NASA TECHNICAL NOTE NASA TN D-2280 EXPERIMENTAL LOCAL HEAT-TRANSFER AND AVERAGE FRICTION DATA FOR HYDROGEN AND HELIUM FLOWING IN A TUBE AT SURFACE TEMPERATURES UP TO 5600° R by Maynard F. Taylor Lewis Research Center Cleveland, Ohio # EXPERIMENTAL LOCAL HEAT-TRANSFER AND AVERAGE FRICTION DATA FOR HYDROGEN AND HELIUM FLOWING IN A TUBE AT SURFACE TEMPERATURES UP TO 5600° R By Maynard F. Taylor Lewis Research Center Cleveland, Ohio # NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sale by the Office of Technical Services, Department of Commerce, Washington, D.C. 20230 -- Price \$1.00 ## EXPERIMENTAL LOCAL HEAT-TRANSFER AND AVERAGE ## FRICTION DATA FOR HYDROGEN AND HELIUM FLOWING IN A TUBE AT SURFACE TEMPERATURES UP TO 5600° R by Maynard F. Taylor Lewis Research Center #### SUMMARY Local values of heat-transfer coefficients and average friction coefficients were measured experimentally for helium and hydrogen gases flowing through an electrically heated tungsten tube with a length-to-diameter ratio of 77 for the following range of conditions: local surface temperatures up to 5600° R, local Reynolds number from 7600 to 39,500, local ratios of surface to bulk gas temperature up to 5.6, and heat flux up to 1,700,000 Btu per hour per square foot. A comparison of local heat-transfer coefficients for helium and hydrogen gases is made for several types of wall temperature distributions in order to determine whether data can be correlated by a Dittus-Boelter type equation. Wall temperature distributions for hydrogen are compared with one for helium with the result that any dissociation of hydrogen at the tube wall for wall temperatures up to 5200° R has less effect on the wall temperature distribution than does the ratio of surface to bulk gas temperature. ## INTRODUCTION Nuclear reactors, such as those proposed for use in rockets using hydrogen as a propellant, involve heat transfer with large variations in the thermodynamic and transport properties of the gas. These variations can be due to dissociation of the fluid or to large differences between surface and bulk gas temperatures or both. The ratio of surface to gas temperature can be as large as 25 at the inlet of a nuclear reactor if the surface temperature is 5000° R and the inlet gas temperature is 200° R. Some degree of dissociation will occur in the fluid adjacent to the fueled surface through most of the reactor and will occur in the bulk hydrogen at the reactor outlet. The effect of the large variations in the transport properties on the heat-transfer characteris- tics of hydrogen is very important in the design considerations for nuclear-rocket powered space vehicles. Considerable experimental data showing the effect of surface to fluid temperature ratio on the heat-transfer coefficient for air are presented in reference 1. A number of other investigations extending over the range of wall temperature, pressure, and ratio of surface to bulk temperature that include helium, hydrogen, and nitrogen have been made and are presented in references 2 to 6. The conditions for which data were obtained in references 1 to 6 and in the present investigation are shown in table I. The present investigation TABLE I. - EXPERIMENTAL CONDITIONS FOR REFERENCES | Reference | Tube
length-to-
diameter
ratio | Maximum
surface
to bulk
gas tem-
perature
ratio | Maximum local surface temper- ature, R | Maximum
average
surface
temper-
ature,
OR | Inlet pressure, lb sq in. abs | Heat-
transfer
fluid | Types of heat-
transfer coeffi-
cients
measured | |-------------------------------|---|--|--|--|--------------------------------|----------------------------|--| | 1 | 30 to 120 | 3 . 5 | | 3050 | | Air | Average | | 2 | 389 | 1.39 | 5040 | 3900 | 500 to 1500 | Helium | Local and average | | 3 | 60 and 92 | 3.9 | 5900 | 4533 | 40 | Helium | Local and average | | 4 | 20.9 to
42.6 | 11.09 | | 2240 | 250 | Helium and
hydrogen | Local | | 5 | 250 | 4.5 | 2300 | | 250 to 10 00 | Helium and hydrogen | Local | | (a) | 23.2 | 4.52 | ·4600 | | 110 to 850 | Helium and hydrogen | Average | | 6 | 127 | 2.08 | 1915 | | | Nitrogen | Local | | Present
investi-
gation | 77 | 5.6 | 5600 | 4749 | 40 to 100 | Helium and
hydrogen | Local | ^aUnpublished data from Herbert J. Newman of Los Alamos Scientific Laboratory. was intended (1) to extend the range of surface to bulk temperature ratio at high surface temperatures and (2) to determine the effect of dissociation at the surface on the wall temperature distribution. The experiment was performed by flowing helium and hydrogen through an electrically heated tube. A ratio of local surface to bulk temperature of 5.6 and wall temperatures as high as 5600° R were attained at inlet pressures varying from 40 to 100 pounds per square inch absolute. #### EXPERIMENTAL APPARATUS ## Arrangement A schematic diagram of the arrangement of the test apparatus used in this investigation is shown in figure 1. Either helium or hydrogen from a pressur- Figure 1. - Schematic diagram of arrangement of test apparatus. Figure 2. - Experimental apparatus with containment tank removed. ized tank was passed through the pressure-regulating valve and a flat-plate orifice into a three-pass mixing tank with baffles in the center passage. After mixing, the gas was passed through the electrically heated test section into a second mixing tank and was then exhausted into the atmosphere through a vent stack. The test section was thermally insulated with three concentric radiation shields. The inner shield was made of 0.010-inch-thick tungsten 1 inch in diameter; the middle and outer shields were made of 0.010-inch-thick molybdenum $l\frac{1}{4}$ and $l\frac{1}{2}$ inches in diameter, respectively. Boron nitride spacers were used to hold the shields in position. The mixing tanks and the test-section assembly were housed in a vacuum-tight steel containment tank evacuated to about 25 microns of mercury during test runs. Figure 2 shows the experimental apparatus with the containment tank removed. Electric power was supplied to the test section through water-cooled copper tubing from a 208-volt 60-cycle supply line through a 100-kilovolt-ampere transformer controlled by a saturable core reactor. The saturable core reactor permitted voltage regulation from approximately 3 to 25 volts. A true root-mean-square electronic voltmeter was used directly to read the potential across the test section. Current was read on an ammeter used with an 800 to 1 step-down current transformer and