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A COMPREHENS LVE ASTRODY:IAMIC EXPOSITION AND -
CLASSIFICATION OF EARTH-MOON TRANSITS

By
Gary P, Herring
George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

‘4ﬁ38

The restricted ;hrea—body model is used to devilop a geometrical
and topological taxonomy of the field of earth-moon transits (both
directions) which is based on conditions at the terminals (perigee and

periselenum). It is presented in such a way as to promote mental con-
trol of the subject, ‘

The classifying techniques are then employed in the analysis of

free-return transits as well as such problems as the lighting conditions
upon landing,

The report provides convenient reference material for the engineer
involved ir the layout of Apollo type missions,
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DEFINITION OF SYMBOLS
Definicion
azimuth with respect tec earth (moon)
sec page 13, Chapter 1I, Section 1

the basic class .. transits (see Chapter I,
Section 3)

the reflection across the earth-moon polar plane
of the class C(t, p,, @) by Miele's theorem

distance between earth and moon
universal gravitational constant

the inclination of tne lunar orbit plane (MEP)
to the ecliptic

inclination of a transit defined at the point of
closest approach to the earth (moon) (see page 17,
Chapter II, Section 3)

the geometric mean longitude from the mean
equinox of date

moon-earth plane (the plane containing the mction
of the earth and moon)

mass of the moon
mass of the earth

distance from the center of the earth to the
space vehicle

distance from the center of the moon to the
space vehicle

transit time
velocity of space vehicle

positicrn vector of the earth
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£ = X/den
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DEFINITION OF SYMBOLS (Continued)

Definition
rosition vector of the mcon
position vector of the space vehicle
total mass of the system
the reciprocal of the mean motion of the earth
and moon about the center of mass
see page 13, Chapter II, Section 1

the inclination of the earth equatorial plane
to the ecliptic

longitude
moon's fraction of the total mass
earth's fraction of the total mass

the normalized position vector
normalized velocity vector

normalized aceceleration vector

normalized distance from the center of the earth
to the perigee of a transit

normalized distance from the center of the moon
to the perisel of transit

the vertex phase angle (see page 15, Chapter II,
Section 2)

normalized transit time
latitude

see page 13, Chapter II, Section 1
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DEFINITION OF SYMBOLS (Continued)

Defiunition
the longitude i ‘..e mean ascending node'of the
lunar orbit <~n the ecliptic, measured from the
mean equinox of date
the mean longitude of the moon, measured in the
ecliptic from the mean equinox of date to the

mean ascending node of the lunar orbit, and then
along the orbit

referenced to the earth
referenced to the moon
referenced to a space-fixed coordinate system

denoting an entire system of continuous variations
of the indicated parameter

referenced to a rotating coordinate system
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LIST GF DEFINITIONS

Azimuth (#z) - the angle between the velocity vector and local
north
Corotational - in the direction of the rotacion of the system

Counterrotational - cpposite the direction of the rotation of the
system

Earth-Moon Polar Plane - the plane containing the polar axes of the
earth and moon (and the line between the
earth and moon)

Free-Return Transit - a ballistic trajectory from the vicinity of the
earth which reaches the vicinity of the moon and
returns to the vicinity of the earth

Inclination (1) - the angle between the instantaneous flight plane
and the MEP (see page '7, Chapter II, Section 3)

Latitude () - the polar angle of a spherical coordinate system
measured from the MEP, positive north and negative
south, -90° =z ¢ = +90°

Longitude (A) - the angle in the MEP measured from a reference
meridian (for. the earth - the point farthest
from the moon; for ths moon - the point nearest
the earth) .o the meridian of interest in the
direction of rotation of the system, 0 = A = 360°

Perigee - the point of closeat approach of a transit to the
earth
Perigee Belt - the annular region containing all possible perigees

of any one of the basic classes of transits having
fixed transit time, perigee radius and periseil
radius

Perigee Horn - the horn-shaped region containing all possible
perigees of the system of classes having fixed
transit time and perisel radius

Perigee Station - a segment of a great circle on which all possible
perigees of & given basic class and phase angle ¢
occur

t
E
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LIST OF DEFINITIONS (Continued)

Perisel - the point of closest approach of a trapsit to
the moon
Perisel Belt - the annular region containing all possible verisels

of any one of the basic classes of transits having
fixed transit time, perigee radius and perisel
radius

Perisel Horn - the horn-shaped regioun containing all possible
perisels of the system of classes having fixed
transit time and perigee radius

Transit - the path of the space vehicle

Transit time - the time lapsed from some initial poitt on a
transit to some other point on the transit
(generally beiween perigee and perisel)

Transit, Inbound - a transit from the moon to the earth

Transit, Outbound - a transit from the earth to the moon

Vertex Point =~ the point on the moon (or earth) which is over-

flown by all transits of a given class having
the same ¢, (or Q)
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TECHNICAL MEMORANDUM X-53151

A COMPREHENSIVE ASTRODYNAMIC EXPOSITION AND
CLASSIFICATION OF EARTH~-MOCN TRANSITS

SUMMARY

The classical restricted three~body model is used in obtaining an
astyodynamical survey and classification of the {ield of trajectories
(traveling in Doth directions) between the earth and the moon,

The space-fixed equations of motion are normalized and transformed
to a rotating system, The classification accomplished in this rotating
system is geometrical and is based on the time of travel from perigee to
perisel (or perisel to perigee) and the distances of nearest approach to
the centers of the earth and the moon. Classes so defined exhibit
identical structural characteristics as to shape of feasible regions of
perigee and perisel locations and as to the directional behavior of
transits near the celestial bodies,

A class-cigen coordinate system is introduced which is intrinsically
suited for the approximative solution of the fundamental two-point boundary
problem of earth-moon transits,

The resulting classes are applied to the determination of regions
of existence of free-return transits (both symmetrical and asymmetrical)
and to the determination of lighting conditiont at lunar arrival for
both impact and "fly-by' transits.

The modes of tramsition from this system to the geographic and
sclenographic systems are excmplified in discussing the problcas of
launch from the Atlantic Missile Range ir to a lunar transit under
general mission constraints at launch and lunar arrival.

INTRODUCTION

The concentration on the Apollo project in this countrv has placed
demands on certain segments of the scientific community for more complete
and comprehensive understanding of many astrodynamic problems. Prominent
among them is an understanding of the field of transits in earth-moon
space, Because of the nature of the Apollo mission, it is mandatory that
this problem be under firm mental control.



The gathering of the body of knowledge necessary for mental control
of the field of earth-~moon transits should be conducted to meet a dual
purpose. Firstly, it should aim for simplicity of presentation to pro-
mote understanding and retention of concepts., Secordly, it should: be
6f a form which can be used by any member of the scientific community
who should have need for such information in his work, The mode of
development and presentation of the survey of earth-moon transits pre-
sented herein is an attempt at satisfying this two-fold objective,

In the approach pursued to meet our study objectives, the Classical
Restricted Three-Body Problem is used, which yields a good approximation
of the physical system, In presenting the material generated from this
mathematical model, geometrical and topological concepts are used rather
than the conventional graphs and tabulated data.

It is felt that this approach meets the study objectives; i,e,, it

results ir easily retainable mental concepts which can be applied directly
by the scientist involved in the analysis of earth-moon transits.

CHAPTER 1. GEOMETRICAL CONSIDERATIONS

Section 1, Reduction of the n-Body Problem

The enviromment in which an Apollo spacecraft must operate is a
dynamical system, classicaily referred to as the n-body system. In this
system each body operates in an inverse gravity field, attracting and
being attracted by every body within the system. The forces of attrac-
tion are dependent upon the relative sizes and distances between bodies,
To compute transits with complete accuracy in earth-moon space, which is
only a small portion of the n-body system, the forces exerted by all
bodies need to be considered. This, however, is not necessary because
some of the bodies exert forces too small to be within the scope of
present computer techniques., Thus, the earth, moon and sun would be
the bodies of major concern., The relative geometry of the physical
system, having primary influence on transits in earth-moon space, is
described in the following.

The motion of the center of mass of the earth-moon system about the
sun takes place in a plane referred to as the ecliptic, This plane pro-
vides a convenient reference from which a brief description of earth-
moon-sun geometry can be constructed. As the earth orbits the sun, it
rotates about an axis inclined by some 23.4° to the pole of the ecliptic.
The earth equator, being orthogonal to its pole, has the same 23.4°
inclination with respect to the ecliptic. There is also a very slow
motion or precession of the equatorial plane of the earth, with a cycle
of some 26,000 years.



Next, the plane of the moon's motion about the earth describes «
varying angle of about 5.15° with respect to the ecliptic. This geon-
etry is depicted in Figure 1 where a yearly cycle (1966-67) is illustrated.
It may be pointed out that the lunar orbit plane precesses in space at a
rate of one cycle per 18,6 years (or 19.3° per year). When comparing
this plane with the plane of the earth's equitor, and considering the
prccessional motion, there results a variation in their relative inclina-
tions between 18,5 and 28,5 degrees. The two limiting cases of this
geometry are schematically shown in their 1960 and 1969 orientation on
Figure 2,

With reference to the 1969 geometry in Figure 2, another nlane of
interest is that of the lunar equator, which has a constant inclination
of about 1,5° with respect to the ecliptic., According to one of the
laws of Cassini, the pole of the ecliptic, the pole of the lunar plane
of motion, and the pole of the lunar rotation lie in one great circle,
Thus, there is a resultant constant inclination of about 6.7 degrees
between the lunar equator plane and the lunar plane of motion., The
geometry for the lunar equator during October 1966 is shown in Figure 3
as well as the varying distance of the moon in its elliptic orbit,

The motions described above are the ones of major influence upon
earth-moon transits; however, included among them are certain conditions
-which render a clear analysis somewhat difficult to achieve, A general
survey of the field of earth-moon transits requires the development of
a model which is applicable for any instant of time, Therefore, the
following additional reductions are made to achieve this end,

First, for the duration of a given transit, the moon may be restricted
to travel on a circular path around the earth rather than its conventional
elliptic path. Secondly, the effect of the sun may be neglected without
much sacrifice of realism because the major influence on earth-moon
transits is due to these (earth-moon) two bodies, Thirdly, a coordinate
system, referenced to the plane of the lunar orbit about the earth and
the earth-moon line, may be used so that the transits are independent
of the varying inclination between the earth and lunar equatorial planes.
In addition, the proper selection of a coordinate system for computation
makes it unnecessary to generate information for varying distance between
earth and moon.

A trajectory computed in su h a system, where the equations of
motion are independent of earth-..con distance, is unique and valid under
the proper transformation for any assumed earth-moon distance.

The reduction and coordinate systems are made clearer by the develop-
ments which follow in the next section,
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Sectisn 2, The Restricted Three-Body Problem and Related Coordinate
Sys tems

As suggested in the previous section, for short periods of time
within any month of reference in the ephemeris, the earth and moon may
be considered to move, separated by a constant distance, in a common
plane, describing circles about their center of mass (the barycenter).
The motion of a massless space vehicle in such a system is described by
the equations of motion of the classical restricted three~body problem,

Two Cartesian coordinate systems are chosen for representation of
the vehicle's motion in this model: space fixed and rotating. Both
systems have their origins at the center of mass. At some initial time,
the space-fixed system has its positive x-axis passing from the center
of the earth, through the barycenter, to the center of the moon; the
z-axis is the axis of rotation of the system; and the y-axis is such
that the system is right-handed. The rotating cystem has the same
definition as the space~-fixed system at the initial time, but rotates
about the z-axis with an angular velocity equal to that of the earth-
moon system, (In this system, the earth and moon remain on the x-axis
at all times,) These systems arc shown by Figure 4 for the initial
time, t = 0, and at a later time, t = At, with the subscripts "S" and
"R" denoting "space fixed" and "rotating."

