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In a souding rocket -riarent f im fromPort Churchill. 

on September 4, 1463, a finite f P % a  of cosmic ray nuc le i  with 

charges greater chm that of helium w a s  detected st: energies 

below the experiBvantai energy cutdf of bslfoon-'mrne experi- 

neats. The particles =re erammed * by exteding large sheets 

of nuclear emxIsions fr- the sides of the rocker during its 

period outside the amphere.  

( 6  5 2 5 9; Z = nuclear charge] in the energy range froe 30 to 

PH) &v/nucIeon w a s  ~~easiirsd as 0.67 5-13 part icIes l (2sr  sec) ,  

a d  the flux of (10 5 

40 t o  190 lieVInucteon was 0.31 2-09 partiChSjCu?Sr sec), 

f i n i t e  flux of light nuciiei (3 ,< Z 5 5 )  also w a s  seen 

30 to 110 MeB/rmcleon region, 

(10 5 Z 5 19) -lei relative to helium nuclei i n  the s~le energy 

intervals Yere found to be significantly less than the relative 

The flux of d i m  reuclei 

5 191 nocie i  in the energy range from 

A 

in the 

The ahdances of d i u m  and 

abundances previously detcwlined at high energies. Bowever, within 

the statgst ical  uncertainty, the  reIative differentia; flux values 

observed i n  the vicinity of the earth are consistent with the 

helium, d i m ,  and (IO ,< Z - < 19) nuclei having the sc lg  source 



spectrum at  least above about 0.2 BeVinucleon for a wide range . 
-? 

of source spec t r a l  shapes and an i n t e r s t e l l a r  pa th  length of 

the order  of those norreally assumed (Le., 2.5 g/c* or s l i g h t l y  

larger). Othzr possible  i n t e r p r e t a t i o o s  a l s o  are 

Over t h e  last decade t h e  study of cosmic r a d i a t i o n  has progressed 

considerably a d  has reached the  point  where the fundamental p rope r t i e s  

are becoming reasonably w e l l  established-l-a 

now is being iaeasurd from 0.01 BeV/nucleon t o  approximately lolo BeV/ 

nucleon, and t h e  composition of the  cosmic r ad ia t ion  has been measured 

numerous times i n  the  energy region above approximately 0.2 BeV/nucleon. 

I n  t h i s  region, the  composition appears t o  be independent of energy, at 

least up t o  about 10 BeVjnucleon, with the  poss ib le  exception of a 

small r e l a t i v e  increase of t he  l i g h t  nuc le i  i n  t he  0.2 t o  0.5  BeV/nucleon 

interval . -  I n  par t icu lar ,  the  helium t o  medium nuc le i  and t h e  helium 

t o  heavy n u c l e i  r a t i o s  are knmm t o  be the  same t o  wi th in  about a 15% 

experimental uncer ta in ty  i n  the region from 0.3 t o  7.5 BeV/nucleon. 

The da ta  also have revealed tha t  t he re  is a s t rong  modulation of t he  

cosmic rad ia t ion  which is fairly c e r t a i n l y  associated with t h e  s o l a r  

cycle. In  the measured energy i n t e r v a l ,  t he  v a r i a t i o n  of cosmic ray  

in t ens i ty  is greatest at the lowest e n e r g i e ~ . ~  

The proton energy spectrum 
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I n  an e f f o r t  t o  increase our general experimental knowledge of t he  

cosrnic r a d i a t i o n  and a t  the  same t i m e  ob ta in  some new ins igh t  i n t o  some 

of these  quest ions,  an experiment w a s  undertaken t o  examine t h e  i n t e n s i t y  

of t he  heavier  nuc le i  in t he  cosmic rad ia t ion  i n  t h e  region below about 

0.2 BeV/nucleon. 

t he re  a r e  any medium o r  heavy nucle i  i n  t h i s  low-energy region. 

cosmic ray  source with a very high energy threshold f o r  acce le ra t ion  of 

the  high charges could c r e a t e  a near absence of these  p a r t i c l e s ,  s ince  

only some p a r t i c l e s  which have been degraded i n  energy i n  t h e i r  i n t e r -  

s tellar travels would be present .  However, i f  p a r t i c l e s  are present ,  

the  measurement of t h e i r  p rope r t i e s  can provide some r e s t r a i n t s  on the 

combined questions of t h e  i n t e r s t e l l a r  t r a v e l  of c o s d c  r ays  and t h e  

spec t r a  at the or ig in .  

The first quest ion t o  be answered w a s  whether or not 

A 

The local solar modulation has t h e  same e f f e c t  on a l l  t h e  p a r t i c l e s  

of primary concern i n  t h i s  experiment-namely, He ,  C, N, 0, N e ,  e t c . 9  

because these  nuc le i  a l l  have the  same charge t o  mass ratio and hence 

the  same v e l o c i t y  f o r  a given charge. 

To measure the  i n t e n s i t y  of low-energy heavy nucle i ,  nuclear  

emulsions, which are de tec to r s  p a r t i c u l a r l y  su i t ed  f o r  t h i s  purpose, 

were exposed t o  the  cosmic r a d i a t i o n  above the  e a r t h ' s  atmosphere on a 

sounding rocket  at F o r t  Churchi l l ,  Canada. 

r a t h e r  than a polar  o r b i t i n g  recoverable sa te l l i t e  has seve ra l  advan- 

tages .  F i r s t ,  several sounding rocket sho t s  can be spaced a t  des i red  

i n t e r v a l s ,  whereas-at least u n t i l  now-it has not been poss ib le  t o  

ob ta in  a s i n g l e  emulsion exposure on a recoverable s a t e l l i t e  under less 

The use of a sounding rocket 
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than about 2 g/cu? of material i n  a region of space where low-energy 

p a r t i c l e s  are not excluded by the  e a r t h ' s  magnetic f i e l d .  

s a t e l l i t e  exposures are very expensive because of t h e  cos t  of t h e  

necessary modifications t o  an ex i s t ing  system and the  cos t  of t e s t i n g  

t o  meet the  r i g i d  design spec i f ica t ions .  The design of a sa te l l i t e  

system is complicated by the  requirement t h a t  the  emulsions must be 

protected from high temperatures and s t i l l  be exposed under very l i t t l e  

matter. Further ,  the  f a c t  t h a t  the  geomagnetic cu to f f s  are uncer ta in  

demands tha t  a t i m e  reso lu t ion  device be included i n  a s a t e l l i t e  experi-  

ment t o  obtain absolute  f luxes ,  s ince  emulsions themselves in t eg ra t e  

over time. F ina l ly ,  the high Van Allen b e l t  r ad ia t ion  background a r i s i n g  

from the  South At l an t i c  anomaly is an add i t iona l  disadvantage associated 

wi th  a s a t e l l i t e  exposure. 

