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LOWER BOUNDS FOR THE BUCKLING

PRESSURE OF SPHERICAL SHELLS

By Nicholas J. Hoff and Tsai-Chen Soong

Stanford University

SUMMARY

/'

An approximate large-deflection theory is developed for the calcula-

tion of the hydrostatic pressure under which a thin-walled spherical

shell buckles. The theory is based on the assumptions that the buckle

has the shape of a spherical cap and that a yield hinge develops along

the circumference of the cap. The effect of the test arrangement on the

buckling pressure is taken into account. In spite of the rough approxi-

mate nature of the analysis reasonable numerical values are obtained for

the buckling pressure.

\

INTRODUCTION

In a review of the state of knowledge regarding the buckling of

thin elastic shells, Fung and Sechler I ** noted that "a complete

spherical shell buckles in the form of a small inward dimple of small

solid angle at some point on the surface of the shell; a fact entirely

at variance with the linear theory of buckling". The non-linear theories

developed to explain the discrepancies have all dealt with shallow

spherical caps rather than with complete spheres and almost all the ex-

perimental effort related to spherical shells was made with spherical

caps supported along their edge. The only known test with a complete

spherical shell was carried out by Sechler and Bollay and was reported

by Tsien. 2 In this test a brass shell buckled under approximately one-

quarter the critical value of the external pressure of the linear theory.

More recently, Thompson 3 published the results of two experiments carried

out with polyvinyl chloride shells of a radius to thickness ratio of

approximately 20. Buckling occurred after about three-quarters of the

classical value of the buckling pressure was reached. The paper also

contains a large-deflection strain energy analysis which yielded satis-

factory agreement with the results of the experiments.

,
The work here described was carried out under NASA Grant NAG-93-60.

Superscript numbers indicate entries under References at the end of

the paper.
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In a recent paper4 the senior author developed a rough approximate
theory of the buckling of axially compressedthin-walled circular cylin-
drical shells on the basis of the assumption that plastic hinges form
along the ridges when the shell snaps into the large-deflected shape.
Since reasonable agreementwas found between available experimental data
and the results of the approximate theory, it appears worth while to
apply the samemethod of analysis to the spherical shell. The absence
of noticeable permanent deformations after the pressure is released does
not prove that yielding had not taken place in the material. If a suf-
ficient amount of elastic energy is stored in the buckled shell, the
shell can snap back into a shape that appears to be the sameas the
initial one. Nevertheless somedamageis always done because the buck-
ling experiment cannot be repeated many times with the samespecimen.

Since the details of the loading machine were found to influence
significantly the buckling load in the case of the cylindrical shell,
the loading apparatus to be used with the spherical shells is carefully
defined in the present paper. The numerical values obtained for a
special case and plotted in two figures appear to be reasonable. Never-
theless no claim is madefor the accuracy of the theory because it is
based on rather far-fetched assumptions. It obviously cannot yield more
than approximate lower bounds on the buckling pressure because it con-
sists of equating energy quantities before and after buckling. The
relative success of the present approach may, however, indicate that the
yield stress is one of the physical factors to be taken into account in
more rigorous analyses of the large-deflectlon buckling process. It
was included in the empirical formula proposed by Donmell5 twenty-eight
years ago.

SYMBOLS

C

d

h

H

E

k

K

correction factor for influence coefficient (see Eq. 23)

radial componentsof displacement

wall thickness of specimen

wall thickness of container

Young's modulus

influence coefficient (see Eqs. 21 and 22)

Baker-Clinemultiplier (see Eq. 23)
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M