In the space-fixed coordinate system, the equations of motion may
be written

M M
2 (S . m :
X=0 <—-,-(x - X)) 4 Xy - x>> (1)
Red (<) ij
where
*s
x = | Vs,
2g

Xe is the position vector of the earth,

Xy is the position vector of the moon,



X is the position vector of the space vehicle,

=
H

‘Xe - Xl,

and

i

Ry = |X¥n - X[.

As previously indicated, by proper selection of the coordinate
system for computation, the equations of motion become independent of
dem. The obvious advantage of this is that a trajectory computed in
such a system may be transformed into a corresponding trajectory for
every value of dep. This is accomplished by normalization of (1) as

follows [7]: Let

X = dept,

where £ is the normalized position vectorﬂﬁgket

Mg + My = B,
so that
M M -
1_ =—£ ‘::-ln-
Hog B

are the earth's and moon's fraction of the total mass.

M, = B - w), Mp = Bu.

Let

£t = 2T

7 is the normalized time variable and y is a constant.
(3), and (4), we see that

(2)

(3a)

(3b)

Then

(3¢)

%)

From equations (2),



X(t) = X(yt) = X¥#(t)

so that

PG
1

i

{
%

dr dc Ty (5)
and likewise,
. i .
X = X¥ ;z . (6)

Now dropping the * notation and substituting (2) into (5) and (6), we
may write

X=X % = ~%E t', velocity )
and

. 1 dem

X =Xx" ;g = ;ZT' "', acceleration, (8)

Substituting (2) and (8) into (1) and factoring B out of the right-hand
side, we obtain

d
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The normalization is now accomplished by settiag
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so that

a_il2
@ . (10)

Therefore, the equations of motion are expressed in the normalized
system as

] 6 - £y - 6

5""(1"M)T§_"‘_—z‘r§+u§_g. (11)
e m -

For engineering application, the trajectories calculated in this
normalized system may be transformed point for point to the correspond-
ing trajectory for any specific dgp by

t = 1, (4)
X = dem E,, (2)
kR=—=¢", )

4

and

X =2 g (8)

The equations of motion for the rotating normalized coordinate
system are written

E1 - 2§g
" = R L ¢ Y st ey
£ - 28, l gi I g‘

0



where { .n Lha; case refers to the vectors expressed in the rotating
coordinatr :ystes, and £, is the ith component of £. The samg trans-
formations, (4), (2), (75, and (8), may be applied to the position,
velocity, and acceleration expressed in this system. (In general, the

information presented in the following chapters will be in the rotating
system.,)

To avoid confusion, E,, £5, and £5 will now be replaced by x, vy,
and z, respectively, and the subscript "R will denote the rotating
system and "S" the space-fixed system. The subscript "e' and '"m" will
denote earth and moon. In the space-fixed system, 23 = 28y 0, and
in the rotating system, yR, = ZRe = YRm = %Rm = 0, for all time, (t).

For the purpose of presentation of the results, four additional
coordinate systems are needed. Two of these systems are Cartesian and
parallel to the rotating system, the only difference being the lacation
of the origin, For one, the origin is fixed at the center of the earth,
and for the other, at the center of the moon (Figure 5).

The other two are spherical cocrdinate systems, fixed in either
the earth-centered or the moon-centered rotating system. These sy.tems
are defined as follows: On the varth and the moon, equatorial planes
are defined as the intersections of the moon-earth travel plane (desig-
nated as the MEP) with the bodies. MEP-poles are perpendicular to the
MEP through the centers of the bodies with the north direction along
the positive direction of the axis of rotation of the system. On both
bodies, the MEP-latitude (¢) is defined in consistency with the defini-
tion of MEP-equators and MEP-poles, positive latitudes measured north
through 90 degrees and negative, south through -90 degrees, MEP-longitudes
(N\) are measured by great half-circles from pole to pole, the zero refer-
ence at the moon being that half-circle nearest the earth, and the zero
reference at the earth being that half-circle farthest from the moon.
The longitude is defined eastward (the direction of rotation of the
system) through 360 degrees. These systems are shown by Figure 6.
Within any of these coordinate systems, transits are identified, for
the purpose of this study, by reference to their six statc variables,
in pesition and velocity, at the points of nearest approach to the center
of the earth and the moon., ' These points are called perigee and peri-
selenum (for brevity, 'perisel'). Alternately, the terms 'departure" and
"arrival' or collectively "terminals" are used (Figure 7).



Section 3, Reduction of the Problem to the Basic Class C(7, “pe, )

The continuing effort to reduce the problem to its fundamentals is
realized by using what is referred to as a basic class. This basic class
possesses geometrical features which are well suited for mental control
of the problem. Before defining the basic class, it is convenient to
discuss a theorem which proves helpful in the problem,

NMuoting from Reference 1l: '"The Theorem of Tmage Trajectories states
that if a trajecrory is physically possible in the earth-moon space,?
three image trajictories are also physically possible:

(a) The imag. with respect to the plaue which contains the
earth-moon axis and is perpendicular to the axis of
rotation of the earth-moon system,?Z

(b) 7,2 image with respect to the plane which contains the
earth-moe~ axis and the axis of rotaticn of the earth-
moon sys tem, >

(¢) The image with respect to the earth-moon axis.*

The first oi theve image trajectories must be flown in the same sense as
that of the baszi{tc trajectory, while the other two must be flown in the
opposite sense,'” It should be emphasized that these trajectcries are
exact images of each other in all components of position for arbitrarily
largz periods ot time;, i,e,, every point of a given trajectory, and
therefore any . vigee point, has exactly three unique images.

Author's Notes:

l1such a trajectory is depicted in Figure 8.

2The image of the samjle trajectory as reflected across the MEP,
Figure 9.

The image of the sample trajectory as reflected across the polar plane,
Figure 10.

“The image of the sample trajectory as reflected across the earth-moon
line (or a composite of the reflections (a) and (b)), Figure 11,



By taking advantage of this theorem, the magnitude cf the problem
is reduced as follows.

Consider the earth-moon space to be divided into four quadrants by
the MEP and the polar plane containing the earth-moon-line and the polar
axis. Let the position vector XR be denoted by the ordered 3J-tuple
XR = (x, v, z). Then, for positive or negative x, y, and z, Quadrant I
contains all those points X = (+ , -, +), Quadrant II contains the points
X = (+, +, +), Quadrant III contains the points X = (%, +, -), and
Quadrant IV contains the po’ s X = (%, -, =), This quadrant definition
is illustrated in Figure 17.

Now, referring to the theorem and Figure 12, by (a), every transit
having a perigee in Quadrant IV has an image transit (flown in the same
sense) with perigee in Quadrant I. Likewise, by (b), every transit
having a perigee in Quadrant II has an image transit (flown in the
opposite sense) with a perigee in Quadrant I; and by (c), every transit
having a perigee in Quadrant III has an image transit (flown in the
opposite sense) with a perigee in Quadrant I, Thus, it is necessary to
investigate only those transitd having a perigee in Quadront I, since
all other tramsits may be obtained from these by simple reflections as
defined by the Theorem of Images. The images of transits with perigee
occurring in one of the two planes follow trivially from the points
along the transit in the neighborhood of perigee. To include these

: transits, Quadrant I is defined to include that half of the polar plane
: in which zg z 0 and that half of the MEP in which yg = O.

In the investigation of these transits, consideration of absolute
time for departure or arrival has been made unnecessary by the use of
the restricted three-body model, in that the terminals are referenced
position-wise to the MEP system, However, the time, 7, spent between
terminals (referred to as "transit time") remains as an important
parameter.

By using the spherical coordinate systems described in the previous
section, one of the six state variables, flight path angle (g) is fixed
by definition of the terminals, and is equal to 90 degrees (or horizontal)
at both end-points.

Now, arbitrarily fixing the terminal radii and the transit time, a
basic class C(t, pg, On) ©f transits is defined, where 7 = transit time,
pe = perigee radius, and py = perisel radius. That is, all transits
which have perigee on a sphere about the earth of radius p,, perisel on
a sphere of radius p, about the moon, and transit time, 7, are grouped
into one class designated by C(7, pg> o).

10
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The variables on this class are longitude at perigee (},) and
perisel (J;), latitude at perigee ({,) and perisel (¥,), azimuth at
perigee (Az.) and perisel (Azm), and velocity magnitude at perigee (V,)
and perisel (V).

The numerical development and application of these classes are the
subjects of the following chapters.

- CHAPTER II, THE STRUCTURE OF THE BASIC CLASSES C(t, pg, Pm)

Section 1. The Numerical Development of a Particular Class

The attempt to collect individual transits intc a hierarchy of
families of subclasses defining a class of particular order, which
satisfies the definition of C(w, pg, pp), demands a search for charac-
teristics common to several tramsits. Since all classes, C(7, po, 0p),
will be shown to have topologically identical structure, it will suffice
to analyze only one particular class in detail. The class

C(.68902785, ,17022437 x 1972, ,49937675 x 10~%)

is chosen for illustration, (It should be remembered that 7 = ,68902785,
Pe = »17022437 x 1072, and pyp = .49937675 x 10~2 are dimensionless
quantities as expressed in the normalized coordinate systems of Chapter I,
Section 2. TFor convenience in notation, let 7 = ,68902785 = <%,

e = 17022437 x 1072 = ¥, and p = .49937675 x 1073 = p7.)

As an arbitrary starting point in the determination of character-
istics common to several transits, a numerical search is made for all
transits satisfying the class restrictions and fully embedded in the
earth-moon plane. TFour such transits evolve as shown in Figure 13,

They can be paired according to common departure directions, two leaving
the earth corotationally, in congruence to the system rotation, and two
counterrotationally. Each pair eniwines the moon.

To enlarge this small family, the numerical search is extended to
include all such transits of the chosen class having their departure
from the MEP. The results of this search are indicative of the charac-
teristics sought., 71wo well defined families emerge. The two families,
consisting of an infinite number of transits, leave the earth in opposite
directions as depictel on Figures 14 and 15. The points from which the
transits of these two families depart define two small arcs (referred to
as perigee stations) in the MEP of less than 1.2 degrees, measured by
earth central angle. The velocity vectors have a largest relative
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azimgth from the MEP of +5.4 degrees., The two families define tubular
surfaces of transits which envelop the moon densely. The perisel loca-
tions form an almost circular pattern (with geometric center in the MEP)
for each family., These transits, if continued past their K perisel points,
cross tnrough a small volume above the center of their perisel caircle

(as observed from the center of the moon). This is i_lustrated by Fig-
ure 16. The small volume within which the transits have common crossings
is defined to be the vertex of the family., It should be ewphasized here
that these two families contain all possible transits which belong to

the class C(T*, pg, pg) and have perigees in the MEP.

Consideration of these two families suggests an investigation of
the existence of transits which pass over one of the earth's poles and
one of the moon's poles. A numerical search yields only four such
transits, all of which depart from the same longitude. Two depart from
northern latitudes, passing over the north pole of the earth, one of
which passes over the lunar south pole, and the other passing over the
lunar north pole. The other two transits are exact reflections of the
first two about the MEP, As in the previous case, it is found that the
totality of transits, belonging to C(:*, ox, pﬁg, which depart from this
longitude, form two well defined families, one being the image of the
other about the MEP., These two families have every structural feature
ascribed to the first families discussed; that is,

(a) transits depart from small continuous arcs of great
circles, with small relative azimuths for a given arc,

(b) trantits from a given arc form a dense family, defining
a tubular surface which envelopes the moon,

(c) the perisel locations for a given family form a
circular pattern,

(d) the transits of a given family have common crossings
in a '"vertex point," which projects to the center of
the circular perisel pattern.

