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1. INTRODUCTION

This is the first sgmi-annual‘report on a study of Gimballess
Inertial Navigation Systems. All of the tasks which were originally
proposed for inclusion in th;s study—afe being acti&ely pu;sued.
They are: (1) a comparative study of several methods of measuring
angular velocity without the use of gyroscopes, (2) a study of methods
of error damping for flights that are not earth-bound, (3) the
construction of a breadboard model of a rotating-accelerometer device
for measuring angular velocity, (4) the determination of the computer
requirements for performing the computations necessary for gimballess
inertial navigation systems, (5) the simulation of one or more mechaniza-
tions of gimballess systems and (6) an extensive error study of gimballess
systems.

A summary of the work of the first six months is given in the
next section of th%s report ‘and details are given in the appendices.

The technicél staff has consisted of two Research Fellows, each
at 75% of full time, and one Associate Professor at 20% of full time.
In addition, there has been part time programming assistance. It is
anticipated that by the eﬁd of the first year of this study, botﬁ of
the Research Fellows will have completed all of their work for the Ph.D.
degree and that further work on gimballess inertial navigation systems

would be carried out by other advanced graduate students.



2. SUMMARY OF-WORK

2.1 Measuring Angular Veloeity -without Using Gyrogcopes

Most inertial navigation systems use accelerometers to sense
linear acceleration and gyroscopes to sense angular velocity. The use
6\f gyroscopes may be avoided, however, by using six or more accelerometers

tilai; are fixed to the vehicle orl 'by-mountingl an accelerometer on each
of two perpendicular rotating rings.

Many configurations of fixed accelerometers will allow the
determination of both linear acceleration and angular acceleration.
Several of these configurations are discussed in some detail in
Appendixes A and B. The minimum number of fixed ‘accelerometers for an
all-accelerometer inertial navigation s;;rstem is six. With six accelero-~
meters there is an ambiguity in the sign of the angular velocity. This
ambiguity may 'I:;e, avoided with eight or nine accelerometers. Also, the
use of eight or more accelerometers provides greater freedom in the
placémént of the accelerdmeters. It is shown in Appendix BI that the--
linear and angular acceleration can be readily de‘berm;’:.ned even though' the
accelerometers are not placed symmetrically about the vehicle's center of
mass and even though the center of mass may move due: to fuel consumption.

Section 2.3 discusses the use of accelerometers mounted on rotating
rings.

2.2 Error Damping

Bodner and Seleznev:L and Kri'shn'a.ng‘ha,ve studied the mechanization
of the navig_ation equations for gimballess navigation systems and }5ave
-found that mechanization in an inertial frame of reference is more

suitable than mechanization in a vehicular frame of reference.



3

However, a simple mechanization of the equastions in an inertial frame
gives ajcharacteristic equation of the form

(% +02) (¥ -2f) = o
corresponding to a transient error t'ha.,t confains a bounded sinusoidal
term and an unbounded hyperbolic cosine term. Appendix E treats three
methods of achieving a stable mechanization of the navigation eguations.
They are (1) damping by means of reference tra:,jectoz'y information,
(2) damping by mesns of external velocity information and (3) elimination
of diverging errors by means of altimeter information.

For many flights the réfergnce (desived) trajectory of the vehiclé
is s.ccm-s.fely specified and the actﬁal trajectory does not deviate far
from this reference trajectory. With the.reference trajectory informatior
available on board the vehicle, damping can be obtained without the use
of any auxilia.ry sensors; ‘the accelerometers required for an undamped
system suffice. The accuracy of a system with referenpe trajectory
damping is dependent upon the closeness of the actﬁal and reference
trajectories.

Doppler radar has been used to obtain velocity information for
use in airborne terrestrial naviéation systems. For space navigation,

Doppler radar is less satisfactory. Franklin a.m} Birx3

have reported
encouraging results from feasibility and accuracy studies of optical
Doppler. Doppler-damped navigation system equations for space flight

are presented in App'endix E.
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The distance from the vehicle to a celestial body may be found
by a variety of distance measuring schemes. The measured valus of this-
distance may be used to eliminate the divezjging error that ogeurs in
the undamped navigation system. However, it will not eliminate the

sinusoidal vscillation.

2.3 Rotating Accelercmeter Exper;‘.mental Studies

Krishnan2 has' shown that two or three linear accelerometers
mounted on mubtually pérpendicular rotating rings can be used "to determine
both linear acceleration and angular velocity. A _rotating disk, mounted
on a dividing head and carrying an gccelerometer s is under construction.
The qxperimental study -to determine ﬁa‘e femsibility of a rotating accelero-
meter sensing system has not yet been inl:i.tlia;ted due to delays in
.o'btaining, ‘tiansformers for the accelerome’cer‘fs‘_‘.lc;c’)i)'-élosing" aaiplifier
and the difficulty in obtaining sa‘bisf’actoz:;r operation of the loop-~
closing é.mplifier, It is expected that the use of very garefully watched
diodes will remove the remaining ,di;fficulty in the loop-closing amplifier
and 'bhat‘experimental étudies will ccmxilenée-during May .

2.4 The Computer Simulation

The navigation system is to be simulated-on a digital computer.
This .simula:bion will permit a more adeguate analysis of the system
than 3:.5 possible by purely snalytic means. It will also pez:mit a study
of the. navigation system errors and will provide.the netessary information.

for determining the requirements for an on-~board computer.
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In the simulation of the navigation system, the inputs are

an angular velocity pattern and a linear acceleration pattern.

With these inputs, the simulated system .~ and the actual system -

will provide the vehicle's position coordinates, which due to errors

in the sensors, errors in the calculation of the gravity compensation,
errors in the direction cosine celcula'bions and errors in the mmier,ical
integrations; will deviate from the true value.

Pigure 'l shows the block diagram for the simula:t:i,qn of the
navigation system on a digital computer. The linear acceleziation pattern
EI(t) enters in the upper left hand corner of the figure. It is
integrated twice, combined with initial conditions and the gravity.tems
and fed to Box 1 where the exact direction cosine matrix [D(Ti)]; is
formed. This direction cosine matrix relates the inertial coordinate
system and the vehicular coordinate system. The inputs to Box 1 are
referred to the inertial coordinate system and the outputs. are referred
to the vehicular coordinate system. Box 2 combines the linear acce]:era;
tion Kv(t), the angular velocity ‘siv(é) and the acceleration 17;7(1:) of
the origin of the vehicular coordinate system [V] with respect to-the
origin of the coordinate system [m] a.'bout which the accelerome'bers are
centered. The outputs of Box 2 are the accelerations that are read by
'l;he accelerometers. Box 3 simu;l.ates the aecelex:ometers. Tts inpubs
are the true accelerations and noise and its out'pués are the accél’erome,ter
readings. The calculated values of- the angular velocity QV and of

linear acceleration AV are formed in Box L. Since:the accelerometer
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readings are noisy a linear filter and estimator is included (Box 5).
Box 6 forms ‘the calculated directidn cosine matrix [D('l‘i)]c‘a The
inputs to Box 6 are referred to the vehicular coordinate system

and. the outpub AI (T ) is referred to the imertial coordinate system.
This linear accelerat:.on, AI (Ti)’ is combined with the calcule.ted
gravity term gI and the resul'ba.nt is integrated twice to give ‘the
vehicle's ca.lcula,ted position RIc(Ti) A linear pred.:\Lcto.r (Box 12)
gives the estimated position at the next sampling instant ,‘ T

i+l
theé gravity computer (Box 8) gives the corresponding acceleration df

sand

gravity. Boxes 13 and 14 give the calculated e_‘nd‘ exact BEuler Angles
respectively.

Portions of the.simulation have been successfully tested.
The exact form of some boxes, such as the linear filter and. esti;matqr s

have not been determined 3 Nor has a closed loop test ‘beeti attempied: -

Réferences
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3. F'ranklin,\(}. R. and D. L. ﬁirx: + "Optical Doppler for Space
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APPENDIX A

ALL ACCELEROMETER TECHNIQUES FOR MEASURING
LINEAR ACCEIERATION AND ANGULAR ACCELERATION

A. R. Schuler

Currently, most ipertial ngvigation systems use linear
acéelerometers to sense linear accelerations and gyroscopes fo sense
ahgqlar velocity or angular position. It is possible, how;ver » to
determine both linear acceleration and angular acceleration (or
angular velocity)» without the use of éyrosc’_o'pes, This report
pre.s_ents four configurations of linear accelerometers which permit
the, determination of both linear acceleration and angular accglgeration
(or anguler velocity). Although there are many possible configurations,
only those that seem to be of major importance ére treated here. It
is to .'b'e noted that the possible configurations differ in the number
of accelerbmetex:s required and the mathematical form .of the‘o{xtputs.
In‘thisisecti-on , it ié assumed 'bha't"the accelerometers are placed on
"a coordinate system that has as 'its origin the center of gravity of
the vehicle.

Two coordinate systems are used:

a) the inertial system [T], and

b) the vehicular coordinate system [V] which has its origin

at the center of mass of the vehicle and its axes Vl, Ye

and V3 along the principal axes of the vehicle.
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Figure A-1 shows the coordinate system vl which, ir}'gex}era:l,‘
is rotating and ,accelerating with respect to the inertial coordinate

system [I]. The angular velocity of [V] id desigxat’ed as:
IR T DT =
3

It has been shown” that the inertial accelerstion of)an arbitrary
point P accelerabting with respect to a moving reference. frame is given

by (a dot represents differentiation with respedt 'to_ time)s
AI‘=RI+9xrv+rv+29'xrv+§lx(9xrv) (a-2)

where:
'ﬁI is the vector from the origin of the inertial freme %o
the origin of the vehicular frame.
‘fv is the vector from the origin of the vehicular frame

to the point P.

If the point P is fixed in the vehicular 'system then

Ty < O and the acceleration of the point is given by:

<h:h

e =RI+5xr—v+5x(§xr~v) (a-3)

§I may be written as a sum of components along 'bhe_ vehicular axes, i.e.:

Bt Ry N tR R R K (a-k)
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Figure A-1 The Vehicular Coordinate System [V]

I3

O

Figure A-2 The Position of Fixed. Points on
the Vehiicular Axes

10..



Then

.
.

=)
HH
]

é\;l ;V +-I'{‘;2 5V * %3 EV
Avliiv +AV2 5 +E‘v3 ky

A, (a-5)

Note that RI is an inertial scceleration whose components
have been resolved along the.vehicular system axes. We introduced
the notation Rvi =,-AVi (1 =1, 2 ??). -

The acceleration in inertial space (AI) will now be found
for the six points,a, b, ¢, d, e, and ¥, fixed on the veh'icu%a:
axis as shown in Fig. A-2.

To find the acceleration of point e with respect to inexjtial

space; let _ _
T, = oA K (A-6)

Using Egs. (A-1), (5-5), and (A~6) in Eq. (A=-3),

Oy o = by, Ty + oy Ty by By # Gy Ty o8 Tyl Bes By
oy Tyrey Ty oy W) x Uey Ty ey Ty R)Ka)
SR Dy By ety oy ]
Ty sy Ay ey (a-7)

SN Y

2 1
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To obtain the inertial acceleration at the other five points,

let E;V take on the uesired couruinNUE VaLus.