N

P

P

q

r

R

V

V

W

X

A

V

X

a

ad

C

CO

moment resultant

edge moment resultant

pressure

radial component of force resultant

non-dimensional quantity defined in Eq. 24

radius of specimen

radius of container

volume inside specimen

volume between spheres

work

non-dimensional quantity defined in Eq. 25

semi-vertex angle of bulge

multiplier defined in Eq. 62

ratio of specific heats of air (= 1.4)

lack of fit defined in Eq. 20

curvature

Poisson's ratio

stress

rotation

In addition, the following subscripts are used:

atmospheric

adiabatic

inside specimen after loading; also refers to cap

inside specimen after buckling
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cr

edge

el.b

f

i

0

out

pl

r

Y

critical (refers to classical theory)

refers to edge of buckle

elastic bending

final

initial after loading (before buckling)

initial before loading

refers to work done by outside atmosphere

plastic

remainder

yield

BUCKLING ANALYSIS

Assumptions Regarding the Buckling Process

It is assumed that the thin-walled spherical test specimen is en-

closed in a larger spherical container as shown in Fig. 1. The space

between the two spheres is filled with water and at the beginning of

the test the air outside the container, the water between the spheres

and the air inside the test specimen are at the same atmospheric pres-

sure Pa • In the first phase of the test the pressure of the water Is

increased to Pa + Pi through the use of a pump provided with a no-

return valve. The increase in the pressure expands the large sphere

and compresses the small sphere; the effective pressure on the test

specimen is therefore Pi - Pc if the notation of Fig. 2 is employed.

As the pressure in the water should be increased very slowly, it can

be assumed that the compression inside the test specimen takes place

isothermally. Thus the pressure inside the specimen before and after

the compression is related to the volume inside the specimen before

and after the compression through the equation

PaVo = (Pa + Pc)Vi (1)

if the notation of Fig. 2b is used.
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Under the conditions Just described, the specimen is assumed to be

in a neutral equilibrium. It suddenly Jumps over into a buckled shape

characterized by a dimple of a semlvertex angle G (see Fig. 1). The

dimple is again spherical and it has the same radius as the original

spherical s_ecimen would have if it were subjected to the prevailing

pressure difference. The deformations during the buckling process con-

sist therefore of a uniform expansion corresponding to the change in the

pressure difference and an inextensional reversal of the curvature of

the buckled portion of the median surface of the spherical specimen.

After buckling the water pressure is Pa + pf (see Fig. 2c), the

pressure inside the specimen is Pa + Pcc , and the effective pressure

on the spherical specimen is Pf - Pcc " The volume between the two
spheres does not change during buckling as the water is incompressible.

The change in the pressure inside the specimen is governed by the

adiabatic law

(2)

where for air the value of _ is

q,' = 1.4 (2a)

Strain Energy in Unbuckled State

If the letters R and r denote the median surface radii of the

outer and inner shells, and the letters H and h the uniform wall

thicknesses of the outer and inner shells, the uniform normal stresses

in the shell walls are

= PiR/2H

G = (Pi - Pc )r/2h

in the outer shell

in the inner shell (3)

The elastic strain energy stored in the outer shell is

U = (o'2/2E)4'/rR2H = (2/rR_/E)_iR/2H# = (11"/2)pi2R4/EH

The total energy stored initially in the two shells is therefore

= R4 )2 4
Ui 2 E H + Z2 (Pi E- Pc r__h (4)
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Elastic Membrane Strain Energy after Buckling

After buckling the final pressure Pa + Pf prevails between the

two shells. Even though part of the inner shell is now concave, the

absolute magnitude of the membrane stress is the same throughout the

inner shell as the magnitude of the curvature is the same everywhere.

The total membrane strain energy stored in the system is

2 (pf Pcc)_ 4Pf R4 _ - r
+ (5)uf = 2 E H 2 E _--

Elastic Energy of Bending of Cap

After buckling the portion of the shell, called the cap, that jump-

ed over into a position of opposite curvature, is under the action of

bending moments. The magnitude of the elastic strain energy stored

because of bending can be evaluated approximately if the energy necessary

to bend a flat circular plate of a radius r sin _ into a spherical cap

of radius r is calculated and multiplied by 4. The curvature _ caused

by uniform bending moment resultants N distributed along the entire

circular edge of the plate and acting perpendicularly to the edge is

= [12(1- _)/_3]N (6)

Since the curvature sought is l/r, Eq. 6 can be solved for

= i/r can be substituted in the result obtained:

