NASA TECHNICAL MEMORANDUM

SA-8. OPERATIONAL TRAJECTORY

by PAMELIA B. PACK AND GORDON W. SOLMON
Aero-Astrodynamics Laboratory

NASA
George C. Marshall Space Flight Center, Huntsville, Alabama

CTS PRICES) \$ \qquad

Hard copy (HC)

Microfiche (MF)

SA-8 OPERATIONȦL TRAJECTORY

By

Pamelia B. Pack
and
Gordon W. Solmon
George C. Marshall Space Flight Center

Abstract

This report presents the operational predicted trajectory for Saturn I vehicle SA-8 to be flown over the Atlantic Missile Range. Included is a discussion of the vehicle and mission objectives, the trajectory shaping and constraints and a brief description of the vehicle. Wind limit criteria and range safety aspects are also summarized.

A successful flight will insert the depleted S-IV stage and payload into an orbit with perigee and apogee altitudes of 510 km and 754 km , respectively. This orbit has a nominal lifetime of 1200 days.

The payload consists of an Apollo boilerplate (BP-26) and a Meteoroid Technology Satellite (Pegasus). BP-26 is used to simulate the characteristics of an Apollo spacecraft whose ultimate mission will be a manned lunar landing and return to earth. After insertion into orbit, Pegasus will be exposed and, after wing deployment, will transmit micrometeoroid data to earth upon telemetered command.

May 17, 1965

SA-8 OPERATIONAL TRAJECTORY

By
Pamelia B. Pack and
Gordon W. Solmon

TRAJECTORY SECTION
FLIGHT MECH\&NICS BRANCH
FLIGHT EVALUATION AND OPERATIONS STUDIES DIVISION AERO-ASTRODYNAMICS LABORATORY

TABLE OF CONTENTS

Page
I. INTRODUCTION 2
II. DESCRIPTION 2-3
III. RESULTS 4-13
IV. TABLES 14-29
V. FIGURES 30-34
VI. APPENDICES 35-41

LIST OF TABLES

Table Title Page

Title
Page
I Fact Sheet 5-9
II Pitch Tilt Program. 10-11
III Sequence of Events. 12-13
IV-AS-I Stage Nominal Trajectory14
IV-BV-AS-IV U1lage Portion Trajectory16
V-B S-IV U1lage Portion Trajectory 17
VI-A S-IV Stage Nominal Trajectory 18-19
VI-BVII-AVII-BVIII-AVIII-BS-IV Stage Nominal Trajectory20-21
S-I Retro Portion Trajectory 22
S-I Retro Portion Trajectory 23
S-I Coast to Impact Trajectory 24-26
S-I Coast to Impact Trajectory 27-29

LIST OF ILLUSTRA TIONS

Figure Title Page
1 Pegasus Satellite 30
2 SA-8 Configuration. 31
Altitude Versus Range. 32
4 Chi Pitch Versus Time. 33Wind Speed Launch Criteria.34

SA-8 OPERATIONAL TRAJECTORY

The trajectory for SA -8 was optimized to insert the S-IV stage and payload into an elliptical orbit with perigee and apogee altitudes of 510 km and 754 km , respectively. This orbit has a predicted nominal lifetime of 1200 days.

The S-I stage pitch program was shaped to minimize the angle of -attack through the region of high dynamic pressure under non-wind conditions. The S-IV stage uses the Iterative Guidance Mode (IGM) to guide an optimum path in the pitch plane and the delta minimum mode for cross range guidance.

The S-I booster will propel the vehicle to an altitude of 89 km with a range of 81 km . After separation of the two stage vehicle and approximately 2 sec of ullage rocket operation, the S-IV main stage will ignite. The S-IV main engines will burn until the guidance computer initiates Guidance Cutoff Signal (GCS), which occurs when the inertial velocity reaches $7672.06 \mathrm{~m} / \mathrm{s}$. Then, after 10 seconds to allow thrust decay, orbital insertion occurs at 638.58 sec from liftoff. Conditions at time of insertion: A velocity of $7675.18 \mathrm{~m} / \mathrm{s}$; a path angle (inertially referenced from the local vertical) of 90.000 deg ; initial perigee altitude of 506.5 km and a corresponding apogee altitude of 75 l .2 km when referenced to a spherical earth of 6378.165 km .

The earliest S-I inboard engine failure which still results in a guidance cutoff is 90 seconds after liftoff. An outboard failure will not permit a guidance cutoff, but failure after 140 sec ends from liftoff will result in at least a circular orbit (approximately 510 km altitude).

SECTION I. INTRODUCTION

The Block II vehicle SA-8, consisting of two live stages, Instrument Unit, Apollo Boilerplate, and Pegasus Payload (Figure 1), is scheduled to ascend from Launch Complex 37B, Atlantic Missile Range Facilities in late May. SA-8 will have a launch azimuth of 90 deg East-of-North (105 deg East-of-North flight azimuth).

This trajectory is based on propulsion (References 1 and 2) and mass (Reference 3) data provided by P\&VE Laboratory. The first stage will be propelled by eight Rocketdyne H-l engines providing a total thrust of 1.5 million pounds. Six 15,000 pound-thrust, Pratt \& Whitney, RL10A-3 engines power the S-IV stage during flight. The S-I stage measures 6.5 meters in diameter and 24.5 meters in length. The S-IV stage is basically a 5.6 meter-diameter cylinder measuring 12.5 meters in length. With the Instrument Unit, Payload and Launch Escape System (LES), the total vehicle configuration stands approximately 57.3 meters and has a liftoff mass of $1,129,768$ pounds. Found in Reference 4 is a more complete cescription of the vehicle and payload (see Figure 2). There will be no onboard camera coverage of separation.