checked with a calibrated shunt. #### Test Sections The test section used in this investigation was made of tungsten. tungsten tube was not available commercially, it was necessary to fabricate it by disintegrating a hole in a tungsten rod. The hole was lapped to 0.116±0.002-inch inside diameter with a 15- to 20-microinch root mean square finish or better and was concentric with the outside diameter to within a total indicator reading of 0.006 inch. The outside diameter of the tube was then ground to obtain a wall thickness of 0.0625±0.002 inch with a surface finish of 32 microinch root mean square or better. The tungsten tube was joined to water-cooled flanges made of nickel and oxygen-free high conductivity copper with a furnace braze of 82 percent gold and 18 percent nickel at about 1830°F: this temperature is well below the recrystallization temperature of tungsten. The test section was cycled between about 1000° and 5000° R approximately 20 times in the course of the experiment, which totaled about 25 hours of operation at temperatures of 4000° R or higher, and it did not fail. The test section had an entrance length of 14 diameters before the heated section. symbols are defined in appendix A.) #### Instrumentation The outside wall temperatures near the entrance and the exit of the test section were measured with 24-gage platinum-platinum-13-percent-rhodium thermocouples spot-welded along the length as shown in figure 3. The temperature of Figure 3. - Schematic diagram of test-section assembly showing thermocouple, voltage tap, and pressure tap locations. (All dimensions in inches.) most of the test section was measured with a small-target disappearing-filament, optical pyrometer. More information on the technique of temperature measurement used in this investigation can be found in appendix B. The temperature of the gas was measured at the entrance and the exit of the test section with platinum-platinum-rhodium thermocouples located downstream of the baffles in the two mixing tanks. The radiation shields were also instrumented with platinum-platinum-rhodium thermocouples as shown in figure 3. Static pressure taps were located in the entrance and the exit flanges of the test section and were read on 0- to 100-pounds-per-square-inch pressure gages having a full-scale accuracy of 1/2 percent. Seven tantalum voltage taps were spot-welded along the test section to measure voltage drop as a function of distance from the entrance; however, only the voltage taps located at the entrance and the exit remained on the test section when it was heated. This arrangement permitted measurement only of the total voltage drop across the test section. ### METHOD OF CALCULATION # Hydrogen Properties The variation of the transport and thermodynamic properties important in (a) Mole fraction of atomic hydrogen (refs. 8 and 9). Figure 4. - Variation of hydrogen properties with temperature at 1 atmosphere. calculations of heat-transfer and friction coefficients is shown in figure 4 as a function of temperature for a pressure of 1 atmosphere (data from refs. 7 to 12). The effect of
pressure on the properties of hydrogen was not taken into consideration since the pressure was near 1 atmosphere at points in the test section where the temperature was high enough for the pressure effect on dissociation to be appreciable. Figure 4(a) shows the mole fraction of atomic hydrogen x1 present at any temperature and was taken from references 8 and 9. The thermal conductivity k and the absolute viscosity µ from references 8 to 12 for equilibrium dissociating hydrogen is shown in figures 4(b) and (c). Chemically frozen thermal conductivity, which does not include the chemical reaction term, was taken from reference 9 and is also shown in figure 4(b). The experimental thermal conductivity data shown in figure 4(b) are from reference 7 and are the only data at high temperatures available at present. The values of thermal conductivity used in this investigation are represented by the solid line that was calculated by use of the viscosity and thermal conductivity of hydrogen atoms and molecules from table III of reference 11 and the heat of Figure 4. - Concluded. Variation of hydrogen properties with temperature at 1 atmosphere. dissociation from table XXX of reference 12. The values of specific heat for equilibrium dissociating hydrogen at constant pressure $c_{\rm p}$ shown in figure 4(d) were taken from references 8 and 9 and are in complete agreement. The chemically frozen specific heat, which does not include the chemical reaction term, was taken from reference 9. The ratio of specific heats γ is taken from references 8 and 9 and is shown in figure 4(e). The two references are in very good agreement at temperatures below 3700° R, a range that more than covers the bulk gas temperatures in this investigation. The gas constant R was taken to be 766.4 foot-pound per pound mass $^{\rm O}{\rm R}.$ ## Helium Properties The transport properties, thermal conductivity $\,k\,$ and absolute viscosity $\,\mu\,$ for helium used in calculations of this investigation are shown in figure 5 Figure 5. - Variation of thermal conductivity and absolute viscosity of helium with temperature. Figure 6. - Variation of thermal conductivity and electrical resistivity of tungsten with temperature. as a function of temperature. The theoretical values taken from table III of reference 11 are shown along with experimental points from reference 7. The lack of agreement between experiment and theory even for a monatomic gas indicates the great need for more experimental measurements of thermal conductivity of gases at high temperatures. The specific heat at constant pressure c_p was taken to be constant at 1.248 Btu/(lb)($^{\rm O}$ R), the ratio of specific heats γ to be 1.667, and the gas constant R to be 386 foot-pounds per pound mass $^{\rm O}$ R. # Physical Properties of Tungsten and Molybdenum Figure 6 shows both the thermal conductivity k and the electrical resistivity ρ_e of tungsten plotted as a function of temperature. The experimental thermal conductivity data for the temperature range of 2000° to 3600° R were taken from reference 13 and extrapolated, as shown by the dashed line, to cover the range of this investigation. The electrical resistivity was taken from references 13 and 14, which are in agreement to within 3 percent. The normal total emissivity of both tungsten and molybdenum was taken from reference 14 and is shown in figure 7 as a