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FLIGHT TEST PERFONNCE AND DESCRIPTION 

OF A ROCKET VMICLE FOR PROIXICING 

LOW-SPEED ARTIFICIAL METEORS 

By Clarence A. Brown, Jr., and Jean C.  Keating 
Langley Research Center 

SUMMARY 

The six-stage Trailblazer I vehicle with a seventh-stage shaped-charge 
accelerator developed by the  A i r  Force Cambridge Research Laboratories w a s  suc- 
cessful  i n  producing an a r t i f i c i a l  low-speed i ron meteoroid tha t  reached a 
veloci ty  a t  reentry of 32,100 feet  per second. The f l i g h t  t e s t  w a s  conducted 
a t  the NASA Wallops Station, Wallops Island, Virginia, and indicated tha t  the 
performance of the  vehicle was very close t o  the  values indicated by pref l igh t  
calculations.  Optical data were obtained a t  three camera s i t e s  and yielded data 
necessary t o  compute for t he  f i rs t  time the luminous efficiency of an a r t i f i c i a l  
i ron meteoroid reentering the  atmosphere. 

INTRODLTCTION 

A r t i f i c i a l  iron meteoroids a re  of current i n t e re s t  t o  meteor physicis ts  
and astronomers since many photographic p la tes  of meteors of unlmown mass and 
composition have been obtained. Some knowledge of the  mass, composition, and 
shape has been obtained from meteorites - stony o r  metall ic bodies t h a t  have 
reached the surface of the ear th  without being completely vaporized - but assump- 
t ions  m u s t  be made as  t o  the s ize ,  shape, and composition of the meteors during 
the  reentry. I n  order t o  make be t t e r  use of the  photographic p la tes  of meteors, 
it w a s  first necessary t o  obtain within narrower l i m i t s .  than previously avai l -  
able, the  efficiency with which the  kinet ic  energy of a meteoroid i s  transformed 
t o  luminous energy i n  the photographic region; t h i s  i s  ca l led  the  luminous e f f i -  
ciency of a meteoroid. The photographic in tens i ty  of the  luminous energy and 
veloci ty  of the  meteoroid can be obtained by observation, but i n  order t o  com- 
pute the  m a s s  of a na tura l  meteor, a de t eh ina t ion  of t h e  luminosity coeff ic ient  
of the  meteor must be obtained. Many d i f fe ren t  elements have been detected i n  
natural  meteors from spectrographic p la tes  and one element of i n t e re s t  i s  i ron.  
A s  pointed out i n  reference 1, observations of natural  meteors have not yet  
yielded r e l i ab le  data on the luminous efficiency, meteor masses, or meteor 
densi t ies .  The present experiment w a s  intended t o  obtain a r e l i ab le  value of 
the  luminous efficiency of one meteor element, iron. The vehicle used t o  reen- 
t e r  such a low-speed meteoroid i s  described herein. 



The unique six-stage, solid-fuel Trailblazer I rocket system was developed 
t o  study the physical phenomena which occur during the reentry of high-speed 
objects in to  the ear th 's  atmosphere. A detai led review of the vehicle design 
and a description of the  vehicle system are  presented i n  reference 2; the aero- 
dynamic character is t ics  of the vehicle a re  given i n  references 3 and 4. In the 
f i r s t  nine f l i gh t  t e s t s  (described i n  r e f .  2) the reentry velocity of the pay- 
load varied between 18,000 and 25,000 f e e t  per second. 

In  order t o  obtain the increased velocity necessary fo r  meteor simulation, 
a shaped-charge accelerator, developed by the U.S. A i r  Force Cambridge Research 
Laboratories (CRL), was added t o  the Trailblazer I vehicle as  a seventh stage. 
A description of t h i s  seventh-stage, shaped-charge accelerator and the modifica- 
t ions  made t o  the s ixth stage a re  presented herein along with the preliminary 
t ra jec tory  data f o r  t h i s  vehicle and the radar data obtained from the f l i g h t  
test. 

The Trailblazer reentry research program, of which t h i s  vehicle i s  a par t ,  
i s  a cooperative e f fo r t  between the  NASA and the  Massachusetts In s t i t u t e  of 
Technology - Lincoln Laboratory. 
formed jo in t ly  by both organizations. 
w e r e  conducted a t  the NASA Wallops Station. 

Data acquisit ion and analysis tasks are  per- 
A l l  launchings f o r  the Trailblazer project 

Velocit ies and a l t i tudes  i n  the t ex t  a re  presented i n  both English and 
metric uni ts ;  a conversion factor  of 1 kilometer = 3,280.83 f ee t  was used. 