Also, 

To overcome the  p r inc ipa l  d i f f i c u l t y  associated wi th  the  sounding 

rocket exposuyr-namely, having only a shor t  exposure t i m e  ava i l ab le ,  a 

la rge  a rea  of zmulsion was extended from the  s i d e  of the payload during 

the  por t ion  o f  the f l i g h t  when the  rocket was above the  atmosphere. The 

rocket was f i r ed  from For t  Churcni l l ,  Canada, so t h a t  the p a r t i c l e s  of 

i n t e r e s t  could reach the extended de tec to r  a t  f u l l  i n t e n s i t y  without 

having been excluded by the  e a r t h ' s  magnetic f i e l d .  

EXPERIMENTAL PROCEDURE 

The nuclear emulsion de tec to r s  used i n  t h i s  experiment were 600-micron- 

th i ck  I l f o r d  G-5 emulsions which were assembled i n  e ighteen packs con- 

s i s t i n g  of eighteen emulsions, 6.5 c m  by 9.9 c m ,  placed on top of each 
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other  and covered with Mylar and black e l e c t r i c a l  tape t o  give a water- 

and l i g h t - t i g h t  package. 

and held i n  place by means of a small metal l i p .  

emulsion sec t ion  of the  payload is  shown i n  Fig.  1. The t r a y s  i n  t u r n  

were kept i n s ide  of the  payload u n t i l  61 seconds a f t e r  launch of the  

sounding rocket ,  a t  which time extension of t he  t r ays  w a s  begun. 

r een t ry  and 411 seconds a f t e r  launch, t he  r e t r a c t i o n  of t he  t r a y s  w a s  

begun. Extension and r e t r a c t i o n  each took about 7 seconds. These 

events  and Others are indicated i n  the time-altitude curve i n  Fig.  2. 

Six  of t h e s e  packs were placed i n  each t r a y  

A photograph of t he  
I .  

Before 

The rocket i t s e l f  w a s  an Aerobee 150, which had t h e  capab i l i t y  of 

carrying the  171-pound payload of t h i s  experiment t o  an a l t i t u d e  of 151 

m i l e s .  

extension sect ions;  the one c loses t  t o  the  rocket w a s  a recovery sec t ion ,  

and the o the r  w a s  t he  sec t ion  which housed the  extension mechanisms f o r  

t he  emulsion t r a y s  described i n  the preceding paragraph. The water- t ight  

housing f o r  t he  emulsion i n  the re t rac ted  pos i t i on  extended up i n t o  the  

standard nose cone sect ion.  I n  addi t ion,  the  nose cone i t s e l f  contained 

a radar  beacon, ba t t e ry  power f o r  the extension and r e t r a c t i o n  motors, 

and a telemetry sec t ion .  

extension and r e t r a c t i o n  of the  trays,  and rocket parameters including 

I n  addi t ion  t o  the  standard Aerobee nose cone, there  were t w o  

Magnetometer d a t a  f o r  rocket aspect ,  d a t a  on the  

acce lera t ion  and chamber pressure were telemetered. 

The rocket was launched successful ly  a t  1311 U.T. on September 4, 

1963, and a l l  p a r t s  of the payload functioned properly.  

day geophysicallyl '  and the  M t  . Washington neutron monitor counting rate 

was 2318.11 The nuclear emulsions were recovered, processed, and found 

It w a s  a qu ie t  
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to be i n  generally good condition. 

821 cn? was avai lable  for analys is  a f t e r  e l iminat ion of t he  area held 

under the t ray l i p s  and the  inmediately adjacent area, where the  c l e a r  

so l id  angle would have been g r e a t l y  reduced. 

A t o t a l  emulsion sur face  area of 

A complete area scan was made under a microscope of the top 

emulsion of each of the packs, as w e l l  as a complete rescan t o  check 

scanning eff ic iency.  

and which e i t h e r  had d e l t a  rays  or were wider than a t r ack  formed by a 

s ingle  l i n e  of grains  were accepted, regardless  of the  angle the  

t rack  made in  the  emulsion. These t racks were then analyzed by a 

s c i e n t i s t  t o  separate  the  slow proton and helium t racks  from the p a r t i l e s  

with charges g rea t e r  than 2. A t  t h i s  po in t ,  a l l  t racks which were within 

20 degrees of the The 

method of charge and energy ana lys i s  is e s s e n t i a l l y  the same as tha t  

used previously i n  other  work and described i n  d e t a i l  i n  a paper by 

B i s w a s ,  F i c h t e l ,  and GussIa and, therefore ,  w i l l  not be repeated here. 

Only par t i c l e s  which qnded i n  the emulsion were analyzed. When t h i s  work 

was completed, it was found t h a t  the sample of p a r t i c l e s ,  although small, 

was su f f i c i en t ly  la rge  t o  p e r m i t  an ac tua l  f l ux  determination r a the r  than 

simply t o  s e t  an upper l i m i t .  

I n  the o r ig ina l  scans,  a l l  t racks  which were dark 

perpendicular t o  the emulsion were rejected.  

The calculat ion of the  s o l i d  angle of co l l ec t ion  involves a number 

of fea tures  which are indicated i n  Fig. 3. F i r s t ,  t he re  is  the  r e s t r i c -  

t ion  on the angle with respect t o  the plane of the  emulsion (ca l led  "dip 

angle") mentioned above, corresponding t o  sec t ion  A i n  the  f igure.  

Second, there is a very small s o l i d  angle, consis t ing of t racks  of small 
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d ips  aod azimuthal angles i n  t h e  emnlsion which are closest t o  t h e  

rocket  axis, which is e x = l d c d  because p a r t i c l e s  would have had to 

pass  through t h e  rocket to enter  the emulsion wi th in  t h i s  s o l i d  angle. 