function of temperature. The spectral emissivity at a wavelength of 0.650 micron was taken from reference 15 and is also shown in figure 7. A discussion of the use of the spectral emissivity is given in appendix B. Figure 7. - Variation of emissivity of tungsten and molybdenum with temperature. #### Friction Coefficients Because of the great difficulty in locating static-pressure taps along the tungsten test section, only the overall pressure drops were measured, and, therefore, only average friction coefficients were calculated. The friction pressure drop Δp_{fr} was obtained by subtracting the calculated momentum pressure drop Δp_{mom} from the total measured static-pressure drop Δp across the test section: $$\Delta p_{fr} = \Delta p - \Delta p_{mom} = \Delta p - \frac{G^2 R}{g} \left(\frac{t_2}{p_2} - \frac{t_1}{p_1} \right) \tag{1}$$ where t_1 and t_2 are the absolute static temperatures at the entrance and the exit of the test section, respectively, and p_1 and p_2 are the static pressures at the entrance and the exit of the test section, respectively. The static temperatures were calculated from measured values of the gas flow, the static pressure, and the total temperature by the following equation: $$t = -\frac{\gamma g}{(\gamma - 1)R} \left(\frac{p}{G}\right)^2 + \sqrt{\left[\frac{\gamma g}{(\gamma - 1)R} \left(\frac{p}{G}\right)^2\right]^2 + 2T \frac{\gamma g}{(\gamma - 1)R} \left(\frac{p}{G}\right)^2}$$ (2) This equation was obtained by combining the perfect gas law, the equation of continuity, and the energy equation. Since the ratio of specific heats γ for hydrogen varies with temperature, the static temperature was calculated twice, once with the specific heat ratio evaluated at the total temperature and once evaluated at the static temperature. The two static temperatures thus calculated varied less than 3 percent of the difference between total and static temperature. The average friction coefficient was calculated from the relation $$f = \frac{\Delta p_{fr}}{4 \frac{L}{D} \frac{\rho_{av} V^2}{2g}} = \frac{g \rho_{av} \Delta p_{fr}}{2 \frac{L}{D} g^2}$$ (3) where the density $\,\rho_{{\bf a}{\bf v}}\,$ was evaluated from the static pressure and temperature of the gas $$\rho_{av} = \frac{1}{R} \left(\frac{p_1 + p_2}{t_1 + t_2} \right) \tag{4}$$ #### Heat-Transfer Coefficients Only local heat-transfer coefficients were calculated since the heat flux varied by a factor of as much as 7.5 from the entrance to the exit of the test section, as can be seen from the wall temperature distributions shown in fig- Figure 8. - Comparison of outside wall temperature distributions for increasing amounts of heat input to hydrogen flowing at a constant mass flow rate of 3.8 pounds per hour. ure 8 and the resistivity of tungsten in figure 6. Local coefficients were approximated by dividing the test section length into 10 equal increments and by evaluating average coefficients for these small increments. The procedure used to calculate the local heat-transfer coefficient is as follows: (1) The rate of heat conduction into and away from each increment was calculated by means of the equation $$Q_{c} = -k_{t}A_{x} \frac{dT}{dL}$$ (5) where dT/dL is the slope of the axial wall temperature distribution at the end of each increment. (2) Local radiation heat loss from the test section to the outer radiation shield was calculated by $$Q_{r} = \frac{F_{A}\sigma(r_{s}^{4} - r_{r3}^{4})}{\frac{1}{Fe_{s-r1}A_{s}} + \frac{1}{Fe_{r1-r2}A_{r1}} + \frac{1}{Fe_{r2-r3}A_{r2}}}$$ (6) - (3) The rate of electrical heat generation in each increment $Q_{\rm e}$ was calculated by multiplying the square of the current through the test section by the resistance taken from figure 6 for the average wall temperature of the increment. - (4) A heat balance for each increment was set up starting at the entrance $$Q_e + [Q_{c(n)} - Q_{c(n+1)}] - Q_r - Q = 0$$ (7) It was possible to calculate the rate of heat transfer to the gas Q for each increment from equation (7). The bulk temperature of the gas leaving each increment could be calculated by means of the equation $$Q = w(c_p)_b(T_{out} - T_{in})$$ (8) where $T_{\rm in}$ is the bulk temperature of the gas entering the increment and $T_{\rm out}$ is the bulk temperature of the gas leaving the increment. This calculation was repeated for each succeeding increment, and the calculated temperature of the gas leaving the last increment was used as the exit gas temperature. This temperature was used along with the measured exit gas temperature, the gas flow rate, and the physical properties to determine heat-transfer coefficients from the Dittus-Boelter equation. The heat-transfer coefficient was used to calculate the rate of heat transfer to the water-cooled exit flange. - (5) In general, the sum of the local radiation heat losses and the end losses was found to account for more than 80 percent of the difference between the rate of electrical heat input to the test section and the rate of heat transfer to the gas. Each local radiation heat loss and the two end losses were multiplied by the ratio of total heat loss to the sum of local heat losses and the two end losses for adjustment to give an overall heat balance of loo percent. - (6) A new heat balance was set up by use of the adjusted local heat losses and equation (7), and the rate of heat transfer to the gas Q was calculated. The bulk temperature of the gas leaving each increment was calculated by means of equation (8). - (7) The local bulk temperature and the local surface temperature along with the rate of heat transfer to the gas and the heat-transfer area for the increment were used to calculate the local heat-transfer coefficient $$h = \frac{Q}{S(T_S - T_D)}$$ (9) The temperature drop through the wall was calculated and found to be very small compared with the difference between surface and bulk temperatures and, therefore, was neglected. The local Nusselt number was calculated by means of the relation $$Nu = \frac{hD}{k}$$ (10) #### RESULTS AND DISCUSSION #### Axial Wall Temperature Distributions Five representative axial outside wall temperature distributions are plotted as a function of the distance from the inlet for a tungsten tube with a total length to diameter ratio of 77 (fig. 8). Thermocouple and optical pyrometer measurements for each run are also shown in the figure. Experimental data for all runs are summarized in table II (see pp. 27 to 32). The wall tempera- ture distributions shown in figure 8 are for hydrogen but are also typical of