For point £ let rv = = zf kV

B pre = Ty Iy -8y g -0 %, e}

+
&1
>
<
jyo)
+
<f=o'
i
>
H
8
£
iv]
£
w
o=
[

.y
)
]

]
<‘;—'~I
&

+—EV [%3 - EzV2 Lo * "vl QVB za]

For point b, let ;V = - ,(l,b ;V
(Ai[) pt b = Ev [Avl +'9€2 &y * 933 1;;]

+

Ty Uy -y hy - oy ]

+

CLAL I S

{a-8)

{4-9)

(A-10)
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For point ¢ let r_ = %

(AI) Pt ¢ = ;V [AVl - A:2\73 zc"'-'QV:L n'Va J?’c]
AL L% @)

F Ry Ry g ey 0y ]

For point d let T, = %5 &

Ay g = Ev[Avl+§lv3zd"Qvlﬂv2”al

LIS GO G R (a-12)

i
H

+ & [A, - 4 - ]
kxr“v3 W, Q\72"v3’5ﬁt
Also, ifr = 0
-

(AI) origin = ;V Avl *+ 3V AV T:V AV3 (a-13)

2
Consider first the configuration of linear accelerometers

shown in Fig. A-3 (configuration A). The six-accelerometers are

oriented dbout the vehicle's center of gravity and are mownted on the

.pri‘ncipal axes. Two accelerometers are placed on each of the three



Vs 1.
Ay
\
e b/ v
Qe l ¢
b
f'—,fqd_——’ / ¢ ‘AVZI
yd L
a
AV“ f h L.
V| A :
Avz,.
Figure A~3 Configuration A
V3
Avg |
e /
He
Avs, A
a4
0 - V.
/ v AVZZ AV2| 2
La A
LAG
V
f 1

Figure A-I Configuration B
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vehicu.'lfé,r axes with the sensitive axis of one accelerometer along the
axis in the positive sense and the sensiti_.ve axis of the other along
}:he axis in the negatixr'é,~sense. The arrows in the figure indicate
the sensitive axes of the accelerometers.

Since Avll is at point a and oriented in the ;'V direction, it
measures, from Eq. (A-9):

By =yt O A ag) (a-24)

11

By referring to Fig. A-3 and Egs. (A-7) through (A-12), the remaining

5' accelerometer readings can be determined.

by w by e el ) g (425)

12 1 2 3
SRR CAR L AN (a-16)
vy T Mt 21 ’ 23) fa )

- 2 2y : -1
AV32 Av3 * (%2 +QV ) £ (a-29)

These equations are now combined algebraically

o o= AL - (@ +a?) (-20)
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% o
x = 22_AV21 - @ ) (a-21)
8 YAy 1 3
T
%y = B (@2 +af) (a-22)
fe * 1y 1 V2
Then
“31 - Al 23 (a-23)
2 K =y xg
R (a-24)
2 H t Xy = Xy
Thus . 1/2
% = e e R (a-26)
- + X, 1/2
Qve = ( xl :2 3) (A'QY)
. 1fe
o= i 2773, (a-28)

These equations, being wholly algebraic, are easy to evaluaste
on a digital computer. A difficulty arises, however, in evaluating .
since the squaré root of Egs. (A~23), (A-2h) and (A-25) may have either
a plus sign or a minus sign. This sign difficulty can be resolved through
the use of auxiliary devices that may be less accu;z'ate and less costly

than acceleriometers.
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Then, from Egs. (A-1%), (A-16), (A-18), (A-20), (A-21), and
(a-22)

Avl = Avll + X 4 (A-29)
by, = Ay tE (a-30)
AV3 = AV31 *xy 8, (4-31)

If either the condition za = zb, zc\= La; and_ze = Ef,_or
y,a = zb = !’c = zd = !'e = ,e,f were satisfied, the equations presented
above would simplify.

In configuration B, the accelerometers mownted parallel to ‘the
negative vehicular axes are brought to the origin of the vehicular
axis.as shown in Fig. A=k. 7In practice this is_ippqssible unlegs it
were feasible to mount a three degree of freedom acceleremeter at the
origin. Nevertheless, the configuration is analyzed here. The six

accelerometers measure the following quantities:

M TN O g (a-32)
o by (a-33)
SO n?,3> : (a-34)

A, = oAy (4-35)

122 2
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A, = - (F +af ) (a-36)

3L 3 2 1 ¢

= A-37
e Ty (a-51)

Since _Avl, AV2 and AV3 are known [Egs. (A-33), (A-35.) and

(A-37)] we can write =\%
7, * %, - ——zi— =% (1-38)
o+ 933 . ;:vgl = x} (A-39)
n&g % 951 ; ivﬁ—%;kl—— ] x3 (a-10)

Then, as before,

o 4 gl 1/2

R (a-t1)
'L gt ooyt 1/2

o, =« e e T (a-be)
Vbt oo g 1/2

- i 0

Configuration € utilizes 9 stationary accelerometers. It
eliminates the ambiguity in the sign of the angular velocity Q. Also,

no accelerometers are needed at the center of gravity. This method
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Figure A-5 Configuration C with Arbitrary
Accelerometer Spacing
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gi)!v_es the output as Av’l,.Av s By s Qvl’ 0y and &, . Note that the
2 V3 2 " V3

mownting of the accelerometers must stiii~satis‘f§r the requirément

that they be placed on the principal vehicular axis sbout the center

of gravity. The mounting scheme is shownuin‘_»Fig. A-5.

Using Eqs. (A-7) through (A-12), we can write the outpubs

of these 9-accelerometers as (note that the alphsbetic points nb

longer coincide)

AV

12

AV

32

Ay

12

Ay

32

Ay

13

AV

23

Av

31

AV

21

Ay

21

by gz %) g
Ay Gy vy 8y
hyy Gy -y ay ) g
A Oy ey ) g
by Gyt ey 9 g
by, =y -9y 0y ) g
Byt Oy ooy 0y ) g
By, t Gyt ey 9) g

Ay, - Gy +oy o)y

(A=bl-1)

(a-Bh-2)

(A-bL-3)

(A-bh-t)

(a-k4-5)

(A-bk-6)

(a-ks-7)

(A-44-8)

(a-lk-0)



Letting ¢ = £, and adding (A-4h-2) and (A-hl-k),

Y
T T o Ay (a-k5)
2
Letting 4, = 4, and adding (A-hlh<1) and (A-k-3),
Mt -
___3;?__2____1.2_ Avl (A-46)
Letting 4, = £ 4 and. adding (A-4L-8) and (A-44-9),

Al .
o Ny v, (A-b7)
2

Three summations have ylelded linear acceleration.

Letting £ 2, and adding (A-4h-k) and (A-bh-6) yields:

A‘;32+ Av23 = Av3+Av2";vl’3d"Qvanvszd""’vlzd*“vE“%%
B S A A
s'zvl - ~AV32 nAV23+AV3+AV2 (a-18)

2 Ed
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Letting £, = %, @nd subbracting (A-Lh-T) from {A-4k-5) yields:

S R

31

[

AR AL AN
& A"13 aAVslnAv,l”Vs

sz = (a-49)
2 2,
Letting 4, = 4 eand subtracting (A-kL-8) from (A-khk-1) yields:
.- = - g+ g - -6 4 - 2
T T A A AL A
= A =20 &
A’\Tl V2 QVB a
- - g
& _ Avl sz A‘/’J’.e szl (A-50)
3
2,
For Egs. {A-45) through (A-50), the following equalities
apply
58. = l’c = 'q'h. = I’Kl
by = kg 7 A < %2
by = by = gy (A-51)
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Then Fig. A-5 evolves as shown in Fig. A-6. Note that the

arrangement is such that no .two accelero:geters must overlap at a peint

(which is of course a physical impossibility).

Configuration D is of interest in that__it utilizes eight

-accelerometers as shown in Fig. A-T.

outputs ares

AV

31

AV31

AV

32

A\;

32

“oy o) 4,
-y %) 4
Byt Gy ey ey )
by - Gyt oy o) gy
Byt By ey a4
"oy o) g
O, %) 4

Ave * (5\/‘1 - “v,_’2 QV3) 4,

The equations governing these

(a-52-1)

(A-52-2)

(a-52-3)

(a-52-k)

(A=52-5)

(A=52~6)

(A~52w7?

(A-52-8)



Ey

Ast

Figure A-6 ,Coxifi;gura."cion, ‘C with Symmetrical
‘Spacing of the Acceélerometers



L4 /

Avs,

3
O,Qf
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i

AVls

Eigure A-T angj.gq;g'pioﬁ D
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Combining algebraically

if 4y = 8p = ot
TN
2B - s (a-53)
2 Yy
if zg = Lh = B»
o .
A"23 A"-23 - (a-54)
2
2
if zc = ﬂd = o
o+ L4
AV32 M I (a-55)
o 3
also, let L, = ’?’b = A

Then we can write the following equations using (A-52-1)
through (A-52-8)
Ay

__.3_1.2__._..3&_ % .,Qv QV x{ (A~56)
2

i
i

- A
Mo TNy, i
2 1

(a-57)

£
4+
<©
o
b<=



oAY
by | g R, va, e =
20 2 V17
Moy T Meg Aot -
2 2 b
« AT M -
o R TR S . Moy " Mo
%l 2 h‘\( 4y
: gray Ny Thy ATy
QVE 2 Lp by
Now from (A-56)
- P
. - -V Vm
O e v
'3
Q‘(1 QVl

Note that the angular

Equation (A-62) requires the inbegration of QV [1n’cegra.tlon of

information is Qv QV a.nd QV

Equation (A-60)] before it can be solved.

(1) Page, Leigh:

REFERENCES

"Introduction to Theoretical Physics,”

D. Van Nostrand Company, 1947.

27.

(4-58)

(a4~59)

{A-60)

(A-61)

(a-62)
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APPENDIX B
THE EFFECT OF LOCATING THE SENSORS
AT A POINT OTHER THAN THE VEHICIE'S GENTER OF MASS.

Alfred R. Schuler

It is not usually convenient to locate ‘_the'-sen'soré_of\a.n
inértial pavigation system at the Sehicle's center of mass.. This
appendix considers the effect, in an all-accelerometer system,
of pla;:ipg the accelerometers symstrically about the origin ‘of-a
coordinate system that is remote from and moxfirllg with ‘respec;t to th
center of mass of the vehicle.

The equa.tioq governing the inertial accelerabion at_an
arbitrary point P accelerating with respect to a ‘moving reference -
frame has already been given by Eg. (A-2). Restated for Sonvenience,

it is-

.
o

+

ol

+ 0% +a§xév+§x(6x5v) {(B-1)-

ik

Ty

ot

A=
where

inertial acceleration of srbitrary point P

Al
]

= linear acceleration of origin-of vehicular coordinate.
system with redpect to inertial space

angular velocity of vehicular system

of
it

= vector from vehicular origin to point P.

_<:H!
1

Figure B-=1 showé the ph’;?sical picture. The following two
assumptions are made:
1. The [m] axes, about which the accelsrometers are placed,
remsins in an orientation on- the vehicle that is paralle.

to the vehicle®s major axes. ‘ihe.ve‘hi.cular axes [V1,



Pigure B~L The [m) Coordinate: System

V3'

M3

P

3

L
Om| 7
7
“
\/)

f30 "o

/ T2

Bigure: B-2: Coordinate System Notation
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however, translates as a known function of time. Note
that [V] and [m] always remain parallel to their respective
coordinate axes.

