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1. 	INTRODUCTION
 

This is the first semi-annual report on a study of Gimballess
 

Inertial Navigation Systems. All of the tasks'yhich were originally
 

proposed for inclusion in this study-are being actively pursued.
 

They are: (1) a comparative study of several methods of measuring
 

angular velocity without the use of gyroscopes, (2) a study of methods
 

of error damping for flights that are not earth-bound, (3) the
 

construction of a breadboard model of a rotating-accelerometer device
 

for measuring angular velocity, (4) the determination of the computer
 

requirements for performing the computations necessary for gimballess
 

inertial navigation systems, (5) the simulation of one or more mechaniza­

tions of gimballess systems and (6) an 'extensive error study of gimballess
 

systems.
 

A summary of the work of the first six months is given in the
 

next section of this report and details are given in the appendices.
 

The technical staff has consisted of two Research Fellows, each
 

at 75% of full time, and one Associate Professor at 20% of full time.
 

In addition, there has been part time programming assistance. It is
 

anticipated that by the end of the first year of this study, both of
 

the Research Fellows will have completed all of their work for the Ph.D.
 

degree and that further work on gimballess inertial navigation systems
 

would be carried out by other advanced graduate students.
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2. SUMMARY OF, WORK 

2.1 Measuring Angular Velocity-without Using Gyroscopes
 

Most inertial navigation systems use accelerometers to sense
 

linear acceleration and gyroscopes to sense angular velocity. The use
 

6f gyroscopes may be avoided, however, by using six or more accelerometers
 

that are fixed to the vehicle or by-mounting an accelerometer on each 

of two perpendicular rotating rings. 

Many configurations of fixed accelerometers will allow the
 

determination of both linear acceleration and angular acceleration.
 

Several of these configurations are discussed in some detail in
 

Appendixes A and B. The minimum number of fixed accelerometers for an 

all-accelerometer inertial navigation system is six. With six accelero­

meters 	there is an ambiguity in the sign of the angular velocity. This 

ambiguity may be-avoided with eight or nine accelerbmeters. Also, the
 

use of eight or more accelerometers provides greater freedom in the
 

placement of the acceler6meters. It is shown in Appendix B that the-­

linear and angular acceleration can be readily determined even though the
 

accelerometers are not placed symmetrically about the vehicle's center of
 

mass and even though the center of mass may move due to fuel consumption.
 

Section 2.3 disdusses the use of accelerometers mounted on rotating
 

rings.
 

2.2 	Error Damping
 

Bodner and Seleznev and Krishnan have studied the mechanization
 

of the navigation equations for gimballess navigation systems and have
 

'found that mechanization in an inertial frame of reference is more
 

suitable than mechanization in a vehicular frame of reference.
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However, a simple mechanization of the equations in an inertial fraie
 

gives alcharacteristic equation of the form
 

(s(2 2 ++ 02)(s 2 2 
_ 
2
-)~ = 0 

corresponding to a transient error that contains a bounded sinusoidal
 

term And an unbounded hyperbolic cosine term. Appendix E treats three
 

methods of achieving a stable mechanization of the navigation equations.
 

They are (1)damping by means of reference trajectory information,
 

(2)damping by means of external velocity information and (3)elimination
 

of diverging errors by means of altimeter information.
 

For many flights the reference (desired) trajectory of the vehicle
 

is accurately specified and the actual trajectory does not deviate far
 

from this reference trajectory. With the reference trajectory informatior
 

available on board the vehicle, damping can be obtained without the use
 

of any auxiliary sensors; the accelerometers required for an undamped
 

system suffice. The accuracy of a system with reference trajectory
 

damping is dependent upon the closeness of the actual and reference
 

trajectories.
 

Doppler radar has been used to obtain velocity information for
 

use in airborne terrestrial navigation systems. For space navigation,
 

Doppler radar is less 'satisfactory. Franklin and Birx3 have reported
 

encouraging results from feasibility and accuracy,studies of optical
 

Doppler. Doppler-damped navigation system equations for space flight
 

are presented in Appendix E.
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The distance from the vehicle to a celestial body may be found 

by a variety of distance measuring schemes. The measured value of this­

distance may be used to eliminate the diverging error that opcurs in 

the undamped navigation system. However, it will not eliminate the 

sinusoidal oscillation.
 

2o3 Rotating Accelerometer Experimental Studies 

Krishnan
2 

has- shown that two or three linear accelerometers 

mounted on mutually perpendicular rotating rings can be used to determine 

both linear acceleratidn and angular velocity. A-rotating disk, mounted
 

on a dividing head and carrying an accelerometer, is under construction.
 

The experimental study-to determine the feasibility of a'rotating accelero­

meter sensing system has not yet been initiated due to delays in
 

6btaining transformers for the accelerometer's-.loop-closing-amplifier
 

and the difficulty in obtaining satisfhctory operation of the loop­

closing amplifier. It is expected that the use of very carefully matched
 

diodes will remove the remaining difficulty in the loop-losing amplifier 

and that experimental studies will comn/ence-during May. ­

2.4 The Oomputer Simulation 

The navigation system is to be simulated-on a digital computer. 

This simulation will permit a more adequate analysis of the system 

than is possible by purely analytic means. It will also permit a study 

of the navigation systen errors and will provide-the necessary information 

for determining the requirements for au on-board computer. 
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In the simulation of the navigation system, the inputs are
 

an angular velocity pattern and a linear acceleration pattern.
 

With these inputs, the simulated system- and the actual system ­

will provide the vehicle's position coordinates, which due to errors
 

in the sensors, errors in the calculation of the gravity compensation,
 

errors in the direction cosine calculations and errors in the numrical
 

integrations, will deviate from the true value.
 

Figure 1 shows the block diagram f6r the simulation of the 

navigation system on a digital computer. The linear acceleration pattern 

EiYt) enters in the upper left hand corner of the figure. It is 

integrated twice, combined with initial conditions and the gravity.terms 

and fed to Box 1 where the exact direction cosine matrix [D(T )] is 

formed. This direction cosine matrix relates the inertial coordinate 

system and the vehicular coordinate system. The inputs to Box 1 are 

referred to the inertial coordinate system and the outputs are referred 

to the .vehicularcoordinate system. Box 2 combines.the linear acce~era­

tion !V(t), the angular velocity (t) and the acceleration Lr(t) of 

the origin of the vehicular coordinate system [VI with respect to-the' 

origin of the coordinate system [m] about which the accelerometers are 

centered. The outputs of Box 2 are the accelerations that are read .by 

the accelerometers. Box 3 simulates the accelerometers. Its inputs 

are the true accelerations and noise and its outputs are the accelerometer 

readings, The calculated values of-the angular velocity aend of 
0
 

linear acceleration Av are formed in Box 4. Since-the accelerometer
 
c 



 
 
 
 
 
 

"Page missing from available version"



7. 

readings are noisy a linear filter and estimator is included (Box 5). 

Box 6 forms the calculated directi6n cosine matrix [D(T) 1'. The 

inputs to Box 6 are referred to the vehicular coordinate system 

and the output A (Ti) is referred to the inertial coordinate system. 
C 	 - . 

This linear acceleration, A (Ti), is combined with the calculated
 
c 

gravity term and the resultant is integrated twice to give the 

vehicleis calculated position (Ti). A linear predictor (Box 12) 

giVes the estimated position at the next sampling instant, Ti+1 ,and 

the gravity computer (Box 8) gives the corresponding acceleratio 6f 

gravity. Boxes 13 and 14 give the calculated and exact Euler Angles 

respectively. 

Portions of thesLmulation have been successfully ,ested°
 

The exact form of some boxes, such as the linear filter and,estimator,
 
have not been determined, nor has a closed loop test ,been attempted; 
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APPENDIX A 

ALL ACCELEROMETER TECHNIQUES FOR MEASURING 

LINEAR ACCELERATION AND ANGULAR ACCELERATION 

A. 	 R. Schuler 

Currently, most Inertial navigation systems use linear 

ac6elerometers .to sense linear accelerations and gyroscopes to sense
 

angular velocity or angular position. It is possible, however, to
 

determine both linear acceleration and angular acceleration (or
 

angular velocity) without the use of gyroscdopes. This report 

presents four configurations of linear accelerometers which permit 

the determination of both linear acceleration and angular acceleration 

(or angular velocity). Although there are many possible configurations, 

only those that seem to be of major importance are treated here. It 

is to b e noted that the possible configurations differ in the number 

6f accelerometers required and the mathematical form of the outputs. 

In'this section, it is assumed that the accelerometers are placed on 

a coordinate system that has as 'its erigin the center of gravity of 

the vehicle. 

Two coordinate systems are used: 

a) 	the inertial system [I], and
 

b) 	the vehicular coordinate system [VI which has its origin 

at the center of mass of the vehicle and its axes V1 ; Y2 

and V3 along the principal axes of the vehicle. 
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Figure A-I shows the coordinate system [V] which, in general, 

is rotating and accelerating with respect to the inertial coordinate 

system [I]. The angular velocity of [V] is desigpated as: 

+ 
= IV, IT+ 'I2 j (A-l) 

It has been shown' that the inertial acceleratibn ofan arbitrary 

point P accelerating with respect to a moving referencel frame is given 

by (a dot represents differentiation with respedt'to.time): 

+2x + v ) 

where:
 

RI is the vector from the origin of the inertial frame to
 

the origin of the vehicular frame'.
 

FV is the vector from the origin of the vehicular frame 

to the point P.
 

If the point P is fixed in the vehicular system then
 

rV rV 
= = 0 and the acceleration of the point is given by:
 

A, = + 5 x (f x F (A-3)RI S X i V 

RI may be written as a sum of components along the vehicular axes, A.e.: 

+ +RI = IV R2 jV V3 kV (A-4) 
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V3
 

0 12 

Figure- A-1 The. VehicuIar Coordinate System [VI, 

e I 
13 'V3 b 

\2av\ c V2 

d. 

.A- a 

12 

Figure A-2 The Poitio.'of Fixed. Points, on 
the"Tehicular' Axes 



Then 

+ V
R, = VI v 2 Jv 
+ RV3 kv 

A 1 i + A2 Jv + A3 k AV (A-5)
 

Note that R is an inertial acceleration whose components

I
 

have been resolved along the vehicular system axes. We introduced
 

the notation RV -Ai (i = 1, 2, 3).
 

The acceleration in inertial space (Aj) will now be found 

for the six points a, b, c, d, e, and f, fixed on the vehicular 

axis as shown in Fig. A-2. 

To find the acceleration of point e with respect to inertial
 

space, let
 
=V kV (A-6) 

Using Eqs. (A-l), (A-5), and (A-6) in Eq. (A-3),
 
= + +
(ylpt e A1 i A2 JV I AV3 7 ("l 1 2 3 

'IVE~+~2 TVfieN KVXYe 

+n1 +n 2 V 3 )XIa11V+"2' +IV3V)XeY1V+ 


1V [V1 + + 
e 'IV12o 3 3
 

+
" j [AV2 - l I Z " 3 
 (A-7)
 

2 2 
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To obtain the inertial acceleration at the other five points,
 

let rV take on th aesireu cuurunieire ve±uu. 

For point f let V = If kf 

(TI) 	 t f = V EfA fV2 3 

+ 	 [ A(A.8) f 
Vv Vl1±f " 2 "V3

2 

+ r[AV +2 2.A 1k 
3 + 1; I '2 

For point a let TV = 1v
 

-V AV 2
 

2
(A) 	 pt I 2 Y a3 

++ >1[ [a+V l2+ a] (A-9) 

V[A 	 2 v3 ,a +"Vi vq a, 

3 'V2 a+"V1 V3'a 

2 	 2 

For point b, let : = - P iVv 

(A,) 	pt b AV, + 2 
'jb +'V1112 223 3. 2 

+ -vE [AV 	 (A-10) 

+ T[V3+ 2 R nV1 %3A 
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For point c letr = 

(A,) [AV, -4hV % %24
 

* 2 (A-11)c] 


* A I 1V c + O 3 

For point d let ! o d jV
 

(A,) pt d = 3-V[AV 3N-d - "V1 'V 2 -d 

2 2 
+ 2 d

2 
(A-12) 

+;I 2 11Yd+R 3 d 

+! A 3 - V1 'd-072 3 A 

Also, if r = 0 

(A,) origin = I AV + V AV2 AV3 (A-13) 

Consider first the configuration of linear accelerometers
 

shown in Fig. A-3 (configuration A). The six-accelerometers are
 

oriented about the vehicle's center of gravity and are mounted on the
 

principal axes. Two accelerometers are placed on each of the three
 



V3 

Figure A-3 Configuration A 

AV, V3
AV3 1 

C vf 

AV (3 2 

2
V1 Av 12 

Figure A-4 Configuration B 
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vehiculbr axes with the sensitive axis of one accelerometer along the
 

axis in the positive sense and the sensitive axis of the other along
 

the axis in the negativesense. The arrows in the figure indicate 

the sensitive axes of the accelerometers. 