DESCRIPTION OF ROCKET V M I C L E  

A general description of the basic six-stage Trailblazer I configuration 
i s  given i n  reference 2. Further de t a i l s  not included in-reference 2 on the 
f in s ,  the separation mechanics of the stages, and the process used t o  balance 
the vehicle dynamically a re  given i n  the appendix. The reentry object i n  the 
nine f l i g h t  t e s t s ,  discussed i n  reference 2, w a s  the  empty sixth-stage ?-inch 
spherical  rocket-motor case. 
essary f o r  an a r t i f i c i a l  meteoroid, a seventh stage was added t o  the basic 
Trailblazer configuration hereinafter designated Trailblazer Ig.  A sketch and 
a photograph of the s ix th  stage and the seventh stage (a shaped-charge acceler- 
a to r  developed by the U.S. A i r  Force Cambridge Research Laboratories) are  shown 
i n  figure 1. (See r e f .  1.) 

I n  order t o  obtain the increased velocity nec- 

The reentry object used t o  simulate a meteoroid was a 5.8-grm stainless-  
s t e e l  pe l l e t .  
f igure l ( a ) ,  the diameter of the front  face of the  0.10-inch-thick p e l l e t  was 
0.83 inch and the diameter of the pe l l e t  a t  the  a f t  end was 0.75 inch. 
pe l l e t  was mounted i n  the nose of the seventh stage as  shown i n  figure 2(a) .  

A s  can be seen from a sketch i n  the upper left-hand corner of 

The 

The seventh-stage accelerator case shown i n  figure 2(b) and i n  figure l w a s  
a 10-inch-long cylinder which was 1.5 inches i n  diameter and made of 75ST alumi- 
num alloy. The wall thickness of the  case was 0.040 inch a t  the  juncture of the 
5-inch motor and case,, and then tapered t o  a thickness of 0.010 inch a t  the pel- 
l e t  end of the case. More than half the length of the shaped-charge accelerator 
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was used t o  accommodate a 25-second delay squib. 
of the velocity package simultaneously applied current t o  the squibs of the 
fourth, f i f t h ,  s ixth,  and seventh stages. The seventh-stage detonator igni ted 
the 25 grams of t e t r y l  booster. This booster i n  turn igni ted 140 grams of PBX 
charge which accelerated the p e l l e t  t o  a reentry velocity of approximately 
32,000 f ee t  per second. 

A timer located i n  the nose 

The seventh-stage shaped-charge accelerator was attached t o  a boss located 
on the front of the  s ixth stage and pinned i n  place. A sketch of the velocity 
package, which housed the  rearward-firing fourth, f i f t h ,  sixth,  an2 seventh 
stages i s  shown i n  figure 3. It w a s  necessary t o  shorten the f i f th- to-s ixth 
stage adaptor used on the vehicle described i n  reference 2 i n  order t o  accom- 
modate the seventh-stage shaped-charge accelerator. A sketch of the complete 
configuration with dimensions i s  shown i n  figure 4, and a photograph of the  
vehicle i n  the launch position i s  shown i n  figure 5.  

Prior  t o  the f l i g h t  t e s t  of Trailblazer Ig, several ground t e s t s  were con- 
ducted by the U.S. A i r  Force Cambridge Research Laboratories t o  determine the 
e f fec ts  which the high temperature and b las t  force produced by the shaped charge 
would have upon the pe l le t .  These ground t e s t s  indicated tha t  the temperature 
and b las t  force 
mass of the pe l l e t .  The average of the resu l t s  obtained from these t e s t s  indi-  
cated tha t  %he p e l l e t  was reduced i n  mass and diameter t o  2.2 grams and 
0.575 inch. 
sented i n  figure 6. 

of the shaped charge resulted i n  a reduction i n  both s ize  and * 

A photograph of the p e l l e t  before and a f t e r  capture t e s t  i s  pre- 

VEHICW PEXFORMANCE 

Weights used i n  computing these t ra jec tor ies  were actual  measured weights 
a t  vehicle assembly and are  presented i n  table  I. 
tory f o r  each stage i s  shown i n  figure 7 fo r  the  nominal launch angle of 800. 
As may be noted i n  figure 7 the pe l l e t  and the sixth-stage 5-inch spherical  
rocket motor follow essent ia l ly  the same t ra jectory and are  separated only i n  
time.. The pe l l e t  reenters (200,000 f ee t  a l t i tude)  appsoximately 342.5 seconds 
a f t e r  launch and the sixth-stage 5-inch spherical rocket motor, 351 seconds 
a f t e r  launch. 
mination of the posit ion of each stage f o r  any given time a f t e r  launch. To 
assure tha t  the vehicle w i l l  f ly the  nominal t ra jectory (800 launch angle), a 
computer program was writ ten t o  adjust  the Paunch elevation and azimuth angles 
t o  account for wind variations present a t  the time of launch. 
explained i n  reference 5 f o r  the  Trailblazer vehicles. 