This s o l i d  angle segment v a r i e s  w i t h  poa i t i oa  on the surface of the 

emulsion, but  a typ ica l  segment labeled "B'* is shova i n  F i g .  3. 

f i n a l  and largest por t ion  of t he  solid angle which w a s  excluded o r  

p a r t i a l l y  excl=ded is d e  up of those angles which are forbidden t o  

t h e  particles by a =ombination of t he i r  paths along the  magnetic f i e l d  

and t h e  e a r t h ' s  a m s p h e r e .  

The 

The nethod of c a f r u l a t i q  the  angle of a p a r t i c l e  v i t h  respect  t o  

the  v e r t i c a l  f o r  a given a l t i t u d e  above the  e a r t h  after the  p a r t i c l e  

has mirrored at a lower a l t i t u d e  has been discussed i n  an earlier paper 

by B i m a s ,  P k h t e l ,  and GUSS.~' 

and w i l l  not be repeated, the net  e f f ec t  is t o  increase the  angle v i t h  

respect to t h e  v e r t i c a l  in which p a r t i c l e s  may a r r i v e  from 90 degrees 

t o  a l a r g e r  angle which increases  with a l t i t u d e  above the  ea r th .  There 

is only a very sraal'i s o l i d  angle inwhich  particles pass  through a s ig -  

n i f i c a n t  amount of a m s p h e r e ,  but not enough t o  e f f e c t i v e l y  remove them 

from consideration. 

a small coning angle i n  addi t ion  t o  its spin about t h e  p r i n c i p a l  axis; 

therefore ,  t he re  was a sma l l  va r i a t ion  i n  the pos i t i on  of t h e  set of 

angles i n  t h e  amlslon which are at a gfven angle v i t h  respec t  t o  the  

v e r t i c a l  during t he  f l i g h t ,  

angle i n  t h e  emulsion i n  which primary tracks may appear but has 

e s s e n t i a l l y  110 e f f e c t  on the  t o t a l  so l id  angle €or  c o l l e c t i n g  primary 

Although the  d e t a i l s  are ccnmplicated 

Further ,  the  rocket was not q u i t e  v e r t i c a l  but had 

This e f f e c t  increases soaswhat t h e  s o l i d  
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p a r t i c l e s .  

Fig. 3 near t h e  area marked "C" and are labeled 5 , $, and C,. 

explanation of these  curves is given i n  the  f i g u r e  caption. 

should have been observed i n  the  shaded area C of the  s o l i d  angle 

diagram, and none were. 

Some of the  curves r e l a t e d  t o  t h i s  problem are shown i n  

The 

No tracks 

The e f f ec t ive  s o l i d  angle is then ca lcu la ted  from t h e  equation 

_(L = ss ( f - c o s  e)  s i n  8 de drq , 

where e i s  the  angle with respect t o  t h e  perpendicular t o  the  emulsion 

and cp t h e  azimuthal angle i n  the emulsion; f is a weighting f a c t o r  which 

is 0 i n  t h e  shaded areas of Fig. 3 where no t racks  were accepted and 1 

i n  most of t he  rest of t h e  area except around C, where it var ied  between 

0 and 1 with pos i t ion ,  depending on t h e  f r a c t i o n  of t h e  extended t i m e  

t h a t  t h e  primary par t ic les  could reach these  angles. 

occurs because the  emulsion co l l ec t ing  area i s  a f l a t  surface.  

the  area marked "B" i n  Fig. 3 v a r i e s  w i th  pos i t i on  on the  emulsion sur -  

f ace ,  

small cont r ibu t ion  of segment B. 

with pos i t ion  because of t he  small, but f i n i t e ,  t i m e  required t o  extend 

the  t r ay .  With a l l  t he  above f a c t o r s  taken i n t o  cons idera t ion ,  t he  

e f f e c t i v e  primary area-collection time-solid angle f a c t o r ,  c a l l e d  

"A fi T," w a s  60.7 ni! sr sec. 

The cos 8 f a c t o r  

Since 

v a r i e s  with pos i t i on ,  but only very s l i g h t l y  because of t he  

The c o l l e c t i o n  time a l s o  v a r i e s  s l i g h t l y  

The major correc t ion  t o  the  r a w  d a t a  is  t h e  one which accounts f o r  

t h e  background t r acks  formed during ascent before t h e  t r a y s  are extended 

and duricg descent a f t e r  t he  t r a y s  are r e t r ac t ed .  

vers ion  of t h i s  experiment flown i n  J u l y  1964, t h i s  co r rec t ion  was e l imi-  

I n  a more recent 

8 

. -  



nated by including a s l i d i n g  p l a t e  mechanism which permitted separa- 

t i o n  of t he  t r acks  formed during the period t h a t  the emulsion t r ays  

were extended from those t racks  made at o the r  t imes.  The r e s u l t s  of 

t h i s  experiment w i l l  be reported l a t e r  when the  d a t a  reduct ion and 
-. 

. -  ana lys i s  is complete. 

The background consisted of p a r t i c l e s  of r e l a t i v e l y  l a rge  ambient 

energ ies  because they had t o  pass through severa l  g/cn? of material 

before  reaching the  emulsion, the exact amount of material depending on 

the  angle and the  height of t he  rocket i n  the  atmosphere. An estimate 

of t h i s  background cor rec t ion  therefore  could be made from balloon 

f l i g h t  d a t a  because the  p a r t i c l e s  composing the  background had i n i t i a l  

energ ies  which were s u f f i c i e n t l y  great t o  reach balloon a l t i t u d e s .  For 

t h i s  purpose, t he  f l u x  and the  energy spectrum of low-energy heavy 

nucle i  w e r e  measured i n . t h e  nuclear emulsion p l a t e s  ca r r i ed  on a ba l loon  

f l i g h t  made from For t  Churchi l l  on Ju ly  15, 1963, when t h e  cosmic r ay  

f l u x  l e v e l  w a s  known t o  be e s s e n t i a l l y  the same as on September 4, 1963, 

because the neutron monitor counting rates f o r  these  days d i f f e r e d  by only 

0.2%. The exce l l en t  co r re l a t ion  between low-energy cosmic r a y  i n t e n s i -  

t ies and neutron monitor counting r a t e s  has been shown previously by 

McDonald and Webber.1" I n  pr inc ip le ,  t h e  background cor rec t ion  could be 

very complex; i n  p r a c t i c e ,  a good approximation is obtained by simple 

sunnnations because the  degraded spectrum changes s lowly i n  shape wi th  

increasing amounts of material present and, secondly, because the  r e l a t i v e  

times of moving through va r i ab le  amounts of r e s idua l  atmosphere and 
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remaining under a constant amount of a few a / d  of material were about 

the same fo r  the emulsion6 i n  the  rocltet and those on the  balloon. 