those obtained for helium. For runs 17 to 21, the mass flow rate was kept nearly constant, while the power input was increased to higher levels. The relatively large increase in wall temperature in the entrance half of the tube, as power input is increased, is a result of two factors. First, the ratio of surface to bulk fluid temperature is increased, which is accompanied by a decrease in heat-transfer coefficient that further increases the surface temperature. Second, the effect of increasing the ratio of surface to bulk fluid temperature is magnified by the increased electrical resistivity of tungsten at higher temperatures. The large axial temperature gradients at the entrance and the exit of the test section are the result of conduction losses to the connecting flanges, the mixing tanks, and the electrical connectors. It was thought that the best way of determining the effect of dissociation Figure 9. – Comparison of outside wall temperature distributions and gas temperatures of hydrogen and helium for mass flow rate ratio inversely proportional to ratio of specific heats, $w_{He}/w_{H_2} = (c_p)_{H_2}/(c_p)_{He}$. at the wall was to compare the wall temperature distribution for hydrogen with the wall temperature distribution for helium under the same conditions. It can be shown that when the product of flow rate w and spec_p of hydrogen cific heat is equal to that for helium and the heat input to hydrogen is equal to the heat input to helium, then the heat-transfer coefficient and the wall temperature distributions for helium and hydrogen should be essentially the same if dissociation does not affect the heat-transfer coefficient. The first two conditions were approached quite closely by helium run 15 and hydrogen run 19. The heat input was 2 percent less and the product of flow rate and specific heat was 3 percent less for the hydrogen run than for the helium run, while the heat-transfer coefficients were 10 to 15 percent higher for hydrogen The wall than for helium. temperature distribution for helium run 15 and hydrogen runs 19 and 20 are shown in figure 9 as a function of distance from the inlet. It can be seen in figure 9 that the largest difference between the wall temperatures of runs 15 and 19 occurs where the wall temperature is too low for dissociation to occur. It appears that any dissociation at the tube wall has less effect on the wall temperature distribution than does the ratio of surface to bulk gas temperatures. The wall temperature distribution for hydrogen run 20 is also shown in figure 9 and appears to be quite similar to helium run 15. For this run, the heat input to the hydrogen is 12 percent greater than the heat input to the helium, and the product of flow rate and specific heat for hydrogen was about 4 percent lower than that for helium, which results in hydrogen heat-transfer coefficients 25 to 30 percent higher than those for helium. The heat-transfer parameters for the helium run and the two hydrogen runs are shown in figures 10(a) and (b). The parameters Figure 10. - Comparison of local heat-transfer coefficients for helium and hydrogen. for the hydrogen runs (particularly run 19) compare quite closely with those for helium. ## Friction Coefficients Only average friction coefficients were measured in this investigation. The friction coefficients for helium and hydrogen both with and without heat addition are shown in figures 11(a) and (b), respectively. The line representing the Kármán-Nikuradse relation between friction coefficient and Reynolds number for turbulent flow given by $$\frac{1}{\sqrt{8}\frac{f}{2}} = 2 \log \operatorname{Re}\left(\sqrt{8\frac{f}{2}}\right) - 0.8 \tag{11}$$ and the laminar flow line given by Figure 11. - Correlation of average friction coefficients. Viscosity and density evaluated at bulk temperature. Kàrmàn-Nikuradse relation, $1/\sqrt{8f_b/2} = 2 \log(\text{Re}_b\sqrt{8f_b/2}) - 0.8$; laminar flow, $f_b/2 = 8/\text{Re}_b$. $$\frac{f}{2} = \frac{8}{Re} \tag{12}$$ are included in figure 11 for comparison. As would be expected, the hydrogen and helium runs with no heat addition are in good agreement with the Kármán-Nikuradse relation. The hydrogen runs with heat addition are in agreement with the predicted line above a Reynolds number of 20,000 and in agreement with the data of references 3 and 6, which fall above the Kármán-Nikuradse line below a Reynolds number of 20,000. The few runs using helium fall somewhat higher than either the predicted line or the data of references 3 and 6. ## Heat-Transfer Coefficients In the present investigation, only local heat-transfer coefficients were calculated. The results of reference 3 for helium indicate that local heat-transfer coefficients can be correlated by use of a modified Reynolds number, evaluation of the physical properties and the density at either the film or the surface reference temperature, and use of an appropriate constant, as shown in the following equations: $$\frac{hD}{k_f} = 0.021 \left(\frac{GD}{\mu_f}\right)^{0.8} \left(\frac{T_b}{T_f}\right)^{0.8} \left[\frac{(c_p)_f \mu_f}{k_f}\right]^{0.4}$$ (13) $$\frac{hD}{k_s} = 0.0265 \left(\frac{GD}{\mu_s}\right)^{0.8} \left(\frac{T_b}{T_s}\right)^{0.8} \left[\frac{(c_p)_s \mu_s}{k_s}\right]^{0.4}$$ (14) As stated in reference 3, evaluating the fluid properties at the surface temperature results in a slightly better correlation than that given by evaluating the properties at the film temperature, although the constant is higher than that given in the literature. All the helium data of the present investigation are shown in figure 12(a) with the fluid properties evaluated at the film temperature and in figure 12(b) with the properties evaluated at the surface temperature. There is considerable spread in the data when each reference Figure 12. - Correlation of local heat-transfer coefficients for helium. temperature is used. This is not a random scatter as it appears but has definite trends that depend on the shape of the wall temperature distribution and the power input. If the wall temperature distribution is similar in shape to run 17, shown in figure 8, the data correlate, as shown in figures 12(c) and (d). It can be seen that the data correlate better if the fluid properties are evaluated at the surface temperature. If the wall temperature distribution resembles that of runs 18 to 21, neither reference temperature correlates the data satisfactorily (see figs. 12(e) and (f)). It is not apparent from