The nominal computed t ra jec-  

Time notations are  included i n  a l l  t ra jec tor ies  t o  a i d  i n  deter- 

The method i s  

A t i m e  h is tory of the nominal computed vehicle a l t i tude ,  horizontal range, 
f l ight-path angle, and velocity u n t i l  the  time of fourth-stage igni t ion i s  
shown i n  figure 8. 
included i n  a table  i n  t h i s  f igure.  M a x i m u m  booster velocity i s  obtained at  
third-stage burnout (40.6 seconds) and peak a l t i t ude  i s  a d i rec t  function of 
this velocity and fl ight-path angle. The fl ight-path angle a t  third-stage burn- 
out i s  a l so  the approximate spin-stabil ized a t t i t ude  of the velocity package and 

Pertinent information concerning staging events i s  a l so  
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therefore i s  a major factor i n  determining the angle of the pe l l e t  reentry. 
The final-stage reentry t ra jectory i s  fixed by the combined influence of the 
vehicle velocity, the fl ight-path angle, and the velocity-package a t t i tude  angle 
a t  fourth-stage ignit ion.  Calculated longitudinal acceleration f o r  the ascending 
portion of the t ra jec tory  i s  presented i n  figure 9, and curves which show the 
velocity-time and velocity-alt i tude relationship f o r  the f i n a l  four stages during 
t h e i r  reentry t ra jec tor ies  a re  presented i n  figures 10 and 11, respectively. 

RESULTS OF FLIGHT TEST 

The t ra jectory flown by Trailblazer I g  as  obtained by each of the radars 
used during the f l i g h t  i s  shown i n  figures 12 t o  15. 
obtained by the SCR-584, Mod 11, FPS-16, and the MIT S-Band radars. Since the. 
Trailblazer configuration i s  an unguided vehicle, containing no onboard controls 
f o r  corrections i n  f l i g h t  fo r  any deviations from nominal, the vehicle follows 
an essent ia l ly  b a l l i s t i c  t ra jectory.  
elevation angles will af fec t  the t ra jectory i n  maximum a l t i tude  and horizontal 
range obtained by the vehicle. Since ground-based opt ica l  instrumentation was 
of prime importance fo r  t h i s  f l i gh t ,  control of the t ra jectory w a s  imperative 
i n  order t o  insure opt ica l  coverage. 
throughout the atmospheric a l t i t ude  range have a large e f fec t  on t ra jectory 
dispersion, a wind compensation method ( r e f .  5 )  especially ta i lored  t o  the 
vehicle's character is t ics  was used t o  determine the launcher set t ings necessary 
t o  compensate fo r  the e f fec ts  of these winds. The intended t ra jectory f o r  t h i s  
vehicle was tha t  of an 80° elevation angle and 150° azimuth angle (measured from 
t rue  north).  

Excellent radar data were 

. Small changes i n  the  launch azimuth and 

0 

Atmospheric winds both a t  the surface and 

The short range of both the  SCR-584 and the  Mod I1 radars l imited t h e i r  
coverage of the f l i g h t  t o  a short portion of the  ascending trajectory.  Their 
purpose was t o  provide the ea r l i e s t  possible acquisit ion of the target  and yield - 
accurate data on the position of the vehicle during the early par t  of the  f l i g h t  
when the range of the vehicle was below or barely within the minimum range of 
the long-range tracking radars. From acquisit ion a t  7.5 seconds and 4.0 seconds 
fo r  the SCR-584 and Mod 11, respectively, u n t i l  the  FPS-16 acquired the ta rge t  
a t  1-9 seconds, these shoh-range radars provided the only radar data available. 
The ms-16 retained the target  u n t i l  200 seconds a f t e r  launch, a t  which time the 
target  exceeded the skin tracking range of t h i s  radar. The longer range MIT 
radar, capable of tracking the en t i re  f l i g h t ,  acquired the target  a t  approxi- 
mately 40 seconds a f t e r  launch and retained t rack u n t i l  a f t e r  sixth-stage 
rocket-motor burnout a t  320 seconds. 

