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NATIOHAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1740

A SIMPLIFIED METHOD OF DETERMINING THE ELASTIC STATE
OF THERMAL STRESS IN A THIN, FLAT PLATE
OF FINITE DIMENSIONS

By Ernest Roberts, Jr. and Alexander Mendelson

SUMMARY

An integrodifferential equation that defines the behavior of the shear
stress in a thermally loaded, thin, flat plate of finite dimensions is derived.
The equation is reduced to & system of linear algebraic equations by a method
that employs polynomial approximations for the shear stresses. The boundary
conditions arc satisfied identically. Several examples of the method, presented
in detail, show that solutions of high accuracy can be produced on a desk calcu-
lator with a minimum of labor. A calculation of the displacements shows that
the strain compatibility conditions are closely satisfied everywhere.

INTRODUCTION

Several methods now exist for determining the elastic stress distribution
in a thermally loaded, thin, flat plate of finite dimensions (refs. 1 to &).
All these methods are numerical procedures that eventually produce a system of
simultaneous ordinary differential equations or algebraic equations that require
considerable labor to erfect a solution.

Reference 6 provides intermediate information from a collocation procedure
in tabular form that minimizes the effort required to determine the spanwise and
chordwise stresses for a large variety of plate geometries and temperature dis-
tributions. However, for span to chord ratics other than those tabulated in
that reference, an interpolation procedure must be used that requires extreme
care because the functions vary quite rapidly. A relatively simple method for
obtainine a solution to this problem 1s therefore desirable.

A gimlilar problem tor a finite cylinder, rather than for a plate, has
recently becen treated in reference 7. In that reference, an integrodifferential
sguation in the shear wtresses is devived that lends Itself to solution by a
two=dimens lonal colloeation procedure requiring relatively little labor.

In & cimilar fachicn, this repo:rt derives the basic integrodifferential
cquation that defines the behavieor of the elastic shear stresses in a inite,
thin, flat plate subjected to an arbitrary thermal gradient and gives the
functions necessary to epproximate the solution in a collocation procedure.



Examples that are given and compared with other solutions show good agreement.
As an additional check, it is shown that the compatibility conditions are
closely satisfied throughout the region.

SYMBOLS
Ci% dimensionless constant
E Young's Modulus
P,  polynomial in X associated with ith  station
Q; polynomial in y associated with st station
T temperature function
To reference temperature
tij constant, equal to dimensionless shear stress at the point (xi,yj)
u spanwise displacement
v chordwise displacement
X transformed spanwise coordinate
y transformed chordwise coordinate
lod linear coefficient of thermal expansion
B span to chord ratio
T shear strain
€ normal strain
n chordwise coordinate
v Poisson's ratio
£ spanwise coordinate
o normal stress
T shear stress

—Er product for all values of k except k =1
k#Fl



Superscripts:
* dimensionless guantity

derivative

ANALYSIS

Integrodifferential Equation

With reference 1o the coordinate system shown in figure l(a), the relations
that define the elastic state of stress and strain for the case of plane stress

are given as follows in reference 8. (Note that the stress-strain relations

have been modified to include thermal strain terms.)
1
€ = E(Oé - VUn) + oT

1
€, = E(Oﬂ - vog) + oT

)
é% On + é% T =0
2 2 2
-a——-— €§ + -a—r- €n - 2 < aé vy =20
énz 855 Ot 8

Making all quantities dimensionless by dividing equations (1) and (3) by
al, eand equation (2) by EaT, and transforming & and 7 to

(fig. 1(b)) yield:
€y = U§ - vc§ + T
= o§ - vay + T

v* = (1 + v)T¥



Py =
o 10
5; U; + E Ry % = 0 (2b)
F ox L 1 x 2 3F ok _
W g YT Bme T T° (6)

Expressing the compatibility equation, (6), in terms of the stresses, first by
substituting the stress~-strain equations, (4), into equation (6) and then elimi-
nating the shear terms by differentiating equation (5a) with respect to x and