Since AV is at point a and oriented in the iv direction, it 
11 

measures, from Eq. (A-9): 

11, .A 1 2 3 (-4 

By referring to Fig. A-3 and Eqs. (A-7) through (A-12). the remaining 

5'accelerometer readings can be determined.
 

AV12 = AV + (912 + 9 3 ) -e U- 15)
12 1 2 2 

21 2 1 2 

N2A V=2 + % +lI 3
) Aed (A-17) 

22 2 1 2 

A31 = AV3 (12 + l1)2Pe (A-18) 

AV, = AV + (22 + Rl)Af (A-19) 
32 3 2 1 -

These equations are now combined algebraically 

-AXlgA lh = (112 + R3) (A-20) 
x= (A.+2o 
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x A 2 2 A 2 1  ( + )(=) 

= - = (: + f) (A-22) 
+ 
ge f 

Then 

2 -x1 + x2 + x3 
v1 2 ) (A-23) 

2 = x,-X2+ x3 
(A-24)23 = ( 2 

2 =X +x 3 (A-25) 

2 2 33 

-

Thus 1 2 1/2 

(2 2 3 ) (A-26) 

'IV=/22 1/2 (A-27) 

+-2
%3 ( x-1 --3li
 
=/2=I2 3 (A-28)
 

These equations, .beingwholly algebraic, are easy to evaluate
 

on a digital computer. A difficulty arises, however, in evaluating-h.
 

since the square root of Eqs. -(A;23),(A-24) and (A-25) may have either
 

a plus sign or a minus sign. This sign difficulty can be resolved through
 

the use of auxiliary devices that may be less accurate and less costly
 

than acceletometers.
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Then, from Eqs. (A-14), (A-16), (A-18), (A-20), (A-51), and
 

(A-22) 

+A,= AV (A-29) 
1 11 1z 

A = AV + x 2 ' (A-30) 

+ x 3  AV = AV31 e (A=31) 

If either the condition -a = ' le- = 1d. and Ae = 'f.or ­

.= Lb = Ad' = e = Af were satisfied, the equations prbsente4 

above would simplify. 

In configuration B, the accelerometers mounted parallel to the
 

negative vehicular axes are brought to the origin of the vehicular
 

axis-as shown in Fig. A-4. In practice this is impossible unless it
 

were feasible to mount a three degree of freedom accelerometer at the
 

origin. Nevertheless, the config-uration is analyzed here. The six
 

accelerometers measure the following quantities:
 

22 + S2 )a (A-32)
AV11 1VI 2 3 ' 

AV = AV1 (A-33) 

12 1A-4 

AV21 AA - (nl+ 3) (A-34) 

AV AV (A-35) 
:22 2 



AV = AV - ( 2 l)Ae (A-36) 

31 3 2 1 

AV =AV (A-37) 

32 3 

Since AvI AV and AV3 are known [Eqs. (A-33), (A-35.) and , 

(A-'37)] we can write
 

+ l " - xi (A-38) 

R- + x2 (A-39)
1 3 A 

2 A3 -AV31 = 
=x (A-40)2 t a1 Ye 

Then, as before,
 

++ 22- )1/2x ++ i (A- l) 

1/2
+ x 


(A-42)
I i- x= " 32
2 


, 1/2
 

-2 2
 xi )- (A-43)
 
3 


Configuration C utilizes 9 stationary accelerometers. It 

eliminates the ambi-guity in the sign of the angular velocity n. Also, 

no accelerometers are needed at the center of gravity. This method 
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V3
 

f Av23
 

e AV13 
ifA V21 

I- 2 v eAVA
 
32AV3I 	 bV3 

V
 

Figure A-5 	 C6nfiguration C With Arbitrary 
Accelerometer Spacing 
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an y' Note that theg'ves the output as AV' 


1 2 3 l 3 
mounting of the accelerometers must stillsatisf the requirdment
 

that they be placed on the principal vehicular axis about the center
 

of gravity. The mounting scheme is shown in Fig. A-5.
 

Using Eqs. (A-7) through (A-12), we can write the outputs
 

of these 9 accelerometers as (note that the alphabetic points no
 

longer coincide)
 

AVl2 = AV V' ) -ta (A-44-l) 

32 13 1 2)b
AV32 = AV(3 + 1 + QV2 ' 3 ) 4 (A-44-2) 

12 - AVI + 3 - V1 'V2 ) 1 (A-44-3) 

Av 3 AV3- 1(+ av2 'V3 ) ed (A-44-4) 

+AV13 AV11 + 2 nV1 'V3 ) 
P (A-44-5) 

fAV23 = A2 - 1 - % 2 'V3 ) e (A-44-6) 

AV31 = AV3 - (2 - 'Vl1'V) g (A-44-7) 

AV2 = AV + (3 + Vl11V) (A-44-8) 

+A 21 AV2 - 3 nV1%2 e (A-44-9) 
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Letting fb = Ad and adding (A-44-2) and (A-44-4), 

32 

2 

3 3 (A-45) 

Letting la = A. and adding (A-44-1) and (A-44-3), 

AVl 1 AvI 

2 

2 Al (A-46) 

Letting Ah = A and adding (A-44-8) and (A-44-9), 

2__ 
2 

21 A 2 (A-47) 

Three summations have yielded linear acceleration. 

Letting Ad if and adding (A-44-4) and (A-44-6) yields­

132 + V23 V3 + V2 - 1 Ad 'V2 'V3 'd 1 'd+'2 'V3 A 

=V3 + V22 1 e 

- 32 - AV23 + 

2 d 

AV3 + A2 (A-48) 
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Letting e = g and subtracting (A-44-7) from (A-44-5) yields: 

A13 - A31 I1 - + 
k2 

+ 
al1eAV3 In3 Pe 

+ 
2 'e - 1 '3 Pe 

1 - V3 4 2 Ae 

13 3 1 3 	 (A-49)2
2 e 

Letting pa = end subtracting (A-.44-8) from (A-44-1) yields:* 

12- AV2 = AVI- 3 a 2 "a AV 2 3 " 1a IV22 ' 

= 	 AVI AV 2f i9a
 

I V1 -V2 
 V 3 -+A2
 

'IV3 2 /12 21CA-50)
 
2a
 

For Eqs. (A-45) through (A-50), the following equalities
 

apply 

Ab = Ad f 	 = 

Yg = le = " 3 	 (A-51)
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Then Fig. A-5 evolves as shown in Fig. A-6. Note that the
 

arrangement is such that no two accelerometers must overlap at a point
 

(which is of course a physical impossibility).
 

Configuration D is of interest in that it utilizes eight
 

-accelerometers as shown in Fig. A-7. The equations governing these
 

outputs are: 

AV 31 = AV 3 -(IIV2 -1 V 3) a (A-52-1) 

Av = AV + 1flv 'I e (A-52-2l) 

31 3 2 1 3 

AV32 = AV3 + (k1+ f2 n3 ) -e (A-52-3) 

= )32 A3 1. + %2 '3 e (A-52-4)" 

+ )A = AV (4 + % R (A-52-5) 

V13 1 2 1 3 e 

+ 
3 )13 = AV - (L2 Q 1 f (A-52-6) 

AV23 = AV2 - (41 - %2 'V3 gg (A-52-7) 

(A-52-8)N23 = A 2 + (kv - 2 V 3) eh 



V 3 

A 23
 

Av , 1( Av,32
A VV3 

AVv2,
V12 


'Figure A-6 CoiftLgura:tion C with Symmetrical
 
:S.pacing 6f the Accelerometers
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J Av A13 

~~igur, V23 31Iiurto 
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Combining algebraically 

if Pe = 'T = e' 

A13 
 13 

2AV 1 (A-53) 

if A = 

2 

if Ac Ad 

A32 + P32 -AV (A-55) 

2 3 

also, let 'a '& A 

Then we can write the following equations using (A-52-1)
 

through (A-52-8)
 

A31 - A31 ' = (A-56) 

2A 2 1 3 

32 32 = 1 +9 =X" (A-57) 
222'I32 
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AV 13P + 
nV 'IV 

(A-58)
 

20, 2 12 

P4 - AV3 
23 23 . '2 (A-59) 

AV A 

Thenx "32 + 23 23 (A-6o) 

+ A 23, AV 

2 -- 4---8F 

+ 31 AV31 + A13- A13 (A-61)
 
° 2 ­
2
 

Now from (A-56)
 

'IV l 2 - 31 31 
=- 2 =y2 2 (A-62)
 

Note that the angular information is 1, ' 2n '
 

Equation (A-62) requires the integration of CI [integration of
 
Equation (A-60)] before it can be solved.
 

BREICES 

(I.) Page, Leigh: "DItroduction to Theoretical Physics," 

D. Van Nostrand ComPan:, 1947.
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APPENDIX B 

THE EFFECT OF LOCATING TEE SENSORS
 

AT A POINT OTHER THAN THE VEHICLE 'S CENTER OF MASS. 

Alfred R. Schuler
 

It is not usually convenient to locate the'-sensors, of_ 

inertial navigation system at the -vehicle's center of mass.. This 

appendix considers the effect, in an all-accelerometer system, 

of placing the'acceleroneters symmetrically about' the origin -of-a 

coordinate system that is remote from and moving with 'respectto th 

center of mass of the vehicle. 

The equation governing the inertial acceletalion at an
 

arbitrary point P accelerating with respect to a moving reference 

frame has already been given by Eq. (A-2). Restated for convenience, 

it is­

where
 

A, 	= inertial acceleration of arbitrary point P 

= linear acceleration of origin-of vehicular coordinate, 

syszem with respect to inertial space 

= angular velocity of vehicular system 

V= vector from vehicular origin to point P. 

RI 


Figure B-1 shcws the physical picture. The following two 

assumptions are made:
 

1. 	 The [m] axes, about which the accelerometers are plaed. 

remains in an orientation on- the vehicle that is pdrall . 

to the vehicle's major axes. The vehicular axes LV], 



m 3 13 

IVI
 

FB
1
±gpre. B:-2 The- [ml] Coordiate System . 

3. 

VV
 2
 

SytemFlgure B-l Teoorinae S eNtaton 
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however, translates as a known function of time. Note
 

that [V] and [m] always remain parallel to their respective
 

coordinate axes.
 

+ k­
2. rv(t) =rv(t) 3- rv Ct) + rv(t) is known for all t. 

V1 1 2 3 
rv(t) is stored in the navigation computer prior to
 

launching or sensing devices are used to permit its
 

calculation while in orbit.
 

To resolve Eq. (B-2.) into components we write-


R, A 1+AV2 + V3k
 

n = a I l 

= (r1o + p)I + (rpo + + (r30 + 

r? r~ 
 + r 0+r C 
rV = rlOl + r20 + r30k 

where rlO, r20,r30 are the magnitudes of the origin of the Em]
 

coordinate system with respect to the origin (center of mass) of the
 

vehicular coordinate system. I, fl and C are the magnitudes of 

the three coordinates defining a point in space with respect to the
 

[m] coordinate system and are assumed to be constants, See Fig. B-2.-


Equation (B-l) -can now be expressed in the following form: 
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Then 

A'= 1 2 3 1 2 3 

[(ro +,) + (r20 + Q)j + (r 30 + C)7k] 

. 
+ ri+ r j + r 3 x o o 

+ avi2 j + 4'(3K) x - + P Tr+0 :K)r' "+ 

+ (RVI+a (fl + Q ) xniX T+ fi 
1 2 3 1 2 3 

[(r0+ + p)l + (r20 + )3 +r30 + 

CB-2)
 

Evaluating the three cross products in Eq. (B-2) and c~llecting 

terms gives:' 

+ +SI[[V + ,O k 2(r3o C' - 20 + 30 o 

" r20+ 0VV(ro ( )- (ro+ ) 

20 3 
r+ ' 30 + 

1 3 

+ a +o4+13 + ) V(ro+ 
20I+ 0 + av2o nV3(r 0 +1 C
 

2 2 1 

V + (0 + ) + )]+ 2.[A +(r0 ) " Cr 30 

3 1 2
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Equation (B-3) may be mechanized by several methods, two of 

which are discussed here. First, an accelerometer arrangement identical 

to -configuration C described in Appendix A is utilized . Here, nine 

accelerometers are placed about the [m] axis. Note from Fig. B-3 

that no two accelerometers are located at the same physical point. 