Lifetime information presented in this report was obtained from the Operations Studies Branch, R-AERO-FO. The structurally imposed wind limits and Pegasus angular rate limitations summarized in Appendices A and B are provided by R-AERO-FMS. The Range Safety Summary, Appendix C, is provided by R-AERO-FMR.

SECTION II. DESCRIPTION

The SA-8 vehicle will lift off from Pad 37 B , rising vertically for 9 sec in order to clear the launch facilities and then simultaneously begin its pitch program and roll maneuver. The roll rate will be nominally one deg per second.

The first stage trajectory was shaped to minimize aerodynamic moments during the period of highest dynamic pressure. The tilt program is not biased for wind as the launch date is in a low wind
period. The entire flight program was optimized to attain the maximum performance while achieving the desired orbital mission objectives and constraints which, briefly are:

1. Guarantee a one-year lifetime
2. Guarantee a guidance cutoff
3. Limit the apogee altitude to approximately 750 km
4. Have a minimum of residual propellant at guidance cutoff.

A tilt arrest of 52.45 deg is programmed at 138 sec after liftoff to ensure ample damping time for various sloshing and transient motions in order to avoid premature cutoff and separation sequences. The separation sequence of events is commanded from a timer which is initiated by propellant level sensors (Reference 5).

After separation, tilt arrest is continued until 168 sec after liftoff, allowing sufficient time for the LES tower and ullage casings to be jettisoned. The Launch Escape System has only one active motor, the jettison motor. This motor provides the capability of separating the LES from the Command Module (CM) during an abort mode or during normal flight.

The Saturn guidance system, Iterative Guidance Mode (IGM), implemented approximately 17 sec after separation, will guide the S-IV vehicle to the desired terminal conditions. IGM terminal conditions are given in Appendix D. Guidance Cutoff Signal (GSC) is sent by the onboard computer (ASC-15) when the inertial velocity reaches $7672.06 \mathrm{~m} / \mathrm{s}$.

Orbital insertion is defined as 10 sec after GCS. Insertion conditions are given in Table l. After GCS, the S-IV vehicle undergoes a 180 sec venting period to reduce LH_{2} residuals. At this time the blowdown non-propulsive vents are closed and, one sec later, the Pegasus S-IV combination separates from the Apollo Boilerplate (809.58 sec flight time). The Pegasus satellite begins its wing deployment 60 sec after separation and terminates approximately 60 sec later (929.58 sec after liftoff).

The complete flight profile is presented in Figure 3 with the nominal pitch tilt program graphically presented in Figure 4.

The SA-8 fact sheet found in Table I contains a summary of the vehicle characteristics, trajectory history and insertion and orbital conditions. Table II contains the tilt program and Table III the sequence of events for SA-8.

A detailed presentation of the predicted operational trajectory parameters is given in Tables IV through VIII. Table IV contains the S-I stage boost flight; Table V the S-IV ullage portion; Table VI the S-IV mainstage and orbital portion of flight to separation. The velocity increment imparted to the S-IV/Pegasus B at separation is $0.3 \mathrm{~m} / \mathrm{sec}$. The most sensitive direction for the delta velocity to affect the orbital shapes is along the total velocity direction. Normally the Pegasus velocity will be decreased, with maximum effect being reduction in apogee altitude by approximately 1 km . Table VII contains the S-I retro portion; Table VIII contains the S-I stage ballistic flight to impact. The S-I impact coordinates from the nominal trajectory are 25.7748 deg North geodetic latitude and 71.3160 deg West longitude and 965.97 km downrange.

No dispersion analysis was done from the SA-8 nominal trajectory due to its similarity to SA-9.

TABLE I

SA-8 FACT SHEET
I. Mission
$\begin{array}{ll}\text { Vehicle } & \text { SA-8 } \\ \text { Payload } & \text { Apollo Boilerplate and Pegasus Satellite }\end{array}$
II. Configuration

S-I Stage	8 engines at $(188 \mathrm{klbf})$	836,266 newtons per engine (rated)
S-IV Stage	6 engines at $(15 \mathrm{klbf})$	66,723 newtons per engine (rated)
Payload	Orbital Configuration 22,651 lbm Apollo Boilerplate	
	and Pegasus Satellite	

III. Mass Characteristics

NOTE: All values are inertial where applicable unless otherwise cienoted

TABLEI (CONT)
IV Trajectory and Orbit
A. Launch

Launch Complex and Pad 37B
Latitude 28.53185406 deg
Longitude
80.56495285 deg

Launch Azimuth
Flight Azimuth 900 E of N $105^{\circ} \mathrm{E}$ of N
B. Trajectory History