(8b) with respect to y and substituting yield:

1 3% o % . % 1% L%\ « i}

Integrating equations (5) produces the following expressions for Oi and @

in the first quadrant:
% 1
Ox = B.)/”
X

1
o§=11;/ Sé—*dy+cr(xl) (5b)
Ng

But the boundary conditions on this system require that all normal and shear
sitresses on the free boundaries vanish. Hence,

* dx*-c (1,y) (8a)

&ch

ou(l,y) = o;(x,l) =0 (9)

Thercfore,

Ui = j/. §L (10a)
* l.}/~ 5
o, =7 — (10b)
y B v Ox

Substituting equations (10) into equation (7) produces a single integrodifferen-

[faN



tial equation that defines the shear stresses in the Tirst quadrant of Tigure
1(b):

1 1 .
z ~ 5 ~ z ~
_ & S T*+—%: S ay+B -O—.-T*dxz‘(—%:ar+ ?)T*
B Ox oy p* 3 Sy~ pe ox”  Oy©
y
(11)
with the boundary conditions

* * . _
T (x,1) =7 (1,y) =0 (12)

Reference 6 shows that the solution in one quadrant is all that is necessary to
define the solution everywhere. This is discussed further in the following sec-
tions.

Solution by Collocation

Equation (11) will be solved approximately by the method of collocation in

two dimensions. It is assumed that there exists a sequence of functions T;n

that converge to the solution T° of equation (11) as m and n approach in-
finity and that are given by

moo
* oY = \, .
L Goy) = )Y R0t (13)
i=1 j=1
where the Py and Q] are known polynomials selected In such a manner that the

boundary conditions and certzin other conditions to be defined are satisfied.
The constants ti; are as yet unknown. The collocation method now requires
- . . * * . . .

that the error in replacing T by Tpp 1in equation (11) vanish at m by n
specified points as shown in figure 1(b). To do this, equation (13) is substi-
tuted into equation (11) and the 2% determined so that equation (11) is sat-
igfied at each of these m by n stations. This will result in m by n linear
alrebraic equations for the unknown tij'

In addition to satisfying the boundary conditions the polynomials P; and
Qj are chosen to satiafy the following conditicns:

Pi(x;) =1 (142)

Pi(xk) =0, k #1 (14b)

The quantity Qj(y) is similarly @ polynomial in y associated with the Jth

station and satisfies cimilar conditions:



QJ(YJ) =1 (15a)
Q3(yk) = 0, k # (15b)

Hence, as seen from equation (13), the boundary conditions, equations (12), are
identically satisfied, and i3 = 7" (xi,yj).

Polynomials that have the desired properties are easily obtained. TFor
example,

P, (x) = é—g—% 114[ (x - Xk)/ljl (5 - %), x A1 (16)

where ;rr is the product for all values of k except k = i. Polynomials of
i

the form of equation (16) are of the lowest possible degree that will satisfy

conditions (15).

Equation (13) is now substituted into eguation (11) and evaluated at each of
the m stations in x and n stations in y to produce a system of m by n
simultaneous linear algebraic equations in tig of the following form:

m n
{5 2 2
:E: :E: Ci% tij =" <£%'é—§ + é—é>T*(xk,yZ) k=1,2, « « o, m (17)
1=1 j=1 B” ox“ oy
2—1,2,-..,1‘1
where

. s l l

e o [ v rh ]
Cg=-phY 53 Py ~/f Qy dy + PQj / Py dx x =% (18)

y

The shear stresses at any point can now be determined from equation (13). The
spanwise and chordwise stresses are given by

n 1
X '
wos B [ i
X
m n ., 1
R DY ZPi[ Qy 4y b1y (19b)

obtained by substitution of equation (13) into equations (10).



