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SOLUBILITY O F  IRON, NICKEL, AND COBALT I N  LIQUID POTASSIUM 

AND EFFECT OF OXYGEW GETI'ERING AGl3NTS 

ON IRON SOLUBILITY 

by James H.  Swisher 

Lewis Research Center 

SUMMARY 

The so lub i l i t y  of iron, nickel,  and cobalt i n  potassium was studied i n  the 
temperature range 941° t o  1328O K .  
5 pa r t s  per mil l ion a t  the  highest temperature. 
obtained fo r  alpha i ron  and nickel can be described by the following equa- 
t ions  : 

The cobalt so lub i l i t y  w a s  l e s s  than 
Tke equilibrium so lub i l i t y  

6166 log ppm alpha i ron  = 8.193 - - T 

3040 log ppm nickel = 3.89 - - T 

where T i s  the  temperature i n  OK. 

The so lub i l i t y  data were determined by sampling the potassium at the  t e s t  
temperature using a dLssimilar metal cup. The equation for  i ron w a s  determined 
by using molybdenum sampling cups; however, t h e  observed i ron  so lub i l i t y  w a s  
found t o  be strongly dependent on the  cup material .  This dependence w a s  cor- 
re la ted  with the  oxygen ge t te r ing  a b i l i t y  of various cup mater ia ls .  

INTRODUCTION 

The containment of l i qu id  a l k a l i  metals i s  a serious problem i n  the  devel- 
opment of space power systems. Solubi l i ty  data are needed t o  a id  i n  the selec- 
t i o n  of materials t ha t  w i l l  be compatible with l i qu id  m e t a l  heat-transfer media 
and working f lu ids .  
of iron, nickel,  and cobalt  i n  potassium f o r  the temperature range 941° t o  
1328' K. 

This report  describes the  determination of the so lub i l i t y  

Previous work i n  this area has been l imited primarily t o  so lub i l i t y  i n  
l i q u i d  l i thium and l i q u i d  sodium. The so lub i l i t y  of several  elements i n  
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Sam pli ng l i t h i u m  i s  reported i n  reference 1. I n  
cup T 

reference 2, t he  ex is t ing  data  for  niobium, 
tantalum, molybdenum, and tungsten i n  l i t h -  
i u m  and sodium are summarized. Additional 
data  for the  solvents l i thium and sodium are  
given i n  references 3 t o  10. 

The only avai lable  data  fo r  the solu- 
b i l i t y  of high-melting-point metals i n  po- 
tassium are  for  the  potassium-molybdenum 

1352' K (1975' F) ,  t he  so lub i l i t y  of molyb- 
denum is reported t o  be l e s s  than 0 . 2  pa r t s  
per mil l ion for  potassium containing about 
50 pa r t s  per mil l ion of oxygen. 

(a) Normal position (b) Normal position system ( r e f .  11). For temperatures up t o  
before sampling. after sampling. 

C 533428 

Figure 1. - Schematic i l lustrat ion of test procedure. 
Reported 

also, however, i s  the f a c t  t h a t  the apparent 
so lub i l i t y  of molybdenum increases l i n e a r l y  

with the  oxygen content of the potassium. 

APPAFWTUS AND PROCEDURF: 

The experimental method used w a s  t o  sample the potassium at the t e s t  tem- 
perature using an inver t ib le  so lub i l i t y  capsule. A schematic diagram of the  
so lub i l i t y  capsule i s  given i n  f igure 1, and the capsule par t s  are  shown i n  
f igure 2 .  I n  most cases, t he  so lub i l i t y  capsule w a s  machined from the mater ia l  
whose so lub i l i t y  w a s  t o  be determined, and the  sampling cup w a s  made of molyb- 
denum; however, a modification w a s  required fo r  the t e s t s  with cobalt and with 
nickel at temperatures of 1144' K and above. Columbium capsules were used 
because of the  poor f ab r i cab i l i t y  of cobalt and the poor creep strength of 
nickel a t  high temperatures. The potassium w a s  equi l ibrated i n  cobalt or nickel 
cups, and the  samples were taken i n  the  lower section of the columbium cap- 
su les .  For t h e  modified procedure f igures  l ( a )  and (b )  should be reversed. 

