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1. Introduction

The problem of stability of the ha.rd—coi-e pinch device has been
the subject of both theoretical and experimental investigations during
the recent years (Anderson, Baker et al 1958; Anderson, Furth et al
1958; Bickerton and Spalding 1962; Birdsall, Colgate and Furth 1959,
1960; Jukes 1961; Reynolds et al 1959; Tandon and Talwar, 1961, 1962;
Taylor and Hopgood 1963; and Aitken et al 1964). The device consists
of an annular plasma detached from the central core and the surrounding
conducting wall due to opposite axial currents flowing in the core and
the plasma., The interest in this device stems from the fact that ac-
cording to ideal (infinite electricalv conductivity) hydromagnetic
theory, the system should be stable against all Derturbations pro-

vided the axial return current through the plasma is less than or

-

*Senior Research Associate of National Academy of Sciences. (On leave
of absence from Department of Physics, University of Delhi)




equal to the current in the central rod. On the other hand experi-
ments (Aitken, 1964) have shown the presence of irreproducible magnetic
probe signals indicative of fine scale instabilities in hard core
geometry where the field distribution satisfying the stability criterion
based on ideal hydromagnetic magnetic theory were set up.

There may be several causes for this disagreement between experi-
ment and theory. The chief reason perhaps is that the idealizations
demanded by the hydromagnetic theory are not fulfilled in the experi-
ment. One, for example, is that the instalility may be due to finite
electrical conductivity of the plasma which allows a relative slip-
page between the lines of force and the fluid, thus removing the con-
straint imposed by infinite conductivity. This possibility has
recently been explored by various investigators (Bickerton and Spalding,
Tandon and Talwar, Taylor and Hopgood) who have shown that in the limit
of vanishingly small electrical conducivity, the hard core pinch
model is, in general, unstable. This gives one the feeling that the
observed instability is due to finite conductivity, although a final
answer can only be given when calculations are done with finite (and
not vanishingly small) conductivity.

The purpose of the present paper is to investigate the instability
of an idealized hard core pinch configuration, regarding the plasma
Pressure to be anisotropic rather than scalar. This happens in the

case of a dilute plasma subject t0 a high magnetic field. In the




simplest situation the plasma pressure is different in at least two
directions viz parallel and perpendicular to the magnetic field. It
is well-known that in case the plasma pressure is initially (before
perturba'bion) isotropic in a static plasma, the MHD approximation gives
the most pessimistic result regarding stability, i.e., if we obtain
stability in the MHD approximation, the stability is certainly guaran-
'teed-in the more exact kinetic theory in the (M/e) - o limit as well
as in the Chew, Goldberger and Low approximation (1956). 1If, on the
other hand, the equilibrium state is characterized by an anisotropic
pressure, new types of instability may arise - a typical example being
the "mirror" and the "fire-hose" instability for plane waves in a

homogenous plasma carrying a uniform magnetic field.




2. Formulation of the Problen

Consider a low density plasma contained between the two
coaxial cylinders formed by the metallic core of radius Ng R
and a regid perfectly conducting wall of radius A, R. Axial
currents of strength J o and JP are respectively flowing in opposite
direction through the central conductor and the plasma as a result of
which the plasma will detach itself from the conducting central rod
and the wall forming an equilibrium model of hard-core pinch as shown
in Fig. i. Let R and A\ ; R respective denote the radii of the inner
and outer plasma-vacuum interfaces Ag, A, and - A are constants

such that

A <), ank A, N2 (1)

we further assume that there is a strong axial magnetic field B;
prevalent inside the plasma making the plasma pressure anisotropic.
Iet B, and Bz be the axial magnetic flelds in the inner and the outer
vacuum regions respectively.

Assuming that there are only surface currents on the two plasma-

vacuum interface, we can write for the equilibrium fields as
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We may express the magnetic fields in various regions in terms
. of the toroidal field Bb at the inner (r = R) plasma-vacuum interface.