Special Cases of Temperature Variation

If the temperature function is an even or odd function of only one of the
independent variables, the solution need be determined in only one quadrant of
the coordinate system shown in figure 1(b). The solution everywhere else is
known by symmetry, or asymmetry, depending on the function. Writing the equa-
tions in only one quadrant reduces the number of stations required for a given
degree of accuracy, significantly reducing the amount of labor required to pro-
duce a solution. Inasmuch as any function of a single variable can be separated
into the sum of an even function and an odd function, it is possible to solve
the problem of an arbitrary temperature distribution in one variable in two
steps and add the two solutions. For the case in which the temperature function
depends on two variables, it is frequently possible to separate the function
into the sum of two functions of a single variable. This procedure is covered
more fully in reference 6. Separating the problem into several simpler problems
will always result in a reduction in labor. For example, if it is decided to
use TFour stations along each axis to represent the solution, 16 simultaneous
equations of the form of equation (17) will be produced, and 16 terms will ap=-
pear in each double summation. But there are only two stations along each axis
in each quadrant that produce only four simultaneous equations and only four
terms in each double sum. Hence, even if as many as four solutions were re-
guired, an even and odd solution in each variable, less labor is required. An
example of an even polynomial that has the desired properties is

P.(x) - %’)’(‘%:——%}E <>;2 - xf{) }LTl <X§ - xﬁ) (20)

An example of an odd polynomial that has the desired properties 1is

oo - e T G T G- ) "

EXAMPLES
Two by Two Collocation on a Square Plate

As a first example, consider a square plate subjected to a thermal gradient
in the y-direction incependent of x:

T*=y2

This temperature distribution will produce a normal stress distribution symmet-

rical about both axes and a shear stress distribution that 1s asymmetrical about
both axes. Therefore, polynomials of the form of equation (Z1) will be chosen.

Two equally spaced stations in each direction will be used; and, therefore, the

P polynomials are identical to the Q polynomials. Writing the polynomials at
equally spaced points, in this case at 1/4 and 3/4, produces



8.533 10 - 13.33 10 + 4.800 T

i

Py =@y

~6.095 r° + 6.476 1o - 0.3810 r

1l

Py = Qp

there r 1s a dummy variable representing x for the Pi and y for the Q.

polynomizls. Substituting these polynomials into equations (17) and (18) pro-
duces the following system:

-45.92 t17 - 17.99 typ - 17.99 top + 12.37 tgg = -2.0
96.70 t17 - 72.17 t1p + 92.10 tp1 - 68.11 top = -2.0
96.70 ty7 + 92.10 typ - 72.17 tpy - 68.11 tgp = -2.0

~£0.05 t97 + 56.72 typ + 56.72 o] - 64.50 g, = -2.0

The solution to the system is:

= 0,02991
t = 0,08553

Substituting these values and the P's and Q's evaluated at the desired x's
and y's into equations (13) and (19) produces the stresses everywhere. The
stress distribution in the first quadrant is tabulated in columns 4, 7, and 10
of table T and is shown in figure 2.

Compared with the distribution produced by equations (13) and (19) of this
report is the elastic stress distribution in unpublished NASA data given in
columns 3, €, and ¢ of table I and shown in figure 2. These stresses are cal-
culated from Airy's stress function, which is produced as the solution to the
biharmonic equation. The solution was obtained by a finite-difference method,
which required the solution of 441 simultaneous linear algebraic equations. An
inspection of table I and figure 2 discloses that the agreement between the two
methods is excellent.



Three by Two Collocation on a Square Plate
As a second example, consider the square plate of the first example sub-

Jjected to the same one-dimensional thermal gradient. For this example, however.
take three stations in the x-direction. The P polynomials become

-41.66 %! + 81.00 x° - 46.58 x° + 7.232 x

o]
]

27.00 %! - 46,50 x° + 20.02 x3 - 0.5208 x

W,
o
Il

P_ = 15.90 x! + 20.32 %° - 4.529 x° + 0.1104 x

written at the equally spaced stations X = 1/6, X5 = 1/2, Xy = 5/6. Substi-
tuting into equations (17) and (18), solving the resultant 6 by 6 matrix, and
evaluating the stresses by using equations (13) and (19) produce the solution
tabulated in columns 5, 8, and 11 of table I and shown in figure 2. It is

evident that the additional stations produced no improvement in the solution.