Figures 12, 13, and 14 show the t ra jectory,  f l ight-path angle, and azimuth 
angle measured from the launch s i t e  by the SCR-584, Mod 11, and FPS-16 radars, 
respectively. 
t ra jectory higher i n  elevation than for the  nominal 80° launch-elevation angle, 
although the launcher se t t ing  was corrected for  atmospheric winds. The t ra jec-  
tory flown by Trailblazer I g  w a s  approximately equivalent t o  tha t  which would 
have resulted from an 81O launch-elevation angle. The azimuth angle differed 
from the nominal 1500 by about 2 O  a f t e r  the  e f fec ts  of the  atmospheric winds 

Examination of f igures 12 t o  14 shows tha t  the vehicle flew a 
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had been evaluated, and the vehicle had responded t o  these winds. The f l i gh t -  
path angle shown f o r  a l l  three radars was higher than the nominal fo r  the  
i n i t i a l  portion of the  t ra jectory,  but as may be seen i n  f igure 14(b) it w a s  
lower than the  nominal a f t e r  160 seconds of f l i g h t  time. 

Presented i n  f igure 15 i s  the t ra jec tory  obtained from the  MIT S-Band 
tracking radar. This radar w a s  capable of tracking the vehicle t o  apogee and 
indicating the rocket-motor separations on the descending t ra jectory.  The 
S-Band radar tracked the  vehicle t o  about 324 seconds, or s l igh t ly  a f t e r  burn- 
out of the sixth-stage rocket motor. A s  may be seen i n  f igure 13, the  apogee 
of the t ra jec tory  w a s  very close t o  the  nominal, but t he  horizontal  range of 
the  vehicle a t  apogee w a s  about 100,000 fee t  c loser  t o  the  launcher than 
expected. 
radars shows t h a t  the  accuracy of the  two radars w a s  good. 

Comparison of the  FPS-16 (fig.. 14)  and t h e  MIT S-Band ( f ig .  15) 

Vehicle veloci ty  determined from the  data of the FPS-16 and the  MIT S-Band 
radars i s  shown i n  f igures  14(c) and l3(b) ,  respectively. 
from these figures, the  velocity obtained agreed closely with the  predicted 
pref l igh t  velocity. Velocity data f o r  a portion of the reentry t ra jec tory  w e r e  
obtained from the  MIT S-Band radar. The velocity agreed extremely well with 
the predicted reentry velocity through sixth-stage f i r i ng ,  a t  which t i m e  t he  
radar l o s t  the  ta rge t .  A maximum velocity of 20,500 f ee t  per second w a s  
obtained a t  t h i s  t i m e .  

A s  may be noted 

Pref l ight  calculations indicated t h a t  t he  spin r a t e  f o r  a lo per  f i n  cant 
(kO t o t a l  angle) of t he  third-stage f i n s  should be approximately 10 cycles per 
second. The measured f i n  cant of t he  f i n s  w a s  3 O 5 1 '  t o t a l  angle which yielded 
a m a x i m  spin rate of 9.74 cycles per  second as shown i n  f igure 16. 
rate w a s  determined from the  third-stage telemeter and ground-based instrumenta- 
t i on  and was adequate f o r  spin s t a b i l i t y  of the velocity package. 

This spin 

The reentering seventh-stage low-speed i ron "meteoroid" w a s  photographed 
a t  s ta t ions  located a t  Wallops Island, Virginia, Coquina Beach, North Carolina, 
and Eastvi l le ,  Virginia. One of the photographs i s  shown i n  f igure 17 together 
with a sketch showing the  c e l e s t i a l  coordinates of the  f i e l d  of view covered by 
the camera. A n  analysis of t he  luminous efficiency of the low-speed a r t i f i c i a l  
i ron meteoroid has been made and i s  presented i n  reference 6. 
became v is ib le  a t  an a l t i t ude  of 226,500 f ee t  (69.04 km). The length of t he  
t r a i l  produced by the  a r t i f i c i a l  meteoroid w a s  21,000 feet (6.40 Inn). 
veloci ty  of t he  p e l l e t  w a s  measured opt ical ly  and w a s  32,100 feet per  second 
(9.78 km/sec) (ref.  6 ) .  The photograph shown i n  figure 17 a lso  shows the  
reentry of t he  sixth-stage >-inch spherical  rocket motor which, of course, 
appeared a t  a l a t e r  time than did the  pe l l e t .  This i s  the  f i rs t  time suffi- 
c ient  data have been obtained t o  compute the  luminous efficiency of an a r t i f i -  
c i a l  i ron  meteoroid of a known m a s s  reentering the  atmosphere. 

The i ron p e l l e t  

The 

Calculations of t he  heating rates and wall temperatures w e r e  made fo r  the 
seventh-stage p e l l e t  by using the  method of reference 7 and are presented i n  
f igure 18. These calculations w e r e  made fo r  both the  edge and center of t he  
f ront  face of the  pe l l e t .  
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Reference 6 shows tha t  t he  pe l l e t  became v is ib le  a t  an a l t i t ude  of 
226,500 f ee t  (69.04 Inn) and remained v is ib le  u n t i l  205,500 f ee t  (62.64 Ism). 
The melting point of s ta in less  s t e e l  i s  2,750° F and from figure 18 the edge of 
the p e l l e t  reached t h i s  temperature a t  228,000 fee t  (69.49 h), very close t o  
the a l t i t ude  a t  which the pe l l e t  became vis ible .  
pe l l e t  did not reach t h i s  temperature u n t i l  213,000 f ee t  (64.92 km) al t i tude.  