2.z (8) =fr )+ Tr (8) +&x, (t) is nom for all t.
v Vl . Y2 V3
rv(’c) is stored in the navigation computer prior to
launching or sensing devices are used to permit its
calculation while in orbit.

To resolve Eq. (B-1} into components we write:

R, = T+A FTHA K
A Av2 AV3
g = i+o J+a &
9vl Qv2 9\73
Ty = (o F L H (g M+ (rgy +eE
rv = rloi + r20'j + rSOk
Ty = Tpl Frppd Frggh

where T192 r20’r30 are the magnitudes of the origin of the fm]
coordinate syétem with respect to the origin (center of mass) of the
vehicular coordinate system. p, 1) and £ are the magnitudes of

the three coordinates defining a point in space with respect. to the
{m] coordinate system and are assumed to be constants. See Fig. B-2..

Equation (B-1) can now be expressed in the following form:



31.
Then
ot ARy e Ry T ey T B
[(rlo '*_"p)-ﬁ__ + (rzo + 'ﬂ)g— + (r3o + E)I{]

*rTol * Tagd *rggk

* e(ﬂvl—i * szj— * “vf,) X (ool + Fpod + F45%)
+ (nvli + %25 + nvsi)' X, {_(nleZ + uvza* + &,35) X
[y *+ L + (mpg * MT Hrgg + O)EN
- (B=2)

Evalusting the three cross products in Eq. (B-2) and cdllecting

terms gives:’

A= i[Avl‘ * Tyt 9Ve(rso o) - Qv3'(""20 ) 9‘\721’30
- stxi’ao * “vlové(rzo' + m * “vlﬂys(%o *e)
2 . 2
: r 1.
(0 +85 ) (e # )

+

JT[Av-g * I ¥ ;’VS (rp + 1) - f.Zvlv(rsol‘t )+ k?vB ®10

"%y T3t Qvlﬂvg(rio )t Qv2“V3(1”30 + o)
—(o? + 2 ]
0+ ) (e 1)
+3—5[AV3 + i:so + évl(rzo + 1‘)" hv-e (rlo + l-l)
* 9{711:20 - ﬂve {’10 * Q\il“‘v3 (z1p + 1)
R Ry (g # ) - (6 +6) (ngy + O]
(373)*
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Equation (B-3) may be mechanized by several methods, iwo of
which Vz.are digcussed here. First, an acceleroiz‘xe’bér ‘arrangémént identical
yoxconfiguration C described in Apperidix A is ubilizr_ad . Here, nine
acc-elerome_sters are placed a;bout the [m]- axis. Note from Fig. B-3 -

that no two acce]‘.erometers are located at tge‘ same phys;'.cal point.

By insﬁection‘ of Fig. B-3 and Eq. (Bw3), the re.adings of the nine
accelerometers are:

(Wote that points zKl, i,Kg and LK3 refer to the distances of the

various accelerometers from the origin of [m])a

Ay = By oyt (vt %)(%3 * Qvlﬂvg)

* (Qve Qv3 - évl) Tap * ﬂvs 1o “vl T3

2

- (‘151 * 9\33) *20 (B-4)
Almgy = Ay ¥ oo (I’Alo - ’*Kl)(éVB * ﬂvlﬂvz) ¥ (9v29v3 - ﬂvl)r30

* %3510 - 9y, Ty - ‘(9‘31 * 953) 20° (8-5)
hmgy = Av3 * i:30 * (“vl"va- - éve) (o * %c;)’"(ﬂvaﬂv; évi)_rzo

- (‘.131 * 932) T30 * %y, Too - %, 10 (8-6)
Az = Ayt 10 * (“vl“v3 * S.iva) (r5o * %3)

"9 Fa0 " Oy fe0 * (B By - év3) T20

2

- (o, 9\2,3 0 ‘ (8-7)
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Aml3 ’QK3 £K| Am32

me

Figure B-3 Configuration C Displaced from the
Vehicular Mass Center
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Am, =
23 Ty,

¥ nvlﬂ"zrlé ¥ Q"agva (30 * %23 i (9‘31 * 353) T

*rpg * QV;.“lo - 9vl(r'so ”xa) * nv31'10 - 9vl’r30‘

Ty, oty 0y 8y dryg + Ay By, - 8y Mg+ g )

* “vj’lo N “vl;"3o:f (“31 * 952) oo (8-8)

Bmp T AT Ty * Ezv;’3o - s'zv3 (rp * e, )+ nvg’}so - Qv';'“eo

Py Ry (ag Fay ) ¥ Ay By (‘Q\Z * _9“53) *10

AT Fo ¥ (“’ve * Qv1‘7v3)3‘°3o * (“vlé’x;z - ‘.’vs?(l'zo + ﬁxl)

. . 2 2 }
* “vz T30 9v3 %0 - (Qva * “vs ) 74 (3-9)
Alm, = Byt o * (évg * Qvlnv3)r30 * (“vl‘?ve - glv3)(r’ao - LKJ_)

+ . _ ° _ 2 2 ) .
%730 -Qv3r20 (Qv2 * “\73 ) 710 (B-10)

Amgp = Av3 *rg ¥ ‘:‘vl (zpq * ‘KE) - 5v2r10 * “\}1{"20 - Q\721:10

* Sy By gty Sy (o ) - () Jrg

i

A\}3 N (‘;vl * “vegvs)(reoi * ’*1(2)”'(‘.%1%3 - s.1\72)1'10

) . 2 2
Qvlreo - Q\1’21“10 - (Ovl * Qve) T30 (B-12)
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m, = A b : T = ) IR Y
Alms, v, *Tag * (S’Vl * Qv29v3) (r0 %, )+(“v19v3 %3) 10

+ Qvlfeo - Qvgi‘lo - (931 * 952) ¥30 (B=12)

Then combining Eqs. (B-5) through (B-ié) s the lihear acceleration

and angular velocities are obtained.

Ampy ~ Almay . . . (3;13)‘
%Kl %3 le Qve' !
Am,, - A'm . _ o
Ez}xl L. NN, QV3 % (B-1k)
Amay -A'ma, ; “ e (5-15)
2ae, ' QVI i OVQ 9‘73 3 L
o ™ e T (%3 A A -zKe (QVQQV3 ) évl) =h -
(B-16)
e () Ty ) %
: (B-17)
o et !,K’J‘ (QVlQVS ) éve) ) zKe(éVl v Qveﬂvé) - ¢3 (-18)
B-L

Now in Eq. (B-16) substitute Eq. (B-13) for ey



Then
fiom gl el By 0y )
or

- ¢l + !'Kl Ql T .
,LKQ N QVQ Q‘V3 - QVl = 9
Tn Eq. (B-17) substitute Eq. (B-1%) for 9'2.
Then )
g, = ZKB (“vlovsJ’évE)'Qe ',

or

In Bq. (B-18) substitute Eq. (B-15) for é3

Then
oy O ) g s

g+ b O .
3" Ky 93 }
P nVl'nv3 QV2=95

The magnitudes of the components of avare given by

36.

(B-19)

(B-20)

" (B-21)

(B-22)
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0, - ©
3°h g
S = nvl (3-23})
%% _ . (B-2h)
s Sy,
To obtain the components 3 and s define the following
Byo by, o Ay ,
quantities:
2 2
T A
2
Q\ZI + 93 = X (B-25)
2 3
2 2
+ =
QV-. Q.V3 b.oN

Note that these.O's can be evaluated immediately after Eqs; (B-22),
(B-23) and (B~24) have been inteératedo

Combining Egs. (B-t) and (B-5) gives:

Am_ .+ A'm
_ o1 o1 .
sz = 3 Too = Oy T < Oy Typ T X3 Ty
%, Tio v Ty (8-26)
3 1
Similarly
Amp ¥ A'my
- e 1 _u - - :
Avl 3 T10 " % T30 ~ % T Qvg T30
+ % Too F X Ty (B-27)

3
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and
Am, . + A'm
- 32 32 .
Av3 = 7 "iF30 " 3T 7% To
fy Fe0 * ﬂvar’li) + 5 T3 (8-28)

If :c;lo(t) = rao(t) = r30(t) = 0, then:

+ 4t
AVl = Am_iQ_e__il?. © (B=29)
Am_ . + A'm -
o Ay
o R (5-30)
Am,, t A'm
b, o= B (B-31)
3

Thus, this reduces directly.to the situation of ‘sensors pla
about the origin.

It is noted that although the havigat'iém computer must perform
somewhat more arithmetic, there are 'only 3 integrations to be p_e?fomed' .
There are no multiplications that the éc;n{puter must evaluate: (except for

3 squares): Note that if in geheral:’

rolt) # 0
roolt) # 0

T3o(t) # 0O
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but
vlo(t) = vgo(f;) = v30(_t) = 0
apoft) = azo(t-)" = 5130(1;) = 0
Then
Am., -+ A" y
~ o T Ao (B-3
Avl = == -85 vy - 9, Ty Xy Ty (B-32) .
_ hmyy ¥ A':hzl _ .
Av2 RO TE AT R AL (B-33)
Am__ + A
3p T "3
AV3 = — = 93 1‘20 - -96 1‘10 + X2_ 1‘30 (3'3)'[‘)

This problem can also be approached through the utilization
of six g.ccelerometers that are placed with their sensitive axes
parallel.to the [m] coordinate frame. This arrangement is shown
in Fig. 4. Now using Eg. (B-3) and F:.g B-l we can write down by
inspeetion the guantities measured with the six accelerometers:

Ay At ot T30 ~ Qv3rao * %2530 - %3520
O Togt By Oy vy - (9F +05 ) (ry0 * 1)
1 V20 1 V5 30 . 5 vi0 " te

(B-35)


http:using.Ec
http:parallel.to

¢ 7—% Amg,

Lo,

Am .
< 22 jd > c
<= =I=> ma

Figure B-4 A Contiguration of Six Accelerometers



Amp, = Avl MR nv2r3o - Qv3r20 + ns72r30 - Q\731"20
2

Yy Mvte0 T vy 30 (952 A )z - 1)

Then svbtracting Eq. (B-36') from (B-35 ) yields:

- = (0% +g2 (02 + @2
Ay - Am, (nv2 + szvs) L, (ﬂ"z %3) 4
or
Ao p - Ay -

E

1

S %10 * Qvznv.;éo - (“31 + 953) (zog * 2,)

21 T Ay, T a0t nv31‘10 "0y Tt %3?10 " %, 30

+

fl

Ay , T2 " “v3r10 T %y a0 * “v3r10 A

A,
ARSI Qv2“v31”3o - (af + 953) (zp0 = £3)

+

Then Eq. (B-38) minus (B-39) gives:

Ampp - Amyy = (Q\?l * 9\273) (g + ;)

or

) 21 2, 2
T T %Y - %

41,

{B-36)

(8-37)

(3-38)

(8-39)

(8-ko)
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E

E QT -G T QP e T
31 Av3 30 * v T20 “vz 10 Qvl 20 ﬂvg 10

* 10 T a0 (“\31 * “32) (rg0 * 4g)

{(B=-41)
= Fr AT e T Q. eQ B
Amgo Av3 30 " %, "20 T 10 * %y a0 " By a0
v 0 T+ ryo - (0F + 02 ) (ry - 8,
A 7,710 Qvz“v3 0 " Wy 0y ) Argo - ke (B-42)
Therefore Eq. (B-42) minus Bq. (B-4l) yields:
fmgp - gy = (0 ¢ oD ) (4 + 8)
30 el Qvl‘ ~“v2 e ¥ e
or
Am,, - Am
3 L. 2 L 2 - g (-
3 3. = <k3)
Lethe Qvl QVe
Then using Eqs. (B-37), (B-40) and (B-43) we have
- X} +X) *X /2
A (B-tk)
Xy - X+ 1/2
a, = | (3-15)
X+ X} - X 1/2
&, - | (z-k6)
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We can now write AI in terms of known quantities.