Two by Two and Three by Two Collocation on a Rectangular Plate

Next, consider a plate that has a span three times its chord and is subject-
ed to the same thermal gradient as the square plate of the preceding discussion.
Using the Z by 2 station collocation produces the solution tabulated in columns
4, 7, and 10 of table IT and shown in figure 3. Comparing that solution with the
finite-difference solution tabulated in columns 3, 6, and 9 of table II and shown
in figure 3, shows poor agreement. IHowever, if another station is chosen in the
x~direction, the solution is considerably improved. This i1s also shown in fig-
ure 3 and columns 5, 8, and 11 of table II.

Comparison of Displacements

As an additional check, the compatibility of strains was determined from the
strain-displacement relations. Relations were derived for both spanwise and
chordwise displacements in two different ways. TFirst, the appropriate strain-
displacement equation was integrated directly (e.g., eq. (22b) for the spanwise
displacement). Then the shear-displacement equation (22¢) was integrated with
tespect to the appropriate variable, and the normal displacement was eliminated
by making use of the remaining equation (e.g., for the spanwise displacment eq.
(22c) was integrated over v, and the chordwise displacement was eliminated by
using eq. (22a)). The displacements were then calculated by the two different
relations and compared.

Proceeding in this manner, from reference &,



€§ _ ov
Sy
*
B ox
*
_1fsu 1
2 \ oy B ox
yields

—~
o
N

S

The spanwise displacement may be calculated a different way by using equations

(22a) and (22¢):

From equation (22&),

Therefore,

jwr
0o Xk
i}
ja]
O\
0
—<
%
o))
<
1
i+
C\
e
o
D
QN Q/
A
L2
}._J

or intesrating by parts yields

i

uf=z/r*dy—"§

0

“

where

* »*
P Py = -
To make Uy Uo

10

at y = 0, fl(x) is chosen to equal ul(x,O).

Yo%
x 1 ov ;
YQY"E[ gz—dY‘Ffl(A)

<:>|<
Il
C\.
<
m
< ok
o)
&

dy dy + ¢

(x)

4 5€§, 1 I dex :
/ Kdy+§/ya;zdy+f1(><)
0

0

fl(x) = u*(X,O)

*
Hence,



0
* {
u =2 / ™ iy-% <= dy +% v 57 ay + uix,0) (24)
0 0 0
Similarly,
1 fy . (%)
Vl = / eydy fRe
g
X X X
de* Je*
* o * X X * o
v, = 2P ¥ ax - pZx 5 & pe x5 At v1(0,¥) (26)
0 0 0

For a parabolic thermal gradient, T = y¢ and v = 1/3, from equations (4),

(13), and (19) the result is

v 1 & . 1 5 A & L
vz 2 Lm | ayar-3 X X Q Py i)ty + v (272)
i=1 j=1 y ‘ i=1 j=1 o
1
* L L [] 1 m I 1 P
o= X 2 9 P, dx - = Y > Pi Qi dy tis +y° (270)
e~ - 5 3B 4 J J
l—'l (J—-l be l:l J:l
Y
* 4
ro= = E:PHAE: thiJ (27¢)

Substituting egquations (27) into equations (23), (24), (25), and (26) produces a
check on the compatibility of the strains. Figure 4 and columns 3 to 6 of

table IIT show values of u%, u;, v*, and V; throughout the first quadrant for
Z by 2 collocation on the square plate. It is evident that there is excellent
agreement between the displacements.

DISCUSSION
The examples of th: preceding section demonstrate the simplicity and accu-

racy of this method. Reference 6 points out that for a one-dimensional tempera-
ture function, it is uniecessary to use values of B greater than 3, which

11



produces the solution for the semi-infinite plate at the center. For most prob-
lems, therefore, it is unnecessary to use more than three stations in the x-
direction, indicating that the largest system of equations to be solved will be
& by 6. This permits the use of a desk calculator instead of an electronic data
processing machine, as required by most of the other methods discussed.