figures 12(e) and (f), but these data do not fall with random scatter either, but rather with a definite trend from run to run. To show the trend in data with the fluid properties evaluated at the various reference temperatures, Nu/Pr $^{0.4}$ is plotted as a function of modified Reynolds number in figure 13 for runs 12 and 15, which are typical of two shapes of wall temperature distributions. The fluid properties are evaluated at bulk, film, and surface temperatures. The difference in trends between runs 12 and 15 can easily be seen. Figure 12. - Concluded. Correlation of local heat-transfer coefficients for helium. Figure 13. - Comparison of effect of using fluid properties evaluated at bulk, film, and surface temperatures on correlation of local heat-transfer coefficients for two helium runs. Figure 14(a) shows all the hydrogen data with the fluid properties evaluated only at the film temperature. The film temperature was not high enough for dissociation to occur. Again the data can be separated according to the criterion of wall temperature distribution shape. The runs having the shape of run 17 of figure 8 are plotted in figures 14(b) and (c) with the fluid properties evaluated at the film and the surface temperatures, respectively. For these runs, the surface temperature is below the temperature at which dissociation has an appreciable effect on the fluid properties. As with helium, the hydrogen data correlate best when the fluid properties are evaluated at the surface temperature. The constant 0.0265 for helium has been replaced by Runs with wall temperature distribution of the shapes of runs 18 to 21 are shown in figure 14(d) with the fluid properties evaluated at the film temperature. As with helium, this type of wall temperature distribution yields data that do not correlate very well by conventional methods. The effects of reference temperature and the use of both equilibrium dissociating and chemically frozen transport and thermodynamic properties are shown in figure 15. Nu/Pr^{0.4} for equilibrium dissociating proper-The reason for a low value of Figure 14. - Correlation of local heat-transfer coefficients for hydrogen. Figure 15. - Comparison of effect of using fluid properties evaluated at bulk, film, and surface temperatures on correlation of local heat-transfer coefficients with equilibrium dissociating and chemically frozen transport and thermodynamic properties for hydrogen run 20. ties is the large increase in the thermal conductivity with increasing temperature. The data of this investigation indicate that little difference is made by the use of film or surface reference temperature to predict heattransfer coefficients (fig. It is important, how-15). ever, that the chemically frozen transport and thermodynamic properties be used rather than the equilibrium dissociating properties. result of using chemically frozen and equilibrium dissociating properties can be seen in figure 15. It is obvious from this figure that a better method of correlation is needed. Data have been obtained in this investigation that agree with previous correlations in the literature using modified Reynolds number and properties evaluated at film or surface temperature; however, some data obtained with large axial gradients in heat flux and surface temperature near the entrance of the test section introduce deviations of ± 30 percent from the correlation. ## SUMMARY OF RESULTS The following results were obtained in an investigation of heat transfer
and pressure drop for helium and hydrogen at pressures of 40 to 100 pounds per square inch flowing through a tungsten tube at surface temperatures up to 5600° R: - l. Any dissociation at the tube surface has less effect on the wall temperature distribution than does the ratio of surface to bulk gas temperatures at surface temperatures up to 5200° R. - 2. Most local heat-transfer data agree to within ±10 percent when correlated by using the Dittus-Boelter equation and chemically frozen viscosity, thermal conductivity, and specific heat. These physical properties and density were evaluated at either the film or the surface temperature. Some data obtained with large axial gradients in heat flux and surface temperature near the test section entrance introduce deviations of ±30 percent from the correlation equation. - 3. Friction coefficients without heat addition are in good agreement with the Kármán-Nikuradse relation. Friction coefficients with heat addition are in poor agreement with the Kármán-Nikuradse line below a Reynolds number of about 20,000 but are in good agreement with the data of other investigators. Lewis Research Center National Aeronautics and Space Administration Cleveland, Ohio, January 31, 1964 # APPENDIX A # SYMBOLS | A_{rl} | surface area of inner radiation shield, sq ft | |---------------------------|---| | A_{r2} | surface area of middle radiation shield, sq ft | | A_{r3} | surface area of outer radiation shield, sq ft | | A_s | outside surface area of test section, sq ft | | $A_{\mathbf{x}}$ | cross-sectional area of tube wall, sq ft | | $\mathtt{C}_{\mathtt{Z}}$ | radiation constant, 25,891 (micron)(OR), appendix B | | $c_{\mathbf{p}}$ | specific heat of the gas at constant pressure, Btu/(lb)(OR) | | D | inside diameter of test section, ft | | Œ | potential drop, v | | F_A | configuration factor for radiation | | Fe _{s-rl} | factor to allow for the departure of the test section and inner radiation shield surfaces from complete blackness, $\frac{1}{\frac{1}{\epsilon_s} + \frac{A_s}{A_{rl}} \left(\frac{1}{\epsilon_{rl}} - 1\right)}$ | | Fe _{rl-r2} | factor to allow for the departure of inner and middle radiation shields from complete blackness, $\frac{1}{\frac{1}{\epsilon_{r1}} + \frac{A_{r1}}{A_{r2}} \left(\frac{1}{\epsilon_{r2}} - 1\right)}$ | | Fe _{r2-r3} | factor to allow for the departure of middle and outer radiation shields from complete blackness, $\frac{1}{\frac{1}{\epsilon_{r2}} + \frac{A_{r2}}{A_{r3}} \left(\frac{1}{\epsilon_{r3}} - 1\right)}$ | | f | average friction coefficient | | G | mass flow per unit cross-sectional area, lb/(hr)(sq ft) | | g | acceleration due to gravity, 4.17×10^8 ft/hr ² | | h | local heat-transfer coefficient, Btu/(hr)(sq ft)(OR) | | I | current, amp | k thermal conductivity of gas, Btu/(hr)(ft)(OR) thermal conductivity of test section material, Btu/(hr)(ft)(OR) \mathbf{k}_{\pm} L heat-transfer length of test section, ft Nu Nusselt number based on local heat-transfer coefficient, hD/k Prandtl