First Stage

S-I Stage Roll Tilt Initiation	9 sec
S-I Stage Pitch Tilt Initiation	9 sec
S-I Stage Roll Tilt Termination	24 sec
S-I Stage Roll Angle	15 deg
S-I Stage Mach One	55 sec
S-I Stage Maximum Dynamic Pressure	68 sec
S-I Level Sensors Enabled	138 sec
S-I Stage Pitch Tilt Arrest	138 sec
S-I Stage Pitch Angle at Tilt Arrest	52.45 deg
S-I Stage Inboard Engine Cutoff (IECO)	143.79 sec
S-I Stage Outboard Engine Cutoff (OECO)	149.79 sec
S-I Stage Velocity at OECO (Inertially Ref) (Earth Ref)	$3,028.68 \mathrm{~m} / \mathrm{sec}$ $2,700.60 \mathrm{~m} / \mathrm{sec}$
S-I Stage Path Angle at OECO (Inertially Ref) (Earth Ref)	56.893 deg 52. 226 deg
S-I Stage Altitude at OECO	88.08 km
S-I Stage Range at OECO	79.54 km

TABLEI (CONT)
Separation

Ullage Ignition (S-IV Stage)	150.49 sec
S-I/S-IV Separation	150.59 sec
Retro-Rocket Ignition (S-I Stage)	150.59 sec
Second Stage	
S-IV Stage (Main) Ignition	152.29 sec
S-IV Stage 90% Thrust Attained	1.8 sec (Approx.)
S-IV Stage Ullage Rocket Cutoff	154.29 sec
S-IV Stage Ullage Casing and LES Jettison	162.59 sec
S-IV Stage Guidance Initiation	168 sec
S-IV Stage Guidance Cutoff Signal (GCS)	628.582 sec
S-IV Stage Velocity at GCS	$7,672.06 \mathrm{~m} / \mathrm{sec}$
S-IV Stage Path Angle at GCS	90.005 deg
S-IV Stage Altitude at GCS	509.642 km
S-IV Stage Range at GCS	$1,856.39 \mathrm{~km}$
S-IV Stage Latitude at GCS (Geocentric)	22. 5547 deg
S-IV Stage Longitude at GCS	63.2171 deg (West)
C. Insertion Conditions	
Time	638.582 sec
Velocity	$7,675.18 \mathrm{~m} / \mathrm{sec}$
Path Angle (Against Local Vertical)	89.9997 deg
Altitude (Oblate Earth)	509.570 km
Range	$1,923.53 \mathrm{~km}$
Latitude (Geocentric)	22. 304 deg

TABLE I (CONT)

Longitude
62.6233 deg (West)
Azimuth
113.2214 deg
Excess Circular Velocity
$66.14 \mathrm{~m} / \mathrm{sec}$
D. Orbital Characteristics (Spherical Earth;
$\mathrm{R}_{\mathrm{e}}=6,378.165 \mathrm{~km}$)

Perigee Altitude
Apogee Altitude
Anomalistic Period
Semi-Major Axis
Eccentricity
Inclination
Longitude of Ascending Node*
Argument of Perigee
True Anomaly at Insertion
Eccentric Anomaly at Insertion
Mean Anomaly at Insertion
Regression Rate of Node
Rate of Change of Argument of Perigee
Vis Viva Energy (Twice Total Energy)
506.5 km
751.2 km
97.29 min
$7,007 \mathrm{~km}$
.01746
31.763 deg
158.87 deg (East)
133.85 deg
.0183 deg
. 0180 deg
.0176 deg
$-6.1 \mathrm{deg} / \mathrm{day}$
$9.4 \mathrm{deg} / \mathrm{day}$ $-56.99 \mathrm{~km}^{2} / \mathrm{sec}^{2}$
E. Lifetime Characteristics
Nominal Lifetime
1,200 days
Guaranteed Lifetime
Ballistic Parameters for Tumbling Vehicle $C_{D} A$ $265 \mathrm{~m}^{2}$
*Only flight time is reflected due to uncertainty of sidereal time of launch.

TABLE I (CONT)

Post Venting Orbital Mass	$10,275 \mathrm{~kg}$
Ballistic Coefficient $\left(\mathrm{C}_{\mathrm{D}} \mathrm{A} / \mathrm{M}\right)$	$.026 \mathrm{~m}^{2} / \mathrm{kg}$

V. Control

Active Sensors

Rate Gyro and Vehicle-Fixed Accelerometers

VI. Guidance

1. First Stage

Time Function Polynomial
2. Second Stage
(a) In Plane (IGM)
(b) Crossrange (Delta Min)

TABLE II
PITCH TILT PROGRAM FOR SATURN I VEHICLE SA-8

TABLE II (CONT'D)

Flight Time (sec)	Flight		
		Time	
	(deg)	(sec)	(deg)
99	41.20	13.4	51.75
100	41.65	135	51.75
101	42.00	136	52.15
102	42. 35	137	52.40
103	42.80	138	52.45
104	43.15	*168	52.45
105	43.50		
106	43.85		
107	44. 25	*Tim	
108	44.60		
109	44.90		
110	45.25		
111	45.55		
112	45.90		
113	46.25		
114	46.50		
115	46.85		
116	47.15		
117	47.50		
118	47.70		
119	48.05		
120	48.35		
121	48.60		
122	48.85		
123	49. 10		
124	49.40		
125	49.65		
126	49.90		
127	50.15		
128	50.40		
129	50.60		
130	50.85		
131	51.10		
132	51.30		
133	51.50		

SA- 8 SEQUENCE OF EVENTS

Time (From Lift-off)

0
9.0
24.0
138.0
138.0
142.0
143.79
149.79
150.49
150.59
152. 29
154.29
162.59
168.