One f i n a l  correct ion which had t o  be made t o  the  raw d a t a  was the  

increase i n  the number of co l lec ted  p a r t i c l e s  by an amount which took 

in to  account the probabi l i ty  t h a t  t he  p a r t i c l e s  might i n t e r a c t  before 

ending or ,  i n  the cases of sone of the  higher energy p a r t i c l e s  included 

i n  the  ana lys i s ,  leave the  s t ack  i f  it entered the  edge a t  an unfavorable 

angle. 

t h i s  correct ion small. 

The upper l i m i t  t o  t h e  energy was kept small i n  order  to keep 

AND DISCUSSION 

A f t e r  completion o f . t h e , a n a l y s i s  out l ined i n  the  previous sec t ion ,  

the r e s u l t s  shown i n  Table I were obtained. The f i r s t  point  t o  be rmde 

i s  obvious: namely, t h a t  these f luxes  are q u i t e  clearly s i g n i f i c a n t l y  

d i f f e r e n t  from zero. Hence, a f i n i t e  f lux  of COSmiC ray  medlum nucle l  

i n  an energy range as low a s  30 t o  70 bV/nucleon has been observed in 

the v i c i n i t y  of the  ear th .  

nuclei with energies a t  l e a s t  as low as 110 MeV/nucleon. 

Further ,  there  is a f i n i t e  f l u x  of heavy 

In the  rest of the paper, the heavy nucle i  w i l l  be divided i n t o  t w o  

groups-nuclei with nuclear charges from 10 t o  19, he rea f t e r  ca l l ed  

(10 5 2 19) nuclei ,  and very heavy nucle i  (2 2 20)-because it is 

advantageous t o  keep the v a r i a t i o n  i n  energy loss with in  a charge group 

t o  within to le rab le  l i m i t s  and because there  were *cry f e w  nuc le i  with 

. f  

- .  . 

charges of 20 or more. 

confined t o  t h e  l a s t  paragraph of t h i s  sec t ion ,  s ince  they are a separa te  

sub j ec t . 

ColmPents on l i g h t  nuc le i  ( 3  5 2 5 )  w i l l  be 
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The next subject of in te res t  is the comparison of the d i f f e ren t i a l  

energy spectra obtained i n  this experiment with the di f fe ren t ia l  spectra 

at higher energies d vith the spectrrnsl of hefius nuclei. 

conparison, it is iiqortant t o  reaeaaber that the cosmic ray d i f f e ren t i a l  

energy spectrur varies with the period in the solar cycle. 

shows the d i f f e ren t i a l  energy spectrwi for he l fu  for  various periods 

i n  the sofar cyc1e.I The existing data iadicate  tha t  the d i m  and 

heavy nuclei have energy spectra similar to that of the helium nuclei, 

only reduced in  he d i u m  nuclei group, for exaqle, LS 

0.063 thes the helium par t ic le  intensity; d the charge group from 

Z = LO to 19 is 0.021 times the tteliuta particle intensity.  

b i l i t y  of d l  differences of the order of 

f ron about 2oQ to 400 ~&/rmcfeon carmot be exclded; above 1.5 ?kv/nucleon, 

they probably are correct t o  within la. 

Zn th i s  

Pigore 4 

The possi- 

or  less in the region 

At, the tiBe of the firing of the sounding rocket fromufrich the 

data d e r  discussion w e r e  obtained, t he  cosrsic ray f lux had passed 

through the minilawvalue of the cycle a feu years ea r l i e r  and vas 

slowly increasing. 

the helium par t ic le  d i f f e ren t i a l  spectrum at  the tiare of the rocket shot. 

It has been s h o d  that  the par t ic le  spectrura is a smoothly varying 

funccion of energy and that  for  this period i n  the solar cycle a 1% 

variation in  the Deep River neutron m e t o r  ra te ,  which gives an es t f -  

mate of the higher eriergy par t ic le  intensity,  corresponds t o  about a la 
variat ion in the tielirrm par t ic le  d i f fe ren t ia l  f lux at 200 Ifea/nucleon. 

Therefore, for purposes of correlating the measurements made here, an 

The curve in Fig. 5 sham the approximate shape of 

11 



uncertainty of l e s s  than t h a t  w i l l  be introduced by comparing the  

r e s u l t s  obtained here with helium spec t r a  obtained when the  neutron 

monitor was wi th in  1% of the reading a t  the  t i m e  t he  rocket was i n  

the air. 

from about 80 t o  600 MeV/nucleon tha t  were obtained during the  summer 

of 1963 which s a t i s f y  t h i s  c ~ n d i t i o n . ~ * ' ~ ~  

which are  i n  c lose  agreement, w a s  used as the  bas i s  f o r  the curve i n  

Fig.  5. 

The authors know of four helium spec t r a  i n  the energy region 

An average of these spec t r a ,  

I n  addi t ion,  Fan e t  alls and Ludwig and McDonaldle have obtained 

a helium energy spectrum i n  the  30 t o  80 MeV/nucPeon region on Explorer 

XVIII during the period January through March 1964, when the  neutron 

monitor rate w a s  t yp ica l ly  from 1 t o  2% higher than the rate a t  the  t i m e  

of the  measurement of t h i s  experiment. 

change i n  i n t e n s i t y  i n  t h i s  region, the curve i n  Fig.  5 was extended 

below 80 MeV/nucleon by a smooth connection t o  da t a  above 80 MeV/nucleon, 

by keeping the shape of the 30 t o  80 MeVlnucleon d a t a  but  reducing the  

in t ens i ty  appropriately.  This procedure could, a t  most, introduce a 

noticeable e r r o r  only i n  the lowest medium nucle i  energy in t e rva l .  

