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1. Introduction 

The problem of s t ab i l i t y  of the hard-core pinch device has been 

the subject of both theoretical and experimental investigations during 

the recent years (Anderson, Baker e t  al 1958; Anderson, Furth e t  al 

19%; Bickerton and Spalding 1962; B i r d s a l l ,  Colgate and Furth 199, 

1960; Jukes 1961; Reynolds e t  al 19.59; Tandon and Talwar ,  1961, 1962; 

Taylor and Hopgood 1$3; and Aitken e t  al 1964). The device consists 

of an annular plasma detached fromthe centra3 core and the surrounding 

conductirgwall due to apposite axial currents flowing In the  core and 

the plasma. The interest  i n  t h i s  device stems from the fact tha t  ac- 

cording t o  ideal ( in f in i t e  e lectr ical  conductivity) hydromagnetic 

theory, the system should be stable against all perturbations pro- 

v idedthe  axial return current through the plasma is  l e s s  than or 

? 
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equal t o  the current in the central rod. 

ments (Aitken, 1964) have sham the presence of irreproducible magnetic 

probe signals indicative of fine scale in s t ab i l i t i e s  in  h a d  core 

geometry where the f ie ld  distribution satisfying the s t ab i l i t y  cr i ter ion 

based on ideal hydromagnetic magnetic theory were s e t  up. 

On the other hand experi- 

There ?qy be several causes for  t h i s  disagreement between experi- 

ment and theory. 

demanded by the hydromagnetic theory are not f u l f i l l e d  i n  the experi- 

ment. One, for example, i s  tha t  the i n s t a u t y  may be due t o  f i n i t e  

e l ec t r i ca l  conductivity of the plasma which allows a relat ive s l ip-  

page between the l ines  of force and the fluid, thus removing the con- 

s t r a i n t  imposed by m" in i t e  conductivity. 

recently been explored by various investigators (Bickerton and Spalding, 

Tandon and Talwar ,  Tqylor and Hopgood! who have shown that  i n  the l i m i t  

of vanishingly small e lec t r ica l  conducivity, the hard core pin& 

model is, in general, unstable. This gives one the feeling tha t  the 

observed ins tab i l i ty  i s  due t o  f i n i t e  conductivity, although a final 

answer can only be given when calculations are  done with f i n i t e  (and 

not vanish-ly small) conductivity. 

The chief reason perhaps i s  tha t  the idealizations 

This possibil i ty has 

The purpose of the present paper i s  to investigate the in s t ab i l i t y  

of an iaealized hard core pinch configuration, regarding the p lasm 

pressure to be anisotropic rather than scalar. This happens i n  the 

case of a di lute  plasm subject to a high magnetic f ie ld .  In the 



simplest si tuation the plasma pressure is different in at l ea s t  two 

directions v iz  paral le l  and perpendiculu t o  the magnetic f ie ld .  

is w e U - h a m  that in case the phsma pressure is in i t ia l ly  (before 

perturbation) isotropic i n  a s t a t i c  plasma, the MHD approximation gives 

the most pessimistic result regarding stability, i.e., i f  we obtain 

s t ab i l i t y  i n  the MBD approximation, the s t ab i l i t y  is certainly w a n -  

teed i n  the more exact Bne t i c  theory i n  the (M/e) -, o l i m i t  as well 

as i n  the Chew, Golaberger and Low approximation (1956). If', on the 

other hand, the equilibrium s t a t e  i s  characterized by an anisotropic 

pressure, new types of instabi l i ty  may ar i se  - a typical example being 

the "mlrror" and the "fire-hose" instabi l i ty  fo r  plane waves in a 

It 

homogenous plasma carryul - g a uniform magnetic f ie ld .  

A 



2. Formulation of the Problem 

Consider a low density plasma containedbetween the two 

coaxial cyUnaere formed by the m,etRfc core of radius R 

and a regid perfectly conducting w a l l  of radius R. Axial 

currents of strength Jc and J are respectively flaring in opposite 

direction through the central conductor and the plasma as a resul t  of 

which the plasma w i l l  detach i t s e l f  from the conducting centraJ. rod 

and .the w a l l  forming an equilibrium model of hard-core pinch as shown 

in F i g .  1. Let  R and 

and outer plasma-vacuum interfaces Ai, A, and :-A2 are constants 

such tha t  

P 

A, R respective denote the radii of the inner 

we further assume that there i s  a strong axial magnetic f i e l d  B, 

prevalent inside the plasma making the plasma pressure anisotropic. 

Le t  B2 and BS be the axial magnetic f ie lds  in the inner and the outer 

vacuum regions respectively. 