591
628.582
638.582
808.582

Lift-off
Initiate Roll and Pitch Tilt

Terminate Roll
Signal from Sequencer to Enable Level Sensors
Tilt Arrest
S-I Stage Level Sensor Signal
Inboard Cutoff (S-I Stage)
Outboard Cutoff (S-I Stage)
Ullage Rocket Ignition (S-IV Stage)
Separation, Immediately Followed by Retro Rocket Ignition (S-I Stage)

S-IV Mainstage Ignition
Ullage Rocket Thrust Termination
Jettison Ullage Rocket Casing and LES
Initiate Active Guidance
Signal from Sequencer to Arm LOX Cutoff Capability

S-IV Stage Guidance Cutoff Signal
End of Powered Flight
Close Blowdown Non-Propellant Vents

TABLE III (CONT'D)

809.582
869.582
929. 582

Start S-IV Pegasus/Apollo Separation
Begin Pegasus Wing Deployment
Terminate Wing Deployment

 (

$\begin{aligned} & \text { TIME } \\ & \text { (SEC) } \end{aligned}$	$\begin{aligned} & X X X E \\ & (K M) \end{aligned}$	$\begin{aligned} & \text { YYYE } \\ & \text { (KM) } \end{aligned}$	$\begin{aligned} & \angle 2 Z E \\ & .(K M) \end{aligned}$
0.0	0.0	0.0	0.0
5.0	-0.0	0.1	-0.0
10.0	-0.0	0.2	-0.0
15.0	-0.0	0.4	-0.0
20.0	0.0	0.8	-0.0
25.0	0.0	1.3	-0.0
30.0	0.1	1.9	-0.0
35.0	0.1	2.6	-0.0
40.0	0.2	3.5	-0.0
45.0	0.4	4.6	-0.0
50.0	0.7	5.8	-0.0
55.0	1.1	7.3	0.0
60.0	1.7	8.9	0.0
65.0	2.3	10.7	0.0
70.0	3.2	12.6	0.0
75.0	4.3	14.8	0.0
80.0	5.7	17.2	0.0
85.0	7.4	19.9	0.0
90.0	9.4	22.8	0.0
95.0	11.8	26.0	0.1
100.0	14.7	29.6	0.1
105.0	18.1	33.4	0.1
110.0	22.1	37.7	0.1
115.0	26.6	$42 \cdot 3$	$0 \cdot 1$
120.0	31.9	47.4	$0 \cdot 2$
125.0	37.8	52.8	0.2
130.0	44.6	58.8	$0 \cdot 3$
135.0	52.3	65.2	$0 \cdot 3$
140.0	60.9	72.3	0.4
(1) 143.8	68.2	78.0	0.4
(145.0	70.6	79.9	0.4
(2) 149.8	80.7	87.6	0.5
(2) 150.0	81.2	88.0	0.5
(3) 150.6	82.4	88.9	0.5

\because	
こエ゚	N
－にの	
回的景	$\infty \times \infty$
Wヵ＜NNN	
－	
二エ̇ mmN	
出Qz NNN	
¢	
J	
世w nof	

$$
\begin{array}{ll}
\underset{x}{\dot{x}} & \dot{\sim} \\
\times \underset{x}{\sim} & \dot{\sim} \dot{\infty} \\
\times \infty
\end{array}
$$

ALTITUDE

\qquad

$$
\begin{aligned}
& \text { ACE FIXED } \\
& \text { TH ANGLE } \\
& \text { (DEG) }
\end{aligned}
$$

	-	
5	z	
4	-	
$\stackrel{r}{\square}$		

[^0]GEQCITIVE NQR TH）
（DEG）

 NN

入－	
に	
足	
Q	
$\stackrel{\text { 山 }}{>}$	
－	
w	
N	
N	
－	
山	
$2 \sim$	
－ミ	
－	
出出	
\times	
\bigcirc	NNNNNNNNNNNNNNNNNNNMmmmmmmmmmmytytytytwin

∞
0
0
0
0
N
N

 0
∞
\sim
\sim
\sim
四

TABLE VI-B (CONT)				
S-IV STAGE NOMINAL TRAJECTORY				
EARTH	XED PARAM	ERS		
DXXE		DZ2E		PATH ANGLE
(M/SEC)	(M/SEC)	(M/SEC)	(M/SEC)	(DEG)
5187.8	-551.8	160.2	5219.6	84.74
5327.4	-660.2	165.9	5370.7	85.29
5471.5	-774.5	171.6	5528.7	85.83
5620.4	-895.1	177.5	5694.0	86.35
5774.5	-1022.6	183.5	5867.2	86.86
5934.1	-1157.7	189.6	6049.0	87.36
6099.5	-1301.1	195.9	6239.8	87.85
6270.9	-1453.8	202.3	6440.4	88.34
6448.7	-1616.7	208.8	6651.5	88.81
6633.2	-1791.1	215.5	6874.1	89.29
6825.3	-1977.6	222.3	7109.5	89.75
6936.7	-2087.3	226.1	7247.5	90.01
6929.7	-2121.1	227.7	7250.6	90.01
6917.5	-2160.5	229.6	7250.6	90.00
6810.6	-2476.0	244.2	7250.9	89.95
6672.8	-2824.8	258.9	7250.7	89.90
6516.9	- 3165.8	271.6	7250.2	89.84
6428.7	- 3339.8	277.5	7249.8	89.81