To check f o r  possible in te rac t ion  e f f ec t s  i n  solution, other metals were 
subst i tuted fo r  molybdenum as the  sampling cup material i n  a ser ies  of i ron  
so lub i l i t y  t e s t s .  The other metals used were zirconium, columbiWn, tantalum, 
and nickel .  Chemical analyses of the container materials used are  given i n  
t a b l e  I .  

Pr ior  t o  the  experiments, the  so lub i l i t y  capsules were f i l l e d  with about 
1 . 5  grams of potassium and sealed by electron-beam welding. Both s teps  were 
accomplished without interrupt ion i n  a s ingle  vacuum chamber ( lom5 t o r r ) .  
potassium contained less than 20 pa r t s  per mil l ion of oxygen, as measured by 
a mercury amalgamation method ( r e f .  1 2 ) .  

The 

The s o l u b i l i t y  experiments were performed i n  the  vacuum furnace 
t o r r )  shown schematically i n  f igure  3(a); a photograph of t he  furnace 

i s  shown i n  f igure  3(b) .  
holder t h a t  aided i n  minimizing temperature gradients i n  the  capsules. Be -  
liminary t e s t s  showed t h a t  the  equilibrium so lub i l i t y  was achieved i n  a f e w  

The capsules were held i n  a c lose - f i t t i ng  molybdenum 
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Capsule 
assembled 
for test 

C-69052 

C U P  

Figure 2. - Solubility capsule 

TABLE I .  - CHEMICAL ANALYSES OF CONTAINER MATERIALS 

[Dashes ind ica te  no analysis  was obtained f o r  impurity element.] 
~~ ~~~ 

Concentration of impurity i n  container mater ia l ,  ppm Impurity 

Iron T i  ckel [olybdenum Columbium 
- 

Carbon 

Nitrogen 
Hydrogen 
Cobalt 

Oxygen 

Sulfur 
Phosphorus 
S i l i c o n  
Manganese 
Copper 

160 
40 
20 
400 
700 

Calcium 
Magnesium 
Tin 
Aluminum 
Iron 

Nickel 
Chromium 
Tungsten 
Zirconium 
Columb i u n  

Total  2048 <96 <303 
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Figure 3. - Solubility apparatus. 
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Figure 4. - Solubility of iron, nickel, and cobalt i n  potassium. 
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hours at the  experimental temperature. 
platinum - platinum-13-percent-rhodium thermocouples positioned at the  center 
of t he  capsule holder. 
temperature f luctuat ion i n  the  hot zone of t he  furnace w a s  +lo K. 

Temperatures w e r e  measured with 

The thermocouples were accurate t o  w i t h i n  3O K, and the  

Sampling at the  t e s t  temperature w a s  accomplished by invert ing t h e  fur- 
nace, which allowed the  potassium t o  flow i n t o  the  sampling cups. After cool- 
ing t o  room temperature, the  capsules were cut open and the  potassium samples 
dissolved i n  buty l  alcohol. The sampling cups then were leached with hydro- 
c lo r i c  acid t o  remove the  material  t h a t  had precipi ta ted during cooling. 
orimetric methods were used t o  determine the  concentrations of i ron,  nickel,  
and cobalt ( r e f s .  713 t o  15) i n  the  alcohol and acid solutions; the  amount of 
potassium present i n  the  alcohol solutions w a s  determined gravimetrically.  

Col- 

RESULTS AND DISCUSSION 

Experimental 

The so lub i l i t y  data  fo r  i ron,  nickel, and cobalt i n  potassium are  shown 
i n  figure 4.  Least squares calculations l ed  t o  the  following analyt ical  equa- 
t i ons  fo r  the  i ron  and nickel data:  

6166 log ppm alpha i ron  = 8.193 - - T 

3040 log  ppm nickel = 3.89 - - T 
where T i s  the  temperature i n  OK. 