To compensate f o r  a systematic 

Since no comparable d a t a  were ava i lab le  f o r  the  heavier p a r t i c l e s  

a t  t h e  time of wr i t ing  of t h i s  paper, the  helium p a r t i c l e  curve w a s  

multiplied by the r a t i o s  mentioned abcve t o  obta in  the  bes t  poss ib le  

approximation of the curves f o r  the heavier par t ic les  a t  higher energies.  

The r e s u l t s  displayed i n  Figs .  6 and 7 ind ica te  t h a t  the  low-energy 

s p e c t r u m  of the  medium nucle i  observed i n  the v i c i n i t y  of the  e a r t h  f a l l s  

below that of the helium nucle i  mult ipl ied by 0.063. S imi la r ly ,  the 

. e  

' .  
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. 

(10 5 z 5 19) nuclei cszrve falls below the corresponding OXME for helirr 

-lei d t i p l i e d  by 0.021. 

re lat ive to these higher charge groarps apparently increases in the l o w -  

energy region an t i1  it is w e l l  above tbe f a l r ly  canstant value a c h  it 

has f rom aboot 400 W/rmcleon to very high energies. 

Bence, the abtmdance of b e l i u  nuclei 

The spectra rrhiczL ~ c e  observed at the earth represent the source 

spectra after they have passed through in te rs te l la r  ertter and have been 

d u l a t e d  within the solar syster, 

affects  only the intensity of the increment of flux in a given energy 

interval, in te rs te l la r  space contains enollgh material along the path 

of the particle to chamge appreciably the particle energy as w e l l  as the 

intensity. 

is changed significantly d y  by fragpntation fa interactions sad not 

by the coeplicated tire-depePdent sagmetic effects  which cause the inten- 

s i t y  variation in the solar system. Therefore, the different ia l  euergy 

flux at the source for  the ith type of part-ck js(i) is related t o  tk 

different ia l  energy flux observed in  the vicini ty  of the earth but outside 

the region w h e r e  the earth's -tic f ie ld  excludes, or part ia l ly  excludes. 

par t ic les  jo(i) by the relation 

yhereas the solar syster modulation 

In the latter case, it laorrdlly is a s s 4  that the intensity 

where Mo a d  as represent the s m a l l  energy increments containing the 

s e t  of particles at the observation point and the source respectively, 

i is the type of particle,  h the solar d u l a t i o n  function, f the 

13 



i n t e r s t e l l a r  i n t e n s i t y  v a r i a t i o n  f a c t o r ,  v the  p a r t i c l e  ve loc i ty ,  R t he  

r i g i d i t y  (momentum/unit charge), and p the  amount of i n t e r s t e l l a r  matter 

traversed between the source and the  ear th .  

The expression f ( i ,v ,p)  is w e l l  known and i s  given i n  d e t a i l  i n  a 

paper by Hayakawa.ao However, t he  parameters t o  be subs t i t u t ed  i n t o  

the equations a re  not known exact ly .  The parameters include the  mean 

f r e e  paths of the d i f f e r e n t  elements i n  space, the  p robab i l i t y  of one 

type of p a r t i c l e  emerging from an in t e rac t ion  caused by another p a r t i c l e  

and the  amount of material t raversed.  Table I1 gives the values of the  

parameters used i n  the  ca lcu la t ion  and the references from which the  

parameters were obtained.21'a * 
the  parameter l i s t e d  i n  the  Table i s  a weighted average. 

p 

i n t e rac t ion  of a p a r t i c l e  of type "i" i n  an in t e rac t ion  with a hydrogen 

nucleus. A' 
i 

equation 

When more than one reference is  given, 

I n  Table 11, 

gives the  average number of secondaries of type "j" formed i n  an 
i j  

i s  the  absorption mean free path,  which is given by the  

- 1 = - 1 (1 - P . . )  , 
11 h" A i  

where A is the  in t e rac t ion  mean f r e e  path. 
i 

The above parameters are known t o  vary with energy; however, t h e i r  '* 

exact dependence i s  not w e l l  known. Above approximately 100 MeVlnucleon 

they a re  thought t o  be near ly  constant and not  t o  vary appreciably u n t i l  

the  energy/nucleon is below about 30 o r  60 M e V . 2 3 ~ a s  

e a r t h  at the  observed energies  a f t e r  passing through severa l  g/cn? Of 

i n t e r s t e l l a r  hydrogen, the  p a r t i c l e s  under considerat ion must spend 

To reach the 

14 



- -  

either all cr alrost a l l  of thek rime in interseelhr space at energies 

abu~e 100 &V/natleoe. 

mters &tained at highfr emergies 13 view of the aBarre csrrsh3eratlons 

and lrlbre lack of snfficiem inrforyltion to  d d t e  - ex~zt valoes- 

IncldiFg the g-dly accepted partially tested hJlpotaesaS that the 

+zerefere, it seems reawnable to use the para- 

energy per m€cfe<m does -t vary siPnificsntly in an interaction Ids, 

then, to the concEusion. that f is atrt a fumction of v d w i t y  in t3-e 

region of usrest  if p is rrot a functSon of energy. 

ilze trJe a d d a t i o n  function hfvJ&> is m t  hmm. Llany d e l s  have 

been presented, a d  ea& see~s to h e  s m  ahantages arnd solle W- 

a e ~ s e s . ~  For the purposes of the present  d%scassion, it is sufficient 

to w t e  that. since all t k  proposed dulat ion psckm€sms inwolve only 

-tic or electric fields and the -t of merial traversed w i t b i n  

the sofar system is xsegligible, particles with the saue charge to m s  

ratio ~ D Z  hence the sare rigidity for a given velocity will be depressed 

by the s- zmmmt for a given velocity. 

The rdzz ing  tern on the right side of Eq. (11, vhtclx mltiglies 

'S < L J o s  is f A q i ' ) / A Q -  mfs tm arises fm the change in the 

uidzh crf the energy hterval im Vhicsh particles are cxmtafiaed as they 

lase eaergy. 

nacfear species. tkfs  term will affec t  the differeat nucleon sroups in 

dlfferenE ways. 