From Bq. (B-41)
= Am. - T, - ro Foo+ (O -
A 317 T30 T %y a0 Ty Tio ("vg “vl"vs)rlo
+ %2%3)1'20 *+x] [1"30 + 1;] (B-47)
Frem Eg. (B-38)
Av2 = Amy - Fpy - Q\731;10 * Qvli"so - (@vs + Qvlﬂ‘VQ)rlo
* g - oy 8y e + 3] frgg * 1) (5-48)
From Eq. (B-35)
Ay, 7wy - Fyp - O 30 * ﬂ\731"'20 - (ﬁvg * Qvlﬂv:‘,}*)"";‘;o
¥ (5v3 B AR IR T 1, ‘ (B-49)

Thus, the equations giving the vehicles position: are easily
n}eche.nized when the a.ccelerometers_ are plgcea. g.'bout axes Imi varallel
to the vehicle axes but dispiacgq. from the center of gravity. Any
_c_hange » (_1ue to fuel conswnpi;:ion? in the disvance pewween, the sensors
and the vehicle's center of graviby; is,rea&ily;programmgd Ainto the

navigation computer.
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APPENDIX C
ROTATING ACCETEROMETERS TO MEASURE LINEAR ACCELERATIONS
AND ANGULAR VELOCITIES

Alfred R. Schuler

In this method Ffor determining linear accelerations and
angu:_l.ar veloc;ities, each of two rotating rings carries an aceelerco-
meter. The two rings are concentric and normal to each other, one
rptatix_zg about the‘wvl_gz_c'is_and”the other z_a.bqut ’c.hc—::'V2 gafxis as_ _s]_s.orc{n
in Fig.(C-1). It ié‘, assumed that the rings are placed at the center
pf gram‘.ty and that each accelerometer is mouwted with its sensitive
axis perpendicular both to the axis of rqtation and to a radial line
from the axis of rotation to the ac_celeroxpe’tzgr.’

. Let the velocity of ring 1 be wl,>that of ring 2 ‘p_eﬂge . To
(?ya]:uate the velocities s.ndr accelerations, first find the acceleratiou

of a point D on ring 1 located at a rauvius g, rtrum wue origiu oL ouoe

vehicular system. The radius vector from the origin to point D is

given by
Ry T Ay Yyt Ky (c-1)
2 3
where ‘q’d and I,d are functions of time and can be written
2 3 '
Zde = fq cos 0,
.c-2)
zd = ],d gin u)lt



V\

45,

Ay

V2

RiING §
ANGULAR VELOCITY w;
ROTATING ABOUT v, AXIS

“\RING 2
ANGULAR - VELOCITY w,
ROTATING ABOUT V AXIS

Figure C-1 Disgram -Shéwing <the -Position .0f the Mo Rotating

‘Rings -and -the'Location :of “the ,Accelerometers A

end Ay

1
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o Th,é vgloqity_of ~E;]:us ;igint D with respect to the vehicular
coordinate system is given by
a- ]z‘d B -
(*&—“) = W) x4y (c-3)
v
@pd the gcceleration with respect to the vehicular coordinate

system is

(—3 )V = o, x B x 1) {c-4)

Expressing (C-3) and (C-4) in terms of their projecticns along
the vehicular axis,

a7z, _ _ _
(=) = Loy x(y fa, T Ny JZ(13)
=y oy £d3 thy o *a,,
= -:i-v 0y 8y sin wlt + EV .@d ®, cos wlt (c=5)
2 —_—
7,
(—2) .

af v T o x (e fa, * By oy tg,)

T 2 - 2
=Jy wy zdz - kv wy 2d3

u

- 2 = 2
-dy Wy £y cos wt -~ ko wy £y sin oyt (c-6)

It is shown by Pagel that the acceleration measured in a
movingsystem (the vehicular coordinate system [v]) with respect to

a fixed inertial frame is



k1.

@ = ®; + @y +0x @, +@x (), +0x [0 x(F)]

(c-7)

Here, R uis the distance from, the origin ’of_ the inerj:i:al frame
tqQ the origin of the vehicular system, T is the vector distance from
the,origin of the vehicular system to the point at whileh the accelera-
tion is belng mea:sured, and @ is the angular veloeity of the_vehicular
system. Using Eq. (C=T) to express the acceleration of point D in
inertial coordinates, ‘

2 -

.. 2 N

— pi a — _

(a) = (R); +¢( ) +ox ()
I point D I dt2 v a v

.

e L .= =
+ 20 x (g )v+nx[9x(za)v] (c-8)

Expressing Eq. (C-8) as projections along the 'yehicular axis and using
Egs. (C-5) and (C~6), we obtain the following expression for the

inertial acceleration of point D:
@)1 pontp = Iy hy * ‘.’VQ fg sin o) b = ;lvs # 008 01%)
+ 2py (oVE 45 cos wyb + QVS 4y sin w,t)
+ Qvl (QV2 45 cOS wyt * %3 4, sin mlt)]

T 2 p ——
+ 3y [AV2 - oy I’d cos u’lt»“ Q.Vl zd sin mlt
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- anl 9v1 g ©os ‘”.‘Lt’ + 9.v2 QVB 5 sin u)lt
o2 2
- (szvl * QVS) £, cos wlt]
+-fg, [AV - w;‘z £y sin ot + f?v 8 ©0S my b
3 1

- 2‘”1 Q.Vl zd sin wlt + %2 S)v3 £y cos u)lt

2 2
- (nvl + szva) 4, sin wtl (c-9)

AV Av and AV represent the linear acceleration of the origin of the
[V] a.x:.s with respect to the inertial reference frame 'bu:L resolved
along the vehicular [V] axes.

Now consider the accelerometer A2 mounted on ring 2 which is rotating
with angular velocity Wy It is a radisl distance 'ee from the origin
of the vehicular axes. Ee has projections on the ‘Vl and, V3 axes and
can be expressed ass

I8, +%k 4 {c-10)
te, ¥ oy 4o,
2 and ze are functions of time and are given by:
1 3
,@el = ,@e cos wgh
{¢=-11)
zeg = Ze sin m?_t

The acceleration of a point B on this ring is:
< 2 - .
B otz = Iy {A"l =y B cOB myb + “vtg %, sin wgb

- 2y 9\72 £ €05 wab + 9*vl 9v3 Lo 510 0yt



koo
- (ﬂ;‘z&‘q @53) %, 608 wk]
+ E*VIAVQ +(§zv3 £, 008 gt - =%1 % sin b}
+ 9‘”2 (nvé %, 8in wyt + szvl £ €08 wt)
+ %’2 {s\% se- Sin wpb + 8y 4, cos wt)]
+§ EAVS - mg £y sinwgh o S'ive £, cos wt
- am.;, Rv.a £, 5in wgu »»‘szv‘ Szv3 2, €08 wgb
- {G\?;“ 95;} %, sin wytl {e-12)

Accelerometer Al on ring 1 is asguned to have its:sensitive

axis paraliel to vs at § = 0. Thus,.it will be directed along -V, at ‘

- R RV - - o

t= e | along ¥, abte <L, ang along #, st t = mfiﬁ» 5 8.
ap, U3 w 7 It 8wy

In other wjegcévsu,_ the accelgmmeter lines wp peﬁo&:f.egliy glong the

pogitive\and negai;i've‘ Vg and V'?} axes. Therefore, for t = 0,

-l-f;-"- «gﬁy, m-%"l‘n D=1, 8 seosse ® only %he?fvwmp’anem
1 1 1
of Eg. {C-9) is measured with acceleroneber A
Alse
2oy - -
Siﬁ(u)l T;:lm»-) = gin 2nrr o}
and
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Therefore, if we des;ii.gna_‘_b»g ‘the quantity measured by 4, under
these circumstances as All’ we have:

Ap o= A\r'3 * 9vl by * Qv2 Qv3 25 (c-13)

- sees (b +. 100 , 0= 120000

0 ? 29y

For t = =T s 2 -m
2(1)1 2~ml

-

only the J component of Eg. {C-9) exists and this is in a negative
JV

sense.
Also
51{1 ———-L-(lm Fm 1
1 2“’1
and
bn-+ 1 'n')
cos | w o]
s
Designating-the quantity measured by Al for the cohdition
that t+ = M to be A, we have:
2‘”1 12
A, = -0a -b g ta o 4]
12 Ay, " o, A 9v3 a
, : (c-1k)
= -A, + £y = R £
M, T e N, R
For t = &, 30 B SO ¢ S . Tnl, 2, 3 ...

Wy oy Wy Wy
again only the I«:-v p_omponent of Eq. (C=9) exists and it too is in a

negative sense. Call this quantity Al3°



5.

Also,
sin(u;l: (anf L “)= 0
and .,
cos (wl -&;:-‘—izﬁ—)= =1

Therefore

A =-[A -0 g =g L I S S T 3
13 Av3 v, fa lvgnv3 a Av3 b, fat %y, Qv3 a
(ce15)
For t = ~3—"= Io, eoseen M s only the -"J:V component

2y’ A, ? 20y

.of Eq. (q-9) is "niétected by acceléromgter Al Designa'ting this quantity

as Al)+ and noting that .
. C o+ 3w )
sin (wl. L-Q'(D_“L— = =l
1
and

cos (‘”l Boy

si}n'“*' 3!'rr) = 0
i

we then have ;

= S+ Q £y - Q L (IC-IG)
A A"
We now follow the same procedure for accelerometer A2_ ai'f .
point B on ring_2 as we-did for accelerometer A hat point D on :E'J::ng 1.