In  f igure 4 the  data  points fo r  i ron  t h a t  correspond t o  the  highest t e s t  
temperatures of 1257' and 1328' K do not f a l l  on the  l i n e  drawn through the  
other points.  Although a change i n  slope of the so lub i l i t y  l i n e  i s  t o  be ex- 
pected a t  the alpha t o  gama transformation temperature, t h i s  change should be 
too s m a l l  t o  be observed i n  the experimental p lo t .  (The enthalpy change 
accompanying the  transformation i s  only 0.2 kcal/mole as shown i n  r e f .  16, 
p. 397.) An explanation of t h i s  anomaly in  the iron data w i l l  be presented 
l a t e r  i n  connection with an oxygen get ter ing e f f ec t .  

From the  solubility-temperature dependence, the  apparent heats of solution 
of alpha i ron  and nickel i n  potassium were found t o  be 28.220.3 and 13.922.1  
ki localor ies  per mole, respect ively.  Standard deviations i n  so lub i l i t y  values 
averaged over the  experimental temperature range were 22 .3  percent for  alpha 
i ron  and 227 .8  percent fo r  nickel .  The large uncertainty i n  the nickel values 
w a s  mainly due t o  a blank correction for  t he  leaching s tep.  The blank weight 
of 15 micrograms w a s  nearly as la rge  as the  t o t a l  weight of nickel i n  the sam- 
p le s .  In  the  cobalt t e s t s ,  the  concentrations of cobalt were detectable,  but  
the  analyses were not suf f ic ien t ly  accurate t o  specify values f o r  the  cobalt 
so lub i l i t y .  

The concentrations of i ron,  nickel,  and cobalt obtained i n  the so lub i l i t y  
t e s t s  a re  typ ica l  of data  reported f o r  a l k a l i  m e t a l  solvents ( r e f s .  1 t o  11) 
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TABm 11. - RELATIVE SOLUBILITIES OF IRON, NICKEL, 

AND COBALT I N  POTASSIUM, SODIUM, AND LITHIUM 

[Comparisons made on atomic rather  than weight bas i s  . I  

(a) Relative so lub i l i t y  i n  d k a l i  m e t d  solvents 

Solute I A l k a l i  metal solvent I I 

Nickel 1 Cobalt Iron 

Potassium > sodium > l i t h i u m  
L i t h i u m  > sodium > potassium 
Potassium sodium 

(b) Relative so lub i l i t y  of iron, nickel,  and cobalt 

I Alkali  metal solvent I Solute 

Pot ass ium 
Sodiuma 
Lithium 

Iron > nickel > cobalt 
I r o n =  cobalt > nickel 
Nickel > i ron 

aDisagreement ex i s t s  between investigators on reported 
values for  i ron and nickel i n  sodium ( r e f s .  5, 6, 
and 8). 

TABLE 111. - EFFECT O F  VARIOUS CONTAINER MATERIALS 

ON OBSERVED SOLUBILITY OF IRON I N  POTASSIUM 

Sampling cup material Observed i ron  
so lub i l i t y  a t  1144' K, 

PPm 

N i  eke1 
Molybdenum 
Columbium 
Tantalum 
Zirconium 
Molybdenum with zirconium coupon5 

3540 
639, 655 

194, 257, 358 
117 
44 

77, 129 

but  very low i n  comparison t o  other l i qu id  metal solvents, such as copper, t i n ,  
and aluminum ( r e f .  1 7 ) .  
recognized e f f ec t s  t h a t  govern so lub i l i t y  (atomic s ize ,  electronegativity,  and 
valency) a re  unfavorable for producing high so lub i l i t y  i n  a l k a l i  metals 
( r e f .  16 ,  p .  7 9 ) .  