Since the rate of emrgy loss per nncE:eorz. varies with the 

Z'c&rs b e m e  of the d5ffer-t rates of e r g y  loss 

for 

md 

the 



Consider now the ra t io  of the d i f f e r e n t i a l  fliut values  of two 

d i f f e r e n t  nuclear types with the  same charge t o  mass r a t i o .  From 

Eq. (l), t h i s  r a t i o  is 
. -  

I f  p ,  the fragmentation parameters, and the  mean f r e e  paths a re  inde- 

pendent of ve loc i ty ,  f (  i ,v,p) /f()r,v,p) becomes a constant  independent 

Not i c e  a lso t h a t  

The implications of the  experimental r e s u l t s  now w i l l  be examined 

by comparing t h e  d a t a  wi th  the  pred ic t ions  based on severa l  suggested 

source spectra  and i n t e r s t e l l a r  mean f r e e  paths. I f  i t  is assumed f i r s t  

t h a t  Eq. (4) is va l id ,  the  expected r a t i o  f o r  j O ( i , E ) i E E  d jo(k,E)& 
0 ==E 0 
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can be ca lcu la ted  f o r  d i f f e r e n t  values of p and the  experimental knowledge 

of t h e  l i m i t i n g  value for t h e  r a t i o  a t  high energ ies ,  where Eqs. (5) and 

(6) apply. 

The most coxmuonly assumed source spectrum is  a power l aw i n  t h e  

t o t a l  energy wi th  an exponent of 2.5 as given by 

& ( i , W )  = q(i) /wNa*6 , ( 7) 

where W is t h e  t o t a l  energyinucleon. I n  F igs .  8 and 9 t he  observed 

r a t i o s  of  t h e  d i f f e r e n t i a l  medium nucle i  and t h e  (10 5 Z - < 19) nuc le i  t o  

t he  d i f f e r e n t i a l  helium nuc le i  spec t r a l  po in t s  obtained i n  t h e  manner 

described earlier are p lo t t ed  and compared wi th  the  r a t i o  expected on 

the  b a s i s  of t h e  observed high-energy r a t i o  and an assumed s p e c t r a l  shape 

of t h e  form of Eq. (7) .  

amount of  i n t e r s t e l l a r  matter traversed-at least f o r  high-energy pa r t i c l e s -  

is 2.5  g/cn?, which is based on a ca lcu la t ion  by Badhwar e t  

Badhwar and Daniela6 wi th  heavy emphasis on the  high-energy (> 1.5 BeV/  

nucleon) composition d a t a  of O ' D e l l  et al .27 

been ca lcu la ted  for both 2.5 and 5.0 g/cu? of i n t e r s t e l l a r  hydrogen. 

Notice t h a t  t h i s  ratio i s  r e l a t i v e l y  i n s e n s i t i v e  t o  a change of a f a c t o r  

of 2 i n  i n t e r s t e l l a r  matter i n  t h i s  range of values.  Notice also t h a t  

t h e  agreement between t h e  experimental po in t s  and t h e  curves f o r  t hese  

assumed conditions i s  s a t i s f a c t o r y .  

N 

The b e s t  recent  value f o r  t h e  estimate of t h e  

and 

The expected r a t i o  has  

As a second example, a source spectrum of the  form of Eq. (7) above 

300 MeV/nucleon and of t he  form of Eq. (8) below 300 MeV/nucleon is 

chosen : 

j, ( i) = $ ( i) /(Es) 0*67  

17 



The expected r a t i o s  f o r  t h i s  source spectrum, the observed high- 

energy ratios,  and 2.5 and 5.0 gicn? of i n t e r s t e l l a r  matter a l s o  have 

been calculated and a r e  shown in Figs.  8 and 9. Here again there  is  

a r e l a t i v e l y  s m a l l  d i f fe rence  i n  the curves f o r  2.5 and 5.0 gicn?, and 

there  is  sa t i s f ac to ry  agreement with the  experimental data .  Smooth 

changes i n  the source spectrum i n  general  have l i t t l e  e f f e c t  on the  

r e su l t an t  r a t i o s  unless  the va r i a t ions  are very l a rge ,  t h a t  i s ,  

appreciably g rea t e r  than those se lec ted  here.  

Hence, the following conclusion can be drawn: The experimentally 

observed helium t o  medium and helium t o  (10 5 Z 2 19) nuc le i  r a t i o s  are 

cons is ten t  with the assumption t h a t  the source spec t ra  a r e  the  same and 

t h a t  t he  particles have passed through the same amount of mater ia l ,  which 

is i n  the range of 2 . 5  t o  5 g/cu?. 

independent of the exact shape of the source spectrum. 

hand, differences i n  the source spec t ra  between helium and medium nucle i  

would appear r e l a t i v e l y  quickly i n  the form of a disagreement between the 

ca lcu la ted  and observed helium t o  medium nucle i  r a t i o  as a function of 

energy. 

This conclusion is r e l a t i v e l y  

On the  o ther  

The r e s u l t s  obtained here ,  then, suggest there  i s  good reason t o  

think t h a t  above about 0.2 BeVinucleon the  source spec t ra  of a l l  com- 

ponents are a t  least similar. Information below t h i s  energy is not 

forthcoming from t h i s  approach because nuc le i  of the higher charges being 

considered must have a t  least t h i s  energy i n i t i a l l y  t o  reach the  ear th .  

Next, assume t h a t  the p a r t i c l e s  have gone through d i f f e r e n t  amounts 

Dahanayake e t  aLa8 of i n t e r s t e l l a r  mater ia l  depending on t h e i r  energy. 

