Xn+l) - (kl') y (43)

Equation (43) is similar in form to equation (12). By the same procedure used

in simplifying equation (12)3 it may be shown that equation (43) can be written

as

: + _i )( xn ) _n+l) 1 B1 (kl (LaJ(xn+l) (44)

where BZ = LaJ(kl').

By following procedures similar to those expressed in equations (24) to (32),

it may be shown that

lO



Application to Dynamic Systems

When the quantities to be estimated are variables which describe the instan-

taneous state of a dynamic system, and when the observed quantities are not

occurring simultaneously, the method of least squares can be applied if the state

variables at one time can be expressed in terms of those at another time in the

following way:

(Xt,2} = _(t2; tl_ (Xt,1} (46)

where the transition matrix _(t2; tl) _ is dependent only on the times t 2

and tI at which states (Xt_2} and (Xtj1} occur and may be calculated

from a knowledge of the dynamics of the system. Under these conditions, the

state at the time of any particular observation may be expressed in terms of the

state at the time of the last observation. The necessary simultaneous equations,

in the form of equation (1), can then be set up to obtain a least-squares estimate

of the state at the time tn of the nth observation. Then, considering the fact

that at time tn+ 1

(Xt,n+l} = _(tn+l; tn_ (Xt,n} (47)

it is easily shown that the least-squares estimate (Xt, n+l} is calculated by

substituting _(tn+l; tn_(Xt,n} for (Xn} and by substituting

_(tn+l; tn_n_'(tn+l; tn) _ for [Cn_ in equations (36) and (37) and in the

definitions of (k*} and B*. Thus,

(Xt,n+l} = _(tn+l; tn )_ (Xt,n}

where

and

+ i (k*}(y*- La*J_(tn+l; tn)J (Xt, n} ) (48)
0;2 + B*

(k*} = _(tn+l; tn_ _n_ _'(tn+l; tn _ (a*'}

B* = [a*JE_(tn+l; tn)_n_'(tn+l; tn_ (a*'}
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The covariance matrix of {Xt,n+l_ is

J n+g -- E$(tn+l, tn)]Fcn] tng i bg
_y.2 + B*

(49)

DISCUSSION

Uses of Recursion Formulas

In any experimental procedure where data are accumulated over a period of

time and where the least-squares method is to be used, the data reduction maybe

started as soon as enough observations have been made to give a solution. The

remaining observations may be accounted for as they are made. Each time the

recursion formulas are applied, the revised solution forms a basis for adding a

new observation. The solution may be checked for wild points by calculating the

residuals of the observations which have entered the solution. If any observa-

tion has an excessively large residual, it may be deleted and replaced by another
observation if desired.

In certain data-smoothing procedures, a small section of, for example, a

time history of experimental data is fitted by a polynomial which would not fit

the entire time history. As the data are accumulated, data points are added to

one end of the small section and deleted from the other end. The recursion

formulas in this report should be very useful in procedures of this sort.

Effects of Correlated Errors

In this report it has been assumed that the observation errors were uncor-

related. That is, a knowledge of the error in any one observation gives no

information as to the probable error in any other observation.

When the observation errors are known to be correlated, different recursion

formulas may be used if the correlation coefficients are known. The recursion

formulas in references 2 and 3 take into account the possibility of correlated

errors. In many practical cases, either the observation errors are not correlated

or their correlation coefficients are not known. In these cases the ordinary

weighted least-squares estimate is the best which can be obtained. Reference 6

treats the subject of correlated errors from the standpoint of least squares.

Significance of Covariance Matrix

It is obvious from equation (2) that the covariance matrix of the estimated

coefficients does not contain any information obtained from the observations

directly. The variances of the observed quantities, which enter as weighting

factors, are presumed to be known. Consequently, the covariance matrix which

results from the estimation of the unknown coefficients by any given set of
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observations can be computedbefore any observations are made. Likewise, by
meansof the recursion expression, the effect of a single observation on the
covariance matrix can be predicted without actually making the observation. If
in someexperimental program there is a choice of observations which maybe added_
the optimum observation maybe chosen by precomputing the effect of each observa-
tion and choosing the one which gives the greatest reduction in the covariance
matrix.

Langley Research Center,
National Aeronautics and Space Administration,

Langley Station, Hampton,Va., October 18, 1962.
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APPENDIX

_®F_ _n]_ C0W_C__ 0_<Xn)

If the weighting factors which were applied to equation (i) are arranged in

a diagonal matrix denoted by k_Vy_ it may be seen that k_ _ UA*II = ,IAI, and

equation (2) may be written

[ 1-I (_)

From the definition of a covariance matrix and under the condition previ-

ously assumed that the errors in the observations {Y*} are uncorrelated, it

follows that the covariancematrix of <Y*} is the diagonal matrix L_y2_. Let

this matrlx be denoted by I_yl. Then equation (A1) may be written as

-i

Let

(A3)

For example, in an equation of the form

<_}=II_II<r}

t_ooov_r_n_om_t_xo_"_ _ _ven_n_o_mso__o_ov_anoem_tr_o_<r}
by the following relationship derived from the theory of the propagation of

error:

Ey I-,,E rl
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The covariance matrix of _ is then

(A4)

Because is symmetrical, equation (A4) becomes

(AS)

or, by the definition of _n 3 given in the text,

-1
-1

PII:_n] I_6)

From equations (A2) and (A3), again making use of the definition of ECn],

Again, by the theory of the propagation of errors, and making use of the fact

t_t_ot_s_osoo_Pn__sPn],t_ooo_r_o_tr_of'_n_,_e_oto_
L... --.J L....J

Su s itutin for
becomes

, according to equation (A6), equation (AS)

(m)

(A9)
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