By inspection of Fig. B-3 and Eq. (B-3), the readings of the nine 

accelerometers are:
 

(Note that points .K, ,K and f refer tO the distances of the
 

various accelerometers from the origin of [m]).
 

Am., = AV2 +r2o0 +(rlO3 )(+ +CVn I ) 

+ (a5IV r ° - r 3 u2 ' 3 -av1)r 3 0+ 'IV3; Ovi 
+ ) r - 1 =3 O (r-4) 

1
 
23 


03 B 

Am =A +r0 + (nvC n. ) 
31 1 3 2 3 2 3 1­

(I.t1 + 2 )r 30 + 'V1r 20 "VPro(B-6) 

AM AV1+;1 ~ ("1 3  V"V3 + k)r30 3 

2 3 12 3B7 
( % ~ v3o )r'10-7 



33.
 

M
 
3
 

/K/K 

Am12 Am31 IK, IKA 

Amp. 

Figure B-3 Configuration C Displaced from the 
Vehidular Mass Center 



12  

+ 0-, 32012Vrj-Am23= 'AV 2 rr + l 3 I 1 Cr30 K2 3 1 

1~~~ 22' ~ ~ 
+~ +)~~~ +2 r +C 

+R V2 j + nV2 3 1 2 '3 % 2 3- ( 1 1 2 

AV 0 + ( 3nVro +1 , Lnv + A 23 r 0
+3I +v )lO(B--9~~~v~ 

2 2 3 
+ n	 + r ( + ) r~~o v)rnv n a0V V 


3 01 20, 1 3 1B-8
 

3
 =+3 V2vr 022 'I r Oi2+a ) ro (B-9)~vr 

=m 2-V3 ~3 o0 V 2 O+ a I V3) 0 + "'K ( 22 

+ 	 OIVVr.0 + n V (r~~k)0o + 2 V2)r30
 
13 2 3 2 ' 2 


A +r3+ (av )r0_Q0+~+~ ~ ) 

3 30 1 +n2l3 . v1 3 

1'i2 2 1 1 2 30(B-11)
 

2 
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+ 
At 330o (kl% ) ( 2 lI 3'3 -r=m3 2 A'V +r20( 	 () +(n2 ~v 2 )r 0 

+ QV - f~l 2 r 0 2 2 cB-12) 

Then combining Eqs. (B-5) through (B-12), the lihear acceleration 

and angular velocities are obtained. 

A 'l -'A21 (B-13) 

P-1Kl3 + % V2 

012 	 . 12 'Vi nV 'Iv 3 9 (B-14). 
12 3 

Ajn -A'm I + %3 = 9 (B-15)32  nv2 

2

A2K2
 

0Am2 Am2 3  JtKI CV 3 + 1 SV) IK( 2 VV 3 LVI) 1 

(B=i6) 

(B-1.) 

A 	 V2) ­m~A32= r3"13 2 A2VI 
31 2aV3 

(B-18) 

Now in Eq. (B-16) substitute Eq. (B-13) for @,o
 



Then 

or 

- % AK,1 
'Li'I V 'IV (B-19) 

'22V = 

In Eq. (B-17) substitute Eq. (B-1i) for 62 

Then 

02 AK3 C"V "V V2 2 "K, 

or
 

+3 2
 

03( "2 "K 2(B-2o
 

-3 12A 3K- 93 


IK 3I'V 'I 3 - V2
 

The magnitudes of the components of flare given by 

@1 22 = V(B-22, 
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3 - = 1 (B-23) 

-5 - 96 

22 

To obtain the components AVZ AV2 and AV3 define the following 

quantities: 

2 + 2 

2 + 2 = 
2 1v3= X (B-25)

2 3 

S+ 2 = X2 

Note that these.n's can be evaluated i=mediately after Eqs. (B-22)2
 

(B-23) and (B-24) have been integrated.
 

Combining Eqs. (B-4) and (B-5)-gives:
 

Am21+ A 421
 
r20 30 +X 3 r2 0
 2 2 - rlO- 4 r


+ IVl30 (B-26)'V3r
10
 

Similarly
 

AV Am,,+ m1
 
2 or r30 - ".r
1 r10  2 0 V2 r 30
 

+v ;20 + X1 0io (B-27) 



38. 

and
 

AV = Am32 A 2m32 . r 
2 30 3 -.'6r
3 
 20 1 0
 

'V!20 ' + roX (B-28)2 r 3 0 

If r310 (t) = r20 (t) = r30(t) = 0, then: 

+ A'm12 
2 

AV, = An12 


AV Am2 1 + A'rn2 i (B-30) 
2 2
 

32 32 (B-31)
23v 

Thus, this reduces directly to the situation of 'sensors pla
 

about the origin. 

It is noted that although the havigation computer must perform 

somewhat more arithmetic, there are only 3 integrations to be performed, 

-There are no multiplications that.the computer must evaluate (except for
 

3 squares); Note that if in general:
 

r1 0 (t) 1 0 

r 0(t) 00 

r30 (t) # 0 
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but
 

v10(t) = vo(t) = v30 () = 0 

a10 (t) = a20(t) = a30(t) = 0
 

Then
 

Am 2+-m,
AV = 1 2 A 5Qr30 2 r-0 +x rio " 

A2 2 - r 0 --Q r30 +X (BX233) 

Am32 + A% 

A 32 A"3- ~9 r G ~ r(B-34t)3 3 20-06 rio X2 r39 

This problem can also be approaohed through the utilization
 

of six accelerometers that are placed with their sensitive axes
 

parallel.to the [m] coordinate frame. This arrangement is shown
 

in Fig. 4. -Now using.Ec. (B-3) and Fig. B-4 we can write down by
 

inspection the quantities m'asured with the six accelerometers:
 

+ Q 2Al - Av +. 0 + kr30 -V320 30 IV3r2 

1v r2 o-+ 0 r 2 +44 ) (rlO+ ) 

1 2- 2 V1 3 3 2 3 

(B -35) 

http:using.Ec
http:parallel.to
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m3 

Am 2 2 I / 

, )d 
c 

d '~ec Am 2 l 

a/ 
Am,, 

ml f Am32 

11-gUre 1-4 A Uonrigination of Six Acceleroeters 



Am, AV II1 Ik2 r3 3r 20 VP 0-I 3 *2 

1 2 V 3 (rio - &) (1-36) 

Then subtracting Eq. (B-36') from (B-35) yields: 

2 + 3 'a K2 3 
or 

A 12 -1m1 2 2 
X (B-37r)Aa+.'b ~2 + 3 = 

Am l AV+ :0 +k3r1o0i V30+ n3r0 % r30 

+

n2 = AV2 +r 20 kv3r10 - 1r3o + RV3 10 - VI2 30o 

+ 2 rlo + f 3r 3 -( + ) (r (B-39)2 o- Yd) 


Then Eq. (B-38) minus (B-39) gives:
 

+ +
A" 2 2 - Am2 1 = a3 (L Ad 

or 

Am22 2 2Am2 22 (B-o)d+c 1 3 XL 



4
2
p
 

Am3 =A . 
3 - 2 . 

T 'IVT2 (2vr-0-+ na) (r 3 0 +)(B4.~rO +1 3 2 3 2 (B-41) 

Am3 2 3 3 k120 2 "j 1i 2 ,rI 

12 3 2 3 +Q 1f (B-4h2)2.Oi 2)(3 


Therefore Eq. (B-42-) minus Eq. (B-41) yields:
 

+ )
Am32"
Am1=(i -2 (f + I
)
 

Am3 - Am. 2 e
±' 

or 

Am32 - Am31 
 22
 

e1 2. + 2 Xi(B-43)
 

Then ising Eqs. (B-37), (B-40) and (B-43) we have
 

'I = 2 . 

% 'XI XT +XvI 1/2
 

V2 = 2 2 3(B-45 

1/2
I'll'+- x2,- xi 

= 2 (B°46) 
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We can now write A in terms of known quantities.
 

From Eq. (B-41)
 

AV3 A31 - 30o- 2o + 2 1o + (6 2 - 1P3)r1 

I + n 2R3 )r 2 0 + X3 Er3o + te1 (B-47) 

Frpm Eq. (B-38) 

AV2 = A - o %3 1o , %1 3o - (k3 + %0V%)ro 

+ (kl -0 lV3)r30 + X2Er2 0 +-'ge (B-48) 

From Eq. (B-35)
 

-V1 = 
 - - 2m,,"1o V2i30 + 
R3 2o - (k2+ "-1%3'r3o 

+ OV3- oI~j'IV)r 20  + X11IrlO + t~ (B-49) 

Thus, the equations giving the vehicles position,:are easily 

mechanized when the accelerometers are placed about axes fmA narallel 

to the vehicle axes but displaced from the center of gravity. Any 

change, due to fuel consumption, 'inthe die-snce oewean. the sensors 

and the vehicle's center of gravity, is readily-programmed .into the 

navigation computer. 



APPENDIX C
 

ROTATING ACCELEROMETERS TO MEASURE LINEAR ACCELERATIONS
 

AND ANGULAR VELOCITIES
 

Alfred R. Schuler
 

In this method for determining linear accelerations and 

angular velocities, each of two rotating rings carries an accelero­

meter. The two rings are concentric and normal to each other, one 

rotating about the'Vl1 axis and the other about the V2 axis as shown 

in Fig.(C-1). It is assumed that the rings are placed at the center 

of gravity and that each accelerometer is mounted with its sensitive
 

axis perpendicular both to the axis of rotation and -6o a radial line
 

from the axis of rotation to the accelerometer.
 

Let the velocity of ring 1 be wl, that of ring 2 bew 2 .. To 

evaluate the velocities and accelerations, first find the acceleratio. 

of a point D on ring 1 located at a raLuY, -M uv.ir'xn u. une 

vehicular system. The radius vector from .the origin to point D is 

given by 

'd -d 
P 

V + Ad
3 

C.l 

where d and Ad, are functions of time and can be written 

a'd d cos r:-


Sd3 "d sin wit
 



V3 

A2 

V2 

ANGULAR VELOCITY w,
RINRIG

ROTATING ABOUT V, AXIS 

RING 2 
ANGULAR -VELOCITY W2
ROTATING ABOUT V2 AXIS 

Figure -C.-,Diagiam.Sh&4ing -. :Rotatibthe -P.osi-on ,6f'the : 
lings :and the;Locdtion :of the ,Acc-elerometersAland .A2
 



The velocity of the point D with respect to the vehicular
 

coordinate system is given by
 

d-Yd
( - = X d (0-3) 

v 

and the acceleration with respect to the vehicular coordinate
 

system is
 
d2 IdW(C


( --
2 

) = lx (Wix f)(-) )
1
dt V 


Expressing (0-3) and (C-4) in terms of their projections along
 

the vehicular axis,
 

dd
 
d 
 'edlX(J~ 


+ kVd
 
d V d2 

=j d3 'VW 
 l-d2 

= j, l d sin w1t + kV -d W1 cos Wlt (C-5) 

d - .d
 

dt2 V V 1X(-*Ol'd3 . 1' 2 


7V 2l~ 2 

2 (36

W1 d cos w t - V 0) d sin a!t (0-6 

It is shown by Page that the acceleration measured in a 

m6vingsystem (the vehicular coordinate system [V]) with respect to 

a fixed inertial frame is 



47.
 