N and

r'h3/r (7)

Since the edge of the plate must rotate through the angle 2_ , and

since the work done by the edge moment resultant 2N is (I/2)2N2_ per

unit length of the circumference, the total work W done is

W = 2112(1 - v)] -I (Eh3/r)_ 27[ r sin

As the work done is equal to the energy stored, the following expression

is obtained for the energy Uel.b of elastic bending:

_E h3 _ sin _ (8)
Uel.b : 3(i - v)
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Plastic Work Performed

In agreement with the assumptions the edge of the buckled cap de-

forms as a yield hinge. When a yield hinge forms in a ideally rigid-

plastic material, half the thickness of the sheet is subjected to the

tensile yield stress, and the other half to the compressive yield stress

as indicated in Fig. 5. If the two yield stresses are equal numerically,

the bending moment per unit length is

= % (h/2)2 (9)

This moment is constant during the deformations because no plastic de-

formations can take place in a rigid-plastic solid until the bending

moment reaches the value given in Eq. 7. Hence the total plastic work

done amounts to

W_ = M 1 _ 27r r sin c_

where 25 is the total angle of rotation and 27rr sin _ is the length

of the yield hinge. Substitution yields

= 7r a h2r C_ sin _ (lO)
y

Changes in Volume of the Two Shells

The volume between the two shells in their natural state is

V = (4_/5)(R 3 - r 3) ill)
O

After the wmter between the two shells is brought to the pressure

Pa + Pl , the outer shell expands and the inner shell is compressed
with the result that the volume increases. Since the strains in the

outer and inner shells are

• = (i - V)(o/E) = [(i - V)/2](PiR/EH) in the outer shell

• = -(i - V)(o/E) = -[(i - V)/2](p i - pc)(r/Eh) in the inner shell (12)

the volume of air Just before buckling is
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The volume Vf after buckling can be calculated in a similar manner
but in addition the volume of the buckle itself must also be taken into

account.

The volume of the cap is

3
V = (1/5)ITr 5(cOs a - 3 cos 0_ + 2) (14)
C

Hence the volume Vf after buckling is

IR [ 1 + P 3 F1- r -_ --(pf"p 131

47T 3 1-V _ 3

+ (_/3)r3(cos3 _ - 3 cos_ + 2) (15)

The volume of the test sphere immediately before buckling is

V i = _-

and after buckling

hVT r3[ l_V (Pf-Pcc)r_ 3vf = _- 1 - -

- (27r/3)r 3 (cos 3 G - 3 cos G + 2)

(16)

(17)

Work _ne _ the Air

The air outsi_ the container remains at the atmos_eric press_e

during the buckling process. Hence the work done _ the outsi_ air is

The work necessary to compress adi_atical_ We air insi_ the test

specimen is
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(Pa+Pc)V±i + 419)
Wad = T - i Pa + Pc /

Elastic Strain Energy in Edge Zone

It is easy to see that the deformations of the cap and the remain-

der in the state of membrane stress existing after the buckle was formed

are not compatible. The remainder is in compression and the cap is in

tension. The relative displacement A between cap and remainder can be

easily calculated with the aid of Figs. 1 and 2:

A = 41 - V)(r2/h) sln O¢[(pf - Pcc)/E] (2o)

In order to reestablish continuity, edge forces P (perpendicular to

the axis of the cap) and edge moments M must develop. These can be

calculated with the aid of formulas derived In Reference 6. The dis-

placement d perpendicular to the axis of the cap and the rotation

of the end tangent are given by

d = kdM M + kdpP

421)

with the sign convention shown in Fig. 4. For the cap, the influence

coefficients can be given as

kdM = -kxp = 215(i-V 2)]½ (i/E)(r_ 2) sin G C12

= sin 2 (_ Cllk_ -213(1-v2)] I/4 (1/E)(r/h) 3/2

k)_l _- 413(1_V2 ) ]3/4 41/E)(rl/2/h5/2)022 (22)

where the factors C are defined as
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Cn = (Kll/_2)(1 + R*)I/2
i+ 2R*

c22= (K22/4_)(i+ R*)1/2.
1+21:t

1 (23)
C12 = KI2 1 + 2R*

The coeficients K were derived by Baker and Cline7; they are tabulated

in the reference quoted. 6 It is of interest to note that they vary

little with _ but change more rapidly with the quantity

x = qG (24)

where

q =J2 [5(1- V2)] 1/4 (a/b) 1/2 (25)