These characteristics indicate the existence of a somewhat annular
region of arcs of great circles (perigee stations) from which similar
unique families or subclasses depart, Therefore, a new coordinate system
is introduced to expedite the search process for the generation of other
subclasses,

12



A pencil of great circles of radius pg is oriented such that one of
the intersection points (Cg) is in the MEP, and at the longitude of the
"polar family'" jusc discussed, The line containing Ce and the center of
the earth is referred to as the centerline, This pencil is shown on Fig-
ure 17. It is considered as consisting of great half-circles, each half-
circle being defined by the dihedral angle ¢, (referred to as "earth
phase angle') measured counterclockwise from the MEP to the plane of the
half-circle, through 360° (or equivalently, through +180°),

Any point on the spherical surface can now be defined by two
coordinates: (a) the particular half-circle on which the point lies,
and (b) the "distance angle," A,, measured at the center of the earth,
from Ce along the half-circle to the point,

Using this coordinate system, it is found that on each half-circle
there is only a small arc from which departures are possible for transits
belonging to the class C(r~, pg, qg). Every subclass found in this manner
exhibits the characteristics ascribed to the first subclasses mentioned.
The departure and arrival structure of three of those subclasses, identi-
fied by their respective phase angles, &g, of 0°, 90°, and 180°, is
illustrated by Figure 18, The corresponding vertices are also identified
by reference to ¢e.

The somewhat annular region (or belt) containing all possible
departurce positions for transits of this class 1is given at the left of
Figure 19. The diameter of this region is about 15° earth's central
angle, and its width varies from less than 1° in the west to about 1,2°
on the east, At the moon, the area containing all possible perisel
circles for the class C(7*, p,, pi) is also an annular belt (Figure 19
on right), Its diameter is near 120° moon's certral angle, with the
belt width varying from about 20° in the west to only a few degrees in
the east, Representative perisel circles and vertices are exhibited
within the belt, referred to by their earth phase angles ¢,. All
vertices for this class lie on the indicated locus of vertices,

Departures from 0° < ¢, < 180° produce families with vertex points
below the MEP, and symmetrically, those from 180° < ¢ < 360° produce
vertex points above the MEP, This symmetry follows from application of
the theorem of images, for example, the families from 0° < ¢ < 180°;
i.e.,, the families departing from below the MEP are exact reflections
of those departing above the MEP,

13
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Within the field of interest for the Apollo project, all classes
C(7, pe, py) may be generated numerically in the same manner as
C(t*, pi, pf), and the same basic features will be found for ecach class.

There are structural relationships between these basic classes
which may be used in the determination of classes of higher order. It
is through the use of these higher order classes that a conceptual con-
trol of the entire field of transits is gained, So that the engineer
may gain a better '"feel' for the classifications, the expansion to
higher order classes is deferred to later chapters in which the material
will be presented as transformed for a specific d ;. This will not
restrict the use of the data presented as might be expected, for the
inverse transformation is easily obtained from the material presented in
Chapter I, Section 2, That is, the inverse transformation, applied to
data given for a specific dgp will yield data in the normalized coordin-
ate system, which in turn may be transformed to any degy.

The classes nf higher order will be developed from systems of
basic classes having common transit times, For this reason a brief
comparison of specific classes having .57418988 = t; < .91870380 will
be given in Section 3 of this chapter to emphasize the shapes and
relationship between the departure and arrival areas (trajectories
from these classes, C(1{, ps, pg , which when transformed, according
to Chapter I, Se-tion 2, to dgp = me: distance (385,080 km)* belong to
C(Ty, 6555 km, 1923 km) where 60 £ T; = 96 hours). This transit time
region is of interest for Apollo type missions. C(Classes from this
region will be compared at four points, T = .57418988, ,68902785,
.80386583, and .91870380 (corresponding to T = 60 hours, 72 hours,

84 hours, and 96 hours). The method of development described for

T = T* is identical for ‘the other three transit times,

Figure 20 shows the areas of all possible perigees corresponding
to these four transit times, As transit time increases, the perigee
area shifts continuously to larger MEP-longitudes, and the over-all
diameter of the annular areas continuously decreases with increasing
transit time.

The corresponding perisel belts shift to smaller lumar longitudes
as shown by Figures 21 and 22, A detailed quantitative analysis of
these four classes is given in Section of this chapter.

TAI1 results presented for a specific dgp will be for dgp = 385,080 km,’
approximately the mean earth-moon distance, and y = 104.49505 hours.
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Section 2, Body-Symmetry of the Basic (Class

The similarity in the shape of perigec and perisel belts suggests
a symmetry in their structural features, Investigations for this symmetry
yield a tunctional relationship between the terminal conditions of
arbitrary transits, This functional relationship is necessary for the
solution of the question typical for Aponilo flights: What are the
departuvre conditions for a transit thac is to approach a preselected
landing point on the moon in a preszlected direction? Or a more funda-
mental question: 1In a given closs, does a transit exist that accomplishes
certain approach conditions?

To this end, the coordinate system used for generation of the basic
class is applied to the transits arriving at the moon, A pencil of great
half-circles of radius Ry, is positioned at the moon such that one of its
intersections is located in the MEP at the longitude of the perisels for
the polar-earth-polar-moon transits, The lunar phase angle, ¢y, and
distance angle, A, are defined as in the previous case,

Transits that reach their perisels on a common lunar phase angle
(Figure 23) show the following characteristics when traced back to
earth: (a) They envelop the carth densely, (b) They have an almost
circular perigee locus, (c) When followed further back, beyond their
perigees, they pass fthrough a small volume representable by a vertex
(Figure 24). How this "body-symmetrical" behavior of the class struc-
tural features furnishes a key to the terminal correspondence problem is
shown in the following.

Figure 25 states (a) that transits emunating from a common vertex
at the earth have a common lunar phase angle, @,; and (b) that transits
with a common earth phase angle ¢, have a common vertex at the moon,
This relationship may be restated: There exists a one-to-one mapping
of vertex points at one body into station segments of the other body,.
Since now the identification of its vertex and its station segment defines
a transit at cne body, the knowledge of this transit's geometry at the
other body may be determined by a mapping function, A very simple function
may be obtained by introducing a vertex-phase angle, ¢, defined in the
same way as ¢, with Cy (or Cp) as the pencil of the great half-circles
through the points on the vertex locus,

If reference is taken to the pencils of great half-circles intro-
duced previously at earth and moon, and if the locations of vertices and
belt-stations are measured by their respective phase angles (Figure 26),
a rule of quadrants holds which says that quadrants map negatively. To
elaborate on this, consider one example of a given transit for which the
phase angle of the vertex on earth, g,, is between 0 and 90 degrees, and
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the perigee phase angle, ¢,, lies between 90 and 180 degrces. This
transit will arrive at the moon such that its perisel phase angle, 4,

is between 0 and -90 degrees, and its vertex phase angle at the moon, o,
is between =90 and -180 degrees. Thus, the functional relationship
between terminals may be restated as

Q(Ue) = 'Q(‘;’m) and Q(‘jm) = 'Q(‘l’e);

where the symbol Q( ) reads 'quadrant of."

Although a quantitative discussion will be omitted in favor of the
more relevant conceptual control of the problem and the general clas-
sification of transits, the uniqueness of transits defined by these phase
angles deserves special cmphasis. It will suffice to strongly emphasize
the following: .

In the planning of specific missions it should be remembered
that onceé a class C(T, Re, Ry) has been chosen, (a) selecting
both ¢ and ¢ at one body defines a unique transit, and (b) select-

ing eithero at each body or ¢ at each body defines a unique transit.

Section 3, Quantitative Analysis of the Classes C(T;, 6555 km, 1923 km),
60 = T4y = 96 Hours

The basis for the development of the astrodynamical concepts needed
for classification of transits in the carth-moon space has been presented
thus far within a geometrical framework and a normalized coordinate
system. Although this is sufficient for the purposes of this study, the
remainder of the development will be presented as transformed for
dem = 385,080 km along with substantiating graphical representations of
the more interesting parameters.

The perigee and perisel areas defined by the classes C(ty, pg, pﬁ)
in the first section of this chapter are not altered by the transforma-
tion to C(T;, 65535 km, 1923 km), since these areas were given in a
spherical coordinate system, A quantitative analysis of these classes
is furnished by the following series of figures.

By application of Miele's Theorem of Images, terminal belts (and
points) and vertex curves can be quantitatively reflected across the
polar plane (containing the earth-moon line and the north pole of the
system), Also, the phase angle relationships given in Section 2 of this
chapter hold quantitatively for both lunar arrival and departure transits.
Figure 27 schematically illustrates this reflection principle, Thus, the

following information may be interpreted as either earth-moon transits
or moon-earth transits. (It should be remembered, that in performing this

analysis, the rotating coordinate system is utilized.)
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Figures 28, 29, 30, and 31: The variation of earth perigee azimuth
along various phase angles is given as a function of the distance angle
Mo for the transit time classes C(Ty, 6535 km, 1923 km), T; = 60, 72,

84, and 96 hours, These graphs show that to every point A, of a perigee
station on a given phase angle, there are associated exactly two azimuths,
with tlie exception of the boundary points where the azimuth is unique

for the given phase angle, Various inclinations of these transits (at
perisel) are indicated on the phase angle loci. 1Inclination as used in
this study is defined as follows:

cos I' = sin A, cos ¢, 0° = I' = 180°,
1f 5 20,
I = I' ifz>0
-I' if 2 <0,
If & = 0,
0 ifgp=20
1= {;I' if g >0
It if g <0

where I is the inclination and 0° = I = 180° or -180° = I = 0°. Thus,
inclination is defined through 360° instead of the usual definition
through 180° and without the usual reference to the ascending node.

This definition is equivalent to the customary one, but allows the
numerical isolation of transits having inclinations near the relative
minimum and maximum inclinations possible within given classes as pointed
out in the following. The perisel (or perigee) conic defines a plane con-
taining the center of the moon (or earth), the perisel (perigee), and the
vertex, TFor any phase angle, there exists a conic which has a relative
minimum inclination equal to the latitude of the vertex point, and a
conic with maximum inclination equal to 180° minus the latitude of the
vertex point, These maximum and minimum inclinations could become
important in mission definition, and should be considered in conjunc-
tion with the last paragraph of Section 2 of this chapter.,
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Figures 32, 33, 34, and 35: The injection velocity requirements
for the transits indicated by Figures 28 through 31 are given as a
function of the distance angle, /s, to points along the given phase
angles, The two velocities corresponding to the two azimuths for a
given point may be related through the inclination of the perisel conic,

Figures 36, 37, 38 and 39: A representation of the relationships
of perigee velocity on the perisel inclination may be obtained by cross
plots from Figures 32 through 35, i.e., perigee velocity versus phase
angle, with inclination of the lunar arrival plane as a parameter.

Figures 32 through 35 and 36 through 39 may be combined to obtain
loci of coustant velocity and lunar arrival inclination within the
perigee areas for each class C(Tj, 6535 km, 1923 km) such as those given
by Figure 40 for T = 72 hours. It should be remembered that by Miele's
Theorem of Images these loci may be reflected about the x-y plane. The
negative arrival inclinations shown here were obtained by this method.