18 



for 

4w 

exaqle. suggest that the lwer energy partfcles,  bel- about 

MeVjnaEleon. b e  passed through -re raterial than the high-energy 

. -  

cznes, atrich are a s s 4  to go through 2.5 ~ / U S ?  on the basis of the work 

l p n t i d  earlier. 

a constant independent of energy. 

the observed fluxes is LnoRI a d  if the paruuzters of Table 11 are used, 

the d d i t i o n a l  expected suppression resulting frm low-energy particles 

go* through =re material than high-energy ones can be calctitated. 

results obtained, ass&% that all par t ic les  have a source s p e c t m  of 

the type given by Eq. ( 3 )  and that the par t ic les  below 400 HeV/rmcIeon 

have p a s d  through 6 g / d  (as suggested by Dahanayake et alT8) w h i l e  

the high-energy ones (kinetic energy > 1.5 BeV/lrocleon) have passed 

throogh 2.5 g f d ,  are also shwn i n P i g s .  8 and 9. 

is poorer; further, these asstmptions lead to a ratio in  the to 

400 WeVtnucleon region vhich is appreciably =re than one standard 

deviation below several measrrrepents of the aedium to hemy -lei r a t i o  

i n  that region. 

~locir have shown that the existing experirPnta1 data on the %/He, r a t i o  

probably caa be reconciled v i th  a man free path in the lou-energy region 

which  is the s- or only sl ight ly  larger than 2.5 g / d  , by taking into 

account the properties of secondaries fror interactions and the effects of 

the solar modulation r e M s m  on p a r t i c l e s  vitb different charge to msss 

rat: ios . 

In this case, f ( i , v , p ) / f f j , v , p )  of Eq. (31 fs not 

Ecuever, if the Mgh-epergy ratio of 

The 

&re the agreerent 

In addition, Hildebrand a d  Silberberes and WebbePo 

Light nuclei also were obsemed in the lou-energy region from 30 to 

110 KeV/mwrfeon, but no quantitative value for  the different ia l  flux vi11 
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be quoted because a high scanning de tec t ion  e f f i c i ency  w a s  not achieved 

f o r  these  pa r t i c l e s .  Since these l i g h t  nuc le i  genera l ly  are assumed t o  

arise from heavier nuc le i ,  t he  type of t h e o r e t i c a l  ana lys i s  ou t l ined  

above does not apply. There i s ,  however, the  a l t e r n a t e  problem of 

i n t e r e s t :  namely t h a t ,  i f  the  modularion e f f e c t  i s  r i g i d i t y  dependent, 

l i g h t  nuclei  might be expected t o  have s l i g h t l y  d i f f e r e n t  energy spec t r a  

from the  medium o r  heavy nuclei .  If the  r i g i d i t y  dependence of the  

modulation can b e  determined by o ther  means, t he  r e l a t i v e  abundance of 

l i g h t  and medium nucle i  provide an independent estimate of the  amount of 

i n t e r s t e l l a r  matter t raversed Ly the cosmic r ad ia t ion  a t  these low 

energies .  

exis tence of a l i g h t  nuc le i  f l u x  because the re  was not an adequate 

number of p a r t i c l e s  t o  determine the  l i g h t  t o  medium r a t i o  with s u f f i -  

c i e n t  accuracy t o  see a devia t ion  from the  high-energy r a t i o ;  and the  

addi t iona l  work involved is  tremendous. With an improved technique and 

a higher f lux r a t e ,  w e  hope t o  be ab le  t o  measure the re la t ive abundance 

of l i g h t  nuclei  i n  the  1964 f l i g h t  t o  be reported l a t e r .  

The ana lys i s  was not pressed beyond the  determination of t he  

CONCLUSIONS 

The answer t o  the bas ic  quest ion of whether o r  not t he re  are low- 

energy heavy nucle i  below the  energy cutoff  set  by material above d e t e c t o r s  

flown on balloons has been seen t o  be "Yes." 

f lux  of medium nucle i  i n  an energy range as l o w  as 30 t o  70 MeV/nucleon 

and (10 5 2 

The abundances of medium and (10 < Z < 19) n u c l e i  r e l a t i v e  t o  helium 

nuc le i  i n  the energy regions from 30 t o  150 and 30 t o  190 MeV/nucleon, 

There d e f i n i t e l y  i s  a f i n i t e  

19)  nuc le i  wi th  energ ies  a t  least as low as 110 MeV/nucleon. 

- -  
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respectively. are less than the  relative & d a n c e s  at higher energies. 

This drfference can be explained quantitatively by the higher rate of 

energy loss of the particles of h i g k r  charge i n  the interstellar latter. 

It also uas shoun that w i t h i n  the statisticax uncertainty the resulting 

d i f f e ren t i a l  flux measurements are consistent with the helium, d i m ,  

and (10 - < 2 5 19) nuclei having the s ~ p e  source spectrum at least above 

&ut 0-2 BeV/nucfeon for a w i d e  range of source spectral  shapes, 

including ones cormally ass&. 

energy this resul t  also is Eairly in sens i t i ve  to the values of cross 

sect iors  and fragmentation paraaeters ass&, principally because rela- 

tive vdtles of ra t ios  are being considered. 

pedert e€ the solar d u i a t i o n  rpechanisra because. since a l l  particles 

considered have the saee c h r g e  t o  leass ra t io ,  t h e i r  re la t ive  &dances  

a t  a g i v s  ve loc i ty  w i l l  be u d i e c t e d  by the local sofar modulation, 

No infcnnatitx can be obtairtzd about the source spectrum below about 

0.2 Be'if/nucfeon because t&e part ic les  of high ckarge must have approxi- 

mately t h i s  energy to reach the earth dter passing through interstellar 

matter . 

For a =an f ree  path independent of 

The conclusion is ide-  

I? has beer, sstablistred that rhere is a f in f te  flux d that the 

dif ferent ia l  flux is consisteat with similar source ssrctra for helim, 

medi-m, anrf hezvier nuclei and an interstellar path in hydrogen of 

2-5  g l e -  within the relatively l a rge  uncertainties of these i n i t i a l  

8eas'~rcmeuts. 

look for a possible wariacion w i t h  cht perrod in the sotar cycle and t o  

examine the Fatters discussed in t h i s  paper i n  greater  de ta i l ,  

prsbIim is being pursued, 

It ncw se2ms .D--orthvhife to areasure these spectra again t o  

This 
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Table I. Differential fluxes for medium nuclei  and (10 5 Z 5 19) 
nuclei  on Sc,,;:, % .: 4 ,  1984. 