Despite the fact that the entire stress distribution is written in terms of
the shear stresses at only four or six points within the region of definition
and those stresses are calculated from an equation that is approximated only at
those same points, a solution of remarkable accuracy 1s obtained. At this
point, it is appropriate to mention that previous uses of the double collocation
method (ref. 9) required more stations, because the solution was obtained in
Airy's stress function, which required the solution of a higher order equation
and also required differentiation to obtain the stresses. The solutions pre-
sented in references 5 and 6 are compared with those in references 1 to 4 and
with each other. Therefore, it was necessary to compare the solutions produced
herein with only one of the others. The finite-difference solution was chosen
because the only approximations used there were the standard ones used in numer-
ical gquadrature and differentiation. It is to be noted that the solutions prod-
uced by the various references and the solution of this report are virtually
identical. Where any differences occur, the check of the compatibility condi-
tion produced by the method reported herein places greatest confidence in this
solution,

Because of the small number of stations used in the approximation, the tem-
perature function must not change rapidly. This restriction was also pointed
out in reference 6. However, it is impossible to state gquantitatively how rap-
idly the function may vary. TFor the case of a rapidly varying function, more
stations must be taken. One way to assure that a sufficient number of stations
has been chosen i1s to solve the problem several times for increasing numbers of
stations. When increasing the number of stations produces no change in the so-
lutions, it can be assumed that maximum accuracy has been obtained from the
method. References 5 and 6 state that for the problems considered, up to a
ninth-power temperature function, no improvement was noted for more than three
stations in one direction. It should be noted that in those references, col-
location was in one direction only, producing a system of simultaneous linear
ordinary differential equations in Airy's stress function.

CONCLUSIONS

A method of determining the elastic state of stress in a thermally loaded,
thin, flat plate of finite dimensions has been presented, which, for the class
of temperature distributions investigated, produces a very accurate solution
with a minimum of labor. Its principal advantage is that it produces a solution
of the same order of accuracy of other methods by a technique that requires the
solution of only four or six simultaneous linear algebraic equations instead of
a system of many algebraic equations or a system of differential equations. Its

1z



limitations are that tho temperasture function may not be a rapidly varying
function and must be scparsble into the sum of Tunctions of a single variable.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, April 4, 19863
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TABLE I. - DIMENSIONLESS STRESS IN SQUARE PLATE SUBJECTED TO CHORDWISE PARABOLIC THERMAL GRADIENT