The r e s u l t s  are not unexpected because the generally 

It should be noted t h a t  the  r e l a t ive  s o l u b i l i t i e s  of iron, nickel,  and 
cobalt i n  potassium, sodium, and l i t h i u m  a re  not the same. A comparison i s  
given i n  t ab le  11. This difference i n  r e l a t ive  s o l u b i l i t i e s  i s  not consistent 
with current theore t ica l  pr inciples  ( r e f .  1 6 ,  p .  7 9 ) .  

Effect of Oxygen Impurity on Solubi l i ty  

The so lub i l i t y  da ta  f o r  i ron  obtained by using various sampling cups are  
A var ia t ion  of two orders of magnitude w a s  observed i n  the  given i n  tab le  111. 

so lub i l i t y  of i ron  at 1144' K (1600O F) as the  sampling cup metal w a s  varied 
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Standard free energy of formation AFo for sampling cup metal oxides, 

kcall mole oxygen 

Figure 5. -Effect of oxygen ettering agents on observed solubility of iron in potas- 
sium. Temperature, 1144 8 K (16000 F). 

through the  following se r i e s  : nickel, molybdenum, columbium, tantalum, and 
zirconium. These r e s u l t s  can bes t  be explained by assuming tha t  t he  so lub i l i t y  
of i ron  i s  a function of t he  oxygen concentration i n  the potassium, which i n  
tu rn  i s  controlled by the  ge t te r ing  act ion of the  cup mater ia ls .  

A general correlat ion w a s  made i n  f igure 5 between the  observed i ron  solu- 
b i l i t y  and the  standard f r e e  energy of formation (AFo, a measure of ge t te r ing  
poten t ia l )  of t he  sampling cup metal oxides ( r e f .  18) .  The so lub i l i t y  of i r o n  
can be seen t o  increase i n  a regular manner with decreasing -mo of the  sampling 
cup metal oxides. The use of standard free-energy da ta  w a s  considered va l id  
because, even though complete saturat ion of t he  sampling cups with oxygen did 
not occur, t he  surfaces of t h e  cups were believed t o  be saturated during the  
course of t he  tests,  and the  pr inciple  of l o c a l  equilibrium w a s  believed t o  
apply ( r e f .  19). 

A n  i n t e re s t ing  p a r a l l e l  can be seen i n  dynamic corrosion tests of s t e e l s  
with sodium, where it w a s  found t h a t  t h e  corrosion r a t e  varied with the  oxygen 
content of t h e  sodium (ref .  20). 
fe r ra te ,  (Na~0)2*FeO, i so la ted  i n  the  sodium-iron-oxygen system ( r e f .  21 ) ,  

It w a s  subsequently proposed tha t  a sodium 
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could ac t  as an intermediary species i n  the  
i ron  mass-transfer process. A comparable 
en t i t y ,  potassium fe r r a t e ,  could be the  
species t h a t  accounts for the  dependence of 
the  so lub i l i t y  of i ron  i n  potassium. on oxygen 
content.  

Figure 6 shows the  potassium corner of a 
proposed potassium-iron-oxygen phase diagram. 
Here the  oxygen concentration i n  the  potas- 
sikum, established by a par t icu lar  ge t te r ing  
agent, i s  represented by l i n e  1 ,  which in-  

extended. I ron w i l l  dissolve along l i n e  2 
u n t i l  sa turat ion i s  reached a t  point x .  
Since the  posi t ion of l i n e  2 var ies  with 
each ge t te r ing  agent, the  observed so lub i l i t y  

w i l l  a l so  vary. In  the  event t h a t  more than one ge t te r ing  agent i s  present, 
t he  posi t ion of the  l i n e  w i l l  be governed by the  most e f fec t ive  ge t te r ing  mate- 
rial present.  

Potassium I ron  - t e r sec t s  t h e  i ron  apex of the diagram when 

Figure 6. - Potassium corner of proposed potassium-iron- 
oxygen phase diagram at constant temperature. 