Assuming tha t  there are only surface currents on the two plasm- 

vacuum interface, we can write fo r  the equilibrium f ie lds  as 
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We may express the magnetic f ie lds  i n  various regions in terms 

of the toroidal f i e ld  

We thus have, 

a t  the inner (r = R)  plasm-vacuum interface. 

and 

here B 

face. 

should be continuous a t  each bounding surface. This gives 

denotes the to r ioda l  f ie ld  at the outer plasma-vacuum inter-  

In equilibrium the t o t a l  s t ress  (plasm plus magnetic pressure) 

a 

and 
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It cxn readily be s e a  from equations ( 5 )  and (6) tha t  the 

f i e l d  parameters i n  equilibrium should sat isfy the relation 

Further, the equations governing the motion of the non-dissipative 

plasma axe written as 

c3 

aP - - c 0. Cfr) 
ak - 

0.13 E O  

(p, 3 B, and J respectively denote the density, velocity magnetic 

f i e l d  and current density vectors at a point). p the pressure tensor, 
r-t 



. 

which i s  diagonal i n  a l o c a l  rectangular 

one axis along the magnetic f i e ld  and invaziant under rotation about 

B, is given by 

coorainate system w i t h  

Here n i s  a unit vector pointing song the magnetic f i e l d  and 1 
w 

signif ies  the unit dyadic 911 and pArepresent the gas pressures 

along and perpendicular to the f i e l s  respectively. 

- 

Neglecting the heat f low tensor, we further have the double 

adiabatic equations (Chew, Goldberger and Low 196) 

It can readily be SO- from equation (8) that i n  the i n i - i i d  

s t a t e  pll and p~ are constants. 

In the two vacuum regions, the equations t o  be sat isf ied are 

(U) and (12) with j = o  - 
We study L5he s t ab i l i t y  of the s t a t i c  configuration charscterized 

by the above equilibrium parameters a d  as depicted i n  Fig. 1. by 

imparting 2 z ~  inf ini te ly  smal l  velocity perturbation v to the system. - 
The various resulting perturbations, l i ke  the change in gas pressure, 

i 



- 8 -  

magpetic field, curreht density etc. are assumed t o  be of the form, 

where n i s  the growth rate parameter, m the azimuthal nuniber and k 

the wave number of the perturbation i n  the z-direction. 

relation relating n, the parameter determining the s tabi l i ty ,  with 

other physic& qualit ies i s  then obtained by adopting the usual normal. 

mode analysis .with suitable boundary conditions. 

A dispersion 

1 

- 



3 .  Equations Governing the Perturbed State and Their Solutions 

* -  

With the perturbations of the form (16) the lineaxized pertur- 

bation equations for the plasm cas be written as 

v.SD c = 0 
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and 56 denote “B,,, “1 “, S j  - where 5 

the perturbations of first order of srna,llness in various physical 

parameters. 

- 
J 3 

The perturbed eqmtions for the vacuum regions are  

where 

vacuum regions. 

bff’ represents the change i n  the magnetic f i e l d  i n  the two  - 

(a) Solution for  plasm region 

Writing 

we obtain from equations (17) t o  (23) that 

i 

I 
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where 

satisfies the relation and /52 

w i t h ,  

Solution of equation (30) is of the form 



- 

- 1 2 -  

I ’ -  

where A1 and 4 aze arbitrary constants. 

(b) Solution f o r  vacuum regions 

m e  change in magnetic field, s 8 @ inside the vacuum 

regions i s  given by equations (24) and (25) .  b 6e’ is 

derivable from a scalar potential x , satisfying the relation 

T ~ U S  - 

 his equation when conibined with equation (25) leads t o  

2 V X = o  

Since there are two vacuum regions, separate boundazy condi- 

tions are  required for the two regions. 

the inner vacuum region axe 

The boundary conditions for 

and -r 



where b3 is the normal vector t o  the surface and i s  the dis- - 
placement at the inner-plasma vacuum interface. 

Similarly the boundary conditions f o r  the outer vacuum regions 

can be written as 

and 

A t  & , & R  

where 3; 
interface. 

W i t h  the 

represents the displacement a t  the outer plasma vacuum 

help of boundary conditions (37) and (38), we write 

expressions for the change i n  the magnetic f i e lds  at the two slasma- 

vacuum interfaces as 

T I  



and 

c. L 

where 

Suffix I and 11 represent the parameters for the inner and outer 

zlasma-vacuum interfaces respectively. 

i 



! -  

4. Dispersion Relation 

In order t o  obtain the dispersion relation the pressure (kinetic 

-E magnetic) bahnce condition nust be sa t i s f ied  at the two plasma - 
vacuum interfaces in the perturbed state.  

l inearized form ca,n be written as 

These conditions In the 

and 
(43) 

Conditions (43) w i t h  the help of equations (2)  - (4),  (27)  - (33) 

and (39) t o  (41) give the following characteristic equation 

n2 w i t h  the various eqyilibrium parameters 

r e l a t b z  

where 

\ 
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ana the Functions Q, aze given by the relation (41). 
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5. Neutral Stabi l i ty  Curves 

The dispersion equation (44) has t o  be solved f o r  the paxameter 

n2 i n  order t o  decide whether the configuration is stable or not. 