The center portion of the 

CONCLUDING REMARKS 

The six-stage Trailblazer vehicle with a seventh-stage shaped-charge accel- 
erator  developed by the U.S. A i r  Force Cambridge Research Laboratories was sue- 
cessful i n  producing an a r t i f i c i a l  low-speed meteoroid tha t  reached a velocity 
of 32,100 f ee t  per second a t  reentry. 
from radar data agreed very well with the  pref l ight  predicted values. 

The t ra jec tory  and velocity obtained 

Optical data were obtained a t  three camera s i t e s  and yielded data necessary 
t o  compute, within narrower limits than previously possible fo r  natural  meteors, 
the luminous efficiency of an a r t i f i c i a l  i ron meteoroid reentering the 
atmosphere. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, V a . ,  December 24, 1963. 
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APPENDIX 

ADDITIONAL DESCRIPTION OF ROCKET VEHICLE 

First-Stage Booster 

The f i r s t - s tage  booster was an Honest John rocket motor with standard 
cruciform mili tary f i n s  ( f ig s .  lg (a)  and 20). The f i n s  were of double-wedge 
section and had the leading edge swept back 42O. 

1 outside of the rocket motor) f o r  each f i n  was 7- square fee t  per panel. To 
2 

obtain spin immediately a f t e r  the  vehicle cleared the launcher, four Honest 
John M-7 spin motors were manifolded together a t  the forward end of the rocket. 
These four spin motors produced a spin r a t e  of about 1 cycle per second. I n  
addition t o  the spin motors, each f i n  on the Honest John had a cant of approxi- 
mately one-half degree t o  maintain t h i s  spin r a t e  of 1 t o  11 cycles per second. 

The f i r s t - s tage  Honest John imparted the spin t o  the remainder of the vehicle 
by means of two keys and slots which locked the f i r s t  and second stages together 
but did not prevent the stages from drag separating. 

The exposed area ( tha t  area 

2 

Second-Stage Booster 

The second-stage booster w a s  the  booster motor of the Nike Ajax missile. 
The f ins ,  of NASA design, were modified cruciform double-wedge shaped with an 
exposed area of 2L square f e e t  per panel ( f ig s .  19(b) and 20). 

edges of the f i n s  had a sweep angle of l 7 O .  
the f i n s  could withstand the temperature environment of the ascending t ra jectory,  
a leading-edge cap of 0.031-inch-thick inconel was added to the f in s  ( f ig .  20) 
fo r  heat protection. The f i r s t -  and second-stage booster f i n s  were alined 
because of the position of the stages on the  launcher. The second-stage booster 
f i n s  were not canted t o  maintain the f i r s t - s tage  spin, but were se t  as  near t o  
zero as manufacturing tolerance would permit. The second and t h i r d  stages were 
mechanically held together by a rad ia l ly  s lo t ted  th in  metal diaphragm which had 
a threaded flange or r i m .  
the third-stage nozzle-exit cone and in to  the threaded adaptor which was bolted 
t o  the forward end of the second stage. A t  third-stage igni t ion,  the motor 
exhaust pressure collapsed the diaphragm, disengaged the threads, and permitted 
the motors t o  separate. Tip f l a r e s  were added t o  the second stage for .use as  
visual  acquisit ion and tracking aids  by the radars. 

The leading 
2 

To insure tha t  the leading edge of 

The diaphragm was threaded d i rec t ly  in to  the l i p  of 

Third-Stage Booster 

The third-stage booster w a s  a TX77 rocket motor with NASA d e s i s e d  f i n s  
t h a t  were cruciform modified double-wedge shaped and had an exposed area of 
2 square f ee t  per panel ( f ig .  I g ( c ) ) .  
back l7O and was obtained by cut t ing 3.4 inches spanwise from the root chord of 

The leading edge of the f i n s  was swept 



the  type of f i n s  used on the second stage ( f i g .  20). 
protected from aerodynamic heating by a double cap. 
0.031-inch-thick inconel and extended t o  the f l a t  portion of the f i n s  and then 
a blunted 0.040-inch-thick s ta inless-s teel  overlay covered the leading edge of 
the inconel cap. 
lo each (3'051' t o t a l  angle) t o  provide the necessary spin f o r  s tab i l iza t ion  of 
the velocity package a f t e r  separation from the t h i r d  stage (approximately 
10 cycles per second). 
and second-stage f in s .  
of l e s s  than 0010' fo r  each f in .  