Figures 41, 42, 43, and 44: The azimuth at pefigee plotted over
de yields a narrow band very néarly the same width over all ¢g. The
width of this band increases, as indicated, as transit time increases.

Figures 45, 46, 47, and 48: The velocity at perisel for transits
which leave the earth with the velocities shown by Figures 36 through
39 are shown as a function of ¢,. The correspondence between individual
transits is made through the parameter inclination of the arrival plane.

For the remaining part of this section, only the classes for T = 72
and 96 hours will be discussed, These two classes are sufficient to
indicate the variations in the parameters with respect to the lunar
phase angle @, since most of these patterns are similar to the ones
just presented.

Figures 49 and 50: le variation of perisel azimuth along various
lunar phase angles is given as a function of the distance angle 4, for
C(72 hr, 6555 km, 1923 kn) and C(96 hr, 6555 km, 1923 km), :

Figures 51 and 52: The perisel velocities for the transits indicated
by Figures 49 and 50 are given as a function of Ap. The velocities and
azimuths of the two tranmsits having a given perisel in common may be
related througi Ay and the inclination of the perisel conic (constant
lIml loci are drawn in to aid further cross plotting). For 0 = @y = 180°,
the positive I are the intersections of the ‘Iml loci with the upper
part of the @, curves, and the negative Iy are the intersections of the
lIml loci with the lower part of the ¢, curves. The dotted lines at
each end of the figure are the loci for minimum inclination of the perigee
conics. Application of Miele's Theorem of Images to these figures yields
the phase angles 180° < ¢y < 360°, For these phase angles, the sign of
the inclination of the perigee conic reverses,

*
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Figures 53 and 54: Perigee conic inclination is r:iated to the
velocity at perisel and q¢,. The positive inclinations shown here may be
reflected by the image theorem to obtain their negatives.

Figures 55 and 56: The behavior of the perisel azimuth over &, is
very similar to that at the earth; however, the variation in the width
of the azimuth belts is smaller between transit time ~lasses as indicated
by these two figures.

Figures 57 and 58: These two figures show the variation of perigee
velocity over ¢, for various inclinations of the perigee comic., These
curves may also be reflected to obtain the negative inclinations.

Figures 59 and 60 illustrate the loci of perisels, corresponding
to the perigee conic inclinations of 30°, 60°, 90°, 120°, and 150°,
which make up the perisel belts. The belts as shown here represent
the lunar injection loci for moon-earth transits. The same figures may
be obtained for lunar arrivals by reflection. The shaded area represents
the total area of the belts.

CHAPTER III, SYSTEMS OF CLASSES C(Ti, Reg, Rmg)"
CONTAINING ALL TRANSITS IN THE FIELD .I INTEREST

Section 1. The Systems C(Tj, Re, Rmg)

A. Variation of the Lunar Terminal Radius

The systems of classes C(Tj, Re, Rmg) are developed by stepwise
variations in the element Ry of a basic class C(T, Re, Rp), for fixed
values of T; within the range of interest., For this system of classes,
R, is held constant and equals 6555 km. To facilitate understanding,
the development will be made by expansion of a particular rlass
C(72 hr, 6555 km, 1923 km),

1 The subscript (s) will be used to denote systems of basic classes for
which the subscripted parameter, although unique for a specific basic
class, varies continuously over the system.
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For fixed values of Ry, 0 < Rp. <Ry < ... <1923 km < ..,
< Rmy, basic classes are developed by the methods outlined in Chapter II.
Since, mathematically, the equations of motion treat the moon as a mass
point, the perisel radius Ry, may approach zero.? Each of these classes
exhibits the structural features attributed to the particular class
C(72 hr, 6555 km, 1923 km) and have the same centerline, GC.

The geometrical relationship between these classes is best
seen by considering first the relationship between individual perisel
circles from each class, for example, those generated from ¢, = 0° for
various values of R;;. Examples of these perisel circles are shown by
Figure 61, Such perisel circles exist for every perisel radius in the
vicinity of the moon., They form a dénse horn-shaped surface associated
with the given phase angle (Figure 62). The transits defining these
families, if continued beyond the perisel surface, cross through a con-
tinuum (or line) of vertices at the center of the surface, Each point
of the line is associated with a particular perisel radius (Figure 63).

A graphical renresentation of the intersections of the surface
by two perpendicular planes containing the vertex line (for instance,
the MEP and a polar plane) gives a more exact definition of the shepe
of this surface, Figure 64 (in the MEP) shows the locus of perisel
points associated with the embedded transits. The polar plane is the
plane of flight at arrival defined by the transits leaving the earth
with the largest relative azimuths from the MEP (for each perisel radius)
and arriving over the north or south pole of the moon (Figure 64b).
Figure 65 shows the continuation of several typical transits through the
perisel loci to the vertex points associated with the given perisel
radii., The general features of these transits are conserved for all
transits in the vicinity of the moon. ' ’

Now, investigating all other phase angles, the same general
behavior as that discussed above is found for each phase angle. The
location of the surfaces generated, their vertex lines, and their cross-
sectional diameter at any perisel radius are functions of the departure
phase angle. An indication of the relative size and location of these
surfaces is found in the information presented in Chapter II (Figure 19)

2 The equations of motion have singularities at the centers of the earth
and moon. However, there now exists a computation procedure by which
limiting radii, including zero, may be studied. Richard F, Arenstorf
accomplishes the removal of these singularities simultaneously in his
paper, "On the Best Regularization of the Restricted Three-Body Problem,"
MTP-COMP-63-1,
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for the class C(1%, pf, gf) transformed to C(72 hr, 6555 km, 1923 km),
The perisel circles (perisel radius 1923 km) shown here are elements of
the perisel surfaces generated for phase angles of 0°, 90°, 180°, and
270°. The shaded area represcnts the continuum of perisel circles found
at the intersection of a sphere of radius 1923 km with the continuum of
perisel surfaces generated from consideration of all possible phase
angles, i.2., the perisel locations for C(72 hr, 6555 km, 1923 km).

It was noted in Chapter II that, as departure phase angle
increases from 0° to 90°, the vertex point associatel with the perisel
circle at 1923 km moves away from the MEP to a maximum latitude for
o = 90°. Likewise, the vertex lines associated with these surfaces
move to a maximum latitude (about -9°)., The polar plane in which this
maximum occurs is shown in Figure 66. A plane containing this vertex
line and perpendicular to the polar plane shown would be that plane
defired by the transits arriving with the smallest possible relative
inclination to the MEP for this phase angle. This iaclination is deter-
minec by the latitude of the vertex line for a given phase angle (as
discussed in Chapter II). The arrival situation for transits leaving
from ¢ = 270° is the image (about the MEP) of that for ¢, = 90°, This
image may be obtained by application of Miele's Theorem of Images to
the transits leaving from ¢, = 90°.

The moon arrival situation for thcse transits which depart from
the earth with a counterrotational velocity component is topologically
the same as for those departing corotationally., Figure 67, analogous
to Figure 65. shows the intersections of the perisel surface defined by
0e = 180° with (a) the MEP, and (b) with a plame containing the polar
arrivals. By comparison of the perisel loci given for phase angles of
0°, 90°, and 180° (Figures 64, 65, and €7), the perisel surfaces, defined
as @ increases from 0° to 180°, are shown to increase in cross-sectional
diameter at a given perisel radius, and the vertex lines move to smaller
longitudes (as indicated by the perisel circles in Figure 19).

The locus of all such surfaces forms a perisel hori of varying
thickness, and generally the same shape as the surfaces of which it is
composed (Figure 68). The perisel horn contains all perisels for the
system C(72 hr, 6555 km, Rmg). The vertex lines of these surfaces form
a smaller cone shaped surface about a line through the center of the
horn (Figure 69). 7This centerline is defined by the line from the
center of the moon through ', (discussed in Chapter II). Figure 70 gives
a more exact representation of this volume of perisel points. The inter-
section of the perisel horn and the cone of vertices with the MEP is given
in Figure 70 part (a). The boundaries of the area of intersection &re
practically the loci of perisel points corresponding to the embedded
transits from phase angles ¢ = 0 and ¢, = 180° (shown earlier in Fig-
ures 65 and 67). The intersection of the perisel horn with a plane
perpendicular to the MEP and containing Cy is shown in Figure 70 part (b).
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In summary, for fixed transit time (72 hours) and perigee
altitude (185 km), and a given phase angle, the variation of perisel
radius generates a continuum of perisel circles which form a horn-shaped
surface (the cross-sectional diameter increasing with perisel radius).
The continuation of these transits past the perisel surface defines a
line of vertices through the center of the surface. A similar unique
perisel surface and line of vertices are found for each earth phase
angle (0° = ¢ = 360°). As all other earcth phase angles are counsidered,
a contipvrum of associated perisel surfaces is counstructed which forms a
horn-shaped volume containing all possible perisel points belonging to
the system C(72 hr, 6555 km, Rpg). The locus of the associated vertex
lines is a smaller cone-shaped surface about the centerline Cp-

Similar perisel horns are generated by the system of classes
for every transit time in the range from 60 to 96 hours, An indication
of the shape and location of these systems for other such transit times
is given by the basic classes presented in Chapter II for T; = 60, 84,
and 96 hours, B

R, Development of Injection Loci for Variations in Lunar Terminal
Radius

So that the development of the geometrical properties of earth-
moon transits may proceed smoothly, the variations in earth terminal
conditions were neglected in the previous sectiou, Now, having developed
the general properties of the perisel horn in the vicinity of the moon,
the variation in ...rth parameters required to form the horn will be
investigated.

Consider first the continuum of families (corresponding to
various perisel radii) resulting from the injection phase angle ¢, = 0°.
As discussed previously, these transits all have their injection points
in the MEP-and result in perisels which form a horn-shaped surface. The
perigee stations associated with these families are colinear, but increase
in length with perisel radius (Figure 71); and also, for increasing radii,
each station and the resulting family contain all those stations and
families for smaller perisel radii (Figure 72). A similar situation
exists for those families of transits leaving the earth from ¢, = 180°.