We thus have,

and

here Ba denotes the toriodal field at the outer plasma-vacuum inter-
face. In equilibrium the total stress (plasma plus magnetic pressure)

should be continuous at each bounding surface. This gives
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Tt can readily be seen from equations (5) and (6) that the

field parameters in equilibrium should satisfy the relation

2

l+b = &+ b (7)

Further, the equations governing the motion of the non-dissipative

plasma are written as

(8)

W w(fy) (9)

2 L o ®) =
U«b = 487 (11)
V.g - o (12)

(p, ¥, B and j respectively denote the density, velocity magnetic

Pield and current density vectors at a poin’c). p the pressure tensor,
a4




which is diagonal in a local rectangular coordinate system with
one axis along the magnetic field and invariant under rotation about

B is given by

P o= by —\rh_Q_)-«_\_«Q) (13)
L 4

Here n is a unit vector pointing along the magnetic field and ‘.:1}
signifies the unit dyadic pjy; and Py represent the gas pressures
along and perpendicular to the fiels respectively.

Neglecting the heat flow tensor, we further have the double

adisbatic equations (Chew, Goldberger and Low 1956)

2.
d_ M) ~ 0o (14)
ac \. £
A (P

It can readily be s¢an from equation (8) that in the initial
state pyi; and Py are constants.

In the two vacuum regions, the equations to be satisfied are
(11) and (i2) with } co -

We study the sta;i]ity of the static configuration characterized
by the above equllibrium parameters and as depicted in Fig. 1. by
imparting an infinitely small velocity perturbation v to the system.

The various resulting perturbations, like the change in gas pressure,




magnetic field, current density etc. are assumed to be of the form,

(function of r) x e xp. {nt +1i(mo+kz) ] (16)

where n is the growth rate parameter, m the azimuthal number and k
the wave number of the perturbation in the z-direction. A dispersion
relation relating n, the parameter determining the stability, with
other physical qualities is then obtained by adopting the usual normal

t
mode analysis.with suitable boundary conditions.
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3. Equations Goveraning the Perturbed State and Their Solutions

With the perturbations of the form (16) the linearized pertur-

bation eguations for the plasma can be written as
SnY - -V 8" 4—85 7‘&\
. Le—y -
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where V, Sh‘, SP..L , 8?} 32 and S_B_ denote
the perturbations' of first order of smallness) in various physical
parameters.

The perturbed equations for the vacuum regions are

(2k4)
P
Vx S__B =0
©) (25)
V3B =0
23
where BB( ) represents the change in the magnetic field in the two
vacuum regions.
(a) Solution for plasma region
Writing
. wa\ :D = %/ b’.,
== (26)

we Obtain from equations (17) to (23) that

(27)
58 . 8 [ahg,, Sihg, kg, - 1

(28)

v
I
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Vé = tkgz (3hx RL1-fm;)
where
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and /gz satisfies the relation

L2 (»32)- (P+—-a)’3z-°

Solution of equation (30) is of the form

(29)

(30)

(31)

(32)
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fo = NIL(ED + Mk (p) .

where A; and A, are arbitrary constants. .

(b) Solution for vacuum regions

. . o @) .
. The change in magnetic field, 8 3 inside the vacuum
&
regions is given by equations (24) and (25). Thus 8_@ ) is

derivable from a scalar potential XL , satisfying the relation

B _ ox (34)

This equation when combined with equation (25) leads to

2
VvV XA =0
Ao Aok
(36)
2 . Vimd +k1)]
X = [C.I,,., \,h*") +* C:z.Km- b‘&)—} <P [ﬂ—t M ('
Since there are two vacuum regions, separate boundary condi-

tions are required for the two regions. The boundary conditions for
the inner vacuum region are

m.g:o ok »x = AOK (57)

and
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I
where Al is the normal vector to the surface and é*R is the dis-
placement at the imner-plasma vacuum interface.
Similarly the boundary conditions for the outer vacuum regions

can be written as

and 2 N
hb v = A -)—?
“_N. @Aﬁ = © ) ;ﬁ
k)Y
where ’3 N,R represents the displacement at the outer plasma vacuum
interface.