50 0.0040 t 0.0015 - 
- 0.0005 + 0.0006 - 55 

90 0.0055 5 0.0018 0.0005 t 0.0006 
0.0040 + 0.0015 0.0072 & 0.0024 - 130 

170 Not measured 0.0028 0.0014 
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Table 11. Parameters used f9r extrapolation through interstellar matter. 

Reference 
- 

References 

Aa= 14.6 g/cn? 20 P = 0.07 20.07 2 1-24 
QW 

AM= 6.0 g/c* 20 P = 1.3 L0.5 
(LS.MtH)a! 

21-24 

AH= 4.0 g / c d  20 P = 0.14 20.04 2 1-24 

P = 0.21 fl.10 21-24 

MM 

€JM 

Pm = 0.40 20.15 2 1-24 
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Figures 

Fin.  1. Photograph of the! rocket payload section with the emulsions 

r e m e d  and the emulsion trays extended. Six emulsion packs 

w e r e  placed i n  each of three s v t r i c a l l y  positioned t rays .  

The angle of the trays with respect t o  the rocket axis w a s  

i? .5 degrees. 

Fin. 2. Rocket time-altitude trajectory, showing the sequence of 

events: (1) rocket burnout (2) emulsion tray extension 

(3) emulsion t ray retraction (4) payload separation 

( 5 )  parachute deployment and SABAH beacon activation. 

Fin. 3. Distribution of exl ing 2 2 6 nuclei (&&ie.t.a by W k  

circles) & the  solid angle of collection. The "dip 

angle", is the angle with respect t o  the plane of the 

emulsion; the "azimuthal angle" I s  that  with respect 

t o  the perpendicular to one of the edges of the emulsion 

measured i n  the emulsion p€ane. 

excluded from analy6is because track8 i n  th i s  segment had 

The shaded area "A" w a s  

a dip too great t o  be analyzed. The shaded area "B" w a s  

excluded from analysis because par t ic les  a t  these angles 

had passed through the rocket material before entering 

the emulsion; t h i s  area varied with position in  the 

emulsion and a typical segment I s  shown. The curves 5 ,  
%,and C, are the curves for  par t ic les  with space angles 



F igures  ( continued) 

F i p .  3. 
(cont 'd)  

Sin.  4. 

P i g .  5. 

1. . 
t i p .  6 .  

I.' i::. 7. 

grea te r  than go", 70° ,  and 60" with respec t  t o  t he  magnetic 

l i n e  of force.  These curves var ied  somewhat as the  coning 

zngle of the rocket var ied ,  and the ones shown are typ ica l .  

The shaded area  "C" is  forbidden t o  the  low-energy heavy 

nucle i  under consideration because they would be stopped by 

ion iza t ion  energy lo s s  i n  the  atmosphere between the  rocket  

2nd t h e i r  mirror point .  

D i f f e r e n t i a l  energy spectrum for helium nuc le i  at various 

times during the  solar cycle.  

from da ta  published by Webber ( s e e  Ref. 1). 

These curves were ca lcu la ted  

Helium nucle i  d l f f e r e n t l a l  energy spectrum obtained as 

explained in the  t e x t .  The low-energy po in t s ,  from which 

the  low-energy por t ion  of the  curve was deduced, ore  those 

of Fan e t  a l r  (Ref. 18) and Ludbig and McDonald (Ref. 19). 

D i f f e r e n t i a l  energy spectrum f o r  qedium nuclei .  

is t h a t  f o r  helium nuc le i  (Fig.  5) multiplied by 0.063. 

The curve 

D i f f e r e n t i a l  energy spectrum f o r  (10 5 Z 5 19) nuc le i .  

curve is t h a t  f o r  helium nuc le i  (Fig.  5) multiplied by  0.021. 

For t h e  two lowest energy po in t s ,  only the  upper l i m i t  

corresponding t o  one standard devia t ion  is shown. 

The 
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FIGURES (continued) 

Fip. 8. Ratio of the  d i f f e r e n t i a l  f l u x  of medium nucle i  t o  helium 

nucle i  expected a f t e r  passage of t h e  p a r t i c l e s  through 

var ious amounts of i n t e r s t e l l a r  gas. Curve A: o g / cP  

f o r  a l l  spec t r a l  shapes; curve I&. and curve B,: 2 .5  

g/c& and 5.0 g/cn?, respect ively,  assuming the source 

spectrum of Eq. ( 7 ) ;  curve G, 
and 5.0 g i d ,  respect ively,  assuming the  source spectrum 

of Eq. ( 7 )  f o r  p a r t i c l e s  with k i n e t i c  energy g rea t e r  than 

300 EfeVjnucleon and the source spectrum of Eq. (8) f o r  

p a r t i c l e s  with k ine t i c  energy less than 300 MeV'nucleon; 

curve D: passage through 2.5 g/c# f o r  r e l a t i v i s t i c  

p a r t i c l e s ,  6 g / c #  for  p a r t i c l e s  with k i n e t i c  energy less 

than 400 MeV/nucleon, assuming the  source spectrum of 

and curve C,: 2.5 g/cn? 

Eq. (7 ) .  

Fig. 9. Ratio of the  d i f f e r e n t i a l  f l ux  of (10 < - -  2 < 19) nuc le i  t o  

helium nucle i  expected a f t e r  passage of t h e  p a r t i c l e s  

through various amounts of i n t e r s t e l l a r  gas. Curve A: 

0 g/c* f o r  a l l  spec t ra l  snapes; curve % o; and curve B,: 

2.5 g/cu? and 5.0 g / c n i ] ,  respec t ive ly ,  assuming t h e  source 

spectrum of Eq. (7 )  ; curve 5. 
b 4 5.0 glen?, respect ively,  assuming the source spectrum of 

Eq. (7 )  for p a r t i c i e s  with k i n e t i c  energy g rea t e r  thzri 

.. 

and curve C,: 2 . 5  glen? , 



FIGURES (continued) 

z i g .  9 .  
( cont ' d) 

300 MeV/nucleon and the source spectrum of E q .  ( 8 )  for 

particles  with kinet ic  energy l e s s  than 300 MeV/nucleon; 

curve D: passage through 2 . 5  g/cn? for r e l a t i v i s t i c  

part ic les ,  6 g/cn? for part ic les  with kinet ic  energy l e s s  

than 400 MeV/nucleon, assuming the source spectrum of 
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