	$\begin{aligned} & \text { TIME } \\ & (S E T C) \end{aligned}$	$\begin{aligned} & \text { XXXE } \\ & (K M) \end{aligned}$	YYYE $(K M)$	$\begin{aligned} & 222 E \\ & (K M) \end{aligned}$
	523.0	1342.1	350.5	30.8
	533.0	1394.7	344.4	32.4
	543.0	1448.7	337.3	34.1
	553.0	1504.2	328.9	35.9
	563.0	1561.1	319.3	. 37.7
	573.0	1619.7	308.4	- 39.5
	583.0	1679.8	296.2	41.5
	593.0	1741.7	282.4	43.4
	603.0	1805.3	267.0	45.5
	613.0	1870.7	250.0	47.6
	623.0	1937.9	231.2	49.8
(2)	628.6	1976.4	219.8	51.1
	633.1	2007.6	210.4	52.1
(3)	638.6	2045.6	198.6	53.3
(3)	683.6	2350.6	95.6	63.9
	733.6	2687.7	-37. 0	76.5
	783.6	3017.6	-186.8	89.7
(4)	809.6	3185.9	-271. 3	96.9

யロミコ	ounoo
	すが，－
のこめこ	m
のレ㐫さ	응융응

TIME	GRQUND CISTANCE	ALTITUOE
（SEC）	（KM）	（KM）
（1） 150.6	81.23	89.40
151.0	82.09	90.07
151.6	83.33	91.04
152.6	85.44	92.68
（2）． 153.0	86.38	93.40
（1）Retro Ignition		
（2）Retro E．T．D．		

S－I RETRO PORTION TRAJECTORY

29＊25	6．0292	が91	T－6859	9＊9ヶ12
19＊25	L．9292	ع＊91	を．¢6¢I	を・6ヶIて
くヵ＊ 25	8．2692	2－91	6．0191	L．LStて
$88^{*} 25$	L．00LZ	1－9］	1．6191	5＊1912
EE＊ 25	$7^{-90 L Z}$	0＊91	を・ヶで1	$5^{\bullet} \mathrm{E}$ 9 I
（930）	（ $335 / W$ ）	（3Fs／w）	（37S／W）	（ $035 / \mathrm{W}$ ）
379N＊	111つØาコ＾	3220	ヨ人人0	$\exists \times \times 0$
HIVd				

$\underset{\sim}{\sim} \underset{\sim}{\underset{N}{x}}$	
$\underset{y}{2}$	∞

	$\begin{aligned} & \text { TIME } \\ & \text { (SEC) } \end{aligned}$	$\begin{aligned} & \times \times X E \\ & (K M) \end{aligned}$
（1）	150.6	82.4
	151.0	83.3
	151.6	84.6
	152.6	86.7
（2）	153.0	87.7
	（1） R	Igni
	（2）R	E．T

 ふim

THRUST
S-I COAST TO IMPACT TRAJECTORY

\qquad

$$
\begin{aligned}
& \text { } \\
& \dot{m} \\
& \dot{m}
\end{aligned}
$$

\circ
mi
m.
 0
\vdots
\vdots

THRUST

$$
=000000000000000000
$$

$$
\underline{Z}
$$

山	＋	
\bigcirc	0	
－	い	
$\sum \sim$	－	
之	2	
而边		
\sim	\bigcirc	OOOOOOCOOOCOOOOOOG
～	0	MNANANNANANANAN
4	x	$\boldsymbol{n} m \mathrm{mmmmmmmmmmmmmmmm}$
Σ	－	
$\underset{\infty}{2} \quad 9$		
－xo		
山出山 ー－－－－000000000000		
	Hへ	11111111111111110
山号		
－可		
\square		
山		
		NoN＋monnmomomvmminmo
4	－山	
	0	
	－	
へa		

woŋ0	turnogrrymorntanoo
U	
いいき	

TIME GRQUND AI．TITUDE

LQNGITUDE	GEDD. LAT.
(PQSITIVE	(PQSITIVE
WEST)	NQRTH)
(DEG)	(DEG)

 NN

S-I COAST TO IMPACT TRAJECTORY	
EARTH FIXED PARAMETERS	
DXXE	
$(M / S E C)$	DYYE
(M/SEC)	

 $\angle 22 E$
$(K M)$ YYYE
(KM)

GEDC. LAT.
PQSITIVE
NQRTH)
(DEG)

TIME	$X X X E$	$Y Y Y E$	$Z Z Z E$
$(S E C)$	$(K M)$	$(K M)$	$(K M)$

TABLE VLII-B (CONT)

S-I COAST TO IMPACT TRAJECTORY

$\begin{aligned} & \text { DXXE } \\ & (M / S E C) \end{aligned}$	$\begin{aligned} & \text { DYYE } \\ & \text { (M/SEC) } \end{aligned}$	$\begin{aligned} & \text { D22E } \\ & (M / S E C) \end{aligned}$	$\begin{gathered} \text { VELDCITY } \\ (M / S E C) \end{gathered}$
26.1	-177.0	1.2	178.9
10.6	-168.4	0.6	168.7
-0.1	-159.9	0.2	159.9
-7.1	-151.8	-0.1	152.0
-11.6	-144.4	-0.2	144.9
-14.3	-137.7	-0.3	138.4
-15.9	-131.6	-0.4	132.6
-16.6	-126.1	-0.4	127.2
-16.8	-121.1	-0.5	122.2
-16.7	-116.4	-0.5	117.6
-16.4	-112.1	-0.4	113.3
-16.1	-108.2	-0.4	109.4
-15.6	-104.6	-0.4	105.7
-15.2	-101.2	-0.4	102.3
-14.8	-98.1	-0.4	99.2
-14.4	-95.3	-0.4	96.4
-14.0	-92.8	-0.4	93.8
-14.0	-92.7	-0.4	93.7