As the ratio h/a app_roaches zero, the values of KII , K22 , and KI2

approach the values _2 , WC2 , and 1 , respectively. Moreover

R* = a/Gcr (26)

with the classical critical stress

= [5(1 - V2)] -1/2 E(h/a)
cr

(27)

The influence coefficients for the remainder are given by the same

expressions except for the sign; In the expression for kdp the right-

hand member is positive and in the expression for k the right-hand
member is negative. Equations 25 remain unchanged bu_ the values of the

Baker-Cline coefficients must be taken from the table established for the

remainder, and not for the cap. The value of R* also changes sign; it

is positive for the cap where the stress is tensile and negative for the

remainder where the stress is compressive.

With the sign convention used

P = P = P
C r

M =-M =-M (28)
C r

One condition of compatible deformations is that the lack of fit

must be equal in magnitude to the difference in the radial edge dis-

placement d of the remainder and the cap:

- l0 -



r c

Finally, the sign convention for the rotation of the edge tangent is such

that

× + × -- 0 (3O)
c r

Solution of these equations yields

M = -(i/2)[3(i-V 2) ]-i/2E(h2/r)cosec
012 c + 012 r

2(022c+022r)(Cllc+Cllr)_(C12c+C12r)_ A

p = [3(i_v2)]-1/4 E(h/r)3/2cosec2
C22 c + C22 r

2(C22c+C 22r )(Cllc+Cllr )- (012c +Cl2r )2 A

(31)

Since the work done by the edge moment resultants is zero as the

relative rotation between the edges of cap and remainder is zero, work

is done only by the edge force resultants P . This work is

Wel : (i/2)_r sin G P a

This wark is equal to the elastic energy stored in the edge zone. Sub-

stitutions yield

(l_V) 2 (Pf-Pcc)2 r7/2 C22 c + C22 r
7[

Uedge = [3(1_V2)]1/4 E hi M sin (z 2(C22c+C22r)(%c+_lr)_(_2c+_gr_

(32)

It is of interest to note that the value of the last fraction approaches

1/2 as the final pressure Pf - Pcc (and thus R* ) decreases and as

the ratio h/r decreases and approaches zero.

Buckling Condition

Obviously buckling cannot occur unless the energy stored in the

system before buckling plus the potential of the external loads is at

least as large as the energy stored in the system after buckling plus

the work done in an irreversible manner and transformed into heat. Hence
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a lower limit on the buckling pressure Pi can be obtained by solving the
energy equation

Ui + Wout = Uf + Uel.b + Uedge + Ll + Wad (33)

In addition the geometric constraint

vf = vi (34)

must be satisfied and the conditions connecting the changes in volume of

the air contained in the test specimen with the changes in pressure

(Eqs. i and 2) must be observed. The equations contain the nine un-

knowns Pi , Pf _ Pc , Pcc, Vi , Vf _ v i _ vf and _ For their
solution there are available four equations of geometry (Eqs. 13, 15, 16,

and 17), two equations of change of state of the air (Eqs. I and 2), one

equation of incompressibility of the water (Eq. 34) and one energy equa-

tion (Eq. 33). If a value of _ is arbitrarily selected, the eight

equations suffice to determine all the remaining unknowns. One can plot

then Pi as a function of _ and consider the minimal value of Pi as

the lower bound on the buckling pressure.