1

Thus, for t = we note that only the k—v component is

2ny
(1)2»
detected with A, Which £rom uy. \w-12) is:

Ay, = Ay -9 B +0 0 8 (c-17
21 AV% Qvae ‘Qvlﬂv?e )
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Also, for t = —i}}—t—]&)ﬂ— s only the minus :LV qomponént
. ) . 2‘”2 i 2
detected . Designating it by .A22', Eq. {C-12) yieldsg

Ay, = A, ~Q A -8 9 4 (c-18)
22 AVl QV2 e Q\Tl QV3 e

For t = M only the minus T:V component A ] is read. From

R g 23

Eg. (c-12):
Bopp = =A = 5+ 8 (c-19)
23 AV3 QV2 e Q'V:L 9\73 =]

For t = -(—li%l)—;—i)ﬂ ; the 1, component A, 1S detected by A2:
A -Q 4 - o 4 (c-20)
2l A'Vl QV2 e %1 “V3 e

Assume that !,d = ’ee _and also that the ring frequencies' w0y and
(_92_2_11:{3 ‘an_uz_a.lz,_tg 'q)fo _ths:t thg sampling times are identical. Tren

repeating the eight equations through A, for ease of manipulations
1 2k

A, = At 9"1 fy * sz % fa (c-21)
Ap = 'Avé * 6"1 25 - “vé “v3 z;' (c-22)
Pz =AY Qv1 Ta * By, By, ta (C“‘:%)
T R A (c-2t)
A =

21 Av.j - 9v2 £y o Qvi Qvé 23 (c-25)
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b T Ay, Ty da Ty Oy gy (c-26)

Ay = <A, -0 . (c-27)
23 T vy Ty, fa Yy v, M

- L8 - -28

fop = Ay By gty ny g (c-28)

Subtracting (C-23) from (C-21) and dividing by two yields:

A - A
_.3“_1___.]:.31 = AV (0_29)

2 3

Likewise, workihg with other of the above equations:

s 22 AV]_ (c=30)
A - A -
s VI
o AVE (C ‘“31)

LR T Ny (c-32)
By = A, = Ay - A -
2L ~ P2 "3 " ok . .
I zd %2 (C 33)

To obtein sliv3, (c-21) and (C-~23) are added
i

AL+ Al3 .

11
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Then solving for QV

Aaths
i A A (o
%

3 fy

2

It is seen that AV AV Av Qv and QV are found directly.

A single integration of SZV a.nd XZV y:Leld the angular rates QV and nv

9, s given by Eq. (c-34), must be found by solving a simple alge"braic
3

equation.

This method has as its primary advantage over fixed accelerometers

the elimination of at least four additional accelerometers and associated

electronic gear (awplifiers and torquers). It would be useful if the

following conditions are satisfied:

1.

a) Linear acceleration and angular velocity are slowly

varying functions of time so that @ is sufficiently
~low to insure that the time lag in the accelerometer

output (due to the restriction on frequency response
of the accelerometer) does not introduce errors.

-111) Sufficient pov'fer is availdble to drive the rings on which
the accelerometers are mounted..

¢) Practical sampling circuits are not too difficult to
implement .

d) Packaging presents no major difficulties.
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APPENDIX D
INPUT-OUTPUT ERROR RELATIONS

OF THE GRAVITY COMPUTER

Anthony J. Grammaticos

The function of the gravity computer ;ls to generate the
gx'-ay:@ty acceleration based on '_bhe vehic}e positign ini:ormatit;)n
available from the navigation sy;tem and the universal >la.w of
gravitation which the computer simulates.

The position, however, is not known precisely and therefo;je
position errors enter the computer. As a result, the computed gravity
components contain errors. The output gravity errors of the computgr.
are related to the input position errors. This relationship is _needed‘
in studying the stability of the navigation system. The presént
appendix establis_hes this relationship.

Leb my, %55 ¥y %4 (i =1,2, ... n) be the masses and
coordinates of the centers of mass of the celestial bodies contri'bﬁting
to the gravity acceleration at~ the true position x, y, z of the

vehicle. Then the true components of the gravity at this point ares

Ex B E At (p-12)
3=
n /y - yi

g = - b Y m 3 (p-1v)
i=]1 Ri
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i
g = =% N (p=1c)
2 3=l + RO .
1
where /
1/2
2 ) ;
Ry = [ (xxp)® + (goyy)® + (202))°) (p-8)
and

2
-8 cm”

v is the gravitational constant, 6.67 x 10
: ' gr.sec

Since the true position x, y, z of the vehicle is not available,
the gravitation acceleration is being calculated on the basis of ‘Ehe
approximate position information s, , sy, 8, . Then the calculated

gravity components are:

n ‘Sx - % (D-3a)
£. = =% g m S —— =3&
xe i= i 83
i
n B, = 1
g, = =%, ym (Lt (D-30)
ye i1 , g3
] i
1
n Vsy f-: z, )
g = =T aym {e—— (D-3c
= i=l + s?
i
where /
1/2
_ 2 R Y . 32 -
s = L (ogny)® * (5,3y)% + (,2,)°] (D=k)

Let the position and the gravitation errors be:

ton

x = s.-x by = s, 2 = s =z {p-5)
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bg, = g{é(c-gx Bgy ® BTy S8, 7 EneTEy
(p-6)
where the g's are given by (D-1) and (D-3).

Now expand Eq. (D-3) in Taylor series about the point (x, y, z).

Takeé for example Eq. (D-3a).

. °Xe
8xe (Sx’ Sy Sz) = Bye 38 _ (sx - x)

s =x x s =
x

s =Y 8 =

s =3z s =z
z z

88yc 08y
. = R T
T ls =x s =

w

"

@
o

u

0
b
®
@
"
N

(sx'-x:) s (Sy“’Y):a (SZ“’Z)

where (p=7)
n x|
gxcs =x= =-§=lyml‘R§
S, =Y
s, = % z

(p-8)
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3€y0 3 a By T %y
= 2= |- m  {E
asx asx i=1 Y s3
i
_ g ym, 3 S " %
t=1 i Bsx o 3/2
[lsygmx,)™ + (Sy“’yi)2 * (sz"zi)2]
2 1
= =2 wym
T 2 2 3/2
[oymm)® + (sym5,)% + (s, - 2,071
3 Lo 32 2 e 2 1/2
(s,%) 3 Lloymx)™ + (sp9)™ # (3,-2)°1 2(s ;)
— T e o
[/(sx«-xi)_ + (sy-yi) + (sz-zi)2]
2
n 1 3(s_-x.)
= -3 ym, 3T XL
1=1 i [ sy 2
i
..\' M
hence 38yc o 1. ?’(S'::"X:L)2
=, oI ovEm 3 35
e =4 i=1 i S _
X * Sy T
s =y =
sy =z vy
Z Z =2
- ”g ¥ ml 3(X - xi)e i

i= Rg R® (®-9)
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Similarly
38 n ym [ - 3(x=x,) (y-y,)
) b 31 [.____ié_l_ (D-lO)
d sy . - i=1 Ri Ri
x
s =
¥
s =1z
z
28, I L 3(x-x;) (z-z,) :
g E] : (p-11)
Bsz i=l Ry RE
_ i
s =
b4
s =
¥
s =3z
4

in_ view of Egs. (D-5), (D-9), (D-10) and (D-11) and dropping higher

order terms Eq. (D-7) takes the form

_n vm 3(x - Xi)2
e T, 3 e [l TR .
i i
3(X = xi) (y = yi) 3(X = xi) (z = Zi)
5 8y - 5 - 8z
R RS
* * J(p-12)
Then from Eq. (D-la), (D-12) and (D-6) we cbtain
n yom [ 3(x-x, )2
fg, =g -8 =-% . 1- — 6x
* XX 1=1} <R3 RS }
N 1 1
3(x-%;) (y-y;) - 3(x-x,) (z-2,) .
- 2 22

i. i (D-13a)
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and. by analogy ,’

_ . _ n b4 mi ) 3’{};"}{1) (y”yi}
oy En 8 7D 3{c e
- 4 1
- 3y )- 3y=y,} {z~2,) :
* [1 - .—i”'gl——}ﬁy - et 52 (p-130)
Ri Ri
- n N mi 3(X"Xi) (Z“Zi)
88, =8, "8, = =T = (- 5 5%
izl R:i. R:'L
“ - 2 3
3y=y;) (zez ) - 3(z=2,)
- w1 - s, (p-130)
N R
R; 5
o 3, )2
n 1m : XX,
Be = 3 M 5 [ 1« (D-1ka)
i=1 Ri Ri
- 2
n n 3{y-y,)
by b ! 7 [ 1 - 5 (D-1kp)
i=1 Rl Ri
i 2
n m - 3(z-z,)
R (p-1ke)
i=1 R:‘. L R:‘.
- v mﬁ, 3(X"Xi) ‘(Y"y‘i)
v - e {p-15)
i= R? L R?
1 i
] ; y 1y i 3(x-x,) (z=z;) (0-16)
. 3 2
:.=l: Ri L Ri
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n ym, 3(y=y,) (z-2,)
- 1 1 . L "
T = );!_l 5 R2 (p-17)
1= Ry 1

Then Eq. (D-13) cah be rewritten as follows:

ng

= "'MX5X+\’SY+D 8§z
Sgy = v éx-py 5y + 7 bz (p-18a)

8gz = p6x+-ray~u282-

or
- 6—€X =By v P —1 §x

8§ & | v By T 8y (D=18b)
88, [} T -, 8z

In most cases of an interplanetary flifghtA the vehicle will
be in the sphere of influence of the sun only and eguations (D-13)
to (D-18) will be simplified considersbly. Whenever, several
celestial bodies significan’c_ly contribute to the total gravitational

field in the vicinity of the vehicle, it is convenient to imbroduce the

concept of an eguivalent celestial body with an egquivalent g/R ratio bf

(p-19)
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Note that an error in the measured value of any position
coordinate will cause an error in each of the compoﬁgpﬁs of gravity
‘errors and that the coeffibigpﬁs of Eq. (D-18) are timesvarying.

For'a unique center of attraction (the two body problem)
the coefficients given b5 Bgs. (D-14), (D-15), (D-16) and (D-17) have

‘bounded values as Pollows:

2
“Esm o kon, <§ (p-20)
3g

"3 < vipst € {D-2L)

In the case of’a unique center of attraction some of “the

previous equations can be rewritten as follows:

Be = (—%) b= & oo op (p-228)
= o v . B I -
My ¥ (R3) Ry 5 " (p-22b)

- 8 < gf (D=22¢)
B, = ¥ (—’-’-‘g) wo=F Hz
R
where
2
m 3x
]-1' = gy = o
s (3
wooy B3 (p-23)
NS e
2
pto= oy S 3z

hLJE
=
3}
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using Eq. (D=23) in Eq. (D-18) yields

- & ' 3
5 0 o] 8x 11 v §x
o -£ o 8y v e 5y
R ¥
g
0] = -R‘ 8z 5} L 8§z
(p-2k)

A careful examination of the Taylor expansion en'fployed previously
rf.veals that the first term in Eq. (D-24) represents the gravity errors
due to the position errors iﬁcluded in the numerator of Eg. (D=-3)

and that the second part of Egq. (D=-2k) represents the gravity errors
due to the position errors inecluied in the denominator of Egq. {D-3).

Returning to Eq. (D=18) we can write

88 = G &R (p-25)
where
. v o
T o= |v Hy T (p-26)
p u H,

Equation (D~25) is the basic result of this appendix.

Recapitulating,Bqs. (D-1) and {D-3) can be written as

3 G (x, Ts 25 X5 Fgs Bys M) (p-1)
1 i’ Y47 717 T4

& ~ Gl ~(sx: sy) Sps %55 ¥y Zs» mi) (p-3)



or in view of Egs. (D=5) and (D-6)
88 = ée-g = al(xs ¥s 2y 8% 8Y, 82, xis Yys 245 mi)

- @ (%5 ¥, 25 X35 T35 %5 m,) (p-27)
1 A R R

Here E‘;l ( . ) represents the functional form of the universal
law of gravitation.