. Again the perigee stations are in the MEP, and these stations increase
in length with perisel radius. However, along with an increase in
length, the stations for ¢, = 180° shift toward zero earth longitude as
perisel radius increases. In this case, the resulting families do not
initially contain those for smaller perisel radii, This is shown
graphically in Figure 73 and pictorial‘y in Figure 74,
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In general, the features exhibited for perigee stations at
phase angles of 0° and 180° are conserved for all phase angles from 0°
to 360°, with those features at ¢ = 0° being gradually deformed into
those for ¢e = 180°, and symmetrically from ¢ = 180° to @, = 360°, 1In
the previous section the intersection of a sphere of radius 1923 km with
the perisel horn was shown to be the perisel belt which corresponded to
the perigee belt for 72-hour transits discussed in Chapter II, A gimilar
unique perigee belt is formed for every perisel radius by construction of
the asscociated perigee stations for all phase angles, Perigee belts
corresponding to perisel radii of 1000 km, 1923 km, and 3000 km ar: shown
by Figure 75. The features discussed above for perigee stations at phase
angles of 0° and 180° are perhaps more easily generalized to other phase
angles by consideration of this figure, The projections of the resulting
perisel belts formed at the intersections of the horn with spheres of
radii 1000 km, 1923 km and 3000 km onto a common sphere are given by
Figure 76,

For such perigee stations associated with any given phase angle,
the range of variation in velocity direction (or azimuth) required for
enveloping the moon increases as the length of the station increases
(corresponding to increasing perisel radii). An indication of this is
given in Figure 77, which shows the azimuth required at each point along
the perigee stations associated with the above perisel radii for several
phase angles, The coordinates are perigee azimuth and Ay, the distance
angle from the center, C,, to the perigee point, By application of
Miele's Theorem of Images, ¢ = +45°, +90°, and +135° may be obtained
from ¢ = =45°, -90°, and ~135°, The double-valued nature of /A in Azj,
for each of these curves, corresponds to transits having the same position
at perigee, but having different velocity directions,

This increasing range of variation in Az; required for increas-
ing perisel radii is given explicitly as a function of perisel radius
in Figure 78 for phase angles of 0°, 45°, 90°, 135°, and 180° (and by
the proper reflections according to Miele's Theorem of Images, phase
angles of 225°, 270°, and 315°),

Similarly, the range of variation in velocity magnitude required
for enveloping the moon from a given phase angle increases with the perisel
radius, Velocity magnitude requirements for each point along the perigee
stations associated with the perisel radii 1000 km, 1923 km, and 3000 km
are given for several phase angles in Figure 79, As shown here /A is
also double-valued in velocity magnitude for each phase angle and perisel
radius, From consideration of this double-valued nature of A, in velocity
direction and magnitude, two unique transits for each perisel radius are
seen to be possible from each point of the corresponding perigee belt
(with the exception of the boundary points) which have different velocity
directions and magnitudes at perigee. (In the case ¢, = 0° or ¢, = 180°,
the velocity magnitude is the same for the two transits.,) The ensuing
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transits yield different perisel points and directions of arrival.
Inclinations of the perisel conics are indicated in both of these fig-
ures (77 and 79) to give more insight into the moon arrival (or departure)
situation, as well as being a convenient parameter for matching the proper
azimuths and velocity magnitudes on these graphs for given positions in
the perigee belts.

Another means of representation of the information contained
in Figures 77 and 79, which gives stronger emphasis to the inclination
of the moon arrival conic, merits at least graphical presentation.
Figures 80, 31, and 82 are plots of velocity direction at perigee vs
phase angle, with the inclination of the perisel conic as a parameter.
Figures 83, 84, and 85 are plots of perigee velocity magnitude vs phase
angle with the lunar arrival inclination as a parameter. 1In these fig-
ures, only inclinations of 30°, 60°, 90°, 120°, and 150° are given.
Inclinations of 225°, 270°, and 315° may be found by proper application
of Miele's Theorem of Images. It is interesting to unote the shape
similarity of the corresponding plots (Figures 86, 87, and 88) for
velocity magnitude at perisel with those above for perigee.

Section 2, Lunar Impacts

The preceding discussion of variations in perisel radius was with-
out regard to the volume of the moon., This approach was taken so that
the families of constant transit time would be consistent families,

i.e., the time of transit was to be measured from earth perigee to the
(mathematical) point of lunar close approach, In the physical situation,
assuming the moon to have a radius of 1738 km, all those transits with
perisel radius less than 1738 km will impact on the surface of the moon
at some time before periselenum, Therefore, those points of the perisel
horn which lie within the surface of the moon are to be associated with
impact transits.

Recall Figure 63 which was generated from the phase angle ¢, = 0°.
The surface represented here is that which was defined by investigation
of all possible perisel points in the vicinity of the moon, corresponding
to 72-hour transits which have their earth perigee at 6555 km (100 n.m.
altitude) and station phase angle ¢ = 0°. The perisel circles shown
on the surface are those for perisel radii of 828 km, 1368 km, 1923 km,
and 2500 km,

To facilituce the association of perisel points with points of
impact, the intersections of this surface with the MEP and a polar plane
containing the vertex line are given by Figures 89a and 89%. (The
dotted circle represents the surface of the moon and the dotted lines
reprcsent the extension of the vertex lines through the center of the
moon.) Now retracing the paths of the transits for these radii (dashed)

-
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back to the surface of the moon, points of constant transit times and
constant path angles are found in the MEP and in the polar plane corres-
ponding to each perisel radius., These points are symmetric about the
verte¢ line, PFigure 90 shows these transits impacting on the surface of
the moon and their continuation to the horn-shaped surface of perisels
assoc.ated with ¢, = 0, If all such transits defining the given perisel
circles are traced back to the surface of the moon, circular loci of
almost constant transit time to impact and impact path angle are formed
for every perisel radius (Figure 91). (The variation in 7 and § is in
the second decimal place,)

The development of loci of constant transit time to impact, and
impact path angle for other earth phase angles proceeds in the same
manner, Similar concentric circular loci are described for each phase
angle, The impact loci for all earth phase angles, corresponding to a
given perisel radius, for example, Ry = 627 km, form an annular region
on the surface of the moon similar in shape to the perisei belt for the
given radius. In this annular region, impacts may be obtained with
fixed values of impact time and path angle from each earth phase angle
(Figure 92). Similar annular regions are formed for every perisel radius,
Figure 93 shows the regions associated with the perisel radii, i.e.,

258 km, 627 km, and 1183 km. The maximum variation of time and path

angle for any perisel radius over all ¢, is about .06 hour and 1.5° as
shown below. The impact time and path angle are not unique for a given
position on the moon, Neighboring perisel radii within the moon determine
overlapping annular regions of impact with different impact times and path
angles,

The variatjion of the impact path angle with perisel radius is some=-
what sinusoidal with the impact path angle single-valued and changing
from 90° to 180°, as perisel radius varies from 1738 km approaching zero,
This is shown for the phase angles ¢, = 0°, and 180° in Figure 94, The
transits having a zero perisel radius and an impact path angle of 180°
(i.e., the transit impacting perpendicular to the surface of the moon)
arce found to be colinear with the extension of the corresponding vertex
lines mentioned before. As perisel radius decreases from 1738 km to
zero, the arc length between impact and perisel first increases to a
maximum, and then decreases to the radius of the moon for the limiting
case of zero perisel radius., At the same time, perisel velocity is
increasing. The combined effects of the first increasing and then
decreasing arc length between impact and perisel and the increasing
velocity result in transit time to impact being double-valued (Figure 95).
The variations of impact and perisel velocity with decreasing radius of
perisel are given for ¢, = 0°, and 180° by Figures 96 and 97. The
corresponding longitudes of impact and periselenum are given in Fig-
ure 98, and the velocity magnitude at perigee for the embedded transits
is given in Figure 99,
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Perpendicular impact loci (corresponding to the limiting cases of
Ryp = 0) are given by Figure 100 for the transit times of 60, 72, 84,
and 96 hours, These are the only possible perpendicular impacts from
the systems C(.i, 6555 km, Rpg) T; = 60, 72, 84, and 96 hours, An
indication of the similar loci for any transit time in 60 = Ty = 96 is
given by Figure 101, This figure shows the center (which lies on Cp),
the major axis, and the minor axis of the loci versus transit time,
Since these loci lie on the vertex lines, their reflection through the
center of the moon results in the corresponding vertex loci.

Corresponding perigee pcsitions are given by Figure 102, These
loci are very nearly circular for the lower transit times, and even for
the higher transit times the locus may be at least approximated by
circles; therefore, Figure 103 indicates the positions of the centers
and radii of the loci for transit times 60 £ T; = 96,

Section 3. The System C(Tji, Reg, Rn)

A. Variation of Earth Términal Radius

The somewhat arbitrary restriction of the earth terminal radius
to 6555 km (185 km altitude) has allowed an extensive study of the
behavior of transits in the earth-moon systems, However, only after
allowing variations in the earth terminal radius will the purpose of
this study have been accomplished, i.e., the classification of all
transits with successive close approaches in the vicinity of the earth
and the moon,

The systems of classes C(Ti, Reg, Ry) are developed in the
same way as were the systems C(Tj, Re, Rmg), i.e., by stepwise varia-
tions in the element Re of a basic class C(72 hr, 6555 km, 1923 km),
Thus, basic classes are generated for 0 <Re, <Re, < ... < 6555 km
< ... < Rgg. Onco more, each of these classes exfiibits the structural
features attributed to the particular class C(72 hr, 6555 km, 1923 km)
and have the same centerline, Ce. '

Figure 104 gives a comparison of the perturbations in the
actual trajectory shape for Rg = 6555 km (100 n.m,, altitude), 7665 km
(700 n.m., altitude), 8775 km (1300 n,m,, altitude), aad 9885 km
(1900 n.m., altitude). The perturbations in the shape of trajectories
from phase angles other than 0° and 180° are very similar to the trends
shown here,
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Figure 105a shows the relative positions of the perigee belts
for these classes, and Figure 105b shows the corresponding perisel belts
for Re; = 6555 km, 9885 km. From this figure, we see very little varia-
tion in the perisel belt for variations in Rpe. As indicated by the
dotted lines on Figure 105a, a horn-shaped continuum of such perigee
belts is found when Re is allowed to vary continuously between O < Rg =
Rey. The intersection of this perigee horn with a sphere of any fixed
radius Re:; is, therefore, the locus of all possible perigee locations
for transits from the classes C(T, Re:, 1923 km), and the horn contains
all transits of the system C(T, Reg, £923 km) .

The intersections of this perigee horn with the MEP and with a
polar plane containing Cp are shown by Figure 106 and Figure 107. The
intersections of the corresponding perisel belts (at Ry = 1923 km) with
the MEP are given as a function of perigee radius by Figure 108,

B. Transits Having Perigee Stations Inside the Earth

The consideration of transits having perigee inside the earth
(analogous to the previous discussion of perisels within the moon) has
its value in the possibility of future direct ascent missions, or the
desire for injection with a path angle othar than 90°,3

Since the general characteristics of such transits are very
similar to those discussed previously, only the perigee geometry is
presented. Injection altitude has been chosen arbitrarily as 185 km
(100 n.m,). The patterns existing here are typical of the situations
to be encountered at any other altitude near the earth. Further,
nurmerical data arepresented only for the embedded transits and the polar
(earth and moon) transits, The trends indicated by these transits are
in general applicable to other departure phase angles and directions of
lunar approach,

Figures 109, 110, and 111 illustrate the (mathematical) behavior
of the embedded and polar transits between perigee and the 185 km injec-
tion altitude, Almost any geometrical restraint imposed at the moon,
which can be satisfied by injection at 185 km perigee altitude, can also
be satisfied by this type of transit when referenced to the correspond-
ing perigee class. Such transits may be easily referenced to the
corresponding perigee class by the simple two-body relationships, and
by the same means, injection requirements may be obtained for injection
into these transits at higher altitudes (This two~-body approximation is
very good for short periods of time near the earth).

3 The discussion here is not intended to show practicality, but possibility.
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CHAPTER IV, APPLICATIONS

Sectfon 1. TFree-Return Transits

A. Requirements for Free Returns

An important application of the geometrical concepts developed
in the previous chapfers is found in the implication of the existence
or, just as important, the nonexistence of certain types of transits
satisfying given mission requirements,

One such mission of immediate importance is that oi free flight
transits which, after passing arbitrarily near the moon, return to the
vicinity of the earth with position and velocity coordinates conducive
to reentry and recovery. The utility of such a mission definition lies
in its applicability to Apollo type missions, for which mission abort
in the vicinity of the moon, without thrusting maneuvers, and return to
earth may be desirable or necessary, or simply to missions for which
lunar fly-by and earth-return is required.