Numerical Values

The calculations outlined in the preceding sections were programmed

for the Burroughs 220 digital computer in order to obtain some numerical

results. For prescribed values of _ , the semivertex angle of the

buckle, the gauge pressure Pi in the container was calculated and

plotted. Figure 5 contains six such curves corresponding to different

ratios of the radius R of the container to the radius r of the

specimen. The six values are i.i , 1.2 , 1.3 , 1.6 , 2.0 , and

2.2. The other parameters of the problem are fixed in the following

manner:

E = 15 x 10 6 psi a = 30,000 psi
Y

h/H : 0.1 r/h : 5OO v : O.3

It is to be expected that buckling will occur at the minimal value

of the gauge pressure. Hence the test arrangement corresponding to

R/r = 1.2 yields a buckling pressure Pi which is about 26.5 percent
of the classical value. This is in good agreement with the test results

obtained by Sechler and Bollay with the brass shell mentioned in the

Introduction. The semivertex angle is about ii degrees according to

Fig. 5.
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As the volume enclosed between test specimen and container is in-
creased, the semivertex angle increases slowly and the pressure ratio
decreases slowly. For R/r = 2.2 the values obtained are _ = 13 degrees
and pi/Pcr = 0.18.

The effect of a change in the material of the specimen (and of the
container) is illustrated in Fig. 6. When R/r = 1.2, the minimal
values of the gauge pressure of buckling amount to approximately 25, 26
and 41 percent of the classical values of the critical pressure for
carbon steel, brass and an aluminum alloy, respectively. The correspond-
ing semivertex angles are about ii, ii, and 12.5 degrees.

To illustrate details of the buckling process, the following data
are given:

Characteristics of brass test specimenand container:

R/r = 1.2

E = 15 x 106 psi

h/H"= 0.i r/h = 5OO

= 30,000 psi
Y

Semivertex angle of buckle

Gauge pressure before buckling

Gauge pressure after buckling

Gauge pressure inside specimen

after buckling

= ii degrees

p_ = 19.30 psi

Pf = 7.39 psi

Pcc = 0.012 psi

The relative importance of the various energy quantities can be seen

from the following data:

(I/Trr3)(U i - Uf)=6.392 x 10 -3 in. ib per in. 3

(i/Trr3)Uel.b : 2.170 x i0 -3

6

(i/_r3)Uedg e = 2.361 x lO-

(i/wr3)Wou t = 1.694 x 10-3

(1/_r3)Wpl : 4.32O x lO-3

(i/wr3)Wad = 1.676 x 10-3

in. ib per in. 3

in. ib per in. 3

in. ib per in. 3

in. Ib per in. 3

in. ib per in. 3
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Simplified Solution

If use is made of the observation that the changes in volume caused

by the elastic strains are small compared to the initial volumes, and

that the semivertex angle _ of the bulge is likely to be small, and

if in addition the container is assumed to be rigid

H = = (3_7

the expressions presented simplify considerably. In particular

cos3 : - 3 cos _ + 2 = (3/47 (_7

and the volumes of interest become

47 3[1 3(1 - V) (Pi - Pc )r]vi =_- r - 2 "_

4:r3[i 3(i- V)(Pf - Pcc)r] : r30_4vf = _- - 2 "_ -

(37)

(_7

4

4_ (R3 r3) + 21:(1 - V)(pi pc) _Vi =_- _ _ r (39)

4

=__ r : 30_ (40)4v (R3 r3) + _(l - v)(pf- Pcc)_ + : rVf 3

From Eq. 1

Pa 4_ 3
v. = (4l)
: Pa + Pc 3 r

Equation 2 can be re-written as

Pa + Pc = (v__fi_ _ (427
Pa + Pcc vi #

and the incompressibility condition becomes

E h_ G4
Pi - Pc = Pf - Pcc + 4(1 - v) r (43)

These equations suffice to express all the quantities of interest in

terms of the geometric and physical constants of the problem and of the

initial pressure Pi and the angle _ • Consideration of the energy
equation yields then Pi as a function of a .