Coordinate Stress distribution Shear Etress,
T
Span, | Chord, Spanwise, Chordwise,
X y ot ™ Finite- 2 by 2 3y 2
s Y difference |colloca- | colloca-
Finite- 2 by 2 3 by 2 Finite- 25by 2 3 by 2 solution tion tion
difference| colloca- | colloca- | difference | colloca- | colloca-
solution tion tion solution tion tion
Column
) 2 &) 4 & 6 7 8 9 10 1Ll
0 (] 0.141 0.141 0,141 0.141 (0} 0 lat 0.142 0 0 0
o2 Skl <1301 131 Skl +130 o LS (6] 0 0
sk <095 .096 .096 .102 +101 102 (0] 0 (]
.6 .016 = 017 o liys .061 . 060 .060 0 0 0
.8 -.136 -.138 -.138 .020 . 020 .020 0 0 (o]
1.0 -.409 -.412 -.411 0 0 0 0 0 (6]
0.2 0 O}kl 0.130 0,130 Q531 0L 3T 0150 0 0 (6]
-2 .122 cilzre) <120 <22 + 122 e .020 .020 .020
.4 .089 .090 .090 .095 .095 «095 .035 .036 .036
515 > 016 .017 <017 <057 =057 505/ .042 .043 .043
.8 -.126 -.128 =128 .019 .019 <019 .034 .034 .034
10 -.384 -.386 -.386 0 0 0 0 0 0
O34 0 0.102 OLOL OO 0.095 0.096 0.095 0 0 0
o2 .095 + 095 .095 .089 .090 .089 -035 <036 .036
o4 +071 072 072 <O <072 - 02 .064 .065 .065
.6 .015 .016 .016 .044 .045" .045 .078 <073 .079
28 2099 -.100 -.100 .016 .016 .016 .063 064 .064
1.0 ~ o311 -.312 -.312 0 0 0 0 0 (0]
@56 0 0.061 0.060 0.060 0.016 0017 0.016 0 0 0
e SO .057 «<057 .016 2 QLT .016 .042 .043 .042
o4 .044 .045 .045 015 .0186 <015 .078 + 079 .078
55 S[onkst .012 .012 S(eukil <Q12 SOLT .096 .098 .098
ot -.059 -.060 -.060 .005 .005 .005 .081 .082 .082
1.0 -.196 -.197 -.196 0 0 0 0 0 (0]
o) e 0 0.020 0.020 0.020 -0.136 -0.138 -0.137 0 0 (6]
) <019 <019 <019 ~.126 -.128 -.127 .034 .034 .034
o4 .016 .016 -015 ~.099 -.100 -.100 .063 .064 .064
.6 .005 .005 .005 ~.060 -.060 -.061 .081 .082 . 082
{8) -.021 -.020 -.020 ~.021 -.020 -.020 .069 .071 <071
1l(6) -.065 -.069 -.069 (0] (6] 0 0 (o] (0]
1L.0 (6} 0 0 0 -0.409 -0.412 -0.412 0 (6] 0
2 0 (©) 0 ‘~.384 -.386 ~-+387 (6] (o] (0]
4 0 0 0 —~ 5Ll -.312 ~e311 (6} (6] 0
1) (0] (6} (¢} ~,196 -.197 -+195 (6] 0 0
.8 6] 0 0 -.065 -.069 -.068 0 0 (0]
k() 0 0 0 0 0 0 0 0 (0]
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TABLE II.

- DIMENSIONLESS STRESS IN RECTANGULAR PLATE SUBJECTED TO CHORDWISE PARABOLIC THERMAL GRADIENT

Coordinate Stress distribution Shear Etress,
T
Span, | Chord, Spanwise, Chordwise,
X v gt oy Finite- 2 by 2 3 by 2
difference | colloca- | colloca-
Finite- 20bye 2 S byie Finite- 20y -2 5uby 2 solution tion tion
difference| colloca- | colloca- | difference | colloca- | colloca-
solution tion tion solution ion tion
Column
il 2 &) 4 5 8 7/ 8 9 10 s
0 0335 0310 0535 0.001 -0.042 0.004 0 (] 0
2 295 - 200 295 ~(6/0nl -.039 .004 0 0 0
o4 <175 .154 7S .001 -.031 .004 0 0 0
25 -.026 -.034 -.025 0 -.019 .003 0 0 0
38 -.308 -.283 -.308 0] -.007 .001 0 0 0
150 -.670 -.578 -.678 0 0 0 0 0 0
0.2 0 0333 0.35351 0335 0.005 -0.011 0.003 0 (6] 0
-2 .294 «291 295 .005 -.011 <003 .002 -.012 .001
o4 SilT4 Lakile) o L5 .003 -.009 .002 .002 -.023 .003
.6 -.025 -.029 -.027 .002 -.006 .001 .002 -.029 .004
3] -.306 -.304 -.306 0 -.002 0 S 001! -.026 .003
AL5(e] -.669 -.650 -.666 0 0 0 0 0 0
0.4 0] 0.321 0359 0.322 0.023 0.058 0.019 0 0 0
=2 +283 +518 .284 2021 .054 .017 .008 -.001 .007
.4 SALTA0) <185 «169 .016 .042 <02 « 0L -.005 «OL 1
"6 -,021 -.018 -.024 .009 <025 .0086 .014 -.009 Sk
-8 -.296 -.333 -.297 .003 .008 .001 .009 -.011 .006
ik e) -.658 -.767 -.653 0 0 0 0 (0 0
6 0 0.269 R 510 0.272 0.060 0JLO1 0.068 0 0 0
o e .240 S2iT .243 <055 .094 -063 <027 2055 .028
-4 «149 i BAS) il . 042 A0/ . 049 .046 5012 .046
.6 -.010 -.006 -.008 .025 .044 .029 ooyl .070 .049
«8 -.250 -.291 -.254 .008 +OILS .009 035 <052 2050
1.0 -.589 -.7086 -.608 0] 0 0 0 0 0
0.8 0 (@)ghEsse) 0143 0 1137 0.048 0.009 0.050 0 0 0
o2 126 129 P .046 .009 .047 .054 .065 .05
.4 .084 .084 .085 50358 .008 <059 .096 A LIKE] » 101
o6 .004 0 .007 . 025 . 005 .026 ol 57 s19
«8 -.130 -.135 ~ e LD .009 .002 .010 .085 » 107 093
1.9 -.350 =4 389 -.354 0 0 0 6] 0 0
Al 6] 0 0 0 0 -0.436 -0.369 -0.446 0 0 0
2 0 0 0 -.407 -.342 -.416 0 0 0
o4 (©} (6] 0 -.322 -.266 =, 329 0 0 0
-6 0 0 0 -.196 -.158 =~ 201 0 0 0
.8 0 0 0 -.065 -.052 -.068 0 0 0
150 0 0 0 0 0 0 0 0 0
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TABLE IIT.