(1) STORED

(2) SEMI-DEPLOYED

(3) FULLY-DEPLOYED

FIG. I. PEGASUS SATELLITE

FIG. 2. SA-8 CONFIGURATION

FIG. 3. ALTITUDE VERSUS RANGE
Chi pitch measured space-fixed from launch vertical (deg)
高。
Chi
140
Wind Sperd (m/sec)
120
Steady State
Wind with
Shears Limit
Wind Limit with Control Variations Combined
Algebraically

APPENDIX A

Wind speed limits for the SA-8 vehicle have been determined for the maximum dynamic pressure region. These limits are established based on structural capabilities of the space vehicle as given by R-P\&VE-SLL. Structural data furnished are functions angle of attack (α), gimbal angle (β), and dynamic pressure (q). Disturbances, other than the wind, used to establish these limits are 99% shears and gusts, $3 \sigma \quad C_{1}$ and C_{2} variations and $+10 \%$ variation in the control gains.

Figure 5 shows the wind speed limits as a function of wind azimuth for the predicted maximum dynamic pressure time point. This figure shows the limits for various assumptions and combinations of disturbances upon which a decision for launch might be based. Wind magnitudes within the shaded portion of the curve could cause launch problems and a preflight simulation would be necessary for a launch decision. Wind magnitudes above the shaded portion could cause severe launch problems or make launch impossible. Wind magnitudes below the shaded portion create no apparent launch problems but, under exceptional conditions, even winds of this magnitude may still lead to structural problems; therefore, a limited amount of preflight simulation will still be performed.

APPENDIX B

The SA-8 post insertion venting analysis provides a 95.5% confidence level of not exceeding the $9 \mathrm{deg} / \mathrm{sec}$ roll and $2 \mathrm{deg} / \mathrm{sec}$ tumble rate limits outlined in Reference 6 . This analysis reflects the structural changes that are being incorporated for this vehicle; i, e., the interchange of O_{2} and H_{2} non-propulsive vents. It also includes the best estimate of impingement effects of vented H_{2} gases on the Pegasus wing structure (based on SA-9 flight evaluation data), as well as perturbations due to misalignments, c.g. shifts, etc.

APPENDIX C

Range Safety Data for SA-8

The range safety data presented in Reference 7 consists of booster and LES impact areas, effects of range safety flight termination, land impact probabilities, injury probabilities, turning rate effects and other pertinent information.

The following parameters were varied to obtain the 3σ envelope for range safety purposes: thrust, flow rate, liftoff weight, and wind speed. Impact data for this envelope is given in tabular form and consists of instantaneous cutoff time, geodetic latitude, longitude, remaining flight time, and range along the earth's surface from launch to impact.

The vehicle velocity vector turning data for the nominal trajectory is graphically presented. In particular, the total velocity vector magnitude and orientation in the lateral direction is presented as a time function from the point of malfunction (engine gimbal deflection), applied in the yaw plane.

The probability of the S-IV stage dropping short of orbital insertion is . 13. The probability of impacting on land can be calculated as follows:

$$
\begin{aligned}
& P_{I}=\frac{\Delta t}{T_{B}} \times P_{F} \\
& P_{I}=\text { probability of impacting on land area } \\
& \Delta_{t}=\text { dwell time (IIP transit time) } \\
& T_{B}=\text { total burn time of second stage } \\
& P_{F}=\text { probability of any failure causing the 2nd stage to drop short } \\
& \text { for SA-8: } P_{I}=9.45 \times 10^{-4}
\end{aligned}
$$

APPENDIX C (CONT'D)

Subdividing the impact probabilities for individual countries:
Land Area Dwell Time Impact Probability

South West Africa
Union South Africa
Bechuanaland Swaziland
1.3
. 8
1.3
. 1
3.5×10^{-4}
2.1×10^{-4}
3.5×10^{-4}
$2.7 \times 10-5$

The probability of injuring a person downrange can be determined in the following manner:

$$
P_{I P}=P_{I} \times \frac{N}{L_{A}} \times A_{L}
$$

where

$$
\begin{aligned}
& P_{I P}=\text { probability of injuring a person } \\
& \frac{N}{L_{A}}=\text { propulation density of country } \\
& A_{L}=\text { lethal area }
\end{aligned}
$$

The probability of injuring a person by overflying land is:

$$
P_{I P}=2.4 \times 10^{-6}
$$

The probability of injuring a person, subdivided by Nation
Nation
P_{I}

N/LA
(Per Sq. Mi.)

$\underline{P_{\text {IP }}}$

South West Africa
Union South Africa
Bechuanaland
Swaziland
$3.5 \times 10^{-4} \quad 1$
24
1
28
2.1×10^{-4}
3.5×10^{-4}
2.7×10^{-5}
6.3×10^{-8}

9.0×10^{-7}
6.3×10^{-8}

1. 4×10^{-7}

APPENDIX D. IGM TERMINAL CONDITIONS

The following defines the necessary IGM terminal conditions.

