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Flutter of Two Parallel Flat Plates 
Connected by an Elastic Medium 
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y , a ,  ab+* N A S A  Langley Research Center, Hampton, Vu. 

Nomenclature 

= R x ,  - 2 ( ~ / b ) ~  
= plate length and width, see Fig. 1 
= (fk2/r4) + ( a / b ) 2 R y ,  - 
= plate flexural stiffness 
= thickness of plate 
= elastic spring constant 
= lateral aerodynamic load 
= Machnumber 

= dynamic pressure, pU2/2  
= aZNxi/a2L)* 
= a2Ny+/r2D* 
= spring stiffness parameter, ka4/r4D* 
= time 
= freestream velocity 
= lateral deflection of plate 
= Cartesian coordinates, see Fig. 1 
= (M2 - 1 ) 1 / Z  

= mass density of plate 
= 2qaa/pD, 
= mass density of air 
= circular frequency 
= wza4yfh&/D* 
= subscripts refer to upper and lower plate, respec- 

tively 

N y ,  = midplane force intensit,ies, positive in compression 

Introduction 

HE flutter behavior of a structural configuration consist- T ing of two rectangular, simply supported, parallel plates 
laterally connected by many closely spaced linear springs is 
investigated. The configuration analyzed is shown in Fig. 1. 
The upper plate has air flowing at supersonic speed over the 
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Fig. 1 Configuration and coordinate system. 

upper surface, and both plates are subjected to midplane 
loadings. 

This configuration is an idealization of a micrometeoroid 
bumper that is attached to a primary structure by a light, 
soft filler material. The aeroelastic behavior of such a con- 
figuration may be important in the design of structural com- 
ponents of a manped space= station which are exposed to an 
airstream during launch. 

. 

Analysis 

@ - The equilibrium equations and appropriate boundary con- 
ditions are 

b2W+ dZW, 32W+ 
D+V%+ + Nz+ b22 + Nu+ + Y+A+ at2 + 

E 4  k(w- - w+) = 0 (2) 
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Fig. 2 Flutter boundary for R,- = 0. 

R x  - R, 

a b  1 

Ry.  0 
5 - 20 

-10 -8 -6 - 4  - 2  0 2 4 6 8 10 

R. 

Fig. 3 Flutter boundary for RZ+ = R,- = R,. 

The frequency w is, in general, complex; however, attention 
is directed primarily to real values for which the motion is 
harmonic. 

When Eq. (4) is substituted into Eqs. (1) and (2) and the 
Galerkin procedure is used, the following equation is obtained : 

where I(.x,y,t) is the lateral load per unit area due to aerody- 
namic pressure. For static strip theory the lateral load is 
given by the simple Ackeret value Z(z,y,t) = - (2q/P)  x 

A two-term Galerkin solution is pursued. Solutions that 
satisfy the boundary conditions for simply supported edges 
are assumed as follows: 

(bw+lbzc) 

Flutter occurs with the coalescence of two natural frequen- 
cies aa the dynamic pressure parameter X increases (see Ref. 
1). The procedure is to solve Eq. (5) for X and maximize the 
resulting expression with respect to  the frequency to obtain a 
critical value of the dynamic pressure parameter A,. In 
many cases, more than one critical value exists corresponding 
to the coalescence of different pairs of modes, and it is neces- 
sary to seek the lowest critical value to define a flutter bound- 
ary. 

In  order to illustrate the general flutter characteristics 
eshibited by this configuration, calculations were made for the 
simplified case for which h+ = h-, D+ = D-, R,, = 0, a/b 
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Fig. 4 Flutter boundary for Rz+ = 0. 

= 1, and S+ = S -  = S. Flutter boundaries were derived from 
Eq. (5) for several combinations of streamwise midplane 
loads in the two plates. It must be remembered that these 
boundaries are subject to the same limitations that are de- 
scribed in Ref. l ;  in particular, the range of validity of the 
boundaries is limited by the buckling characteristics of the 
plates. 

Discussion 

For a single ffat isotropic plate, the flutter boundary as de- 
termined from a two-term Galerkin solution is a linear func- 
tion of the midplane load in the streamwise direction. Be- 
cause of the coupling of the motions of the two plates, how- 
ever, the configuration analyzed herein exhibits entirely dif- 
ferent boundaries. Peaks and valleys occur in the boundaries 

because the system can be tuned by means of the midplane 
loads. 

Figures 2-4 present flutter boundaries (Acr vs R,) for 
square plates having various combinations of midplane loads 
and a spring parameter of S = 20. At the present time 
realistic values of S are not clearly defined; the value chosen 
(S  = 20) might be typiral of a configuration with a very soft 
filler material. The flutter boundary for a single flat plate 
with the same physical properties as either the upper or the 
lower plate considered in the present analysis is also shown in 
each of the figures (see Ref. 1). 

Figure 2 is a plot of the boundary for the configuration 
when there is no load in the lower plate. This boundary be- 
comes asymptotic to the single plate boundary for large nega- 
tive values uf R,, i.e., large midplane tension, as do all of the 
boundaries considered herein. 

Figure 3 is a plot of the boundary when the midplane loads 
are the same in each plate. Here the tuning effect can be very 
significant since it is possible to have a zero flutter speed with 
a tensile load, and a peak exists which is much higher than the 
corresponding value for the single plate. 

Figure 4 is a plot of the boundary when there is no load in 
the upper plate. This case is perhaps the most realistic com- 
bination of loading if the configuration is considered to  be a 
micrometeoroid protection device. This boundary has 
characteristics very similar to the boundary in Fig. 2 except 
that here the tuning effect, is more prevalent. In  particular, 
for streamwise tension, a condition that can be expected from 
bending loads on a space vehicle during launch, the elastically 
supported plate is more prone to flutter than the single plate 
alone. 

The results of this analysis indicate that if a configuration 
similar to this one is used for applications where supersonic 
airflows are encountered, a very careful flutter analysis is in 
order to insure that undesirable flutter characteristics are not 
present. 

Reference 
1 Hedgepeth, J. M., “Flutter of rectangular simply supported 

panels at high supersonic speeds,” J. Aeronaut. Sci. 24, 563-573 
(1957). 