number, cpµ/k Prр absolute static pressure, lb/sq ft Δp overall static-pressure drop across test section, lb/sq ft friction static-pressure drop across test section, 1b/sq ft Δp_{fr} momentum static-pressure drop across test section, 1b/sq ft Δp_{mom} Q rate of heat transfer to gas, Btu/hr Q_C rate of heat conduction through tube wall in axial direction, Btu/hr Q_e rate of electrical heat input to increment, Btu/hr rate of heat loss from test section through radiation shields, Btu/hr Qr. R gas constant, ft-lb/(lbmass)(OR) Re Reynolds number, GD/µ resistance of test section, ohms r S heat-transfer area of test section, sq ft \mathbf{T} total or stagnation temperature, OR T_{b} average bulk temperature for an increment, $(T_n + T_{n+1})/2$, \circ_R Tbb blackbody temperature. OR T_{br} brightness temperature (apparent temperature of nonblackbody), OR average film temperature, $(T_s + T_b)/2$, OR ${f T_f}$ T_{in} bulk temperature of the gas entering an increment, OR Tout bulk temperature of the gas leaving an increment. OR temperature of an increment of the outside radiation shield, OR T_{r3} average surface temperature of an increment, OR $\mathtt{T}_{\mathtt{s}}$ ``` T_{\tau} apparent brightness temperature (apparent temperature of nonblackbody with view window interposed), OR static temperature, OR t Λ bulk velocity of gas, ft/hr gas flow, lb/hr W X distance from entrance of test section, ft ratio of specific heats of gas Υ normal total emissivity of inner radiation shield \epsilon_{ ext{rl}} normal total emissivity of middle radiation shield \epsilon_{ ext{r2}} normal total emissivity of outer radiation shield \epsilon_{ m r3} normal total emissivity of test section \epsilon_{\mathtt{s}} spectral emissivity \epsilon_{\lambda} wavelength (effective wavelength of small-target optical pyrometer λ filter), microns absolute viscosity of gas, lb/(hr)(ft) μ density of gas, lb/cu ft average density of gas, (p_1 + p_2)/R(t_1 + t_2), lb/cu ft \rho_{av} resistivity of tungsten, µohm-in. \rho_{\rm e} Stefan-Boltzmann constant, 0.173x10⁻⁸ Btu/(hr)(ft)²(OR)⁴ spectral transmissivity of view windows \tau_{\lambda} Subscripts: bulk (when applied to properties, indicates evaluation at average bulk temperature Tb) ſ film (when applied to properties, indicates evaluation at average film temperature T_f) surface (when applied to properties, indicates evaluation at average S surface temperature T_s) 1 test section entrance 2 test section exit ``` #### APPENDIX B ## METHOD OF OPTICAL PYROMETER As mentioned in the text, the temperature of most of the test section was measured with a small-target disappearing-filament optical pyrometer. It is shown in the appendix of reference 3 that from Wien's formula for blackbody radiation a relation between the true temperature of the test section and the brightness temperature indicated by the pyrometer can be obtained, and the relation follows: $$T_{bb} = \frac{\frac{C_2}{\lambda}}{\ln(\epsilon_{\lambda} \tau_{\lambda}) + \frac{C_2}{\lambda T_{\tau}}}$$ (B1) where T_{bb} is the true blackbody temperature of the test section, T_{τ} is the measured temperature, ϵ_{λ} is the emissivity of the test section, τ_{λ} is the transmissivity of any view windows interposed, λ is the wavelength of the optical-pyrometer filter (0.650 micron), and C_2 is the radiation constant (25,891 (micron)(O R)). The transmissivity of any view windows can be determined very easily by measuring the temperature of a calibration lamp both with and without the windows and by inserting the values obtained in the equation $$\ln \tau_{\lambda} = \frac{c_{2}}{\lambda} \left(\frac{1}{T_{br}} - \frac{1}{T_{\tau}} \right)$$ (B2) where T_{br} and T_{τ} are the temperature measured without and with the view window interposed, respectively. The transmissivities of the 3/8-inch quartz view window on the containment tank and the $l\frac{1}{4}$ -inch upright optical glass safety window were measured experimentally and found to be 0.928 and 0.883, respectively. The spectral emissivity of tungsten given in reference 16 was used along with the transmissivity of the windows to calculate the wall temperatures of the test section from equation (Bl). The wall temperatures were plotted as a function of distance from the test section entrance and then were integrated to determine the average wall temperature. The average wall temperature was also found by calculating the resistance of the test section from the potential drop across it and the current. The resistivity of the test section can be calculated from the equation $$\rho_{e} = \frac{rA_{x}}{L} \tag{B3}$$ From the curve of resistivity as a function of temperature in figure 6, the average temperature of the test section can be determined from the resistivity value. The average wall temperatures determined by the two methods disagreed less than 5 percent for most runs. #### REFERENCES - 1. Humble, Leroy V., Lowdermilk, Warren H., and Desmon, Leland G.: Measurements of Average Heat-Transfer and Friction Coefficients for Subsonic Flow of Air in Smooth Tubes at High Surface and Fluid Temperatures. NACA Rept. 1020, 1951. - 2. Durham, F. P., Neal, R. C., and Newman, H. J.: High Temperature Heat Transfer to a Gas Flowing in Heat Generating Tubes with High Heat Flux. TID-7529, pt. 1, book 2, Reactor Heat Transfer Conf., Nov. 1957, pp. 502-514. - 3. Taylor, Maynard F., and Kirchgessner, Thomas A.: Measurements of Heat Transfer and Friction Coefficients for Helium Flowing in a Tube at Surface Temperatures up to 5900° R. NASA TN D-133, 1959. (See also ARS Jour., vol. 30, 1960, pp. 830-832.) - 4. Wolf, H., and McCarthy, J. R.: Heat Transfer to Hydrogen and Helium with Wall to Fluid Temperatures Ratios to 11.09. Presented at the AIChE Annual Meeting, Washington (D.C.), Dec. 4-7, 1960. - 5. Weiland, Walter F.: Measurement of Local Heat Transfer Coefficients for Flow of Hydrogen and Helium in a Smooth Tube at High Surface to Fluid Bulk Temperature Ratios. Presented at AIChE Nuclear Engineering Heat Transfer Symposium, Chicago (Ill.), Dec. 1962. - 6. Davenport, Monty E., Magee, Patrick M., and Lepert, George: Heat Transfer and Pressure Drop for a Gas at High Temperature. SU 247-2, Nuclear Technology Laboratory, Stanford University, May 1961. (TID-13485.) - 7. Blais, Normand C., and Mann, Joseph B.: Thermal Conductivity of Helium and Hydrogen at High Temperatures. Jour. Chem. Phys., vol. 32, no. 5, May 1960, pp. 1459-1465. - 8. King, Charles R.: Compilation of Thermodynamic Properties, Transport Properties, and Theoretical Rocket Performance of Gaseous Hydrogen. NASA TN D-275, 1960. - 9. Rosner, Daniel E.: Properties of Equilibrium