+( = ) + )v (-)v (r)v x [f x ( )vl 

(C-7) 

Here, 1 is the distance from the origin bf the inertial frame 

to the origin of the vehicular system, F is the vector distance from 

theorigin of the vehicular system to the point at which the accelera­

tion is being measured, and 0 is the angular velocity of the vehicular 

system. Using Eq. (C-7) to express the acceleration of point D in 

inertial coordinates, 

2­

(A)2I point D -- (R)I + 2 ) + ((x
dt V V 

Expressing Eq. (c-8) as projections along the 'ehicular axis and using 

Eqs. (C-5) and (C-6), we obtain the following 6xpression for the 

inertial acceleration of point D:" 

(A) IpitD= iV[A + n Asin wlt~- Ladcos Wlt)
Ipin])1 2 3 

+ 	2.M (" d Co wit -+ av t sin (slt) 
2 3d
 

+ fl1 (RV2 k Cos wit + Q% Ad sin Ot)] 

1 ~t2
 

+ IVy [A - l Aedcos (01t" O "d sin Wit 



%1 Pd Co n%2° "V s(Olt + SOV23E d sin Olt 
2 

911+ 3) YnCos wit 

+v'RV Ol sin wit + Co 'd t 
3 d 

a1 1­

- uV1 -dSnwt+Q2Q73 A o 

1 2 

AV, AV2 and AV3 represent the linear acceleration of the origin of the 

[VI axis with respect to the inertial reference frame b t resolved 

along the vehicular [V] axes. 

Now consider the accelerometer A mounted on ring 2 which is rotating
2 

with angular velocity a2. It is a radial distance Ae from the origin 

of the vehicular axes,° has projections on the V1 and V3 axes and 

can be expressed as: 

%~~ \kV J'a (Co10) 

AeI and e3 are functions of time and are given by:
 

= -ecos w2t
e e
YeI 1 2(o-ll)
 

= Ae sin wtle2 


The acceleration of a point E on this ring is: 

(I point E i° 012 Pe cos u)t k(A) 
= 

1V [sin 2 t+ w2t 

1 2
 
2W2 "V2 Ae Cos e2 t + 17 Vfle sin w2 t 
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l e0.t 

t 2 le s t)+ 4[AV2 +(43Ae oos 

+ 2We2 %e le ring 2 t + % aWt)e Cos 


+ s 2 t 3 . sin , ille wt)2os 


..... %., 2si n d alnV2 ACos "t10 

3" 

(s2 '2) Ae sin +(n,t] L-to1osw) 

Accelerometer A, ?u 'ring 1 is assumed to bae its~ sensitiip 

aesr alle to
 3 at t'. 0., Thus, .it will be direced l'g a 

tl aln V t n ln +,a t 
In other words? the accelerometer lines up periodcaally along the 

positve\and negative V, and V3 axes. Therefore, for t = 0: 

2cm n ,2. .. only the -Oniaponent 

of Eq. (0-9) is measured with accelerometer A, 

Also 

si+ -aal) in 2ar = 0 

and 

co 1i 00S aC - 1­



Therefore, if we designate the quantity measured by A, under
 

these circumstances as A 1l, we have*
 

All +A 'd 2 '3 (C-13) 

For t = ' 5 i 9 Tr --- n1 

only the a component of Eq. (C-9) exists and this is in a negative
 

sense.
 

Also
 

s(~in11w 
and 

cos(ml 2m, T) 0 

Designating-thequantity seasred by A1 for the condition 

that t = (L +-l)rr to be A12 we have: 

2w 2 12 

12=-'VA +'V"- td-u. 

2 1 2 3 

For t = p -h_-- 57_ ( -+ l n ., 2, 3 
"1 W1
W1 l 

again only the k component of Eq. (C=9) exists and it too is in a
 

negative sense. Call this quantity A1 3.
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Also, 

sinsj l)T 0O 

and 

cos o 

Therefore
 

A 31 I 1C II2 3 -d AV3 + 1V d+n 2"3 ' 

(cm1s.) 

For t 713)T -+' 

, only the V component 

.Of Eq. (C-9) is'etected by accelerometer A,. Designating this quantity 

o 1-u' -. ...... 

as A14 and noting that...
 
(0_( -l 

and
 

Cos wl __(L3) ) 0 

we then have;
 

All - AV2 
+ 'ddk " 2 3 d ('V-16) 

We now follow the same procedure for accelerometer 2 at 

point E on ring 2 as we-did for accelerometer A, at point D on ring 1. 

Thus, for t = -n. we note that only the -- component iq 

detected with AP which from %-12) is: 

Aa1 ' 0v te + v !R~e Co-17) 
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Also, for t= (4n-+-1)r only the minusV omponnt 

detected - Designating it by.A2 2 , Eq. (C-12) yields,: 

A22 -AVe ne " 1 	 (Ce-1%8)22 	 1 2 1i 	3 

For t = I only the minus k component A is read. From 
wp 23 

Eq. (C-12): 

A23 = -IV2. IVI.V3 I -9A'3 1 

For t = 
For t =(4+ e iV component A is detected by A2 :T 


A24 AV - n2 e - - Ov 1e (C-20) 
1 2 e v1 3 

Assume that d - e. and also that the ring frequencies' and1 

W,,are equal to w so that the sampling times are identical. Then 

repeating the eight equations Al through A24 for ease of manipulation:
 

A1 - JAV + nV d + %n' Ad (0-21) 

A12 A 32+ 1 2d-"I 3'd Cp-

A1 2  	 = -AV + I -d+V 2 
IV~3 e (C-23) 

A1 V2 + v1 1 "V2'3-d(24 

A14 v= ~ A (0-25) 

A2 1  = AV 1d+O "V "V d"V + 	 (-5
3 	 .2 1 3 
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AP2 AV1 -~ k2~ 'd onT3A (c-26) 

A2 3 -AV3 -k2 'd +V 1 3 fd (c-27) 

A24 AV -d - "V 'd (C-28) 
1 - I2 1 'V3 

Subtracting (C-23) from (C-21) and dividing by two yields: 

A11 A13 (0-99) 
2 = Av3 

Likewise, working with other of the above equations: 

A24 - A22 

2 1 --- -- = A - CoO
 

A
 -14 A 1
 

2 --Av2 (O-31)
 

All + A12 + 
A13 + A14
 
4 Ad 'I,(-2
 

-A - A - A-A21 - 22 -23 4-33)
 

To obtain gV, (0-21) and (0-23) are added'3 

Al + AI3
 

13 ~l+PV V
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Then solving for 3 

All A1 3
 

2 ed ' 	 (c-34)'3 


It is seen that AV AV AV iand 52 are found directly.
it 2s 3 

A single integration of fl1 and Q2 yield the angular rates 11 and D2" 

' given by Eqo (C-34), must be found by solving a simple algebraic 

equation. 

This method has as its primary advantage over fixed accelerometers
 

the elimination of at least four additional accelrometers and associated
 

electronic gear (amplifiers and torquers)o It would be useful if the
 

following conditions are satisffed:
 

a) Linear acceleration and angular velocity are slowly 

varying functions of time so that a is sufficiently 

--ow to insure that the time lag in the accelerometer 

output (due to the restriction on frequency response 

of the accelerometer) does not introduce errors. 

40) Sufficient power is available to drive the rings on which 

the accelerometers are mounted.
 

c) 	 Practical sampling circuits are not too difficult to 

implement. 

d) 	Packaging presents no major difficulties.
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AP=IX D
 

INPUTOUTPUT ERROR RELATIONS
 

OF THE GRAVITY COMPUTER
 

Anthony U. Grammaticos
 

The function of the gravity computer is to generate the 

gravity acceleration based on the vehicle position information 

available from the navigation system and the universal law of 

gravitation which the computer simulates. 

The position, however, is not known precisely and therefore
 

position errors enter the computer. As a result, the computed gravity
 

components contain errors. The output gravity errors of the computer
 

are related to the input position errors. This relationship is needed
 

in studying the stability of the navigation system. The present
 

appendix establishes this relationship.
 

Let mi, xi, yi (i = 1 2, ... n) be the masses and
 

coordinates of the centers of mass Of the celestial bodies contributing
 

to the gravity acceferation at the true position x, y, z of the
 

vehicle. Then the true components of the gravity at this point are:
 

zi 


-x nE~ Y nMi (D la)
 
i=l xi­

i
 

b
 

y F 'y mi h y (D-lb)
i=i 
 Ri
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n -z 1 
9z N mi (bogc) 

i=lR 

where 
 R 2
(xx.) 2
+ (~y) + (z-zi)2]/ 
(D-Q)
 

and
 
-8  
 e93
 

-yis the gravitational 
:onstant, 6.67 x 10
 

gr .sec
 

Since the true position x, y, z of the vehicle is not available,
 

the gravitation acceleration is being calculated on the basis of the
 

approximate position information s,, y5 sz- Then the calculated
 

gravity components are:
 

gx = y Mi { i}- (D-3a) 

= 

gyc m S3 


i
 

n (D-3c)
y 


where
 

2 Z 1) 
 (D4) 
si = [ (Sx-XL) + (S .­ /2
Yi)2 + (S 


Let the position and the gravitation errors be:
 

8

§X = sx-x y = s y Y8z= s-Z (D-5) 
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gx = -g 8gy = c-gy 6 = gzo-gz 

(D-6) 

where the g's are given by (D-1) and (D-3).
 

Now expand Eq. (D-3) in Taylor series about the point (x, y, z).
 

Take for example Eq. (D-3a).
 

g (sx, sy, sz ) = gx, x + Sxx (sx  x) 
y x z x 

x x 
S S X= y S

S 
Z 
y 

s Z S Z 

x x 
S y y S y 

z z 

+ higher order terms in (e=x), (s-Y), (e=-z) 

where ~ .~ej ~ ==(D-7) 

x A x m,{i 
sy y sy y 
s z Is z 

z IS 

(D-8)
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x 
8x 1iJ3
 

n s x 

.x -1 y -1xi,­

2(-x~)
zyi +[(s_X. + (s_Y) -)3 s 

It~l (s
Ex.) X) - +Y.) (Si -z.)(s 


]'
in. [( (s_Y.)2
- - 3 _ 3l+ _i2 / 

hec x- I -. I 2-xxi
 

x Zxj
 

'Y 5 

i=a.R. 
 2 
 Di
 

zI 3ecn3(s. x)
 
.6sx Mj 
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Similarly 

--- xE n yM. - 3(x-xi) (y-y)1 (D-10) 
i=i R7 R 

y s= x 

S =y 

S =S 

.6gxc m. F - 3(x-xi) (z-zi)
Ssz i=l R2 (n-) 

i i R i 
s X 

Sy.=
 
sy
 

SSZ Z 

In view of Eqs. (D-5), (D-9), (D-IO) and (D-i) and dropping higher 

order terms Eq. (D-7) takes the form 

gxy i (x -x + 1 2 8x 

3(x - xi) (y - yi) 3(x - xi) (z.- zi) 

2 6y 5 

Then from Eq. (D-ia), (D-12) and (D-6) we obtain 

n Yi. 3(x-i)%1 
= R

3 a 1 8xgx gxc - gx 2 
• i R 1 

3(x-xi) (Y-Yi) 3(x-xi) (z-z
i)
 

82 8y - 2Ri 
 . (1-13a)
 



and by~analogy.'~j 

+ - ~ n___ - :- (YI Yi) 8j (­

i~1 

3( 3y)(z-Y.)] 

2 6y 
1 

(-i 
2 8 

1(-i

4 b)(~z 

er 

89 9e z , 1 2 .­3 

2 

2 

6 

i=J. 

nFY-

n 

'E 

4 

T 

vm3(z-z 

Y -1 

- -

1 

Ri2 

2yi~ 

1 

1) 

(D-14c) 

v 

p 

n 
3 

Li 

[ 
2(-i(-j 
2. 

_Ri2~ . 