${ }^{7} \mathrm{~T}$	$=$	Terminal Radius Vector
$\dot{\eta}_{T}$	$=$	Terminal Time Rate Change of $\eta_{\text {T }}$
${ }^{5} \mathrm{~T}$	$=$	Terminal Tangential Velocity
V_{T}	=	Terminal Total Velocity $\left(=\sqrt{+\dot{\eta}_{T}^{2}+\dot{\xi}_{T}^{2}}\right)$
$\ddot{\eta}_{\mathrm{gT}}$	=	Terminal Radial Acceleration Due to Gravity
$\ddot{\xi}_{\mathrm{gT}}$	=	Terminal Tangential Acceleration Due to Gravity
T'	$=$	Time-To-Go (initially)
$\mathrm{V}_{\text {ex }}$	$=$	Exhaust Velocity ($\mathrm{g}_{\mathrm{o}} \cdot \mathrm{I}_{\text {sp }}$)

The values for the above for SA-8 are as follows:

${ }^{\eta} \mathrm{T}$	=	6884489.7 meters
$\dot{\eta}_{T}$	$=$	-0.90 meters/sec
${ }^{\dot{5}} \mathrm{~T}$	$=$	7671.5597 meters/sec
V_{T}	$=$	7671.5597 meters/sec
$\ddot{\eta}_{\mathrm{gT}}$	=	-8.4158 meters/sec ${ }^{2}$
$\ddot{\xi}_{\mathrm{gT}}$	=	0
T'	$=$	465.0 sec (initially)
$\mathrm{V}_{\text {ex }}$	=	4200.0 meters/sec

APPENDIX E. PREDICTED VEHICLE CHARACTERISTICS FOR FLIGHT EVALUATION COMPARISON

S-I Stage

The S-I thrust averages are obtained by considering the longitudinal components of thrust, reduced to sea level throughout flight. They are as follows:

$$
\mathrm{F}_{\mathrm{T}} \square \mathrm{~F}_{1}+\mathrm{F}_{2}
$$

Where F_{1} is the main engine thrust average and F_{2} is the turbine exhaust thrust average.

$$
\begin{array}{ll}
\mathrm{F}_{1}=6,749,611 \text { newtons } & (1,517,373 \mathrm{lbf}) \\
\mathrm{F}_{2}=12,749 \text { newtons } & (2,866 \mathrm{lbf}) \\
\mathrm{F}_{\mathrm{T}}=6,762,360 \text { newtons } & (1,520,239 \mathrm{lbf})
\end{array}
$$

The S-I flow rate is derived as follows:

$$
\dot{W} \doteq\left[W_{(T=0)}-W_{(T=140)}-W_{\mathrm{aux}}\right] / 140
$$

Where $W_{\text {aux }}=$ Ice, trapped environment, and chilldown

$$
\begin{aligned}
& \therefore \dot{W}_{T}=2680 \mathrm{~kg} / \mathrm{sec}(5908.2 \mathrm{lbs} / \mathrm{sec}) \\
& \mathrm{I}_{\mathrm{Sp}}=257.3 \mathrm{sec}
\end{aligned}
$$

S-IV Stage
The S-IV stage thrust averages are vacuum values averaged from 1.8 second (when 90% thrust is achieved) to 476.2 seconds of S-IV flight time.

$$
\mathrm{F}_{\mathrm{T}}=\mathrm{F}_{1}+\mathrm{F}_{2}+\mathrm{F}_{3}
$$

40

APPENDIX E. PREDICTED VEHICLE CHARACTERISTICS FOR FLIGHT EVALUATION COMPARISON (CONT'D)

Where F_{1} is the engine thrust along longitudinal axis $=400002$ newtons (89924 lbf)
$F_{2}=$ Thrust due to cluster effect $=-2798$ newtons (-629 lbf)
$\mathrm{F}_{3}=$ Helium heater and chilldown thrust $=734$ newtons (165 lbf)
$\mathrm{F}_{\mathrm{T}}=397,938$ newtons ($89,460 \mathrm{lbf}$)

The flow rate is also obtained from 1.8 seconds to 476.2 seconds of S-IV flight time.

$$
\begin{aligned}
& \dot{\mathrm{W}}_{\mathrm{T}}=95 \mathrm{~kg} / \mathrm{sec}(210.4 \mathrm{lbs} / \mathrm{sec}) \\
& \mathrm{I}_{\mathrm{Sp}}=425.2 \mathrm{sec}
\end{aligned}
$$

1. R-P\&VE-PPE-65-M-137, "Final S-I-8 Propulsion Prediction," Aprill6, 1965.
2. R-P\&VE-PPE-65-M-131, "Final S-IV-8 Propulsion Prediction," April 9, 1965.
3. R-P\&VE-VAW-65-62, "Final Predicted Mass Characteristics for the Saturn I, SA-8 Vehicle," May 3, 1965.
4. Saturn SA-8 Vehicle Data Book, March 24, 1965.
5. DWG 10M30137, "Saturn I/SA-8 Flight Sequence, " April 30, 1965.
6. I-I/IB-P-65-156, "Angular Rate Limits for SA-8 Pegasus Satellite, " March 30, 1965.
7. Range Safety Data Report \#3-65, "Range Safety Data for Saturn SA-8," April 22, 1965.