These free-return transits can be defined within the context of
the classification methods of this study by the following restrictions
on position, velocity direction and velocity magnitude at the perisel
point:

1, Position - Two perisel circles must have this point
in common; one a lunar arrival circle defined by earth-
moon transits (outbound legs), and the other, a lunar
departure circle, defined by moon-earth transits
(inbound leg) corresponding to the reflection across

the M~E polar plane of the same or any other arrival circle,

2. V~locity Direction - The two perisel circles must be
tangent at this point. Since the transits are normal
to their perisel circles, tangency of the two circles
is required for the velocity directions to be colinear.

3. Velocity Magnitude - The velocity magnitude for the two
transits must be the same at this point,

Neither flight time, perisel radius, nor the perigee radii
appear explicitly in these restrictions. However, they do appear
implicitly, defining boundaries of regions for which all three restric-
tions may be satisfied. The properties of these boundaries and certain
elements of the region of existence are the topics pursued in the follow-
ing.
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Without loss of generality, the discussion may be simplified by
assuming the perigee radius of the outbound leg and that of the inbound
leg to be the same; i.e., the classes of transits discussed belong to
C(Tg, 6555 km, Rp. ), where Tg and Rmg are dependent. The analysis and
the patterns Wth would be develoced for different combinations of the
two perigee radii are similar to that to be presented.

B. Symmetric Free Returns

The most easily conceived free returns are those for which perisel
occurs in the M-E polar plane. The principles for the development of
such free return transits are outlined in the following idealized
example,

Consider the classes C(T%, 6555 km, Ri), defined by the inter-
section of a sphere of radius R?, about the center of the moon, with
the perisel horn corresponding to the transit time T# (% denotes the
idealized examp'e) and C'(T*, 6555 km, R%), the reflection of
C(T#%, 6555 km, R*) across the M-E polar plane. Segments of the two
perisel belts de%lned at the intersections are shown on Figure 112,
with the perisel circles for the phase angles 0°, 90°, 180°, and 270°
superimposed, The loci of vertices are also projected onto the sphere.t

Figures 113, 114, 115, and 116 show the classes from the system
C(T* 6555 km, Rm ) deflned at the intersections of spheres of radii

<R% <R} < R; respectively, with the same perisel horn, These
flve flgules show that, as the perisel increases, at some radius RS the
perisel horns lntersect the moon-earth polar plane. The first possxble
symmetric free return for C(T*, 6555 km, Rm ) occurs at this point.

Here the perisel circles for ¢, = O from C(T*, 6555 km, R%) and

C' (T*#, 6555 km, R‘) are tangent forming the inbound and outbound legs

of the free return. In the same manner, with further ircreases of the
perisel radius, a free return occurs for every phase angle as the
corresponding perisel circles become tangent (in the M~E polar plane),
The latitude of the perisel point for these free returns increases from
Pm= 0°, for @ = 0°, to a maximum for g = 90° (Figure 114), and back

to ¢~ 0° for ¢ = 180°. Simultaneously ¢ decreases to a minimum for
the correspoading phase angles symmetric about the MEP (360° > ¢, > 180°).

Free returns of the type depicted by Figure 114, having perisel
latitude gy # 0, have been called free returns of the second kind by
Schwaniger [6] and others, but will be referred to here as '"plane
A symmetric free returns,'" "Line symmetric free returns' also described
in Reference 6, as those of type 1 or the first kind, have their perisel

1The two perigee belts ar. reflections across the x-z plane.
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on the earth-moon line, and also occur in pairs, with azimuth symmetric
about 270°, (for earth phase angles symmetric about the MEP) as the
corresponding perisel circles become tangent to the earth-moon line,

as shown for ¢, = 90° and 270° on Figure 115. Here, the perisel circles
become tangent to their reflection across the earth-moon line; i.e,, the
perisel circles for ¢ = 90° and @é = 270° define a free return which
has an azimuth less than 270°, and symmetrically, ¢¢ = 270° and @ = 90°
define a free return which has an azimuth greater than 270°, The azimuth
increases from 270° to a maximum as ¢ increases from 0° to 90°, then
decreases to 270° as ¢, continues to increase to 180°, and symmetrically
for 180° < ¢ < 360°.

A three-dimensjonal representation of the development of the free
return patterns as described with reference to Figures 113, 114, 115,
and 116 is given by Figure 117. The plane symmetric free returns,
defined at the points of tangency of Figures 113, 114, and 116, corre-
spond to the perisel points A, D, and G in the x-z plane of Figure 117.
Likewise, the perisel points at d, for ¢, = 90°, 270°, belong to the
line symmetric free returns defined at the point of tangencies of
Figuvre 115,

Thus, there is a line symmetric and a plane symmetric free return
for every earth phase angle except 0° and 180°, where the single free
returns satisfy the definitions for both types. The locus for the plane
symmetric returns is somewhat elliptical, and the locus for the line
symmetric is then the axis of the ellipse colinear with the earth-moon
1in?a The locus of the vertex points for free returns belonging to
C(Tg, 6555 km, Rﬁs) is indicated on the vertex cone, also shown on
Figure 117.

At this point, it should be reiterated that the example used is an
idealized case. The true geometrical patterns for the loci of perisels
corresponding to free return transits become distorted over variations
in transit time., Figure 118 indicates the variation in the shape of
the perisel loci for symmetric free returns of the systems C(Tg, 6555 km,
Rms)’ T; = 60, 72, 84, and 96 hours. The near-moon boundary for sym-
metric free returns is given by Figure 119, " Figure 120 gives the
transit time and earth phase angle for the maximum inclination achiev-
able in a neighborhood of the moon.

The discussion may be summarized here by the following:

1. The perisel points of all possible symmetric free returns
lie in the x-z plane,2

2This is also implied by Miele's Theorem of Images.
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2. For a given transit time and perigee radius, there exist
two symmetric free returns (one line symmetric and one
plane symmeivic for every earth phase angle 0° < ¢, < 360°,
with the pairs for 0° and for 180° being identical. Each
free return has its perisel and vertex point at unigue
distances from the center of the moon,

3. The perisel loci for the free returns o¥ neighboring tran-
sit times intersect densely, forming a region, within which
“he perisels of an infinity of line symmetric free returps
exist at every point along the x-axis,

4, At any other point of the region, there exist exactly two

plane symmetric free returns, except at the near-moon
boundary of the region, where there is only one,

C. Nonsymmetric Free Returns

The use of a symmetric free return transit for a given mission may
place undue restrictions on the position of perisel or the return
perigee, It is very likely that due to tracking (and other) restric-
tions on reentry, returns to a position symmetric to that of launch
would be undesirable, yet return to a specified altitude may be neces-
sary for successful recovery.

Such mission constraints may be satiefied by application of the
restrictions glven in Section 1 to the systems of classes C(Ts, Res,
Rmg) and c' (Tg, Res, Rms), where Ti # Tl, Rmi = le, and Rel 2 Ré;.

The development of such "nonsymmetric" free returns is a straightforward
continuation of that for the symmetric cases discussed in the previous
section,

Consider, for example, the class C(T¥, Re» R*) shown by Figure 113
and, C'(T* , Re, R¥) instead of '(T*, Re, R =) s where T*' is arbitrarily
near T*, There exist two perisel circles, one from e‘cﬁ class, corre-
sponding to different earth phase angles, which are tangent at a point
where the velucities are the same, thus producing a nonsymmetric free
return with A, # 180° and Azy # 270°. The coordinates of the earth
perigees for the two legs, as well as the txansit times, differ.

As 1ncrea81ug and decreaSLng transit time classes are considerad,
i.e., C'(T* Ra» R%), T“ , E'T' , two nonsymmetric free returns occur
for every earth phase angle in C(T*, Re, R%E), one above the MEP and one
below the MEP,
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The outbound legs of these nonsymmetric free returns all have the
same transit time T®, and each of the inbound legs has different transit
times,

The approximate bounds on Tﬁ for any Ry may be found by comparing
velocities and positions for perisels in the MEP, over transit time,
for the systems C(Ts, Re, Bmg) and C'(Tg, RE, Rmg). This is illustrated
by Figure 121 for R, = Ry = 6555 km and Ry = 1923 km. For these systems
of classes, there exists a continuum between the transit times of about
€0 hours and 82 hours within which transits may have the same perisel
velocities and longitudes, 7The free returns are also dependent on
perisel azimuth and latitude, but for the dec.ermination of boundaries
these paraneters are not needed.

As an example for reading this graph, choose an outbound transit
time T = 65 hours. The transit times of possible inbound transits
having comparsble perisel longitudes are between about 73 hours and
76.5 hours shown by the shaded area. The limits on perisel velocity
for these free returns are shown by the doutted lines within the velocity
region, TFurther identity of thesc transits with respect to perigee con-
ditions may be obtaineu from cross plots of the graphs of perigee param-
eters presenterd in Cha, ter III,

Nongsymmetric free returns traveling in the opposite direction to
those discussed above may be obtained in the same manner from the same
figure. These transits are reflections of the above transits across
the earth-moon pol r plane, The perisel velocities are the same, and
the longitudes are reflections about 180°, i.e., the positive portion
of the longitude curves in Figure 121,

Note that, foxr 7, = 180°, there exist perisels in the x-z plane
for transit times between about 69 hours and 70 hours. These points
represent symmetric free returns.

Figure 122 is given only as an indication of the shape of the
perisel loci for nonsymmetric free returns from the systems (T,, 6555 km,
1938 km)., The solid curves are the free return loci for transit times
of 65, 70, 75 and 80 hours, and the dotted lines of constant azimuth at
perisel indicate the velocity direction of the free returns. Note that
the intersections of the 70 hour locus with the moon-earth polar plane
(A, = 180°) are symmetric free returns, This figure may be reflected
by Miele's Theorem of Images to obtain transits with the same transit
time in the opposite direction,
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Figures 123 ard 124 for Ry = 1000 km and 3000 km, respectively,
give the same information as Figure 121 for Ry = 1923 km, i.e.,
boundaries in transit time perisel longitude and velocity for hoth
symmetric and nonsymmetric free returns. Although Ry = 1000 km is
physically meaningless, Figure 123 is very useful along with Figures
121 and 124 for cross plots over jerisel radii of greatest interest,
i.e., 1738 km < Ry < 3000 km,

A more detailed study of free return transits is to be published
in the near future by A. J. Schwaniger of this office (also sece refer-
ences 6 and 9).

Section 2, Ehases of the Moon at Approach and Lighting Conditions for
Rendezvous and Impact

Almost any lunar mission places restrictions on the lighting con-
ditions at lunar approach, A complete treatment of this subject,
however, would very well! comprise a complete study in itself. For this
reason, the following is intended only as an indication of another of
many possible applications of the concepts developed in Chapters I-III,
No numerical data are presented - only the method of application.

Figure 125 is an arbitrary representation nf the earth, moon and
sun with respect to the plane of the ecliptic and the vernal equinox,
The parameters indicated may be determined at any time from "The Astro-

nomical Ephemeris and the American Ephemeris and Nautical Almanac"® as
defined pelow:
J = the mean longitude of the moon, measured in the ecliptic

from the mean equinox of date to the mean ascending node
of the lunar orbit, and then along the orbit,

@ = the longitude of the mean ascending node of the lunar
orbit on the ecliptic, measured from the mean equinox
of date,

d =9+ w

i = the inclination of the lunar orbit plane to the ecliptic,

L = the geometric mean longitude from the mean equinox of date,

1Hereafter referred to as AEAENA,
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ies = the vector from the earth to the sun,
ﬁem =~ the vector from the earth to the iwoon,
ism = the vector from the sun to the moon.