(D-1.5) 

(D-16) 
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n Y -i 3(yoyi) (zozi) 
- 72 (D-17) 

ii 

Tien Eq. (D-13) can be rewritten as follows: 

8

8g = x x + V 8y + p 8z 

8gy= V 8x - 8y + T 8z (Do18a) 

8gz P 8x + T 8y - 9z 8z 

or
 

[ - x 9x v P 8x 

8gy -V 8Y ~ (.1118b) 

8 gz P 'r z 8z 

In most cases of an interplanetary flight the vehicle will 

be in the sphere of influence of the sun only and equations (D-13) 

to (D-18) will be simplified considerably. Whenever, several 

celestial bodies significantly contribute to the total gravitational
 

field in the vicinity of the vehicle, it is convenient to introduce the
 

concept of an equivalent celestial body with an equivalent g/R ratio of
 

g n miM 


R i1= Ri 
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Note that an-error in the measured value of any position
 

coordinate will cause an error in each of the components of gravity
 

errors and that the coeffibients of Eq. (D-18) are time.-varying. 

For'a unique center.of attraction (the two body problem)
 

the coefficients given by Eqs. (D-14), (D-15), (D-16) and (D-17) have
 

.bounded values as follows: 

2gg

F- ! 9x' y' R (D-20) 

3g 3g
 

In the case of,a unique center of attraction some of the 

previous equations can be rewritten as follows, 

( ) g 

= R z ((D-2o)*(-a,3) 1' f 

z ) Zg R I(D-22c) 

where
 

3. y: (D-23) 

z R3 R22
 

http:center.of
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using Eq. (D-23) in Eq. (D18) yields 

8g] g 0 0 6x , " P 8x 

R I 
Og0 8z 

(D-24') 

A careful examination of the Taylor expansion emiployed previously 

r voals that the first term in Eq. (D-24) represents the gravity errors 

due to the position errors included in the numerator of Eq. (D-3) 

and that the second part of Eq. (D-24) represents the gravity errors 

due to the position errors included in the denominator of Eq. (D-3). 

Returning to Eq. (D-18) we can write 

6f = d 8R (D-25) 

where
 

LTy= (D-26) 

Equation (D;-25) is the basic result of this appendix. 

RecapitulatingEqs. (D-1) and (D-3) can be written as 

=GI (XI y2 z xi, yi# zi mi) (D-1) 

Cs= 7 -(S , 5 y, s,, y., o ri)(D3 



or in view of Eqs. (D-5) and (D-6)
 

GI (Xp yp zV xV Yi, ziq mx) (D-27) 

Here ( ) represents the f.nctional form of the universal 

law of gravitation. 

Among others, Eq. (D-27) gives the dependence of 6g upon 

6x, 8y, 8z which is needed in the error analysis of the overall 

navigation system. Such a dependence, however, is nonlinear and cannot 

be used for an error analysis directly. Then what we dd is to find 

an approximation of Eq. (D-27) by expanding Eq. (D-27) in Taylor 

series in terms of 8x; By, 8z about the point x. y, z, and retaining
 

the linear terms only; this can be done based on the assumption that 

6x, By, 8z are small. 

This procedure leads, to Eq. (D-25) which is valid for the 

errors only. Apparently G G1 . The elements of G vary slowly with 

time and act as gains upon the elements of 8R to generate the elements 

of BE. 



65. 
APENDIX E 

A. Gramaticos 

E-1 THE MECHANIZATION
INERTIAL FRANZ 

OF THE NAVIGATION EQUATIONS IN THE 

The problem of the mechanization of the naVigation equations in,
 

different coordinate frames has been studied by Bodner and Seleznev
 

and Krishnan 2 in their works on gimballess navigation systems. Of 

all the mechaizations that were studied, the mechanization in the 

inertial frame was found advantageous and recommended for further 

study. 

Figure E-1 shows such a mechanization whose fundamentals 

are presented here. Assume that the space vehicle on an interplanetary
 

mission is moving aaong a path around the sun. The vehicle is subject 

to the gravitational forces and the thrust of its. engines. 

The origin of an inertial frame is placed at the center of 

the sun and its x, y, z axes are fixed with respect to the fixed 

stars A vehicular frame is rigidly attached to the vehicle and 

follows its motion.
 

The relative orientation of the two frames can be establish.ed 

from on-board acceleration measurements made with body-mounted 

accelerometers, The inertial acceleration a measured along the vehicular
 

axes is resolved along the inertial axes by means of a direction­

cosine computer, yielding the components ax, ay, a of the inertial 

acceleration.
 

http:establish.ed
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Let 9(gX' gy, gz) be the gravity acceleration at the position 

occupied by the vehicle. Then the vehicle is subject to a total 

acceleration 

+ R (E-1) 

where R(x, y, z) is the position vector referred to the inertial
 

frame. Equation (E-l) expresses the Newton law of inertia. 

Integrating both sides of Eq. (E-l) once yields the velocity 

R(x, y, z) and integrating twice yields the position E(x, y, z) of 

the vehicle provided that A and g are known. a can be obtained in the 

way described above; R is obtained from the universal law of gravitation 

g = - (E-2) 
R3 

which is simulated by the gravity computer; y is the gravitation constant 

and m is the attracting mass. By applying Eq. (E-2) we introduce the 

feedback loops shown in Fig. E-1. 

Finally, assumed initial conditions on velocity and position 

are shown in Fig. E-l. 

Recapitulating the accelerometers measure components along the 

vehicular axes of the inertial acceleration due to the engine thrust. 

These components are transformed into components axp ay a alongz 


the inertial frame.
 

The sun of the thrust acceleration components ax, ay, a andz 

the corresponding gravity components gxJ Y g. must be equal to the 

acceleration components 3, y, z of the vehicle. 
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The vehicle acceleration components x, y,'z are integrated once 

to give vehicle velocity components x, , ; proper initial conditions 

are introduced. 

The vehicle veloqity components x, y, a are integrated again to 

give the vehicle position coordinates x. y. z; proper initial position 

coordinates are introduced again. 

Finally zne current vehicle position coordinates are fed into 

the gravity computer which generates the gtavity acceleration needed at
 

the input of the first integrator.
 

From a system point of view, this mechanization contains two
 

distinct parts cascaded together. The direction-cosine computer is the
 

first part; the other is what one usually calls the navigaTion Loop.
 

E .2 ERRORS "IN THE NAVIGATION SYSTEM 

Figure E-l shows the ideal navigation system. If the accelero-' 

meters measure acceleration without errors and the initial alignment 

of the system is perfect then the system output is identical to the
 

true position of the vehicle.
 

In practice, however, it is impossible to make error.free
 

acceleration measurements and perfect initial alignment; as a result
 

errors are introduced into the system. Because of the errors 

89(8avl, 8av2, 8av3 ) in the acceleration measurements the output of 

the direction-cosine computer contains errors 8'& 8a 8az) which
 

enter the navigation loop, these acceleration errors together with the
 

8z); 

the position errorsk enter the gravity computer giving rise to gravity 

initial condition errors give rise to position errors C y,yR(&., 
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errors 89(8g., 8y 6g,) which i turn are fed back into the system,
 

Therefore, a stability analysis of the system is necessary. 

Because of the cascaded connection between the direction-cosine 

computer and the navigation loop the stability analysis of the system 

can be split into stability analysis of the direction-cosine computer 

a' stability analysis of the navigation loop. 

Here we are concerned with the stability analysis of the 

navigation loop. 

Figure E-2 shows the navigation system and the corresponding 

signals; each signal is represented as the sun of its true value plus 

an error. By inspection of Fig. S-2 we can write 

+ - - (E-3) 

Using Eq (E-1) in Eq. (E-3) gives 

Sg 6R (E74)6-a + 


or e -8f -,(E-5)
 

is eqtation for the navigation loop-

Note that 85 acts as a forcing function whereas 8R depends on 6R, the 

dependence of 8a and 6R was established by F4 o (D-18) or (D-25) and 

Equation (E-5) the error 

(D-26) o e recall that: 

VKI 



++S sx= 

a&+vi, + +Bgm 

vi xc =9xax sox § O S0 
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or 

6- G8R (D-25) 

,,,ere 
X V P-6 

G = - 'r (D-26) 

IP' T -Pz_-

Introducing Eq. (D-25) into Eq. (E-5) gives 

8R - G 6R = 6i (E-6) 

or 6v 1:V xj 8ax 

V -.y , y 8a (E-7) 

L- P. T P -z La,_ 

Assiming that p., py, pzp v py T vary slowly with time, we
 

can Laplace transform Eq. (E-7)
 

-V s. s2-,r LPY(s) 6 r. 

(E-8)
 

Now the stability of the navigation loop is determined by roots
 

of the characteristic equation. Consider first the determinant
 



2
 

D(s) - S -py - (E-9) 

Expanding gives:
 

2 2
D(s) = (s +1) (s 2 y) (s2z) - vp - Pp P2(s2+y) 2 -V2(S2+ 

6 4 - P 2 ) S 2 
or D(s) = s + (lx+i z) s + (P.P + Py P + Pz Px " 2 

In view of Eq.'s (D-li), (D-15), (D-16), (D-1-7) and(D-19),
 

we obtain:
 

x +P + P z= 0 (-.0)
 

2 22 
Px P z + - (E-12) 

+
Px + y Px Py Pz 2 jp-r: 2 R-1 (E-13)Yp z2 *2 + 2 _3 

R3 
2Also let 2= E-1)

R = (W-3
 

Then Eq. (E-10) can be rewritten as:
 

2
()=s6 its 2 s (E-15)6s 


or D(S) = (.2 + .2 - 2 aS) (E-!6) 
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Let 

-P s -I 

=q~cD(s) #0, the solution to Eq. (E-.8) is 

sdQ(s)61i(s) ad 6-~)(E.18) 

Now 

Cs2+ i )(s-i+i )-i v(s +)r V(s2~f+17)VT 

2adi 2 P,)+PT(s +p,)(s2+p )_.P (s 2 ti)+,p 

ad p(p2+py)+vl. r~2p ) (s2+p)(24.Y)_v2i 

-(s2+02) v2 S21 ,2 T2 (E-19) 

http:6-~)(E.18
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and hence,
 

2
~8X(sfl [s2 -11_ v 6aa(s)1 

6y(s) 1 V S2_~_W2a (s) 

Lz(s)i s2_P'2 L a (S)J 

(E-2o)
 

Equation (E-20) suggests that(the characteristic equation of the
 

system (E-8) is
 

2 
(S'2 + 2 2 /~~) = 0 (E-21) 

The roots of the characteristic equation are ±jw and ± s " 

This means that the transient response of the navigation loop consists 

s 


of a sinusoidal term of bounded amplitude due to the ±jw poles and a 

hyperbolic c6sine term, which increases with time, due to the ±J W 

poles; therefore the system is unstable. Small errors in the initial 

conditions produce time-increasing error in the output, and the 

accuracy of the system deteriorates with time. 

In order to improve the accuracy of the system we must stabilize
 

the system by damping the errors. Methods of damping are presented in
 

the following section.
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E-3 	 DAMPING THE SYSTEM ERRORS BY MEANS OF REFERENCE TRAJECTORY 
INFORMATION 

The reference trajectory is defined as the ideal predetermined
 

trajectory for a specific mission. During the execution of the mission
 

one does his best to keep the actual trajectory as close to the
 

reference trajectory as possible. Hence, at a given time t the difference
 

between the corresponding positions on the reference and the actual 

trajectories is small.
 

The method of damping proposed here is based on the closeness 

of the two trajectories mentioned above and on the assumption that 

reference trajectory information is available on board the vehicle;
 

this is usually the case since this information is needed for a number 

of purposes including guidance. Let 

x be the position that the vehicle shouldr 

r = occupy on the reference trajectory at
 

time t.
 r 

8xrl be the position difference between the 

8
Rr =Rr - = 8yr referenice and actual trajectories at 

8Zrj time t.
 

and, anticipating its use, form the difference
 

Rr~ ~ ~ [x -~8(+)xRr -	 - = - + 8-r - (yi + ff) 6R- -- | 8y 8 

(Ezr
 

(E-22) 
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Figure E-3 shows the system mechanization of Fig. E-2 with 

xererence trajectory damping added. In this mechanization, the
 

reference trajectory position R is compared with the calculated
 r 

position l and their difference R - s is modified by the comnensation
 r 

matrix H. The difference r - is given by Eq. (E-22); the compensation 

matrix f is to be determined so as to achieve dLmping. 