This l a t t e r  contention w a s  t e s t ed  i n  two i ron  capsules with molybdenum 
sampling cups and zirconium coupons placed i n  the  potassium. 
i s  a poorer ge t t e r  than zirconium, the i ron  so lub i l i t y  should be the  same as 
t h a t  obtained when using a zirconium cup ( tab le  I11 and f i g .  5 ) .  The values 
obtained were 77 and 1 2 9  pa r t s  per mill ion,  compared t o  a value of 44 pa r t s  
per mil l ion resu l t ing  from the  or ig ina l  t e s t  with the  zirconium cup. Qualita- 
t i v e  agreement w a s  obtained because the  values were closer t o  the  zirconium 
value i n  f igure 5 than t o  the  molybdenum values.  A n  oxide f i l m  observed on the 
zirconium coupons a f t e r  t h e  t e s t  could have reduced the  effectiveness of the 
zirconium get ter ing agent by reducing t h e  r a t e  of t ransport  of oxygen i n t o  the 
metal. 
r i u m  concentration of oxygen i n  the  potassium. 

Since molybdenum 

Thus, the  tes t .  time may not have been long enough t o  reach the  equi l ib-  

In  f igure  5, the point obtained using the n icke l  sampling cup should be 
independent of the  aF0 of N i O .  Since potassium and i ron are stronger get-  
t e r ing  agents than nickel,  the  oxygen content of the potassium and hence the 
observed i ron so lub i l i t y  should depend primarily on the  t o t a l  oxygen content of 
the  system. In  other words, l i n e  2 i n  f igure  6 cannot be f ixed by the cup 
mater ia l  when it is a weaker get ter ing agent than potassium or  iron. 

The apparently anomalous high-temperature i ron  points presented e a r l i e r  
i n  f igure  4 can a l s o  be explained i n  terms of the oxygen impurity e f f ec t .  
these points it i s  suggested that there  w a s  not su f f i c i en t  oxygen present i n  
the system t o  reach the p a r t i a l  pressure of oxygen tha t  would be i n  equilib- 
r i u m  with the ge t te r ing  material a t  the t e s t  temperature. The i ron so lubi l i ty ,  
therefore,  would correspond t o  a lower than equilibrium concentration of oxygen 
i n  the potassium and the solut ion process would follow a l i n e  2 '  ( f i g .  6),, 
which l i e s  below l i n e  established by the ge t te r ing  agent used (molybdenum). 

For 

2 
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It should be noted (see f i g .  4, p .  4)  t h a t  t he  so lub i l i t y  of nickel i n  
potassium appeared t o  be independent of t he  container mater ia l .  
and columbium were used.) Thus, fo r  nickel,  it may be inferred tha t  the oxygen 
in te rac t ion  e f fec t  i s  s m a l l .  T h i s  behavior i s  consistent with oxygen-catalyzed 
mass-transfer r e s u l t s  obtained fo r  nickel i n  sodium, which yielded lower values 
than those for  i ron  i n  sodium ( r e f s .  22 t o  24). 

(Molybclenum 

CONCLUDING REMARKS 

The r e s u l t s  of this invest igat ion indicate  t h a t  i ron-r ich al loys could 
have l imited use as containment materials for  l i qu id  potassium. A s ignif icant  
amount of mass-transfer of i ron  could occur i n  a l i qu id  metal loop because the  
the  l i qu id  i s  circulated through a temperature gradient.  The experimentally 
determined fac tors  t h a t  support this conclusion are  the r e l a t ive ly  high i ron  
so lubi l i ty ,  the  high temperature coeff ic ient  of so lubi l i ty ,  and the  enhancement 
of so lub i l i t y  with oxygen contamination. The successful use of iron-base 
al loys would depend t o  a la rge  extent on how well the  oxygen l e v e l  i n  the  
potassium i s  controlled.  On the other hand, t he  da ta  determined for  nickel and 
cobalt i n  potassium indicate  t h a t  t h e i r  use i n  space power systems should not 
be seriously l imited by so lub i l i t y  c r i t e r i a  when potassium i s  the  heat-transfer 
medium or working f l u i d .  

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, January 5,  1965. 
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