A vector expressed in the earth centered ecliptic coordinate

system may be expressed in the MEP earth-centered system by the follow-
ing rotations:

S-{ME]?e = (03{1)1(D 5 5-(Eec: = Ti.(Eec’

where

— -
1 0 0

(8), = |0 cos § sin g
0 - sin © cos 6

cos B sin ¢ 0

(8)s = |-sin @ cos ¢ Of.

0 0

x!—*

With respect to the MEP moon-centereu system, this is given as

Ywp ~ fmp | °
m e
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Therefore, the vector from the sun to the moon may be calculated in the
MEP moon-centered system by the above transformation of the following
expressed in terms of data given in the AEAENA:

@ = sin™! (sin i sin w), @ # * g

cos
- wF I

cos A?\'-:m,

i

gin A\ = tan ¢/tan i
AN\ = tan™l [sin AN cos AM]

(if w=n<%, AA=w). Therefore,

1

Re, €08 (R + ON) Reg cos L
Rey = Repy = Reg = |Re, Sin (2 + AN)| - |Reg sin L],
Re, sin i sin w 0

S el b el

Transforming to MEP moon-centered coordinates, the latitude, ¢m., and
longitude, Xp , of the "midnight point" on the moon are found from the
following:

- cos ¢ cos (360 - Ap)
= Jcos ¢ sin(360 - A .

m sin P
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This midnight poiat defines the hemispheres of "daylight and dark-
ngss" on the moon for the ephemeris time selected, For times in the
neighborhood of the selected time, there will be no appreciable change
in the areas of light and darkness.

If the time is selected to coincide with the arrival of some earth-
moon transit, the lighting conditions available for rendezvous or lurar
impac may be determined for any transit arriving at this time merzly by
reference to the centerline, Gy, for the corresponding transit time,
Trausits having a common transit time are essentially parallel in the
neighborhood of the moon and lie within a tubular volume (having an
almost circular cross section) which contains their perisels and
decreases to a point at Cp.

For example, consider typical transits having a transit time of
72 hours arriving at the moon (at mean distance) at the ephemeris time
represented by the geometry of Figure 125. C, for 72 hours is approxi-
mately at 125° longitude., This arrival situation is depicted by Fig-
ure 126, Four transits (embedded and polar) for ¢, = 0, and the
associated perisel belt for 72 hours are given as typical., 1In this
situation, transits may depart from the earth from any ¢ and arrive in
a lighted region with arrival inclinations 90° < I, = 180°, and
~90° > Ty =z -180°, Similar conditions exist for impact transits.

(The location of Gy for other transit times in the region 60 = T = 96
may be found in the information given in Chapter III, Section 2.)

CHAPTER V, GECGRAPHIC AND SELENOGRAPHIC LAUNCH AND ARRIVAL CONDITIONS

Section 1. Launch Restrictions

For operational as well as flight relliability reasons, the Apollo
project requires launch from the Atlantic Missile Range within specific
limits on azimuth, and requires the lunar approach to be in a predeter-
mined direction over a specified position on the lunar surface., Thus,
implementation of the Apollo project requires the formulation cf the
necessary launch parameters in a geographical coordinate system, and
similarly the arrival parameters must be formulated in a selenographic
system,

In consistency with the aim of this paper - promoting the under-
standing of the problems and the ways of solving them, rather than
bringing out quantitative data - a rigorous treatment of the transforma-
tions from the MEP to the gecgraphic and selenographic systems is omitted,?*
and the development is, in general, by means of sequences of illustrationms.

15ee "Explanatory Supplement to the Ephemeris," HMSO, 1961; and ''Seleno-
graphic Coordinates," JPL TR 32-41, B. E. Kalensher, 24 Feb, 1961, for

treatments including librations and nutations, etc. 5
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The selection of a launch date and time, for the investigation of
a missicn's feasibility, fixes the MEP coordinate system with respect
to the ephemeris and the Atlantic Missile Range. The situations avail-
able for launch are then determined by the perigee and perisel belts.

Four simple coordinate rotations, through w, i, @, and €, relates
the perigee belt to the space-fixed (in direction) earth equatorial
system as shown by Figure 119,

This transformation is given by iEEQ = (e)l(-g)3(i)l(-w)3iMEPe
where €, @, i, and w are measured as shown in Figure 127,

One further rotation, through the angle of rotation of the earth
about its pole, is necessary to reference the MEP system to a particular
launch-site coordinate system,?

A typical case of relative axis aligmment is illustrated on Fig-
ure 128, which intentionally does not represent the special geometric
relationships encountered near .968/9. Before and after these years,

a geometry similar to that shown materializes once a month. Although
it is not considered here, there is a small rotation of the MEP system
as well as a precession of the flight plane between launch and perigee
during the time periods shown on this and the next four diagrams, which
must be considered in a numerical investigation, These factors are con-
sidered in a later discussion,

Rather than limiting the discussion to the possibility of effecting
particular launch geomctries from Atlantic Missile Range a more generai
question is posed: What departures, if any, are possible within a given
class C(T, Re, Rp), if the flight from Atlantic Missile Range to the
perigee of the lunar trajectory (including direct injections and injec-
tions into parking orbits, with subsequent injection into a lunar tra-
jectory) is to be made without lateral maneuvers? The restrictions for
such transits are that

(1) the restrictions imposed on the flight parameters by the
class C(T, Rg, Ry) must be satisfied,

(2) the flight plane must contain a point oi the vertex locus
for the class and (neglecting the precession of the nodes
of the flight plane) the launch site, and

(3) the flight plane must be within the limits of azimuths
that are permissible for range safety as well as for
tracking or other reasons.

25ee "Methods for Trajectory Computation,' MTP-AERO-63-9, William E.
Miner, for typical coordinate systems and atmospheric trajectory com-
putation methods.
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Three geographicul conditions (or times of a day) are referred to
in Figure 128, arbitrarily as times A, B, and C, TFor each launch time,
the launch azimuth limits are indicated, chosen here to be from 70° to
110° east from north, Now, since any plane of flight the! will initiate
a transit of the given class must contain a point of the -rertex ellipse,
it iz clear that time A is too early, and time C is too Late for launch-
ing into a transit of the class. A time of feasible launchings is
represented here by the case of time B, but the times of possible launch
extend to earlier and later time points forming a launch window during
which transits of fhe class are possible.

The two time points allowing the first and last full coverage of
the vertex ellipsq are depicted on Figure 129, The total angular sector
defined at the vertex curve, by the above first and last "full coverages,"
encompasses roughly all approach directions feasible within this time
period. There is, however, a later, second period of feasible launches
into transits of the class. Figure 130 shows the initial and final
times of full vertex coverage by these flights which, in genersl,
travel through larger central angles before r.aching their vertices,
The angular section cut out by these flights is, in the general case,
separated from that of the earlier launch period,

Figure 131 gives an enlarged synopsis of the two sectors, where
the belt of perigee stations is now superimposed, This diagram illus-
trates all pnssible tramsits remaining less than one revolution in a
parking orbit which can be achieved by launch on this day without
lateral mancuvers. These sectors are unique in that there are no two
days for which the sectors are identical.

Reverting to the question of whether a particular set of departure
conditions (i.e., a particular flight plane) can be met at a particular
launch date, the answer .is partially expressed by the abcove discussion.
If the set of conditions is compatible with the sectorial description
of the feasible launches, the feasibility is established for (a) at
least two® opportunities (azimuth # 90°) of ascending into (b) at
least one transit, from (c) at least one lunar phase angle family,
0° 5 @, < 360° (which will not be determined here), This cumbersome
statement can be understood by consideration of the follcwing:

(a) Under the assumption that the permissible launch
az.muths lie symmetrical about 90°, i. chere exists
a launch opportunity with the azimuth 90° = ¢ (x # 0),
then there exists another opportunity at a different

At least one opportunity for azimuth = 90°,
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time of the day (earlier for "+¢' and later for "-¢')

for lauaching into the same flight plane, the azimuth
for which is 90° + ¢, This is illustrated by Figure 132,
which shows that feasible launch trajectories cross the
launch latitude twice, except the trajectory launched due
ecast,

(b) This follows from the assumption of compatibility of the
desired flight plane with the sectorial description of
the feasivle launches,

(c) The vertex locus here is defined by the lunar phase angle
families, each point corresponding to a distinct @p.
Thus, if the launch flight plane crosses the vertex locus
twice (rather than being tangent to it), two distinct
transits are possible by varying the position of the
perigee. (A corresponding variaticn is required in the
perigee velocity.) The perisel conditions of these two
transits may be estimated by the §-¢ relationships given
in Chapter II, Section 2. Note that &, for these twe
perisels may be separated by as much as 180° for the case
that the launch plane contains Cg.

Another fact with respect to the launch problem is probably now
gself-evident: all launch opportunities for such maneuverless flights
last only an instant. Launchings at &imes different from these require
"out=of=plane' maneuvers at one or more powered phases of the flight.
Out of plane maneuvers also are the only means of dealing with those
transits for which the departure geometry does not lie within the
angular sectors of feasible in-plare launches of the day,

If the mission restrictions will allow the vehicle to remain in
the parking orbit for a large number of revolutions, launch windows may
be greatly extended., As pointed out above, there are two possibilities
for launch into a permissible orbit on a given launch date without
lateral maneuvers. Consider now the launch time, T, on Figure 130,
the first time possible, in the second sector, for full coverage of
the vertex ellipse on this day. If the vehicle is allowed to remain
in the parking orbit for about four days, an additional sector (with
azimuths between (b) and (c)) is available for launch at the same
instant, T», as shown by Figure 133 ((a) is the minimum, and (b) the
maximum, allowable azimuth), The plane of the parking orbit will pre~
cess wertw~ardly at about 6° per day (for typical parking orbits of
interest here), and the vertex locus advances eastwardly at about 13°
per day (as the moon revolves about the earth), Therefore, at Tg,

Ts 3'T3 + 4 days, the orbit planes between (b) and (c) will contain
points of the vertex ellipse as shown on Figure 133 by the dotted lines.
Note that (c) will reach the vertex ellipse before (b). This is due to
the slower rate of precession of the orbit planes as the inclination
increases to 90°,
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This example shows that, in general, a lunmar orbit can be achieved
with any launch aziauth and any launch time, if only the parking orbit
is maintained a sufficicent length of time (the greatest time necessary
being less than 1/2 month), and the parking orbit is chosen such that
the vehicle reaches the perigee helt at the proper time,

Tuis effectivzaly yields an unlimited launch window for every allow-
able launch azimuth; however, perturbations on the parking orbit and
velocity requirements for injection into the parking orbit, as well as
other mission restrictions, may very well reduce this unlimited launch
window to near zero, or even zero itself,

Section 2, Selenographic Arrival Conditions

The situation at lunar arrival, with res: cct to a selenographic
coordinate system, is very similar to that at e-~cth dJd-parture discussed
in the previous section,

Neglecting once more the smaller perturbations on the system
(physical libration, etc.), a simplified transformation can be made
from the MEP coordinate system to a selenographic coordinate system as
follows. Since the ascending node of the lunir equatorial plane on the
ecliptic vccurs at the descending node of the MEP, the nodal line of the
MEP and the MEQ (moon-equatorial) plane (henceforth called the LNL
(lunar nodal line)) remains essentially parallel to the nodal line of
the MEP on the eclipti:., Thus, an intermediate coordinate system, con=-
venient for geometrical representation of the lunar arrival situation,
is defined as having its positive x-axis containing the LNL and pointed
toward the center of the earth, at the descending node of the MEP on
the ecliptic;? and its positive z-axis in the direction of the lunar
axis of rotation; and its y-axis such that it is a right-handed system,
The relationship of LNI, system to the earth is shown by Figure 134 which
corresponds to the two times of the month depicted by Figure 127,

The transformation from the MEP moon=-centered system to the LNL
system is given by two rotations of the MEP moon-centered systems; i.e.,

)-LLNL = Tt Cws X,

450 that the angle between the negative x-axis of the MEP and the LNL
systems is always w.
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where

Imec = the inclination of the lunar cquator to the ecliptic

ard
i = the inclination of the MEP to the ecliptic.