Now we can write the error equations by inspection, of Fig. E-3; 

they are 

R R +6 a+f Cr 8R (E .23) 

or
 
8R = 8 +'8 + H k8Rr - 8R) (E-24)
 

since R = g +
 

R -on (E-24) can be rewritten
 

8R+iR - 8 +H 8R-Gr 	 (E-25) 

Equation (E-25) is the basic error equation of the system in
 

Fig. E-3. The terms 85 + H 8R constitute the forcing functions and 

hence the error equation of the autonomous system is*
 

8 + K 8R- U R= 0 	 (E-26) 

Equation (E-26) determines the performance or the system.
 

Careful inspection of this equation aids in determining a suitable
 

form for H. The damping of the,system is directly related to the presence

16 

of derivative 	terms 8R; so H must contain terms of the form k
 
d et
 

or kp -ifp = .The speed of response is related to the coefficient of
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R (ioe. the undamped natural frequency) which we would like to be 

able to control as much as possible. Since we have no control over 

G we introduce a constant part K in H so as to obtain the term (K-4)&R 

whose coefficient KMG is adjustable. 

With this in mind let us suggest the following form for H: 

XY xc 

g(v. Y 'I (-7(2k 13+k).') kys (.-2'-) 

zx -kzy (2kz p 
+k 

where all the k's are constants or slowly varying with time.
 

Recall that U is given by Eq. (D-26); introduce both Und H 

into Eq. (E-26) take the Laplace transform and expand to obtain: 

(s2+2k s+k'+u )8x+(k y x )- [ + r rkxz 6 mr8= +p 

x XY ax+(2kP+k)6r+ky~y4k 8zr2 

(E-28a) 

(ky -v)6X+Cs2+2kys+k'+ti )8y+(k --r)6z 4,[a+k 6x~ y(2,pkyrkyz
Sy yx r y+ y r yz 

(E-28b) 
2
(kzf)8x+(kzy.r)B+(s +2kzs+kz+hz)8z =/[ 8ay+kz 8x+kzy+(2kp+kz)8Zr 

(E-28c) 

The characteristic equation of the system (E-28).is: 

s +2k S+k- px xx kXY - k -­xz P 

2D(s) k - V s +2k s+k+P~ k ~ 
YXy y y yz 

kzx - P k - r 2+2zS+kz +p 
zyz z z 

(E-29) 

0 
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Since v, p, T are slowly varying terms, it is possible to generate 

k's such that: 

k = k = V (E-30a) 

kyz= kZY= T (Ei-30b) 

kzx kxz = (E-300) 

Then the characteristic equation becomes:
 

(s 2 +k s+k'+ix) (s 2 + s+k,'& ) (s2+2cs+k'+,)) 0 (E-31) 

We like the roots of the characteristic equation to be complex
 

conjugate with negative real parts; hence the following conditions must
 

be satisfied.
 

> 0 (E-32a)
 

kQx+ Px > 0 (E-320 
x 

k2 - (k + x)< o (E-32c) 
x x . 

ky > 0 (E-33a) 

kvy+ V > 0 (E-33b) 
y y 

k2_-( k ' + L) < 0oE 3 c 
y y y 

kz > 0 (E-34a)
zI 

> (E-3c)k+ + 0 p 

-~(k'+ ) 0 (E-34o)
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To show that ,these conditions can be satisfied and lead to a
 

desirable situation we recall the condition (D-20); that is:
 

g 	 (D-2o)
 

Let us look at the inequalities (E-32), keeping in mind that 

g s- is the undamped frequency of the basic navigation loop without 

any external information, and that this quantity is very small for an
 

interplanetary flight.
 

Combining conditions (E-32b) and (E-32c) we obtain
 

k2 '< k' + p 	 (E-35)
x x X 

or 0 < k2 < k, 2g (-6 

given that min -2 

9X R 

Clearly the condition (E-36) can be satisfied by a proper choice
 

of ks.

X
 

Finally the conditions (E-33) and (E-34) can be satisfied in a
 

similar way. 

Then the transfer matrix H takes the form 

H 3	Pk CP V (E-3:7j 
V PA• +ky 

zLH 


where the constant gains satisfy the conditions set above. 
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From Equations (D-15), (D-16) and (D-17) note that the transfer 

gains V, p, T in Eq. (E-37) depend on the true coordinates of the 

vfhicle x, y, z which are not available; instead we generate these 

gains from the output sx s , s of the system. As a result the
z 

generated gains are V+8vy p4tp, +8T and when these values are introduced 

into Eq. (E-38) the terms involving 8V, 6p, 8r are of higher order and 

can be dropped from the equations. 

Now examine the possibility of avoiding the use of variable 

gains; a simple choice for H with this property might be the following: 

Nkg0 0 

y y 
0 0 kz+k' (E-38)
 

Expanding Eq. (E-26) and taking Laplace transfbrms we obtain: 

[s 2 +2k s+kX'+V -v8y (6 1 (-3a]8x -p85 [a+(2kxp+1 rJ 

-v~c + Es2 +2k s+k'+pi ]6y Tr8=Y[8a,+(2kp+k')6yr] (E-39b)y y y Y- yy 

-p8x - Ty + [a2
2 
ks+kl 6z [6 +(2kzp+k)8zr] (E-9c) 

The Characteristic equation of the system (E-39) is:

Es2+Pk,lx ] V -P" 

1T-0] [+2k s+k+Rfl~s)yDsks)+ y y 

P s2+a +kJ-i] 0L11 
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Now let 

k =k =k =Cn and kCE-V~k) 
x y z y z 

and expand Eq. (E-40) as follows: 

2 2 3 + ) (
(s + 2Cns + n ) + (Px Py + PZ 52 + 2pls + R2)2 

-V "P2 

y z 

+ (Px Py + Py P PZ Pzx _ T2 S s+n 

Recall that the elements of G satisfy the following relations­

+ 
px Py + P5 = 0 (E-43a)
 

2 (E-43)
2 2 2

P,PIl P r2_P 2_ - ,J 
2 
SP 

3g 
9 (E-43c) 

2
 
x y a x PyP - vp R3 

where 
= (X2 + y2 + 2)1/ (E-43d) 

B= 2 2 +2)1/ 

g = (gx + g gzl/ (E-43e) 

Hence Eq. (E-42) can be rewritten, as follows­

2 2 2
(s ls +-2s = (E-44)(B + Csn2+ + w) (5 + a _2) o 

0)2 = where 


It is desirable that all the roots of Eq. (E-44) have negative
 

real parts for stability reasons and are complex conjugate in order to
 

achieve fast response. It is possible to satisfy both requirements
 

as follows:
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Let sl, s2 be the roots of
 

2 2+ 2
 
s + 2Cns + n2 = 0
 

S 

and s3, s4 be the roots of 

2 2 2=
 
S +2ras + 2 - 2W = 

s 

Then
 

= -2 -2 /2 
1'2 CO[ - a 

and
 
2 21/2
2n2
s3,e4 =- - [ n -0 + -]

In order to satisfy the requirements on s., S2 s3 and s4 

we demand that
 

CO> 0 (E-45a) 

C22 _ 22 _ 2 < 0 (E-45b) 
s 

C2n2 _ n2 + 2Us2 (E-5ge) 

Now Eqs° (E-45b) and (E-45c) yield
 

2 

C2 -1< S 

and2 
2
 
n
 

or combining them
 

2 2 

-2 2 < - (E-45d)
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All conditions (E-45) are satisfied if we set
 

0> 0 (E-246b)' 

an 2> 2 
a2~ (t.-46c) 

A typical value for the damping would be = 0.7; then from 

(E-46c) we obtain 
2 

2 WS1-0.7 > 2 2 

or 

S>2 s 

Note that the period T s is of the order of several months
 
5 WS 

in-the case of interplanetary flight; hence ws is small.- A large Q 

will increase the undamped natural frequencies of the system thus 

decreasing the period of oscillations considerably. Such an effect­

is desirable. 

From the above discussion it is clear that both the damping C 

and the undamped frequencies can be adjusted with considerable freedom 

so that a desirable transient response can be achieved. 

Looking at the right hand side of Eq. (E-28) we notice that 

the extra forcing term H 8Rr was introduced; this results in increased 

steady-state errors. Given, however, that 6r is relatively small 

the increase in the steady-state error is small.
 

This method of damping can be used in a time interval during 

which it is impossible to receive external information for some reason 

(as, for example, in the case where an observed-celest-il body is bscured 

by another). The method ha~Jwo important features: it damps
 



the navigation system and is completely self-contained. Its accuracy
 

depends on the closeness of the actual and reference trajectories,
 

during the time of operation in this mode.
 

Finally, let us :ddraw Fig. E-3 for th4 sake of simplification;
 

this is shown as Fig.-E-4. Here, instead of injecting the error signals
 

2Cns [ 8R - 8R I into the acceleration node of the system, we inject 

the error signals 2n [ 8 - 8R ] into the velocity node. Obviously 

r 


r 


this does not change the situation at least as far as the characteristic
 

equation is concerned.
 

The values of the gains shown in Fig. E-4 are:
 

k' = k' = k; = a2
 

x y z
 

2kx =2ky=2k = 2Cfl5
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E .4 DMPING THE SYSTEM ERRS BY MES OF EXTERNAL VELOCITY INFORMATION 

The method of Doppler velocity information for aiding airborne 

inertial navigation systems is a relatively old one. It has given 

satisfactory results in the case of terrestial navigation. 

In:the -case of inertial space navigation, the requirements are 

more severe and radar Doppler is inadequate. 

Efforts to cope with the difficulties involved have led to new ideas 

of which the most important in the area is the optical doppler method. 

(3 ) 
Feasibliity and accuracy studies of optical Doppler led to
 

encouraging results; the test of a breadboard model verified these
 

conclusions.
 

It is here assumed that such a practical device will be available
 

4	 1
for use on board the veh ' e. It will measure components of the vehicle 

velocity in the direction of a fixed star. 

Now define: 

]vdX] the velocity of the vehicle as
 

vd vi measured by Doppler devices.
 

Ldzi 

6vdX the error in the Doppler velocity
 

8v	dy measurement 

dzj 

87d 
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then
 

y + 6Vd7 

+ 

We also have
 

+ 6;
 

s R+Bfl + 6i sinces +
 

and
 

Vdx
 

- ly 8 (E-k 

Lvdz - j 

The suggested system configuration is shown in Fig. E-5. 

The Doppler velocity measurement Vd is compared with te velocity's
 

obtained from the system. 
The errors 8E- 8R resulting from this 

comparison are modified by the compensation matrix H (as yet specified) 

and then are fed into the acceleration node of the system. 

The elements of the matrix H will be selected so as to eliminate or 

reduce -the time increasing and oscillating errors in te system. 

From Fig. E-5, the error equation of the system is: 

+=6 + Y (8%- 8) (-8 
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or 

R,+H 8R - G 8R = 8E +H 8-% :E-49) 

compare Eq. (E-49),with Eq..(E-25) of the previous section and note 

the- similarity -between them. Let us choose a similar form for H. 

That is, let 

k''
 

Hk (-k .(2k+- k' 
( k - z,zx kzy-Z +Y 

where all the k's are constants or slow4ly varying-with time. 

Introducing'both Gand 'H-into Eq-. (E-49) and taking the Laplace 

transform we obtain. 

(s2+2k s + k--+ Vx
)
8
x 

+(k -,)y +,(kz ) 

k' 
- [6a-._(2k + -X)&v- + k - 8vd+ k 8v 

x x p-dx +y xz dz 

(E-51a)
 
2


(k -V)8x +(s +2k S+ k'. +py)6y+ (k ,-'r)8z
 

J"
 
k

=_7[8ay+ kYX8vd, +(2kY+ k'8vy k8vdz 

p Vd 
(E-5lb) 
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(k ,'x-p )8. +(kzy-'r)y +(s 
2 
+-kzs +k' .+,z)8z 

kg 

8, +( k-.)vX[6a+ k 8v I+k Z z a zxSdx zydy+(k 

(E-51c)' 

The'characteristic equation of the system (E-51) is 

s+2k 
s + k' + px- k .-- kxz-p 

s +
D(s) k x - V s k + k x k- =0 

- kz-
+
k p kx s2+2k s.+ k' 


(E-52) 

Equation (E-52) is ,identical-toEq. (E-29). -In the discussion 

of Eq. ( '29) the conditions that k k y k k', k', k' must sazis t'yxy z mus sasf 

were indi6ated and a method of generating k , kyz k was. suggestedo 

Then the transfer matrix H takes the-form: 
-
 k'
 

2x +'px 
 p
 

k'
 
W =~ ~ I P.i E-53 ) 

k+ 

z p 
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The possibility of a solution which does not require variable 

-gains was demonstrated in the previous section. It is possible to
 

apply the same idea here.
 