- 14 -



The energy terms become:

_ )2 4
(Pi Pc r

ui : _ E W-

(Pf - Pcc)2 r4

Uf = _ E Z--

(44)

(45)

TE h 3 2 (46)
Uel.b : 3(1 - V)

= _q h2r 2 (47)
Wpl y

Wad : V- 1 L - (48)

Wou t = 0
(49)

Moreover, in a first approximation_ Uedg e can be disregarded. Two

immediate consequences of the incompressibility condition and Eq. 42 are

v.z = vf

and it follows from Eq. 48 that

Wad = 0

From Eqs. 44 and 45 it follows that

Ui - Uf = (v/2)(rg/Eh)(Pi

Pc : Pcc
(5o)

(51)

Pf)(Pi + >f - 2Pc) (52)

But the condition

implies

Vi = Vf

2Tr(r4/Eh)(l- v)(p i - pf)= (TF/2)r3C_4

while the first of Eqs. 50 leads to the same requirement.

becomes simply

(53)

Hence, Eq. 33

- 15



or

u. - us + (54)z = Uel. b Wpl

4

r (G Pf)(Pi + Pf ) = rs2m - - 2po 3(i- v)
h3_ 2 + _ a h2r 2 (55)

Y

Eq. 55 together with Eq. 53, can be solved for (p_ - pc):

Pi - Pc- _2

4(1 - v) [E 0q3(1 - V) + _y + 8(1 - V) r _ (56)

From Eqs. 41 and 37 one obtains

p

a - i - _(i - v) (Pi Pc )r
Pa + Pe Eh (57)

that is

: I - _ (i -v)
(Pi - Pc )r

Eh

or approximately,

(Pi - Pc )r
Pc 3 (z - v)
Pa 2 Eh

that is

. . (3/2)(i- V)(r/Eh)

Pc = _I/Pa) + (3/2)(1- V)(r/Eh) Pi
(58)

Substitution in Eq. 56 yields

(sl2)(1- v)(r/Eh) 7-4(1- V) [ EPi i- (i/Pa)+(3/2)(l_V)(r/Eh)j J L3(I -V) \:/ y\:/J

+
8(1- v) r

or
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i I+(3/_I-V) (r/Eh)p a _2 y\rj r

(59)

This can also be written as

where _ is the expression in brackets multiplying

value is almost exactly equal to unity. To obtain

equal to zero and solve for _ :

6 16(i - v)2 h 13(IE_ h 1m : E --r v) _+ Oy

Substitution in Eq. 60 yields

Pi in Eq. 59; its

Pimin set dPi/d_

(61)

3 (62)
Pimin = Z (i - w)r mln

A numerical example will show the accuracy of the approximate formula.

If a brass sphere is characterized by the values

E : 15 x 10 6 h/r : 1/500

a : 30,000 w : 0.3
Y

one obtains from Eq. 61

_6 = 46.2 x 10 -6

and from Eq. 62

Pi = 20.2 psi

: 0.189 = i0 ° 45'

pi/Pcr: (20.2/72.3)100:

SIMPLE BUCKLING FORMULAS

If the assumptions of the last section are maintained, namely that

the container is perfectly rigid, and in addition v is taken as 0.3, the

results of the analysis can be presented in the following simple formulas:

C_ °

mln 1/6 (63)
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( )lj60lj6a . = 1.24 + 2.1
mln

Pimin = 4.16 _cr_@_ --_r + 1"27

=

•

(64)

(65)

(66)

(67)

where _ is the critical stress defined in Eq. 27.
cr

The last equation shows that for comparatively thick shells with a

low value of the yield stress the buckling stress decreases more rapidly

with decreasing h/r ratio than is predicted by the classical small-

deflection formula, while for comparatively thin shells with a high

value of the yield stress the opposite is true.
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(a) Phase O: before application
of pressure.

Po

(b) Phase I: after application
of pressure just
before buckling

Po

(c) Phase 2: after buckling

FIG. 2 THREE PHASES OF BUCKLING
TEST
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(a) Buckled cap

(b) Remainder

FIG. 4. CONVENTION

AND STRESS

FOR EDGE DISPLACEMENTS

RESULTANTS.
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