Dissociating Hydrogen for Predicting Convective Heating in Nuclear-Thermal Rockets. Tech. Pub. 27, AeroChem Res. Lab., Inc., 1961. - 10. Clifton, David G.: Calculations of the Coefficients of Viscosity, Diffusion, and Thermal Conductivity for Dissociating Hydrogen for a Range of Temperatures and Pressure. Los Alamos Scientific Laboratory Rept. LA-2475, 1960. - 11. Svehla, Roger A.: Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures. NASA TR R-132, 1962. - 12. Huff, Vearl N., Gordon, Sanford, Morrell, Virginia E.: General Method and Thermodynamic Tables for Computation of Equilibrium Composition and Temperature of Chemical Reactions. NACA Rept. 1037, 1951. - 13. Osborn, R. H.: Thermal Conductivities of Tungsten and Molybdenum at Incandescent Temperatures. Jour. Opt. Soc. Am., vol. 31, June 1941, pp. 428-432. - 14. Hodgman, Charles D., ed.: Handbook of Chemistry and Physics, forty-third ed., Chem. Rubber Pub. Co., 1961-62. - 15. Larrabee, Robert D.: Spectral Emissivity of Tungsten. Jour. Opt. Soc. Am., vol. 49, no. 6, June 1959, pp. 619-625. # TABLE II. - EXPERIMENTAL RESULTS # (a) For complete test section | Run | Heat input, Qe/S, Btu (hr)(sq ft) | Heat
transfer,
Q/S,
Btu
(hr)(sq ft) | Gas
flow,
w,
lb
hr | Entrance pressure, p1, sq ft abs | Exit pressure, p2, lb sq ft abs | Entrance
tempera-
ture,
Tb,1, | Exit
temper-
ature,
Tb,2,
o _R | Average
bulk
temper-
ature,
Tb,av' | Average surface temper-ature of test section, Ts,av | Current,
I,
amp | Potential drop,
ΔE, v | |---|---|---|--|--|--|--|--|---|--|--|---| | | | | | | Hydı | rogen | | | | | | | 1
2
3
4
5
6
7
8
9
10 | 698,346
583,848
830,170
665,390
721,898
755,159
910,013
1,843,187
669,308
906,704
1,026,731 | 586,404
537,819
680,248
568,550
623,287
657,314
755,686
1,409,408
507,536
672,216
756,347 | 6.91
6.86
7.04
6.59
6.91
6.95
7.02
4.99
5.38
5.22 | 8,621
8,355
9,118
8,287
8,834
8,978
9,338
10,653
6,967
7,708
7,798 | 3077
3056
3254
2902
3082
3118
3293
3758
2388
2745
2822 | 568
568
563
567
560
568
570
562
565
567 | 1135
1090
1213
1138
1168
1192
1288
2076
1242
1401
1531 | 852
829
891
851
868
876
928
1323
902
983
1052 | 1768
1559
1954
1744
1803
1836
2120
3950
2040
2444
2731 | 1392
1378
1420
1370
1400
1412
1420
1400
1250
1300
1292 | 2.9
2.83
4.0
3.05
3.45
3.7
4.0
8.85
3.6
4.73
4.98 | | | | | ** | | He: | lium | , | 1 | | | | | 12
13
14
15
16 | 556,552
737,614
1,286,243
1,491,424
1,093,644 | 407,601
509,295
632,669
926,369
713,008 | 12.08
11.88
10.18
11.25
12.67 | 11,100
11,772
12,223
14,342
13,745 | 3470
3597
3262
3576
3950 | 572
572
572
573
562 | 1193
1361
1716
2089
1598 | 883
967
1144
1331
1080 | 1974
2461
4262
4516
3315 | 1158
1164
1120
1170
1190 | 2.88
4.10
7.65
9.22
6.85 | | | | | | | Hydı | rogen | | | | | | | 17
18
19
20
21
22
23 | 704,310
1,035,350
1,339,878
1,621,332
1,878,363
1,959,774
2,417,414 | 502,695
714,972
910,827
1,047,031
1,216,896
1,451,306
1,728,637 | 3.89
3.86
3.79
3.74
3.68
6.16
5.82 | 5,864
6,598
7,253
7,621
8,053
10,846
11,393 | 2048
2105
2134
2199
2314
3571
3560 | 557
560
562
562
573
557
565 | 1422
1790
2148
2386
2712
2107
2492 | 990
1175
1352
1474
1643
1332
1529 | 2403
3231
3954
4351
4701
4136
4749 | 1160
1185
1196
1244
1280
1400 | 4.2
6.1
7.75
8.85
10.0
9.25
11.2 | TABLE II. - Continued. EXPERIMENTAL RESULTS (b) Local outside surface temperatures of the test section | Run | | | | | | _ | | | Dista | nce fr | om inl | et, in | 1. | | | | | | | | | |---|---------------------------------|--|--|--|---|--|--|--|---|--|---|--|--|--|--|--|-----------------------|--|--|--------------------------------------|---| | | 0 | 1
16 | <u>5</u> | 11/8 | 1 <u>5</u> | 2 <u>1</u> | 2 <u>5</u> 8 | 3 <u>1</u>
8 | 3 5
8 | 4 <u>1</u>
8 | <u>45</u>
8 | 5 <u>1</u>
8 | 5 <u>5</u>
8 | 6 <u>1</u> | 6 <u>5</u> | 7 <u>1</u> 8 | 7 <u>5</u>
8 | 8 <u>1</u> | 8 <u>5</u> | 8 <u>15</u>
16 | 9 | | | Hydrogen | 1
2
3
4
5
6
7
8
9
10
11 | 568
568
563
567 | 635
620
625
630
630
690
610
625 | 810
805
825
805
810
820
830
1015
807
835
860 | 900
935
900
910
920
940
1255
912
955 | a1000
a1000
a1000
a1040
a1680
a1010
a1085 | a995
a1130
a1180
a1060
a1070
a1135
2774
a1115 | a1050
a1230
a1160
a1130
a1145
a1240
3277
a1220
a1350 | alloo
al330
al240
al200
al225
al345
3964
al340
al500 | a1160
a1440
a1330
a1295
a1310
a1460
4644
a1460 | a1570
a1415
a1400
a1405
a1590
4969
a1600 | a1320
a1700
a1520
a1515
a1520
a1140
5157
a1755 | a1430
a1865
a1640
a1660 | a ₂₀₄₅
a ₁₇₈₀ | 2260 | 2283
a1920
2476
2193
2339
2339
2936
a5270
2843
4050
4574 | 3000
2584
2745
2733
3516
5248
3348
4423 | 3325
3348
4236 | 4112
3600
3830
4105
4530
5189
4220
4745 | 2896
3745
3112
3402
3594
4186
4803
3684
4224 | 1420
1800
1515
1645
1715 | 590
620
580
590
595
610
660
590
610 | | | | | | | | | | | | Hel: | Lum | | | | | | | | | | | | 12
13
14
15
16 | 572
572
577
573
562 | 610
625
640
810
650 | 790
810
875
1645
880 | 890
920
1040
2520
10 3 0 | a995
a1005
2971
a3600
a1260 | ^a 1080
3769
4224 | a1160
a1170
4075
4701
a1920 | a1250
a1310
4486
5008
a2340 | | a1480
a1730
5176
5202
3265 | a1630
a2220
5307
5202
3866 | a1800
2407
5425
5268
4373 | ⁸ 2005
2936
5464
5307
4854 | 2294
3564
5491
5372
5202 | 2843
4236
5616
5386
5372 | 2456
4764
5630
5399
5307 | 5491
5 3 86 | 4217
4989
5229
5281
4995 | 3360
3977
4186
4536
4162 | 1625
1710 | 595
610
650 | | | | | | | | | - | | | Hydr | ogen | | | | - | | | | | | | | 17
18
19
20
21
22
23 | 550 | 770
870 | 810
880
1170
1580
2125
1135
1760 | 1060
1670
2405
3210 | a ₄ 100
a ₂ 060 | | a1260
a2020
3704
4643
5047
3564
5176 | a1370
2481
4286
4828
5138
4311
5294 | a1540
2995
4593
4969
5216
4912
5405 | a1770
3564
4777
5066
5255
5203
5445 | 2215
4032
4892
5073
5255
5281
5412 | 2601
4386
4944
5125
5307
5412
5438 | 3006
4606
4957
5099
5307
5333
5386 | 3588
4733
4995
5131
5386
5333
5412 | 4050
4835
5047
5176
5405
5333
5491 | 5248
5471
5380 | | 5544
5380 | 3842
4087
4511
4841
5229
5021
5333 | 1780
1985
2195
2425
2275 | 610
630
640
670
655 | aValues taken from faired curves. TABLE II. - Concluded. EXPERIMENTAL RESULTS ## (a) For increments | Increment | Local heat- transfer coefficient, |
Average outside surface temperature of increment, | Average bulk temper-ature of increment, | Increment | Local
heat-
transfer
coefficient,
h | Average outside surface temperature of increment, | Average bulk temper- ature of increment, | | |---|---|--|---|---|---|--|--|--| | | Rui | n l | | | Rus | n 4 | | | | 1
2
3
4
5
6
7
8
9 | 1077
903
848
803
771
741