Let us choose anH of the following.form:
 

2k + x0 0 
x1 

'k'
 
.2k 0 0 (E-54) 

-kI
 

kz P
 

A 

Introducing this H into Eq.* (E-49), expand it and taking
 

Taplace transforms we obtain.
 

-
+ ' + - +(kx +[62 + 2 k -xliv&y -- pjz -x)8vd[6as x 

.(.-55a) 

- 6x.+ [92 + 2k s + ky + y -'.z '1[6ay +(6k+- 8 v y)y y ' .y yp P y 

k' (E-55b) 

Pfx -. -8Y +[s .+ 2zks + k + 1Z] 1z +(2 4 )8,I 

E-55c)
 

'The characteristic eqojation of-the system'(E-55) is:
 

s2+5k+ k'+p.i -V 
x xx
 

s -V G +2k+s 2k +k-rT 
y yy.= 

-T s2 + -2k.s k+ 

(E-56) 
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Letting 

2k = 2k = 2k =2C41 and Xk ! k I 2 (E-57) 
x y. ax y a. 

'we obtain 

a2 )
3 + + n2)2

(s2 + 2ps + + (x,,+ y+ )(s2 
-xy 

+2 2 2 ) 2 

+( + P7+4 - ) (,s2+2 C s 

_ IN 'V 2vpTE'5),+ tx Py z t, x r I y 2 2 = E 

Clearly Eq. (E-58) is id-entical to Eq. (E-42) of the. previous 

section; hence the stability question concerning the: present system has 

been- answred there.-


Note, hovever, that the transfer matrix-is different for each
 

case and therefore-it operates 
 on 8R- and 6. in a different.manner; 

this point may be of some significance depending on the characteristics
 

of 8R1 andd 



E-5 ELlNATION.OF THE DTIElGING SYSTEM ERRORS BY MKIM OF 
ALTIMETER INFORMATION 

The'alimetei is a device.whih cani'±easure the.distance of
 

thc venicle from a celestial'body.
 

The barometric altimeter measures the altitude based on
 

atmospheric density measurements.
 

The radio altimeter operates on the basis of radar principles.
 

The optical altimeter measures the distance of the vehicle from
 

a planet by measuring the visible-ahgular dimension of'the planet. 

Both the radio altimeter.and the optical altimeter'fiiid 'appli­

cations in space navigation. The barometric altimeter'can .beusedfor
 

earth bound navigati6n where the flight takes place inside the atmosphere.
 

The idea of using an altimeter for stabilizing the navigation
 

system stems from Eq. (D-24)which is:
 

0 0 8z p 

o -J LL zJTV
 

(D'-.4)
 

We noted there that the first term in Eq. (D-24) represents; the'
 

gravity errors idue to te position errors included in the nume.tor F
 

of Eq. (D-3)'and that the second term of Eq. (D-24) represents the
 

gavity errors due to the position errors included in the denominator
 

of'Zq. (D-3). 
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The altimeter method is. based on 'this observation. The' 

components, Sx, sy, s of T are obtained from the output of the system
z 


and the altimeter is used. to measure the distance of thevehicle from 

' 
the center of attraction. If the altimeter measurement includes an 

error 8h then the output of the altimeter is R + 8h. 

The information R + 8h and sx a, s z is fed into the gravity 

computer which now simulates the equation 

gyc (+h sy

Lzcih s (E-59) 

as contrasted to the equation
 

SS

= 

x 
(E.-6o)

gyc ' Sy
 

which is simulated by the gravity computer in all the previous methods
 

of damping. Apparently both computers generate identical gravity 

components if.their inputs are error-free; this, of course, is a basic
 

requirement for all gravity,compAters.
 

The input-output error relations- corresponding to Eq. (E-60) aie
 

Eq. -(D-24). In the following we develop input:output relations corres­

ponding to Eq.- (E-59). These error relations will be different frc.
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Eq. (D-24) due to thedifference in the.denominators in Eds. (E-59) 

and (E-60) . Of course we, anticipate- that such a change will affect 

.the stability of'the entire system in a favorable manner. 

Figure .-6 shows the mechanization of a navigation system
 

which uses altimeter information. 

Now Eq. (E-59) can be expanded in -terms of-the errors 8x, 

6y, 8z and 8h. Consider for example the first of'Eq. (E-59),,this- is:
 
a
 

x X+8x 
g+ -)M---y _(R+8h)3 (E-bl) 

Also 

= (R+8h)- - 3 R 4h + higher-drder terms in 8h 

(E-62)
 

hence
 
- 3 R- 3 4x+8x = (x+6x) (R+8h) - 3 = x R + 8 - 3 x R- 6h1 + 

(nR+8h3 

higher order terms 

(E.63) 

Introducing Eq. (E-63) into (Eq. (E-61) we obtain:
 

gxc = -M - 8mx + . 3 8h + higher order terms 

PR R_ 

(E-64) 

From'App ndix D we have g - xm- and Y- g 2 
(E-65), 

This means that Eq..(E-60) can be rewritten as follows:
 

= 

g gx - '2 8x + ? L 8h,+ higher order e'ms .
 

(E-66)
 



DIEONx+Bax xo Sxo 
FROM 

ACCELLEROMETrERS 
COSINE 
COMPUT+R 

°y+8(3y 
.Fl - Sy=y+Sy 

+ + Sz : Z+8z 

GRAVITY 
, [COMPUTERj I+h 

FROM THE ALTIMETER 

Figure E-6 Altimeter Stabilization 
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or after dropping higher order terie
 

'6x xc x 2 "2 3x 
6g, g. - m,-W U + s W- 81h (E-67)s 

Similarly
 

8g~8g+-g ww Ly 6 (E-68)- h
=2 2 3y 

a 
gz = gze - gz = 2 8Z +- 2 3 8h.. (E-69) 

Equations (E-67), (t-68) and (Ei69j) can be written' in, matrix form to 

obtain:,
 K:X:~ +419 

- -2 y6g~y

6z9.~ 0 Ci _W6] R 

(E-7o) 

Equation (E-70) was 'anticipaed. from the disiucssion of Eq,/ (P 

It is obvious from Eq. (E-70) -that there- is no coupling in 

eyr6r equations for thq, gravity computer. 

By inspection of Fig. E-6 the error equations of'.the navig4%ion
 

loop are:
 

8R = 6a + 8(E-) 

and introduin'g (E-70).into (E-71) we obtain: 
2 + 2 x 

8x
8x + 2 . = . 8a + 3w2 8h (E-72Q)­s x s 

6y+W y= '8a ,+ 3w2 8h- (0-72b) 

+,,8%.8zh8 
2 

8 2z 
8' (8-T+. 
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Assuming that the coefficients of Eq. (E-72) vary slowly 

we can take Laplace transforms to ,obtain 

+ z~ 	 = ~ "-2 x2 	 2 

(s2 	+2).6y = 6a+ 3w Y 8h) (E-73b) 

+W2 ) +~~ [ z8z
(s2 = [6a + 3s h] (E-73c) 

'The characteristic equation of the system (E-73) is:
 

(s2 	 , .s =,, 

Hence the errors vary siniusoidally with bounded amplitiide. - The error 

8h of the altimeter measurement acts as a forcing.function; its 

effects on the position err'ors ill. be'small if it can be made small. 

The use of the altimeter did not stalilize the system 

absolutely; it did, howrever, eliminat6 the time increasing errors 

and this ig',of considerable vaflue. 
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APPENDIX F 

DIRECTION COSINE EQUATIONS AND THEIR SIMULATION ON 

A DIGITAL COMPUTER 

Alfred R. Schuler
 

i. 	 THE DIRECTION COSINE EQUATION
 

In order to understand the navigation mechanization thooughly,
 

it is necessary to have a knowledge of the direction cosine equations
 

and how they ,ariseo In the block diagram of Fig. 1-, the output 

, Cv v2 Cndwhich are lna
quantities are A, AV AV ; 'I , and *V hc aelna 

l c 3caccelerations and angular velocities1c of theC vehicle3c resolved along the 

vehicular system but measured with respect to the inertial system. 

The quantities AV IAV and AV have included in them the gravity 
le 2c 3c ­

terms. Now in order to determine position with respect to the inertial
 

system, it is necessary to know the orientation of the vehicular system
 

with respect to the inertial system at every instant of time. As 

discussed by Krishnan3, it is necessary to relate points in one coordinate 

system to another rotated arbitrarily with respect to it. Given two 

sets of axes [I] (with components Ii, 12 and 13) and (v] (with compo­

nents VV,V2 and V3 ), that are arbitrarily oriented it is possible 

to specify the components of one in terms of the other, It is done 

by a series of rotations in a specified order. Then 

The c's indicate actual.quantities (measured or calculated) at the 
output of the accelerometer loop transfer function.
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JI R(oR( )R(y) O (F-1) 

where R(a), R($) and R(y) are rotation matrices. This equ~tion ca~n
 

b6 expanded by multiplying the rotation matrices. The rotations
 

specified here are identical to those indicated in GoldsteinI
 

/I\ / stcoso-cosesinosint cotiOcs~o~i* sintsing 

= -sint o-cosgsincost -sintsino+cosgcosocos, costsin jiv) 

( singsino -singcoso cos@ 

The elements of the matrix product .[D] = R(o)%(S)R(N) represent 

the direction cosines of the angles between the three coordinAte axes 

V-, V2and V3 and the original inertial axes l1) 12 and 13 

(:11 dl dl
 

d21 d22 d2:
 

k d31 d32 d33 V 

or [I] = [D] [V] (F-3)
 

I 
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t

Now it is easy to show that 	 R-1(V) = R(N)

R-1(c) = R(a)t (F-4) 
R-(B)- = R(B)t 

That is, the inverse of a rotation matrix is simply equal to its 

transpose - in other words R(a), R(8) and R(y) are orthogonal matrices.
 

Since [D] is the product of three orthogonal matrices, it too
 

is orthogonal,that is:
 

1 t t t 	 t
[D D = R(y) R( )	 R(a)

d 1dpi 
 d31
 

d12 :2 d3) 	 (F-5)
 

d-.3 '23 d 33
 

Let V be a column matrix whose elements are the components of 

R in the orthogonal coordinate frame V. Components of this same 

vector R in another orthogonal but rotated frame I are related to R by 

R, D=-	 (F-6)
.
RV 


DI is the direction cosine matrix of the V axes referred to the
V 

V
I axes. It will normally be used synonmously with D. Also, D.will 

represent Dt, the transpose of D. 

Differentiating Eq. 	(F-6) with respect to time yields:
 

I +
 
=DVDB BVDVRV
 

- DV+DRV 
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In general, both D and R are functions of time. 

The time rate of change of a vector f in' he inertial frame is
 

relted. to the time rate of change in the vehicular frame by the 

1

,,Coriolis operator equation: 

d- )I =.(it + z -)v -I 

Now define the matrix [wV] to be a nine component symmetric matrix 

whose elements are the components of angular velocity along the axes 

of the V fraMe and with respect to the I frame. 

%3 _Uv1('V V 0 (F-9) 

: :I 0s: 

The Coriolis equation can then be written in matrix form: 

f = k+ (UVJRV Fl) 

Let the unit vecotrs in the two coordinate systems be 

Then 9 and 9V are the associated coiumn matrices of their components
 

Then using Eq. '(F-7)' 
= 91 0=D6V +D9V 

since the unit vectors in the inertial frame are non-rotating constants.' 