The leading edges were 
This cap was made of 

The f i n s  of the t h i r d  stage had a cant angle of approximately 

The third-stage f i n s  were a l so  alined with the f i r s t -  
Fin misalinements f o r  a l l  stages were held t o  an angle. 

A separation mechanism attached t o  the front  of the th i rd  stage provided 
the means of detaching the velocity package from the t h i r d  stage. A schematic 
drawing of the operation of t h i s  separation mechaniqm i s  shown i n  reference 1. 
The four-channel performance telemeter was housed i n  the separation-mechanism 
section t o  monitor the vehicle performance through separation qf  the th i rd  stage 
and the velocity package. 

Velocity Package 

A sketch of the velocity package, which housed the rearward f i r i n g  fourth, 
f i f t h ,  s ixth,  and seventh stages i s  shown i n  figure 3. The nose of the velocity 
package was a hemispherical segment tangent t o  an 8 O  half-angle cone frustum. 
Another cone frustum of approximately 2 O  half-angle formed the tube section of 
the velocity package which i n  turn fa i red  i n t o  a cylinder. The arrangement of 
the rocket motors i n  the velocity package i s  a l so  shown i n  figure 3 .  The 
fourth-stage T40 rocket motor was inserted in to  the velocity package and held 
i n  place on the guide r a i l s  by means of a blowout diaphragm threaded t o  the 
torque nozzle and similar t o  the diaphragm described fo r  the second stage. The 
fourth-stage T40 rocket motor had a special  torque nozzle which imparted an 
additional spin r a t e  of approximately 20 cycles per second t o  the already 
existing 10 cycles per second from the third-stage f i n s  f o r  spin s tab i l iza t ion  
of the l a s t  two stages. The fif th-stage T55 rocket motor, the sixth-stage 
5-inch spherical motor, and the seventh-stage shaped-charge accelerator were 
cantilevered from the fourth stage. Small hollow-column gauze-coated phenolic 
s t i f feners  were glued t o  the inside of the velocity package and a t  the juncture 
of the f i f t h  and s ix th  stages within the velocity package t o  a id  i n  supporting 
the inner structure.  

Before the  vehicle w a s  assembled fo r  launch, several combinations of com- 
ponents were dynamically balanced. The various combinations balanced were 
(1) the f i f t h ,  s ixth,  and seventh stages, (2 )  the fourth, f i f t h ,  sixth,  and 
seventh stages, and (3) the velocity package complete with inner structure.  
Weights were added t o  each combination u n t i l  the  pr incipal  axis inclination was 
l e s s  than 0 . 0 2 O  fo r  the  f i f t h ,  s ixth,  and seventh stages and l e s s  than O.0lo 
fo r  the velocity package with the in te rna l  stages. Photographs of several com- 
binations of components on the dynamic balancing machine are shown ,in figure 21. 
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TABU I.- WEIGHT BIiEAKDowN OF TRAILB-R I g  

Seventh stage: 
Shaped-charge accelerator (276.5 grams) . . . . . . . . . . .  

Tota l  t h i s  stage . . . . . . . . . . . . . . . . .  
Sixth stage: 

?-inch motor case and l iner  
?-inch propellant . . . . . . . . . . . . . . . . . . . . . .  
Nozzle alone . . . . . . . . . . . . . . . . . . . . . . . . .  
Pe l l e t  i n g r a i n  . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . .  

?-inch rocket motor loaded . . . . . . . . . . . . . . . . . .  
Igni ter  assembly . . . . . . . . . . . . . . . . . . . . . . .  
Diaphragm . . . . . . . . . . . . . . . . . . . . . . . . . .  

Tota l  th i s  stage . . . . . . . . . . . . . . . . .  
Tota l  previous stages . . . . . . . . . . . . . . .  
Tota l  including th i s  stage . . . . . . . . . . . .  

Fi f th  stage: 
Adaptor (5-inch motor t o  T55) section 
Loaded T55 FlM (nozzle. nose cap. and shroud) 

. . . . . . . . . . . .  . . . . . . . . .  
E a r s f o r s l e e v e  . . . . . . . . . . . . . . . . . . . . . . .  
Igniter assembly . . . . . . . . . . . . . . . . . . . . . . .  
Balance . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Total  t h i s  stage . . . . . . . . . . . . . . . . .  
Tota l  previous stages . . . . . . . . . . . . . . .  
T o t a l  including t h i s  stage . . . . . . . . . . . .  