Among other; 5 BEg. (D=27) gives the dependence of §E upon
§x, 8y, 8z which is needed in the error analysis of the overall ’
navigation system. Such a depsndence, however, is nonlinear and cannct
be used for an error analysis directly. Then what we dd is to find
an approximation of Eq. (D-27) by expanding Eg. (D-27) in Taylor
series in terms:of §x; 8y, §z about the point x, y, z, and retaining
the linear terms only; this can be done based on the assumpbion that
§x, 8y, 8z are small.

Thisp‘roéedure leads, to Eq_ (D-25) which is valid for the
errors only. Apparently G = @l. The elements of G vary slowly with
time and act as ‘ga.ins upon the elements of $R to generate the elements

of §8.
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APPENDIX B

A. Grammaticos

E.l THE MECHANIZATION OF THE NAVIGATION EQUATIONS IN THE
INERTIAT. FRAME

The problem of the mechanization of the navigation equations in.
different ccordinste frames has been studied by Bedner and Selezn_ev"‘
and Kr’ishna.n2 in their works on gimballess navigationn systems. Of
all the mechanizations that were stulied, the mechanization in the
inertial frame was found advantageous and recommended for Purther
study.

Figure E~1 shows such & mechanization whose fundamentals
are presented here. Assume that the space vehicle on an interplan’eta,{*y
mission is moving along a path afound. the sun. The vehicle is subject
to’ the gravitational forces gnd the thrust of its. gngineso

The origip of an il}ertial frame is placed at the center of
the sun and its X, ¥, % axes are fixed with respsct to the:fix_ed
stears - A vehicular frame is rigidly attadhed to the vehicle and
follows its motion.

The relative orientation of the two frames can be estagliéh/ed
from on-board acceleration measurements made with bedy-mounted
aqcelerometerso The inertial acceleration 3 measured along the vehicular
axes is resolved along the inertial axes by means of a direction-

_cosine computer, yielding the components as ay, a, of the inertial

acceleration.
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Let g(gx, gy, g;) e the gravity acceleration at the position
occupied by the vehicle. Then the wehicle is subject to a total
acceleration

a + E = R (E-1)
where R(x, v, z) is the position vector referred to the inertial
frame. FEquation (E-1) expresses the Newbton law of inertia.

Integrating both sides of Eq. (E-l) once yields the velocity
ﬁ(:’;, ¥s %) and integrating twice yields the position R{x, y, z) of
the vehicle provided thet & and T are known. & can be obtained in the

way described above; g is obtained from the wniversal law of gravitation

T = 11;% R (E-2)
which is simulated by the gravitir computer; « is the gravitation constant
and m is the attracting mass. By applying Eg. (E-2) we introduce the
feedback loops shown in Fig. E-l.

Finally, assumed initial conditions on velocity and position
are shown in Fig. E=1.

Recapitulating the accelsrometers measure components along the
vehicular axes of the inertial acceleration due to the engine thrust.

These components are transformed into components ax, a.y, a, along
the inertial frame.

The sum of the thrust acceleration components B ay, a, and

the corresponding gravity components 8y gy, g, must be equal to the

acceleration components X; ¥, z of the vehicle.
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The vehicle acceleration components X, ¥, 2 are integrated once
tp giye v_ehicle veloecity components 5:, ¥s %3 proper initial conditions
are introduced.

The vehicle velecity components X, ¥, z are integrated again to
give the vehicle position cocordinates x, y, z3 proper initiasl pesition
coordinates are introduced again.

Finally the current vehicle position coordinates are fed into
the gravity comp(zter which generates the gravity acceleration needed at
the input of the first 1ntegratoro

From a system point of view, this mechanization contains o

distinet parts cascaded to'getherol 'J_'hé direction-cosine computer is the

first part; the other is what one usuélly calls the navigation icop.

E.2 ERRORS IN THE NAVIGATION SYSTEM

Figure E-1 shows the ideal navigation system. If the accelero-
meters measure acceleration without errors_and the initial alignment
of the system is perfect then/ the system output is identical to the
true position of the vehicle.

In practice, however, it is impossible to make error=free
acceleration inéasurements and pex:fec't; initial alignment; as a result
errors are intrcduced into the system. Because of “the errors
Sa (5a 17 8a, 07 8a 3) in the acceleration measurements the oubput of
the direction-cosine computer contains errors é’é.(Sax, 5a.y, éaz) which
enter the navigation loop; . these a,eceleration_ errors together with the
initial eondition errors give rise to position errors $R{(8x, &y, 82);

the position errorsienter the gravity computer giving rise to gravity



69.

errors SE( 5&, s Sgy, 5gz) vhich ip turn arve fed back into the system.
T%zereforé,‘a stebility anslysis of the system is necessary.

Because of the cascaded connsction between the dirgction-cosine
compuber and the navigabion loop the stability s:nalysis of the system
can be split inte stability anslyeis of the direction-cosine compuber
and. etability analysis of the navigation loop.

Here we are concerned with the stability analysis of the
navigation 1oop.

Figure E~2 shows the navigation system and the corresponding
signals; each signal is represented as the sum of its true value plus
an error. By inspection of Fig. E-2 we can write

BEgE+E+EE = R+OR {E-3)

!

Using Fg. (B~1) in Eq. {E-3) gives

8 + 88 = &R (B4}
or R« 8E = 88 ' (B-5)

Equetion {B-5) is thé ervor egation for the navigation loop.
Note that 88 acts as a Fforeing function whereas §8 depends on §R; the
dependence of §% and §R was established by Eg.’s {p-18} or (D-25) and

(D-26}. We recall thatb:

88, “By v B &%

- . ~18
88, v By T 8y (D-18)
88, p v n, 8z
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or
88 = G&R (p-25)
|
yrhere mpx Y] 0
G = o D-26
v TR (p-26)
N T ¥y ]
Introdueing Eq. (D-25) into Eq. (E-5) gives
8B - G&6R = 83 (B-6)
or 8% My v [ 8x Sa
7
&y v My T 8y |= 82, (2-7)
§2 [\ T -, 82 Saz

Assuming that Bos py, Bys V5 ps T VALY slowly with time, we

can laplace transform Eq. (BE=T)

2
s°F -y “p 8x(s) ba.
-y 524 -7 sy(s) 88, -
- Ty yisy ay
o .
=0 e s +pz SZ(S) 552

(e-8)

Wow the stability of the navigation loop is determined by roots

of the characteristic equation. Consider first the determinant
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s, -v “p
» . _
D(As) = -y s g =T (E-9)
- - 5%

Expanding gives:

D(e) = (sPne) (sBrw) (Pa,) - wmp = wrp - p%(sPmn) —rP(s%n) —v%(sPn

b1

_ 6 ) 2 2 2.2

or Ds)=s +(ux+uy4uz)s +(uxuy+uy By * R, B = v g arT)s
2 2 2

et o Py v ooy w e, + 2 vpr) (B-10)

In view of Eg.'s (D-1%), (D-15), (D-16), (D-17) and (D-19),

we obtain:
B ¥R+, = 0 {E-11)
2 2 2’ gg
+ - - - = . 2 -
BBy PRy e b v - p - 3 =2 (B-12)
by Pk o2 v w2 upr = 2 B (8-13)
X y P z By By By vpT B
g _ 2
Also let 5= w3 (B~-1k)
Then Eq. (E-10) can be rewrititen as:
6 3
D(s) = s°~30)s" -2 u)S (-15)

or D(s)

(s® + u2f (2 - 2 o) (E-16)
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Let
s =V “p
- 2
3 - ] my -7 (B-17)
2
_p s +IJ

since [Q] = D(s)5* 0, the solution to Eq. (E-8) is

.= J
5R(s) - 's‘%%?l §a(s) (8-18)

Now
(%) (s, )r®  w(&P, e v(s®h Yhyr
adj @ = \5(52%2)“9* (52"'!—1;{)(.52*#2)‘92 T(se‘*‘llx)‘*‘\)p
p(s%, Yo (P, hvp (%) (5%, )2
szwux"”i v p
= (se-lwg) v se-uy-mg T (8-19)


http:6-~)(E.18

Th.-

and hence,

2 2
8x(s) 571wy v ) ta. (s)
1 2 2
sy(s) ——— v £Pep_w . sa_(s)
(s%2) (s%-207) ve 4
2
§2(s) p Sl MO

(B-20)

Equation (E-QO) suggests that the characteristic eguation of the
system (E-8) is

. 7
(B + ) (57 - 2) = o (5-21)

The roobs of the characteristic egquation are i,jms and i\/E—ms .
This means that the transient response of the navigation loop consists
of a sinuso-idal term of bounded amplitude due to the xjy poles and a
’ hyperbolic césine term, which increases with time, due to the i\/E 0y
poles; therefore the system is unstable. Small errors in the initial
conditions produce time-increasing error in the output, and the
accuracy of the system deteriorates with time.

In order to improve the accuracy of the system we must stabilize
the system by damping the errors. Methods'of damping are presented in

the following section.
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E.3 DAMPING THE SYSTEM ERRORS BY MEANS OF REFERENCE TRAJECTORY
INFORMATION

The reference trajectory is defined as the jj.deai'predetermined‘
trajectory for a specific mission. During the execution of the, mission
one does his best to keep ‘E;he actual trajectory as close to the
reference ’crajectqry as ;poss:j.ble. Hence, at a given tixpe + the difference
between the corre_esponding positions on the reference and the actual
trajectories is small.

The method of damping proposed here is 'basgad on the cj:losquss
of j;he two trajectories mentioned above and on the a:sgmptiop tl;a,t
refgrel}c? trajectory information is avaeilable on board_i;pe’ w{ehicle 3
this is uvsually the case since this informetion is needed for a number

of purposes including guidance. Iet

be the position that the vehicle should

ﬁr = oceupy on the reference trajectory at
tine t.
4 be the position difference between the

o
£
]
|
]
=]
I
o
<

referehce and actual trajectories at

52, time t.

and, anticipating its use, form the difference

[ &%, - 8%
. -8 =R+ 6R - (R+8R) =6R, -8R = 8y, - Oy
ﬁzr - 8z

(E-22)
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Figure E-3 shows the system mechanization of Fig. E-2 with
rererence trajectory damping added. 1In this mechanization, the

reference trajectory position 'ﬁr is compared with the calculated

position ¥ and their difference Rr - & is modified by the compensation
matrix B. The difference R . - 5 is given by Eq. (E-22); the compensation
matrix H is to be determined so as to achieve damping.

}\!ow we can write the error eguations by insi:ection, of Fig. B-3;

they are

R+ R = §+5§+‘§.+5§+ﬁ(5§r~6§) (B~23)
or o -

§R = B& + 68 +E (R, - 6R) (s-24)
since ‘ﬁ = g+a

Fyuavion {E-24) can be rewritten

SR+HBSR -G &R = 8a+H R, - (E-25)

Equation (E-25) is the basic error equation of the sysatem in
Fig. E~-3. The terms 88 + H 5§r constitute the forcing functions and’

hence the error equation of the autonomous system is:

R+ER-G6R = O (e-26)

Equation. (E-26) determines the performance of the system.
Careful inspection.ofithis equation'aidsL in determining a suita'ple

form for H. The da.mping"of the system is directly related to the presence
d

of derivative terms +k aﬁs so H must contain terms. of the‘ form k Ty

or kp if p = %3— . The speed of response is related to the coefficient of
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Sﬁ_ (i.e. the uwndamped natural frequency) which we would like to be
able to coptrol as much as possibie, Since we have no control over
.é"we introduce a constant part K in § so as to obtain the term (R-G)sR
whose coefficient X-G is adjustsble.