Also using Eq. (F-10)
 

]
- = 0 = + . V 

Combining these two equations gives
 

D[cswJV = Dv 
or (F-u)

D ["V 
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Expanding the terms in the matrices gives 

d1_ d12 
11 12 d13 L a 2 

132 23j 21 d2 
31 d32 d33- -d3 1 d3 2 

d123 

d3 

d 

0 

U 
I 2 

-,'V W3 2 

0-~ "ol 
1 

Equating components: 

ril = dl 2 V3 - d1 3  'V2 

1 2  = d1 3 VI - d1 1 V3 (F-12) 

d3 die2 - d 1 
2 

O1 

da =d
42/ 

22 
ae 

WOV-d
3 ° 

2 3 WDV 
~ 21 

22 

d2 
a23 

= 

d2 3 e1 - d2 1  

d1 2 "Ie e 

d21 WV 2- d 2 2 

V3 

"NV 

(F-13) 

d31 = d 32 V3 - d 3 3 V2 

32= 3 3 WV1 - 3 O)WV (FP) 

d3 3 =d 3 1 V2 - d3 2 V1 
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These equations cab be implemented and[D]can be evaluated as 

a function of time. In a digital computing system [")] is not 

continuously available since the accelerometers are sampled at 

discrete instants of time which ae separated by an interval AT. 

Between samplings the [VI frame will rotate and since the angles are 

non-commutative, computational errors will arise.
 

2. SOLUTION OF DIRECTION COSINE EQUATIONS USING DIFFERENCE EQUATIONS 

The digital solution is based upon the replacement of the
 

differential equations by difference equations.
 

For the first set of differential equations (F-12) we have:
 

dl!(i+l) [al2 (i) wV3(i) - d1 3(i) ,V2(i)] AT + dll(i) 

d12 (i+') = [d!3 (i) lO(i) - dll(i) uV3(i)] AT + d12(i) (F-15) 
1 .3
 

d1 3 (i+l) = [dll(i) w2(i) - d12 (i) w) (i)] AT + dP3 (i)
 

The arguments i and i+l imply samples at times Ti and Ti+1 

respectively. Also, Ti+l - Ti = AT. 

Given d11(i), d12 (i), d13 (i), WV i, 2v(i) and wV 3(i),
 

these equations can be solved for dll(i+l), dl,(i+l), and
 

d13 (i+l). It is assumed that the inertial package provides the
 

necessary angular information at each sampling interval i.
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Rearranging slightly and putting into matrix form gives:
 

L[(i+1) wv3(i)AT -V i)AT (i ) 

1(i+1)]j .v(i)AT 1 jd3(ii 
or (F-16) 

di 1 (i+l) d11 (:I) 1 WV (i)AT -))V 2(i)AT] 

d2(~)= ELdl2iI where L =-mV (i)AT I )(iA 

d13 (i+l) d13 (iQ Wv (i)AT -,V (i)AT 1 

The difference equation form for Eq. (F-13) is:
 

d2 1 (i+') = [d22 (i) w 3(i) - d23 (i) oV2(i)] AT + d 2 1 (i) 

d22 (i+l) = Ed23 (i) (DVl(i) - d2 1 () O3(i)] AT + d 2 2 (i) (F-17) 

d23 (i+l) = Ed21 (1) (1) - d22 (i) mv.(i)) AT + d23(i)
 

Put into matrix form, this becomes:
 

d21(i+l) [d 21 (i)
 

d22i+l)I [L] d2(i) (F-18)
 

_d3(i~l)_ d 3iM_
 



107. 

Lkewise, the difference equation for the differential equations 

(F-14) are
 

]
d31 (i+l) = [d32(i) oV 3(1) - d33(i) V2(i)) AT + d3 1 (i) 

d32 (i+l) = Ed33(i)MV (i) - d3{(i) mv_(i)] AT + d32 (i) (F-19)
 

a33 '(i+l)= [d3 (i) mV (i) -i)]d i) A + d33(i) 

In matrix form these equations appear as­

d (i+l)]M 

33 3i+l 
It is to be noted that LL is not an orthogonal matrix. This
 

is true even for the case in which rotation is about only one-axis.
 

Since the fundamental requirement for a coordinate transformation is 

that the transformation matrix be orthogonal, we see that Eqs. (F-16),
 

(F-18) and (F-20) will deviate from their desired true values with
 

the passage of time. No mention has yet been made regarding the
 

effect of errors in the measurement of @ Errors in this quantity,
 

which will be considered as our study advances, will also contribute
 

to misorientating the coordinate system.
 

The difference equation approach introduces not only misorientation 

errors but it also results in a transformed coordinate frame for which 

the "unit" vectors are neither mutually orthogonal nor of unit length­
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In other words, a right handed cgrtesian coordihate system must satisfy
 

the following mathematical constraints.
 

if. i = 1 Ii"J = 0 

E I JF 	 I
0k (F-21)' 

k - 1 , k 0 

Ti v~ iv 'VJV= 

1 iV 	1V = 0 (F-22) 

+kV V 1 dd = 0 

il' j, and kare the unit vectbrs in'the inertial f'ame, 

J, and' are'the'unit vectors in the vehicular frame. -Expanding' 

Eq. (F-21) gives­

d2 2+d 1 d + + d0
11 12 13 l1121 12"22 13d23
 

d + d + d 1 dd Idd +d13d' =3 0
 
21 22 23 11ll31 12d32 13
 

d2 d2 d2 1td d
 
31 + 32 + 33 21d31 d32 d23d33
 

(F-23)
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Expanding Eqs. (F-22) yields:
 

2 2 2d1 1  d21 +d 31 = 1 dlldl2 + d21 d2 2 +d d32 = 0 

d2+ d 2+ d =1 dd +d 1d +d = 0
 
= 
12 22 32 lldl3 21 23 31d33 0
 

2 2 2 1 +
 
13 + 23 + 33 dl2dl3 + d22d23 32 33 0
 

(F-24)
 

All of the twelve equations (F-23 and F-24) must be satisfied
 

by any real orthogonal transformation matrix.
 

A usual procedure for evaluation of the direction cosines'is to
 

compute six of them using, for example,Eqs. (F-16) and (F-18).
 

Using Eq. (F-16), the three components of are computed in terms of
1 

JV JV and kV. Likewise, using Eq. (F-18). the three components of 

are computed in terms of the vehicular frame unit vectors. Then 

the following three equations, taken from Eq. (F-24) are necessary' 

and sufficient to insure that i and iare othrogonal and each of 

unit length: 
2
d ++
 

dlld21 +d = 1 

2 2 2­
di2 + d22 d32 1 (F-25) 

dlldl2 + d212 +2d31d32 = 0 
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The computer must evaluate the left hand sides' of -Eq. (F-25)'. 

If 	the results do-not-coincide with the desired values, the first 

equation is normalized to unity. 

An algorithm is then provided for satisfying the secona two 

equations utilizing the values of d1 1 , d21 and d31 just computed. 

The 	 three components of k are then evaluated through the relationship 

k, i x, j,
 

= 	 (dl 2 d2 3 - d 2 2dl 3 ) TV + (dl 3 d 21 - d2 3d 1 l) T*V 

+ 	 (dl 1 d2 2 - d2 1 dl 2 ) ' (F-26) 

3. 	 SOLUTION OF DIRECTION COSINE EQUATIONS BASED UPON A
 
TAYLOR SERIES EXPANSION
 

2

Kosmola has suggested a solution in the form of a Taylor
 

series. Supposing the elements of sV to be continuous functions
 

of time, the direction cosine matrix-D is expanded into a Taylor
 

series about Ti:
 

D(T i +AT) =D(T) +D() AT + D(T) (AT) + T) Af + 
3!
 

(F-27) 



From Eq. (F-11)
 

= D[%w] 

2 ] 2fl = fl([w] + D[dV] = D[%w] + D[;V =D(, + [E]) 
3


D " = D([ V] + 31,%] G, ] + [s]) (F-28) 

etc.
 

Thus, we can write Eq. (F-28) as:
 

D(T. + AT) = Dl(Ti ) Ii + AT [wv(Ti).] + *(. f[[wyTi)] 2 
+ [(i] 

1 2 

+ (AT) 3 [% i)] 3 
+3+ 3 [w%(T)] [(iJ[yT)3[, (T )]+[(V(i)_]3! (UEw(T) 3 ~ 

+. (F-29)
 

Thus, the new transformation matrix D(T. + AT) = D(Ti+I) 

can be derived from D(Ti) by an infinite series of matrix operations. 

We now make a fundamental assumption that makes the problem of 

finding an exact direction cosine matrix solvable. The assumption is 

that w3 remains constant during each sampling interval AT. Under 

these conditions all derivatives of W become zero and Eq. (F-29) 

can be written-

D(T-+ AT) = D(Ti) 11 + [uw(Ti)] AT + [w(Ti)] 2 (AT) 2 

21
 

+ [w(T.)] 3 
+ _(+AT) 

[i (T)]AKT +F-3o 

SD( i ) e[(V(i]T(-0 
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Let T +A 

[=D[YTL)rAT= [UV(T)] dt (F-31) 

T. 

and rewrite Eq. (F-16) as 

[ev(T )J] 
D(Ti + AT) = DCTi) e (F-32) 

where[@ is a skew symmetric matrix-since[eJis a"skew symmetric matrix. 

0 -V 3 OV2 

[e] = 93 0 -9V1-33 

-%v2 Qv1 0 

Let ,2 2 + (V92 + 2 (F-34) 
1 2 3 

and note the following two properties of the skew symmetric matrix[@):
 

2m4-2 
[QV]I = ( l)m 9V12 A2m (F-35) 

2m+l 

[@] = (_l)m [9] 2m mn1, 2,,3 .... (F-36) 

Using these two recurrence relations in Eq. (F-32) yield' 



-[i-TAT] D(T ) f L + [@%(Ti)] + [Qe(T.)] 2! 

[v(i)] 2 - - [e(T,)]2 2 [ 4 

3 ~CT) 5! 

+ 2. - [(T)] 2 _g 

+ o o +} 

= D(T ) 

2 4 6 
+ (Ti) £Ov(Ti)] I E + L zL +3! 5! 7! 

2 4 6
2
+D(T.) [e )(T)] A + 6 8 

DC.)te(T )=D(T ) 

- - +  T 6  Y8D(" [92T)1 2 4 " 
2
 

V
+ 
2 

[E.(T.)] [Q.v(T.)12 
L+i+ I ) ]
2
a 

1F 37) 
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Now
 

0 -V 3AT WV2AT 

[Qv(Ti) ] v3AT 0 -V1AT (F-38) 

-W 2AT) (DVT)
2

m 2 
K)0 

2 2 2 23,(AT)E (AT)o(s 2T es ss 
-13 23,'2 

E n of We(AT) 

(F-39) 

where it is understood that the w's are evaluated at time3 (T i+V() =vt )3(Td W21(Ti+ T2( i+1) 1 
T.
 

Also from Eq. (F-34) 

d3(il (T d3 (ATi+) W A)t(T 
= 2 +2 +2 1/2 

+1 


(V WV W) AT (F-Ito) 
1 2 3.
 

Expending Eq. (F-37) interms of' its components yields:
 

d(Ti+1) d,2 (T-+1 ) d23(T,+,)j­

d(T'211 T~) d2(N +) 
 I 
d 3(Ti) d32(T.~1 ) d33 Ti+1 
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a1 1(ri) d,2(T:L) d13 (T±) -d+ejr ad f+g
d1(Ti) d22 T,) d3% d+e b -h+i
 

Ld 31(T.) d32 (T) d33(%) L-f+g h+i 

where 

a 

b 

c 

- 1 - XlM 

= 1-x2M 

1 - c? 

f, -­' N, 
2 

g, = 0 

h wV1N 

e =uaM 

3 C 

X2 

2 

x = V1 

2 = (IC 

= 2 

2 

+ 

Wa-a. 

2+ 
WV 

2 

3 

= 

W 1 (O2 

V1v3 

2 

Cos) .(AT. 
A 

(AT) 2(. - )co) 
2 + 2 si 2 ,(AT2 

WV1 W2+ V3)(T 

Cos 

2 
lv 

) 
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N AT sin sin 

Equation (F-41) can be solved on a conputer to give the 

exact direction cosine matrix at the future time, T+ 1 . Effort 

is presently being directed towards a) an error analysis for the 

case in Which F is not known precisely but has a specified probability 

density function and b) an extension of the above results for the case of 

non zero angular acceleration between samples. 
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