One further rotation, through the angle of rotation of the moon
about its axis, defines a selenographic system, The treatment of the
lunar arrival problem, referenced to the selenography, is now almost
identical to that of the previous section for earth departure, with
the exception that both corotational and counterrotational flight are
to be considered. (It should be remembered that the terms 'departure"
and "arrival" are referenccd to perigee and perisel points which may
be reflected by Miele's Theorem of Images in which case "departure'
and "arrival" are to be interchanged for the reflected flight in the
opposite direction.)

If a particular point on the lunar surface is chosen to be over-
flown by transiis from some class C(T, Rg, Ry), simple geometric con-
siderations allow the determination of admissible transits as in the
following example,

For a pcint on the lunar equator® and che class C(72 hr, 6555 km,
1923 km), ¢ -1 admissible transits are showr by Figure '35 to have lunar
phase angles in two sectors between ~160° and 178°, for corotational
arrival, and between ~ 5° and -10°, for counterrotational arrival,
Since all vertex points are overflown by transits of either sector,
earth lainch from any ¢, will accomplish this mission. If earth launch
is restricted to the azimuth limitations of the previous section, the
following reductions occur in the launch and arrival sectors,

SThe point is chosen here to be on the lunar equator, but this does not
restrict the generality. Also, for the purpose of this discussion, it
is assumed that perisel occurs at the same time, 7, for all transits
under discussion, and the difference in the time from perisel to the
common crossing point is negligible (so that the discussion will not
be unnecessarily compiicated).
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Consider Figure 131 once more. Since, from Figure 135,
160° = ¢ = 178° and ~10° = ¢, = 5°, only those elements of the earth
departure sectors which pass over the vertex points corresponding to
these ¢, are available for launch, Figure 136 shows the reducéd
sectors to be composed of four distinct sectors which are much smaller
than the original., These four sectors allcw @ such that, approximately,
=10° = @ = +10° for A, 20° 5 @ = 45° for B, -65° = ¢, = -45° for C,
and -75° = ¢, = =~60° for D,

These restrictions must now be impeosed on the lunar sectors. This
is given by Figure 137, where the possible arrive!l transits must pass
over tne vertex points corresponding to the restriction on ¢g.

ILf the time of perigee for the above transits had occurred at some
later time of the same day, in general, a different set of admissible
transits would be developed since the orientation of the MEP and LNL
systems changes with time, his is indicated by Figure 138, which
shows the set of tranmsits o “igure 135 for time, 7;, and the dashed
lines those (which fly over vie same poin: on the lunar surface) at a
later time, corresponding to 7.

This procedure may be repeated to obtain conceptual control over
the launch conditions and arrival conditions necessary (and possible)
for accomplishment of general lunar missions., Foi cvery launch time,
the proper orientation of the MEP with the geographic and selenographic
systems must be made in agreement with the ephemeris.

If a further restriction is placed in the wmission definition,
requiring a transit to pass over a given point on the lunar surface in
a given direction, there is exactly one such transit from each class
C(T, Re, Rp). TFurthermore, these unique transits vary at each instant
of time.
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FIG. 104. COMPARISON OF THE PERTURBATICNS IN THE SHAPE
OF THE EMBEDDED TRANSITS FOR VARIATIONS IN R,
FOR THE SYSTEM C (72 HR, R,g 1923 KM)
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FIG. 106. THE INTERSECTION OF THE PERIGEE HORN

WITH THE MEP FOR THE SYSTEM C(72 hr, R's’ 1,923 kmj
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FIG. 112. SCHEMATIC OF SEGMENTS
OF THE PERISEL BELTS FOR THE CLASSES
C(T*, 6,555 km, R.*) AND C'(T*, 6,555 km, R *)
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FIG. 113. THE SYMMETRIC FREE RETURN FOR

®, = @, = 0° AND |

= 180° FOR THE CLASSES

C(T*, 6,555 km, Rz") AND C'(T*, 6,555 km, Rz"‘)
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FIG. 114. THE PLANE SYMMETRIC FREE RETURN FOR
¢, = d,' = 90°, 270° AND MAXIMUM AND HMINIMUM 1|

FOR THE CLASSES C(T*, 6,555 km, R *)
AND C'(T*, 6,555 km, R,*) y
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FIG. 115. THE LINE SYMMETRIC FREE RETURNS FOR
®, = 270°, &, = 90° AND &, = 90°, &, = 270°
FOR THE CLASSES C(T*, 6,555 km, R *)
AND C'(T*, 6,555 km, R,*)
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FIG. 116. THE SYMMETRIC FREE RETURN FOR
®, = @, = 180° AND I = 180° FOR THE CLASSES

°
c(T*, 6,555 km, Rs*)
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FIG. 117.

to Earth

y

‘:{,ﬁ
Direction
of Lunar
Motion

THE LOCUS OF FREE RETURNS AND

THEIR CORRESPONDING VERTEX POINTS (ABOVE THE MEP) FOR
THE CLASSES C(T*, 6,555 km, Rms*) AND

c(T*, 6,555 km, R's*)

leo




¥H 96 GNY ‘¥8 ‘TL ‘09 =

St (*Wy ‘wn sss9 *1) ) WILSAS IHL 404

Ea

{wy O)

-

SNANLIY I3¥d DIYLIWWAS 304 1D0T1 13SI¥3d  “8it "9l
\
P N
\
e // ~ -
AN ,
. |
) |
m|
N
N
/ 4 )
| \\ s upesl NOOW_—
\\ﬁw ~_ Y )
\ ~<_duel=L
(wy con ¥ </ wog-1
2l ol g L 9 [ s & ¢ 2 [l
! / /%\ —fg=="70
\\A\\ |
> -
i . — S— 2
/ ../ w \.\\
L= . €
, y
A%
i — % v
/.’V\
/

4

161




Zy(km)

20,000

10,000

MOON
G

10,000

Xm (km)

20,000

-10,000

-20,000

/

FIG. 19.

NEAR MOON BOUNDARY FOR SYMMETRIC FREE RETURNS
REPRESENTING MAXIMUM AND MINIMUM INCLINATION

OF PERISEL CONIC AT ANY R,
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Earth

EARTH-MOON-SUN GEOMETRY

REFERENCED TO A COORDINATE SYSTEM IN THE PLANE OF THE ECLIPTIC

125.

FIG.

Vernal
Equinox
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Perisel Circle
@e = 0 Cm

FIG. 126. LIGHTING CONDITIONS AT ARRIVAL FOR
THE. EMBEDDED AND POLAR TRANSITS FROM &, = 0,
AND PERISEL BELT FOR T = 72 HR
FOR A PARTICULAR EARTH-MOON-SUN GEOMETRY
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FIG, 127. EARTH-MOON GEOMETRY
REFERENCED TO THE VERNAL EQUINOX
FOR TWO TIMES OF A MONTH

e

170



AVA V 10 SIWIL LINI¥I14IQ 334HL
0l INIGYCIIV GILVIIANI JAV SNOILYIOT 1LIS HONNVIY

WILSAS 1INI¥IIY-dIW 3HIL 01 ¥01VADI ANV SIXY HI¥VI Iny¥l 3Hl
40 NOILISOd 1VIIdAL 1N AYVYLIEVY NV "8ZL °"9U

(AYVNOILVLS) | 3g
401vn03 43N /
/

Ve 401vN03 H1YV3
d

/

(AYVNOILVLS)
SNJ01T X31d3A

(AMVYNOLLVLS)
SIXV
NOOW - HLYV3I ~

N

171



QIHSITdWO0IOY 38 NV) SIIY0LIIrVEL TVNOISNIWIG-OMI A8
SND01 XIL¥IA IHL 40 39V¥IA0) TInd V HOIHM 1V aoidid 1IHl
10 SINIOdAWIL LSV1 AGNV 1VILINI IHL 10 SNOILV¥ISATIl  “6Tl ‘94

HOLVYND3 HLl¥v3 | \
) MOLVNO3 d3W

SNOCT X3Lld3dA

172

Rt



6Z1 914 10 3ISO0HL NVHI
X31¥3A 3HL ONIHOVIY 3803138 319NV TVHEINIO ¥IONOT V VL SIHOIT4 3ISIHL

SN201 X3Il¥IA 3H1 40 I9VHIAD) 1Ind MOTIV LIS HINAYI 3IHLI WOUi
SLEJI14 1VNOISNIWIG-OM1 HOIHM ¥04 dOl¥id ANOJIS 3IHL 40 Nollvalisnill ‘o€l "9H

HOLYNDI dIN—
N

’\..m:oo._ X3LY3A
N WA

[ 5
SIXV S =
zoos_-IEE\ 7 %

173



NISOH) AVQ ¥VIR)ILYEV JUL LY 314iSVid 3¥Y
LISNVEL O1 HONAVT WO¥i SIHOIH TYNOISNIWIG-CML H)IHM Y04
SNOILDI¥IA 34NiY¥YdIA dHL 9NISSYAWOINI SHOLDIS OMI IHL  CLEl ‘Ol

_— 1738
éwm%om.._%m_o J /7 FWNLEvAIC
Lsuid—"
HOLOIS
VNOILI3YIA
ANOJ3S— "\ T ——5N20
NETLEL

174



(81) ALINRL¥04dO HONAY1 INO AINO ONIMOTIV 1SY3 Ind GIHONAYT INO 10 ANV

(31 aNv VY1) SIILINNLYO4dO HONAV1 OMi
HLIM ANOLDIfVYL V J0 SI1dWYXI °IgL "9l

AINO L 1v 3
@3HONNY1 38 NVD —
LHOIMA

3 woVL lv ) -3anLiLv

J3HONNV 38 B
AVIN LHOIT4 —

175



Latitude
AMR

MEP
Equator

FIG. 133. PRECESSION OF CERTAIN ORBIT PLANES
AND THE EARTH-MOON LINE, EXHIBITED

FOR APPROXIMATELY FOUR DAYS BETWEEN LAUNCH
AND INJECTION INTO LUNAR ORBIT
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FIG. 134, THE RELATIONSHIP OF
THE LNL (LUNAR-NODAL-LINE) COORDINATE SYSTEM
TO THE EARTH AT TWO TIMES OF A MONTH
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FIG. 135. CO- AND COUNTER-ROTATIONAL ARRIVAL GEOMETRY
: FOR TRANSITS FROM C(T, R,, Rp)
WHICH PASS OVER A COMMCN POINT ON THE LUNAR SURFACE
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F16. 137. THE LUNAR ARRIVAL SECTORS
AS REDUCED BY LAUNCH RESTRICTIONS ON AZIMUTH,
THE TIME OF LAUNCH, AND THE LAUNCH SITE
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AN INDICATION OF THE MOVEMENT OF THE SECTORS

138.
FOR LUNAR APPROACH AS TIME INCREASES (ty < 79
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