With this in mind let us suggest the following form for Hs

9
(2x B x) kxy k.,
—_ B ¥ ! :
i “yx (2ky:9 'I}EY) kyz (z-27)
x . 9
kzx 'kzy (Ekzp +kz)

where all the k's are constants or slowly varying with time.
Recall that & is given by Eq. (D-26); introduce both § and E

into Eq. (E-26) take the Laplace transform and expand to cbtain:

2 - ~
(%2, st Yox (i, —v)oy+(k,,~p)bz =L ba, ok ptil)ox #k by 2k 8z ]

(B=28a)

2
-+ v - = + v
(kyx..,\,)ax+(s 2kys+ky+px)6y+(kyz )82 I [5a.y kyxsxr+(2kyp+ky)5yr+kyzgz1

(B-28b)

) 2
(ke mp )6t (I - Yoy + (™42 st L )62 = [0, 5, o #ic 6y, +(2k p+k})bz, ]

(-28c)
The characteristic equation of the system (E-28) is:
2 v
s +2kxs+kxﬁ’x kxy -V kxz -p
D(s) = E_ -y 5240k sHc by kK _ ~e =0
yX y ¥y yaz
X - ¥ - 5242k _s+k!
zx P zy T z° oz Tz

(E~29)
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Since v, p, T are slowly varying temms, it is possible to generate

k's such thats

k = k = ~30:

- v v (B-30a)
kyz = kzy = (E-30b)
ke = K, = p (B-30c)

Then the characteristic eguation becomes:
(sBrex st ) (s2e2k siicitg ) (sP4ok sttty ) = 0 (B-31)
T TR T vy Ty Py z Tz g
We' like the rookts of the characteristic equation to be complex

conjugate with negative real parts; hence the Ffollowing conditions mmst

be satisfied.

k. >0 (E=323)
ki +p >0 (m-32p)
ki - (K + 1) <0 (B-32¢)
k >0 (E-33=)
v - .
Kl tp>0 (E-3%)
2 . -
k- (kg + By) <0 (B-33¢)
k, >0 (E-3ka)
k! +p, >0 (B-345)

k§ - (5 +p) <0 (B-34c)
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To show that these eonditions can be satisfied and lead to a

" desirable situation we recall the condition (p-20); that is:

. 2 g -
R Sk B B, 2 F (p-20)
Let us look at the inegualities (B-32), keeping in mind that

2

s is the uwndamped freguency of the basic navigation lcop without

[
g0
any external information, and that this quantity is very small for an
interplanetary flight.

Conbining conditions (E=32b) and (E-32c) we obtain

2, -
0< K <k!+u, {8-35)
or 0<cxlcxt -2 (2-36)
p:4 P4 R
iven that min = - 2%
g By =

Clearly the condition (E-36) can be satisfied by a proper choice
3
of kx"
Finally the conditions (E-33) and (E-3%4) can be satisfied in a
similar way.

Then the transfer matrix H takes the form

2k p +k}'{ Vv o (2-37)
B _ 2k +k 7
E = v Py T
q
p T Zptk,

where the constant gains satisfy the conditions set above.
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From Equations (D-15), (D-16) and (D-17) note that the transfer
gains v, g, 7 in Eg. (B-37) depend on the true coordinates of the
veghicle x, y, z which are not available; instead we generate these
gains from the output Sy sy, C -of the system. As a result the
generated gains are y¥§v, p*8p, T+8r and when these values are introduced
into Eq. (E-38) the terms involving v, §p, &7 are of higher order and
can be dropped frem the equations.

Now examine the possibilily of avoiding the use of varisble

gains; a simple choice for ¥ with this property might be the following:

¥
2k pHk! 0 0
E = o 2k _ptk’ 0
i ¥y
v -
0 0 2k pHk! (E-38)

Expanding Bq. {B-26) end taking Laplace transfbrms we obtains
[sP+2k stictoy Jox —vby - poz = [ [sa +(2k p+k!)ex ] (E~398)
2
X +2k g+k! o =  + ! B~
~vox + [s%rek stk Joy - Toz l[say (exp+ei)oy, ] (E-390)

2
-pdx - 78y + s +2kzs+kz‘g;z]82 = z [saz+(2kzp+kz')szr] (E-3%)

The cheracteristic equation of the system (B-39) is:

2 o1 -
[s +2kxs+xx+px] v 0
-~ [k stk ] - =
D(s) = Yy by =0
- - [s%42k s+t ]
p Z Zz 2

(8-k0)



Now let

2
= = o=k = kP o=
k k =kz e and k k kz Q

and expand Eg. (E-10) as follows:

(2 + 208 + 0%)3 + (u, + my + 1) (% + 20s + 0%)°

2_2_ 2 2 2.
4 - - - + )
L O T i B G <

2 2 2 _
"‘x"‘y”z"““x“' =ﬂyp o BV = 2uptT = 0

Recall that the elements of § satisfy the following relations:

A"X”’y”"z =0 - .
"xuy+uypz+pzmx""2‘pew'r2= . 13%3
by By By =y 10 o 0% o vF - 2upr = ml%i
vhere
R = (x2+y2+22)1/2

2 1/2

(&2 + g * &%)

w®
1]

Hence Eq. {(B-42) can be rewritben as follows:

2

2
(s + 2eos + oF + “’S) (s? + 2eas + 0% -ewg) = 0

where mg = g/R

Be.

(B-41)

(E-42)

(B-L43a)
(B-L43b)

(B-k3c)

(B-k34d)

(E-k3e)

(B-bk)

Tt is desirable that all the roots of Eq. (E-Uh) have negative

real parts for stebility reasons and are complex conjugate in order to

schieve fast response. It is possible to satisfy both requirements

as follows:
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Let s,, s, be the roots of

2

o2+ 2gas + 0 +o2 = 0

1

and. 53’ 5), be the roots of

2 2 2 _
s +20s +9° -2 = 0

Then

n
1}

ot 202 - o2 - ms ]1/2

and /
1/2
S35 8, = (0% [c®0® - 0% + ans]

In order to satisfy the requirements on 815 Sps s3 and 8),

we demand that

>0 (B-k5a)
¢P? - e -uf <o (E-145D)
o? - af <o (B-k5¢)

Now Eqs. (E-45b) and (E-45c) yield

wa
2 S
“-1l< —
g2
and m2
?-1<-23
Q
or combining them
w2 w2
-2 22 < 1-¢2 (B-h5a)
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A1l conditions (E-U5) are satisfied if we set’

£>0 (m-beg ‘
Qs 0 - (B-L46b)
2
and W,
2 s .
1-¢g°>2 g—zé (E-k6e)

A typical va:l.ufa for the demping would be ¢ = 0.7; then from

(E-46¢) we obtain

u)2
1-07% > 2 3
Q
or
2 > 2w,
Note that the period Ts = w& is of the order of several months
s

in-the ca.sevof interpla.neﬁarx flight;_l}gncg oy :‘_.s sm{a.l}.,_ A_ 1?,1'5? Q
will increase the undamped natural frequencies of the system thus
dgcregsing the period of oscillations considerably. Such an effect-
is desirable.

From the above discussion it is clear that botl':\ the demping C.
and the undamped frequencies can be adjusted with considerasble freedom
so that a desirable transient response can be achieved.

Looking at the right hand side of Eq. {E-28) we notice that
the extra forcing term B sﬁvr .Was introduced; this results in increased
steady-state errors. Given, however, that Sﬁr is relatively small
‘ the increase in the steady-state error is small.

This method of damping can be uéed in a time interval during
which it is impossible to receive external information for some reason
(as, for example, in the case Vvhere an observgd‘.celes’tie:l body is b"bscurgd

by another). The method has_two important features: it damps
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‘the navigation system and is completely self-contained. Its accuracy
depends on the ‘closeness 9f the actuval and reference trajectories’
during th.e time of operation in this mode. .

Finglly, let us redraw _F'ig, E-3.for T,he' sake of si_.mplifics.tion;
this is shown as Fig. E-h Here, instead of injec;’cing the error signals
2eas [ Gﬁ;‘ - 8R ] into the acceleration node of the system, ve inject
the error signals 2¢0 [ Sﬁ; - 8R 1 into the velocity node. Obviously
this does not change the situation at least as far as the characteristic
equation is concerned.

The values of the gains shown in Fig. E-I are:

o et = k! =
kx ky kz Q
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E.4 DAMPING THE SYSTEM ERRORS BY MEANS OF EXTERNAL VELOCITY TNFORMATION

The method of Doppler velocity informat:_lon for aiding airborne
inertial navigation syt‘si;ems is a relatively old one. It has given
satisfactory results in tlhe case of terrestial navigation.

In %i:le ‘case of inertial space navigation, the reg_uiremen‘bs are
more severe and radar Doppler is inadeguate.

Efforts to cope with the difficulties involved have led to new ideas
of which the most important in the area is the optical doppler method.
Feasibliity and accuracy studies of optical Doppler(3) led to
" encouraging results; the test of a breadboard model verified these
conclusions.

It is here assumed that such a practical device will be available
for use on board the vehi~le. It will measure components of the vehicle
velocity in the direction of a fixed star.

Now, define:

Vax the velocity of the vehicle as

Va vdy measured by Doppler devices.
Vaz
"’Vax the error in the Doppler velocity
5vd svdy neasurement

Bvdz
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then
X+ 8de

Va =R + ﬁv& v+ Bvﬁ.:y

B

M

* Svdz

We also have

] “
%+ 8x

¥+ 57 since § = R + g

e
#
e
+

%b
it

2+ 82

and

5v,

éx"'si

Vg =% = eV, - 6F (-7)

5’9‘&2 - 5:’-‘:

The suggested system configuration is shown in Fig. B-5.

The Doppler veloeity measurement :“;d is compared with the veloeity £
obbained from the system. The ervors ﬁa - §§ resulting from this
comparison are modified by the compensation matrix T (as yet specified)
and then are Ped into the acceleration node of the system.

The elements of the matrix H will be selected £o as to eliminate or

reduce -the time increasing and oseillaking errors in the system.
From Fig. BE~5, the error eguation of the system is:

R = G4 +oa +F (5% - oR) -(E-18)
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or

R+TR-GoR = 65 +H 57, "E-49)

‘compare Eq. (E-49) with Eq. .(E~25) of the previous section and note

the- similérity between them.. Let us choose a similar form for H.

"Thet is s let
- '
pe N
(2x, 2 Ey k.
. o
i k Ok + L k E=50
- (e + o) - (E-50)
. : o
X k (2 +.-2)
%X zy z p

' where all the k's are constants or slo_w’ly varying with time.
Introducing..'bo‘bh G.and ¥ -into Eq. (E-49) and taking the Laplace

transform we obbain.