SQUARE PIATE SUBJECTED TO CHORDWISE

- DIMENSIONLESS DISPLACEMENT IN

PARABOLIC THERMAL GRADIENT

Coordinate Displacement
Span, | Chord, Spanwise Chordwise
. v * * * *
U.l 112 Vl VZ
Column
1 z 3 4 S S)
0 0 0 0 0] ¢
.2 0] 0 021 .021
.4 0] 0] L0585 .055
.6 0 o 118 .118
.8 0] 0 223 226
1.0 0 0 .410 .410
0.2 0 0.018 0.018 0 ¢
.2 023 025 .020 020
A 044 044 083 003
.6 071 071 L1150 L1315
.8 .100 .099 220 224
1.0 119 L7 405 404
0.4 o] 0.034 0.034 0 0
.2 .048 .048 .01 014
ol 087 .086 044 044
.6 143 143 103 .103
.8 .204 .203 211 .210
1.0 249 .248 387 2385
0.6 0 0.046 0.046 6] 0
.2 067 067 .00z .001
A 127 27 .0z21 .020
.G 2186 L2106 072 072
.8 L3158 317 74 175
1.0 397 .400 245 .340
0.8 0 0.057 0.057 0 0
.2 .026 .086 -.0z6 -.0z7
.4 .1E8 67 -.031 -.031
.E .291 .292 .003 .005
.3 4355 439 094 .097
1.0 071 L5758 208 251
1.0 0 0.076 0.078 0 0
.2 JA12 111 -.0748 -.080
s 214 21z -.120 -.131
.6 572 367 ~-.151 -.124
N RSt slete) -,0:9 -.024
1.0 L7166 Jlee .0g2 095




|
oo
[0

(a) £, 1 Coordinate system.

A\

1

ad I R
mewenl

H t i '
Yo 1+—&- -
| SRSREH

- [ B -
R
X1y Xo X

{(v) x, vy Coordinate system.

Firure 1. - Coordinate systems used to calculate stress distribution in thermally
loaded, thin, flat plsate.
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Figure 2. - Stress iu square plate subjected to chordwise par-
abolic thermal gradient.
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Figure 3. - Stress in 3 by 1 plate subject to chordwise para-

bolic thermal gradient.
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Figure 3. - Concluded. Stress in 3 by 1 plate subjected to
chordwise parabolic thermal gradient.
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Figure 4. - Displacements in square plate subjected to chord-

wise parabolic thermal gradient.
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Figure 4. - Concluded. Displacements in square plate subjected to chord-

wise parabolic thermal gradient.
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