With the help of boundary conditions (37) and (38), we write
expressions for the change in the magnetic filelds at the two plasma-

vacuum interfaces as

8__@1= [lh (—7-’;_— B, + Bz) ‘%: , " h-—;’-(: (—7% B+ Bq) Qm (,,_)Aog_) %i
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(39)
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and
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Suffix I and II represent the parameters for the inner and outer

plasma~vacuum interfaces respectively.
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L, Dispersion Relation

In order to obtain the dispersion relation the pressure (kinetic
+ magnetic) balance condition must be satisfied at the two plasma -
vacuum interfaces in the perturbed state. These conditions in the

linearized form can be written as

X p) N
B,.28 &7, 8B ® T
1 4% aw amR "R
(43)
and
£_.% + T
5o, BiB BB B L Ak

12 an  an 4nAR AR

Conditions (43) with the help of eguations (2) - (L), (27) - (33)

and (39) to (41) give the following characteristic equation relating

n® with the various equilibrium parameters

FZ,_:D‘F +d, =0 (k)

where
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with 3._- PQ and the functions Qrw are given by the relation (41).
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5. Neutral Stability Curves

The dispersion equation (44) has to be solved for the parameter
n2 in order to decide whether the configuration is stable or not.
For any set of given physical parameters we have to incorporate the
equation (45) with equation (4k4) while evaluating n®. The equations (44)
and (45) are extremely unwieldy and we shall be content with investigat-
ing the question of marginal stability (n = o) for anisymmetric per-
turbations (m = o). The eigenvalues n® for a non-dissipative, static
plasma configuration (as is under investigation) are known to be real
(positive or negative) s0 that the neutral stability curves define
the transition from stable to unstable regime.

Numerical calculations for the roots Fi,o of the quadratic equa-
tion (44) were done on computer taking A, = 0.5, A, =2, A2_= L
and bp = by, bs = ’1 - a%, With o as positive (equation 32)
one root of the quadratic equation was plotted against x (=kR) to
obtain newtral stability curves in a variety of cases. (figures (2) -
(5)). In each figure curves (a), (b), (c) are for o = 0.2, 0.l and
0.6 respectively. Figures (2) and (3) are for by = by = 0 and &% = 0.1
and 1.0 whereas bs = by = 1, a = 0.1, and 1.0 are the respectivé
values for figures (4) and (5). Results were also obtained regarding
o® in eguation (32) as negative and are plotted in figures (6) - (9)
taking bz = by = 0, and by = by = 1 for same set of values for |qf

and a2,
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ABSTRACT

The stability of a hard-core pinch model, characterized by an
anisotropic pressure, is investigated using the usual normal mode
technique. The dispersion formuila is obtained with the "double-
adiabatic" hydromagnetic equations and discussed for marginal

stability for axisymmetric perturbations.
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CAPTIONS TO FIGURES

Egquilibrium model of hard-core pinch.

Neutral stability curves for b2 ='bl = 0, and b32 = 0.9,
and Aj = 0.5, Ay = 2, A2 = 4, Curve a, b, ¢ respectively

correspond to « = 0.2, 0.4, and 0.6.

Neutral stability curves for b2 =b, =b =0, Ao = 0.5,
3

1

Al = 2, and A2 = L. Curves a2, b, c respectively correspond

to a = 0.2, 0.4, and 0.6.

Neutral stability curves for b_=b, =1, bs2 = 1.9 and

Aj = 0.5, Al =2, A2 = k. Curves a, b, ¢ respectively

correspond to o = 0.2, O.4, and 0.6.

]

Neutral stability curves for b2 b, = b3 =1, and AO = 0.5,

1

A, =2, A =Lk, Curves a, b, ¢ respectively correspond to
2

1
a = 0.2, 0.4, and 0.6.

Neutral stability curves for b =by =0, b32 = 0.9 with
A, = 0.5, Al =2, A2 = k. Curves a, b, ¢ respectively

correspond to @ = .2i, .hi, 0.6i.

Neutral stability curves for b2 = bl = b3 = 0 with Ao = 0.5,

1
o = .21, O.ki, 0.61.

A =2, A2 =4, Curves a, b, ¢ respectively correspond %o

Neutral stability curves for b =Dby =1, b32 = 1.9 with
Ay, =05, Ay = 2, A2 = L. Curves a, b, c respectively

correspond to a = .2i, O.4i, 0.6i.
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Neutral stability curves for 'b2 = bl = b3 = 1, with Ao = 0.5,

Al =2, A2 = L4, Curves a, b, ¢ respectively correspond to

o = 0.2i, 0.4i, 0.6i.
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