719
692
649 | 760
950
1090
1235
1410
1635
1930
2370
3080
3120 | 578
602
636
676
723
779
847
933
1045 | 1
2
3
4
5
6
7
8
9
10 | 1115
881
808
773
753
731
718
690
593
191 | 747
940
1090
1235
1395
1585
1845
2276
3173
3049 | 573
598
632
673
720
775
841
925
1037
1120 | | | | Rui | n 2 | , | Run 5 | | | | | | 1
2
3
4
5
6
7
8
9
10 | 1318
936
904
883
849
811
773
722
626
403 | 742
920
1005
1100
1220
1380
1610
2000
2760
2698 | 579
603
634
669
708
754
808
878
972
1059 | 12345678910 | 1191
929
860
823
701
761
733
714
613
247 | 760
945
1080
1220
1370
1600
1915
2340
3360
3267 | 578
603
637
677
723
778
846
932
1050 | | | | Rur | ı 3 | | Run 6 | | | | | | 1
2
3
4
5
6
7
8
9 | 1074
925
841
790
761
741
724
712
616 | 769
970
1140
1330
1540
1790
2130
2680
3653
3573 | 578
604
640
684
736
799
877
978
1110 | 1
2
3
4
5
6
7
8
9
10 | 1208
920
871
827
801
770
744
719
621
290 | 747
950
1080
1220
1385
1600
1910
2410
3440
3507 | 570
596
631
671
719
774
843
932
1055 | | TABLE II. - Concluded. EXPERIMENTAL RESULTS (c) Continued. For increments | Increment | Local
heat-
transfer
coefficient,
h | Average outside surface temperature of increment, | Average bulk temper- ature of increment, Tb | Increment | Local
heat-
transfer
coefficient,
h | Average outside surface temper- ature of increment, | Average bulk temper- ature of increment, Tb | |---|---|---|--|---|---|---|---| | | Rui | n 7 | | | Rur | n 10 | | | 1
2
3
4
5
6
7
8
9
10 | 1205
917
833
972
760
741
722
672
591
182 | 756
980
1155
1340
1555
1840
2280
3070
4200
3884 | 578
605
642
686
740
805
889
1003
1155 | 1
2
3
4
5
6
7
8
9
10 | 741
741
666
623
596
580
572
512
485
-124 | 791
1020
1240
1500
1845
2310
2990
3900
4733
4000 | 575
604
648
703
773
863
987
1146
1337
1419 | | | Rur | n 8 | | | Rur | 11 | | | 1
2
3
4
5
6
7
8
9
10 | 633
716
600
537
533
556
587
627
675
-106 | 889
1460
2515
4060
4880
5190
5275
5270
5215
4529 | 581
624
715
865
1069
1297
1532
1764
1990
2089 | 1
2
3
4
5
6
7
8
9 | 668
699
619
581
569
564
499
486
490 | 787
1070
1375
1715
2130
2760
3800
4580
4947
4124 | 576
606
655
720
805
919
1073
1264
1476 | | | Run | 9 | | | Run | 12 | | | 1
2
3
4
5
6
7
8
9 | 836
720
655
616
591
576
563
536
473
-82 | 740
960
1135
1330
1565
1865
2265
2905
3889
3556 | 571
598
638
686
744
816
908
1027
1181
1255 | 1
2
3
4
5
6
7
8
9 | 772
634
599
565
538
520
507
441
382
-135 | 738
940
1090
1250
1455
1730
2151
2950
4000
3356 | 581
607
643
688
741
807
892
1006
1154
1215 | TABLE II. - Concluded. EXPERIMENTAL RESULTS (c) Continued. For increments | Increment | Local
heat-
transfer
coefficient,
h | Average outside surface temperature of increment, | Average bulk temper- ature of increment, Tb | Increment | Local
heat-
transfer
coefficient,
h | Average outside surface temper- ature of increment, | Average bulk temper- ature of increment, Tb | | | |---|---|--|---|---|---|---|---|--|--| | | Rus | n 13 | | | Run | 16 | | | | | 1
2
3
4
5
6
7
8
9 | 603
634
613
565
514
478
428
371
344
-168 | 756
950
1090
1310
1685
2250
3190
4356
5022
3889 | 580
605
643
692
756
845
970
1137
1328
1394 | 1
2
3
4
5
6
7
8
9
10 | 173
565
485
441
423
402
371
366
392
-412 | 800
1150
1630
2330
3190
4130
4990
5431
5364
4036 | 565
591
648
734
857
1019
1212
1421
1633
1669 | | | | | Ru | n 14 | | Run 17 | | | | | | | 1
2
3
4
5
6
7
8
9 | 330
452
296
303
283
273
273
285
286
-763 | 831
2000
3720
4560
5080
5380
5520
5520
5556
4151 | 580
643
777
954
1153
1353
1550
1745
1936
1873 | 1
2
3
4
5
6
7
8
9
10 | 625
581
553
542
513
462
429
405
409
-267 | 751
985
1165
1390
1730
2400
3200
4090
4529
3578 | 567
596
641
698
771
873
1014
1196
1407
1469 | | | | | Rui | n 15 | | | Run | 18 | | | | | 1
2
3
4
5
6
7
8
9 | 118
355
344
339
353
375
390
409
437
-557 | 1436
3044
4351
5036
5190
5245
5330
5400
5370
4453 | 581
659
827
1037
1261
1490
1720
1951
2180
2192 | 1
2
3
4
5
6
7
8
9
10 | 419
548
483
445
413
404
416
436
463
-522 | 800
1185
1710
2480
3440
4240
4655
4840
4862
3773 | 568
604
675
782
936
1135
1362
1600
1835
1871 | | | # TABLE II. - Concluded. EXPERIMENTAL RESULTS (c) Concluded. For increments | Increment | Local
heat-
transfer
coefficient,
h | Average outside surface temper-ature of increment, | Average bulk temper- ature of increment, | Increment | Local
heat-
transfer
coefficient,
h | Average outside surface temper-ature of increment, | Average bulk temper- ature of increment, Tb | |---|---|--|---|---|---|--|---| | | Rus | n 19 | | | Run | 22 | | | 1
2
3
4
5
6
7
8
9
10 | 257
449
396
391
398
421
452
480
515
-592 | 1018
2010
3230
4220
4730
4910
4980
5050
5070
4182 | 572
637
776
974
1210
1461
1714
1964
2208
2235 | 1
2
3
4
5
6
7
8
9
10 | 370
649
574
528
532
554
601
639
675
-256 | 1022
1760
2990
4370
5133
5391
5330
5350
5350
4702 | 566
616
726
896
1112
1350
1591
1827
2058
2139 | | | Rur | n 20 | | <u> </u> | Run | 23 | | | 1
2
3
4
5
6
7
8
9 | 186
423
403
419
441
469
510
549
579 | 1342
2850
4190
4820
5025
5110
5130
5200
5285
4476 | 575
670
870
1127
1408
1689
1965
2236
2501
2509 | 1
2
3
4
5
6
7
8
9 | 206
561
534
563
597
642
693
737
777
-368 | 1529
3310
4844
5305
5420
5420
5420
5505
5610
5084 | 576
673
878
1134
1406
1678
1943
2203
2461
2541 | | | Rur | n 21 | | | | | | | 1
2
3
4
5
6
7
8
9 | 173
427
422
448
481
523
570
619
653
-728 |
1707
3550
4742
5150
5250
5300
5340
5415
5560
4867 | 591
718
972
1275
1591
1902
2206
2506
2803
2831 | | | | | 2/1/85 "The National Aeronautics and Space Administration . . . shall . . . provide for the widest practical appropriate dissemination of information concerning its activities and the results thereof . . . objectives being the expansion of human knowledge of phenomena in the atmosphere and space." -National Aeronautics and Space Act of 1958 ## NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge. TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge. TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons. CONTRACTOR REPORTS: Technical information generated in connection with a NASA contract or grant and released under NASA auspices. TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English. TECHNICAL REPRINTS: Information derived from NASA activities and initially published in the form of journal articles or meeting papers. SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities but not necessarily reporting the results of individual NASA-programmed scientific efforts. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies. Details on the availability of these publications may be obtained from: SCIENTIFIC AND TECHNICAL INFORMATION DIVISION NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. 20546