Fourth stage: 
T55 diaphragm . . . . . . . . . . . . . . . . . . . . . . . .  
Adaptor ( T h  t o  T55) . . . . . . . . . . . . . . . . . . . . .  
Loaded T40 with nozzle . . . . . . . . . . . . . . . . . . . .  
Igniter assembly . . . . . . . . . . . . . . . . . . . . . . .  
Diaphragm ( T b  t o  package) . . . . . . . . . . . . . . . . . .  
Balance . . . . . . . . . . . . . . . . . . . . . . . . . . .  

T o t a l  th i s  stage . . . . . . . . . . . . . . . . .  
T o t a l  previous stages . . . . . . . . . . . . . . .  
T o t a l  including t h i s  stage . . . . . . . . . . . .  

Weight. l b  

0.61 

0.61 

- 
. 

0.30 
3.74 
0.27 
0.01 

4.32 

0.04 

- 

0.13 
- 
4.49 
0.61 
5.10 - - 

0.63 
49 25 
0.31 
0.69 
0.16 

5.10 
51.04 

56.14 

0.56 
1.37 

134.00 
0.75 
0.56 
1.31 

138 55 

194.69 
56.14 
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TAB- I.- WEIGHT BREAKDOWN OF TRAILBLAZER I g  - Continued 

Weight, l b  
Velocity package skin: . . . . . . . . . . . . . . . . . . . . . . . .  Nose section 13 50 

R e a r w a r d  skin 50.94 . 

Balance . . . . . . . . . . . . . . . . . . . . . . . . . .  0-53 

Forward skin . . . . . . . . . . . . . . . . . . . . . . . .  17.62 . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . .  T i m e r  2.56 

. . . . . . . . . . . . . . . .  T o t a l  th is  stage 85-15 
T o t a l  previous stages . . . . . . . . . . . . . . .  194.69 
T o t a l  including this  stage . . . . . . . . . . .  279.84 

Center of gravity, inches rearward of package nose . . . . . . . . . . .  59.25 

Velocity package separation m e c h a n i s m :  . . . . . . . . . . . . . . . . . . . .  Separation m e c h a n i s m  75 9 90 . . . . . . . . . . . . . . . . . . . . . . . .  0.56 
T i m e r a s s e m b l y .  . . . . . . . . . . . . . . . . . . . . . .  3.32 

79 9 78 
To ta l  velocity package . . . . . . . . . . . . .  279.84 

package . . . . . . . . . . . . . . . . . . . .  359.62 

Squib holder 

. . . . . . . . . . .  T o t a l  separation mechanism 

T o t a l  separation m e c h a n i s m  and velocity 

Third-stage rocket motor: 
TX77 rocket motor with 2-ft2/panel f ins ,  pyrogen uni t ,  

. . . . . . . . . . . . . . . . . . . . . . . . .  0.34 In i t i a to r s  
shroud, but no separation mechanism . . . . . . . . . . .  1,721.10 

To ta l  th i s  stage . . . . . . . . . . . . . . . .  1,721.44 
T o t a l  previous stages . . . . . . . . . . . . . .  359.62 
T o t a l  including t h i s  stage . . . . . . . . . . .  2,081.06 

Center of gravity, inches f r o m  thrust face of motor . . . . . . . . . .  85.45 

Second-stage rocket motor: 
1 
2 

Nike rocket motor with 2- - ft2/panel f in s ,  adaptor, and 

Flares 
Igniter 

flare holder . . . . . . . . . . . . . . . . . . . . . . .  1,297.00 . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.50 . . . . . . . . . . . . . . . . . . . . . . . . . .  8.06 

T o t a l  t h i s  stage . . . . . . . . . . . . . . . .  1,306.56 
T o t a l  previous stages . . . . . . . . . . . . . .  2,081.06 
To ta l  including th i s  stage . . . . . . . . . . .  3,387.62 

Center of gravity, inches f r o m  thrust face . . . . . . . . . . . . . . .  60.75 
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TABLE I.- WEIGHT BREAKDOWN OF TRAILBLAZER I g  - Concluded 

Weight, lb 
First-stage rocket motor: 

Honest John rocket motor with 7L-ft2/panel f i n s ,  adaptor, 
2 

spin motors, and housing . . . . . . . . . . . . . . . . . 4,237.50 

Tota l  this stage . . . . . . . . . . . . . . . . 4,247.19 

Igniter . . . . . . . . . . . . . . . . . . . . . . . . . . 9.69 

T o t a l  previous stages . . . . . . . . . . . . . . 3,387.62 
T o t a l  including t h i s  stage . . . . . . . . . . . 7,634.81 

Center of gravity, inches f r o m t h r u s t  face . . . . . . . . . . . . . . . 87.25 

To ta l  of Trai lblazer  I g  a t  take-off . . . . . . . . . . . . . 7,634.81 



5" s p h w i e a l  
mckot  motor 

L-----l Detailed drawin8 of the Seventh stage reentry object .  