For any s e t  of given physical parameters we have t o  incorporate the 

equation (45) w i t h  equation (44) while evaluating n2. 

and (45) axe extremely unwieldy and we shall be content with investigat- 

ing the question of masgind s tab i l i ty  (n = 0) for anisymmetric per- 

turbations (m = 0). The eigenvalues n2 for  a non-dissipative, s t a t i c  

plasma configuration (as is under investigation) are h o w n  t o  be r e a l  

(positive or negative) so that the neutral s t ab i l i t y  curves define 

the t ransi t ion f r o m  stable t o  unstable regime. 

The equations (44) 

N u m e r i c a l  calculations for  the roots Flr2 of the quadratic equa- 

t ion  (44) w e r e  done on computer taking Ae = 0.5, A, = 2, 

and b2 = bl, b3 = 

one root of the quadratic equation was plotted against x (-a) t o  

obtain neutral  s t ab i l i t y  curves in a v a i e t y  of cases. (figures (2)  - 
( 5 ) ) .  

0.6 respectively. 

and 1.0 whereas b2 = bl = 1, a2 = 0.1, and 1.0 axe the respective 

values for figures (4) and ( 5 ) .  

a2 in equation (32) as negative and are plotted in figures (6) - ( 9 )  

taking b2 = b, = 0, and b2 = bl = 1 f o r  same se t  of values fo r  

and a2. 

A = 4 z 
JS. w i t h  a2 as positive (equation 32)  

In  each figure curves (a), (b), (c)  axe f o r  a = 0.2, O.be and 

Figures (2) a d  ( 3 )  are for b2 = bl = o and a2 = 0.1 

Results were a l so  obtained regarding 
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ABSTRACT 

The s t ab i l i t y  of a hard-core pinch model, characterized by an 

anisotropic pressure, is investigated using the usual normal mode 

technique. 

adiabatic" hydromagpetic equations and discussed f o r  marginal 

s t a b i l i t y  for axisymnaetric perturbations. 

The dispersion formula i s  obtained w i t h  the "double- 
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CAPTIONS To FIGURES 

Equilibrium model of hard-core pinch. 

2 Neutral s t ab i l i t y  curves f o r  b = bl = 0, and b 
2 3 

and no = 0.5, A1 = 2, A 

correspond to a = 0.2, 0.4, and 0.6. 

= 0.9, 

= 4. Curve a, b, c respectively 
2 

Neutral s t ab i l i t y  curves f o r  b = bl = b = 0, A = 0.5, 

A, = 2, and A 
2 3 0 

= 4. Curves a, b, c respectively correspond 
2 

t o  u = 0.2, 0.4, and 0.6. 

Neutral s t ab i l i t y  curves f o r  b = b, = 1, b = 1.9 and 
2 3 

ho = 0.5, A, = 2, A 

correspond t o  a = 0.2, 0.4, and 0.6. 

= 4. Curves a, b, c respectively 
2 

Neutral s t ab i l i t y  curves f o r  b = bl = b 
2 3 

= 1, and A. = 0.5, 

A1 = 2, A 

u = 0.2, 0.4, and 0.6. 

= 4. Curves a, b, c Espectively correspond to 
2 

Neutral s t ab i l i t y  curves f o r  b 

A. = 0.5, Al = 2, A = 4. 

= bl = 0, b 
2 3 

= 0.9 with 

Curves a, b, c respectively 
2 

correspond t o  a = .2i, .4i, o.6i. 

Neutral s t ab i l i t y  curves f o r  b = bl = b = 0 with A = 0.5, 

A, = 2, A 

a = .2i, 0.4i, 0.6i. 

2 3 0 

= 4. Curves a, b, c respectively correspond t o  
2 

Neutral s t ab i l i t y  curves f o r  b = bl = 1, b 
2 3 

A, = 0.5, hl = 2, A 

correspond t o  a = -21, 0.41, o.6i. 

= 1.9 with 

= 4. Curves a, b, c respectively 
2 
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Fig. 9 Neutra l  s t ab i l i t y  curves f o r  b = bl = b = 1, with A = 0.5, 
2 3 0 

hl = 2, A = 4. Curves a, b, c respectively correspond t o  
2 

a = 0.21, 0.41, 0.65. 
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