APPROVAL

SA-8 OPERATIONAL TRAJECTORY

By
Pamelia B. Pack
and
Gordon W. Solmon

The information in this report has been reviewed for security classification. Review of any information, concerning Department of Defense or Atomic Energy Commission programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

E. D. GEISSLER

Director, Aero-Astrodynamics Laboratory

DIR, Dr. von Braun
DEP-T, Mr. Rees
DEP-A, Mr. Gorman
R-DIR, Mr. Weidner
I-DIR, Mr. Young
I-I/IB-MGR, Colonel James
I-I/IB-SIV, Mr. Ferguson
I-V-MGR, Dr. Rudolph
I-E-MGR, Mr. Belew

R-AERO-DIR, Dr. Geissler
R-AERO-DIR, Mr. Jean
R-AERO-A, Mr. Dahm
R-AERO-AT, Mr. Wilson
R-AERO-ATA, Mr. E1kin
R-AERO-AD, Mr. Linsley
R-AERO-AD, Mr. Dunn
R-AERO-ADD, Mr. Nun1ey
R-AERO-AU, Mr. Young
R-AERO-A, Mr. Holderer
R-AERO-D, Mr. Horn
R-AERO-G, Mr. Baker
R-AERO-DD, Mr. Winch
R-AERO-DD, Mr. Ryan
R-AERO-F, Dr. Speer
R-AERO-F, Mr. Lindberg (6)
R-AERO-FO, Mr. Kurtz
R-AERO-FF, Mr. Sheats
R-AERO-FM, Mr. Stone
R-AERO-FM, Mr. Hardage (10)
R-AERO-FM, Mr. Wittenstein
R-AERO-FM, Mr. Sullivan
R-AERO-FM, Mr. McNiel
R-AERO-FM, Mr. Leonard
R-AERO-FM, Mr. Crafts
R-AERO-P, Mr. McNair (6)
R-AERO-P, Mr. Teague (10)
R-AERO-T, Mr. Reed
R-AERO-T, Mr. Cummings
R-AERO-Y, Mr. Vaughan
R-AERO-P, Mr. Tinius
R-AERO-FOO, Mr. Naumcheff
R-AERO-FM, Mr. Funston
R-AER0-FMT, Mrs. Pack
R-AERO-FMT, Mr. Weiler
R-AERO-FM, Mr. Solmon
44

```
R-TEST-DIR, Mr. Heimburg
R-ME-DIR, Mr. Kuers
R-SAI, Earl Butler
R-ASTR-DIR, Dr. Haeussermann
R-ASTR-I, Mr. Hoberg
R-ASTR-F, Mr. Blackstone
R-ASTR-R, Mr. Taylor
R-ASTR-FO, Mr. Mink
R-AS'TR-G, Mr. Mandel
R-ASTR-NGI, Mr. Blanton
R-ASTR-NGI, Mr. Nicaise (2)
R-ASTR-NGI, Mr. Schaefer
R-ASTR-F, Mr. Hosenthien
R-ASTR-N, Mr. Moore
R-ASTR-M, Mr. Boehm
R-ASTR-TJ, Mr. Brandner
R-ASTR-E, Mr. Fichtner
R-ASTR-S, Mr. Seltzer
R-ASTR-NGD, Mr. Burdeshaw
R-ASTR-NGD, Mr. Carlile
R-ASTR-IRD, Mr. Ely
R-ASTR-NGD, Mr. Winkler
R-P&VE-DIR, Mr. Cline
R-P&VE-DIR, Mr. Hellebrand
R-P&VE-X, Mr. Faulkner
R-P&VE-P, Mr. Paul
R-P&VE-AVA, Mr. Denton
R-P&VE-VS, Mr. Schulze
R-P&VE-S, Mr. Kroll
R-P&VE-SL, Mr. Showers
R-P&VE-S, Mr. Hunt
R-P&VE-PTD, Mr. Hastings
R-P&VE-V, Mr. Palaoro (2)
R-P&VE-VAW, Mr. Mormann
R-QUAL-DIR, Mr. Grau
R-QUAL-PSI, Mr. Vedane
R-COMP-DIR, Dr. Hoelzer
I-I/IB, Mr. Peterson (2)
```

```
V, Dr. Gruene
EF3, Mr. Hershey
VT, Mr. Moser
VG3, Mr. Chambers
EF4, Mr. Varnadoe
VE, Mr. Davidson
VG4, Mr. Jenke
VG4, Mr. Whiteside
VE, Mr. Williams
VM, Mr. Pickett
DIR, Dr. Debus
T, Dr. Knothe
EP, Mr. White
ED, Dr. Bruns
SF, Mr. Moore
ED4, Mr. Jelen
E, Mr. Sendler
MSC-PT6, Mr. McKann
MSC-PS-3, Mr. Perrine
MSC-FM, Mr. Mayer
MSC-FM, Mr. Incerto
MSC-STO, Mr. Funk
MSC-SCE, Mr. Skopinski
MSC-TS, Mr. Cohen
MSC-FM, Mr. Ricks
MSC-EG, Mr. Chilton (2)
MS-IP
MS-IPL (8)
Scientific and Technical Information Facility (25)
Attn: NASA Representative (S-AK/RKT)
P. O. Box 5700
Bethesda, Maryland
Mr. Donnegan
Code 554
Goddard Space Flight Center
Greenbelt, Maryland
National Aeronautics and Space Administration Office of Manned Space Flight
Code: MAO
Washington, D. C. 20546
Attn: Mr. Phil Beyer
```


[^0]: (1) Initiate Active Guidance

 GCS
 Insertion
 (4) S-IV Pegasus/Apollo Separation