-1 

(a) Sketch of sixth and seventh stages and seventh-stage reentry object, 

Figure 1.- Sixth and seventh stages of the Trailblazer Ig. Dimensions are in inches. 



(b )  Photograph of sixth and seventh s tages .  

Figure 1.- Concluded. 
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(a )  End view of  a c c e l e r a t o r  and p e l l e t .  

Figure 2.- Photograph of shaped-charge a c c e l e r a t o r .  L-61-7079 



( b )  Side view of  a c c e l e r a t o r .  

Figure 2.- Concluded. 

L-61-3080 
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Figure 3.- Sketch of ve loc i ty  package. A l l  dimensions and s t a t i o n  locat ions a r e  i n  inches. 
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Figure 4.- Sketch of vehicle .  A l l  dimensions and s t a t i o n  numbers a r e  i n  inches. 
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Figure 5.- T r a i l b l a z e r  I g  i n  launch p o s i t i o n .  L-61-3073 



Figure 6.- P e l l e t  before  and a f t e r  capture  t e s t s  a t  Cambridge Research Laborator ies .  L-62-7818 



Borlzontal range, i t  

Figure 7.- Calculated trajectory for each stage at an 80° launch angle. 
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Figure 8.- Calculated time h i s t o r y  f o r  first 300 seconds of f l i g h t .  
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Figure 9.- Calculated longi tudina l  acceleration f o r  f i r s t  th ree  stages.  
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Figure 10.- Calculated velocity-time curves fo r  reenter ing  stages.  
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Figure 11.- Calculated velocity-altitude curves for reentering stages. 

25 



. 

26 

0 20 40 60 80 

Horizonta l  range, ft 

(a) Trajectory. 

Figure 12.- Data obtained from SCR-584 radar. 
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(b) Var ia t ion  of f l i g h t - p a t h  angle and azimuth angle. 

Figure 12.- Concluded. 
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(a) Trajectory. 

Figure 13.- Data obtained from Mod I1 radar. 
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(b) Var i a t ion  of f l i g h t - p a t h  angle  and azimuth angle.  

Figure 13. - Concluded. 
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Figure 14.- Data obtained from FPS-16 radar. 
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( b )  Var ia t ion  of f l i g h t - p a t h  angle and azimuth angle .  

Figure 14.-  Continued. 
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( e )  Varia t ion  of ve loc i ty  with time. 

Figure 14. - Concluded. 
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(a )  Tra jec tory .  

Figure 15.- Data obtained from MIT S-Band radar. 
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(b)  Variat ion of ve loc i ty  w i t h  time. 

Figure 1-5. - Concluded. 
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Figure 16.- Variat ion of spin r a t e  (produced by third-s tage f i n s )  with time. 



(a )  Photograph of r e e n t r y  of p e l l e t  and s i x t h  s tage .  

Figure 1.7.- Reentry t r a i l  of T r a i l b l a z e r  I g  as viewed from Coquina Beach, N . C .  'cracking s t a t i o n .  L-64-363 
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(b)  Sketch of t h e  star background and r een t ry  t r a i l .  

Figure 17. - Concluded. 
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38 



- . - 

R ~ M M  thrust IW 

( a )  Sketch of f i r s t - s t a g e  rocket motor. 

Figure 19.- Sketch of booster rocket motors. A l l  dimensions a r e  i n  inches. 
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(b)  Sketch of second-stage rocket motor. 

Figure 19.- Continued. 
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( c )  Sketch of third-s tage rocket motor. 

Figure 19. - Concluded. 



Section A-A 

9.00 

1.89 
I+-- 

-. i - 
t 

Section B-B 

Firs t-s tage fins 

Section A-A 

i 

0.031-inch-thick 
Inconel cap 

0.04O-inch-Chick 
s tainless-s tee1 

cap 

- 
t '  

Section 8-B 

Second-stage fins 

I 1.23 - I. ~ =- 

Section B-B 

Third-stage fins 

Figure 20.- Sketch of f i n s  f o r  f i r s t ,  second, and t h i r d  s tages .  All dimensions a r e  i n  inches. 
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(a) Fourth, fifth, sixth, and seventh stages on dynamic balancing machine. 

Figure 21.- Photographs of combination of components on dynamic balancing machine. L-61-3081 
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44 NASA-Langley, 1964 L-3858 

(b) Fifth, sixth, and seventh stages on dynamic balancing machine. L-61-3076 

Figure 21.- Concluded. 
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