2 ' - -
(s%42kys + kb + p)ox +(k, )6y * (k) =ploz
k!
= Xy
Z [saxT(ekx * F)ﬁ‘f‘dx * Eyay * EerbVaze
(E-51a)
2,
(epmvdex + (s + 2ee + kp +pdoy + (k,-r)8z

k!
- f X 3
- [Bay Tk 6vdx +(2ky + D )_Svdy + kyz.svdz]

(E-51b)
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C o )k - 2on "y
(egymplox H(k, —m)oy H(s™42k s + k) p,)oz

k 1
Z
I [53‘; * kzxsvdx * kzyavdy+(2kz+ P )_5‘vdz]

(B-51c)" -

The” characteristic equation of the system (E-51)iis

2 ’
s +2kxs + k_X + By~ kxy_ -y kxz -p

p(s) = |k -\‘; 52+2ks+k'+p k- -7 =
Ix y iy X ¥z
k- k-7 sPaok s + k! +p
zx P zy z . %

(B-52)

Equation (E-52) is.identical to Bq. (B-29). -In the discussion
of Eq. (E~29) the conditions that k, ky-, k, k!, k}’,, k! must savisfy

. Were indicated and a method of generating kXY’ :.kyz B kzx was, suggested.

Then the transfer matrix H takes the- form:

! -
2k, +’p—x ) o
4 1
T - v A B-53)
x A
p T ek, + 55
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The possibility of a solution which does not require variable
-gains was demon§tréted in the previous sechion. Tt is possible to
apply the same idea here.

Let us-choose an E of the following form:

kl
ok o+ -E 0 0
X P .
k'
T .= 0 2k + -1 0 (B-54)

. K
[P . Z
0 0 2k, '+ 22

s _ .
Introducing this E into Eq. (E-49), expand it and taking
Iaplace transforms we Sbtain.
> . :'kt
3 i g = X
[s” + ks + k! + px]GX -~ 8y - paz. —OZ [aax «1~(2kX + 5 )avdx]
.(E-ssa)
-v5x+[s +2ks+k’ +p. ]ay-Tsz —I[aa +(2k+l)5
.(E-=55b)

k!
- 2 [ = YU > Z
- p8% = 8y +[s% *+ Bls +k) + u, 16z l réﬁz'+(g}§z‘+_p Yoy, 1

(BE-55¢)

"The charscteristic eguation of “the system (B-55) is:

» .
3 + 3 L] -
S 2kxs + kx_mx -V 0
(s) = o2 '
D(s) = |-y 8"+ Bl ki -
. — s2 + 2k s +k;+p
p . ]

(E-56)
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,?etting
= = = fo= Rt =R! = 2 -
2k, = 2k, =2k =200 and ki =kl =k =& {E-57)
' we obtain
(s + 2gos + 9203 + (o w + ) (s + eros + 09)°
2 2 By .2 242
Hug wy ¥ Byt b my o mw) (s + 2008 +Q°)
2 2 2 B y
+ - - - ] B-58]
By By By =B T B0 S B, v - 2T E<58)

Clearly Eg. (E.-:SB) is identical to Eg.’ (E-42) of the previous ;
section; hence the stability questlon concerning ‘tﬁ_e: present _system has
been answered there. -

) Note, however, that the transfer metrix. is different for each
_case and therefore it operatés on §R . and 5*?_; in a different. manner;
this point may be of some significance depending on the characterist;‘.cs

of ﬁl?r and. svdo



E-5 ELIMINATION OF THE DIVERGING SYSTEM ERRORS BY MEANS OF
_ALTIMETER ]J\IFORMA’I‘ION

The' a.‘:Li:imete:c‘ is a dev:i.c@LWhiéh can;'measure the .distance of
the venicle from a celestial body.

The barometric altimeter measures the altitude based on
atmospheric density measurements.

The rad:‘l.o altimeter operates on the basis of radar ;Jrinciples.

'Thg opti!.cal altimefer measures the distance ofvthefveh';'.clg from
a ,piane't by nieas{xring the visible angular dimension of .the planet.

Both the radio altimeter and the oﬁticél altimeter £ind ‘appli-
ca.t::'Lons in sp'acé navigation. The barometric altimeter can be'used for
earth bound naviéa‘pién vhere the flight takes ;glace‘ inside the' atfuosphez:e,

The idea of using an altimeter for stabll:.z:r.ng the navigation

system stems from Eq. (D-ELL) Which is:

égx -

g .
Bgy = . -y

8¢

'z p 8%

o Hin

L I -4

(@]
(e}
1

2 T{ oy .,az

(D2k)

We noted there that the first term in Eg. t‘D-zh) represents: ‘the’
gravi:by errors E:due to tﬁe position errors ineluded in the mumerdtor §
of Eq. (D-3)"a1;d that the second term of Eq. (D-2%) represents the
gravity errors due to the position errors inleuded in the denominator

of Eq. (D-3).
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The altimeter method ig. based on "'ch'j\'.s observation. The'
components, B sy, s, of § are obtained from the output of thé system
and the altimeter is used.to measure the distance of ‘the‘yehic(le from
‘the cenfer of attraction. If the altimeter measurement inciudes‘ an
error §h then the output of the altimeter is R + Sh.

The information R + gh and Sy sy, s, is fed into the gravity

2

computer which now simulates the equation

= - R (B-59)
(R+gn)
as contrasted‘to the equation
gxc— )
ge| = % (-60)
e

which is simu.jl.a%.éd by the gravity computer in all the previous methods
of damping. Apparently both conlpu'l,'fers generate identical gravity
components if.their inpu'l;s are error-free; this 3 qf‘course , is a basiec
requirement for all gravity:' computers.

The input-output error relations corresponding to Eq. (E-60) are
Eq.-(D-24). In the following we develop input-output relations corres-

ponding to Eq. (E-59). These error relations will be different frc..
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Eq. l(n-ah) due “to 'the_:di_ff_e_rezice in the denominators in Eds. (E-59)
ahd (E~60). OFf course we anticipate that such a change will affect
‘the stability of ‘the entirg" syStem in a‘favpr'a.'ble manner.

Figure %.:-6 shows ‘t'h\e mechanization of a navigation system
which uses g.lj:imeter information.

Now Eq. (E-59) can be expanded 1nterms of- the errors §x,

8y, 8z and §h. Consider for example the first of Eq. (E-59), this is:
5. -

g = . 'Vm % Ym. xX+8x
e (B+om)> (rrsn) e-o1)
Also
z—i—):_—;. = (R+h)S = r3 -3 R™¥u * higher order terms in sh
R+gh )~
(E-62)
hence
Z§i§§33 = (xt6x) (Regh) 3 =x RO+ 5 xRS - 3 xR oh +
R+6h
higher order terms
(B~63)

Introducing Eq. (E-63) into (Eq. (E-61) we obtain:

- X g 8 3% . "
gxc N ;;.3 m R3 + oy I_{E -8h & higher order terms
(B-6%)
From'Appendix D we have g = - ym —— apnd ¥ = & o o2
\ : x 3 2 R T %
(B-65),

This means that Eg. (E-60) can be rewritten as follows:

= 2 2 3% ... .
Byo =8y g OX ¥ Wy R §h '+ higher order terms,

(Elé6)
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or after dropping Higher order tertis

. ‘g 2 -
58y Bge ~ éx’ = g 8% g %E sh (&-67)
simflarly
= - = ay? 2 3y -
S8y = By, - & = g 8y toef g~ th (E-68)
and
2 3 . .
S8, = 8,, -8, = -wg bz tu- b sh (8:69)

Equations (E-67), (E-68) and (E-69) can be wri}cten' in matrix form to

obtains:
|se, «nf 0 0| |sx z
52, 0 -« o ||ey -+3(;)§Sh . %
56, 0 0 2| |sa % zZ
(=-70)

Equation (E-T0) wés‘antici‘pa‘qled,f;om‘thg disvession 6f'Eq,,’ :(D

It is obvious from Eq. (E-T0) that there is no cbupl?.;g in
error equations‘ for the. gravity compuber.

By inspéction of Fig. E-6 the' error e‘quat’igzis of the navigation

loop are:

5R = 84 + B§F (&-71)

and introdveing (E-T0). into (E-T1) we obtain:

v, 2 2 x -
8 + @ 86X = sa, * 3w R sh (ETTQa‘) -
8 *we sy = sa+ 3> L (B-T2b)

g OF ¥ s K- v 4

. ' 2 g . 4

6z +wg 8z =, 8a_ % 3w g oo (B-T2c)

f



Assuming that the coefficients of Eq. (E-T2) vary slowly

we can take Iaplace trmsfoﬁs to \oiataih

gnl (E-732)

(s? +u)§) ox = ,Z,[sax * 3:»5 %
(s® + o) .oy = i[aay + 37 £ gnl (E-T3D)
(s® + ms) 6z = of[saz + 3(,,2 Z snl (B-T3c)

The characteristic equation of the system (E=73) is:
(P+u2) = 0 (m-4)

Hence the ervors vary sinusoidally with bounded amplitide.- The error
$h of the altimeter measurement acts as a’ forcilng‘func’ciom its
effec'bs on the position errors will-be" small if it can be made small,
The uge of ‘the altme'&er d:Ld. not s{;a‘blllze the system
absqlutely; ‘it did, however, gliininaté the time increa.sin.g errors
and this is’of considerable value.
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APPENDIX F

DIRECTION COSINE EQUATIONS AND THEIR SIMULATION ON
A DIGITAL COMPUIER

Alfred R. Schuler

1. THE DIRECTION COSINE EQUATION

In orger $0 understand the navigation mechanization thof’qugl}l;_r 3
it is necessary to have a knowledge of the direction cosine equations
and how they arise. In the block diagram of Pig.l, the output )

o, - * . s
quantities are Avlc, Avec, Avsc, Qvlc, SLVQC and 9V3c which are linear
accelerations and angular velocities of the vehicle resolved along the
Yehicula.r system but measured with respect to the inertial syste_mo
The quantities Av s AV and AV have included in them the gravity B

B 1lc 2c 3c .
terms. Now in order to determine position with respect to the inertial
system, it is necessary to lmcw_gthe orientation of the vehicular system
with respect to the inertial sy;tem'at every instant of time. As
discussed by Krishna.n3, it is necessary to relate points in one coordinste
system to another rotated arbitrarily with respect to it. Given“’cwo
sets of axes [I] (with components I,, I, and 13) and [v] (with compo-
nents Vl 3 V2 and V3), that are arbitrarily oriented it is possible
to specify the components of one in terms of the other. It is done

by a series of rotations in a specified order. . Then

" T
The c's indicate actual guentities (measured or calculated) at the
output of the accelerometer loop transfer function.
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il
&

% | = ReIR(e)R(

(7-1)

-<<'_4.['

where R(@), R(g) and R(y) are rotation matrices. This equation can

be expanded by multiplying the rotation matrices. The rotations

specified here are identical to those indicated in Goldstein],'

i cosycosf-cosOsingsing  cosysinftcos@cosPsing. singsin® /I,

5 | = -sinq;cos¢-cos@sin¢cosq' -sing sin¢+cos9cos¢cos¢ cosysin® 3V

_kI sindsing -sinGcosy cose ]—sv
(r-2)-

The elements of the matrix product [D] = R(a)g{(g)lg(y) represent
the direction ‘cosines of the angles between the three coordinate axes

V-, V~2 and V3 and the original inertial axes I,, 12 and I,.

1 3
i 43 G Y3 iy
Iy = dpy Gy Gy Jy
Xy T ky

or [1] = [p] [v] (¥-3)
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Now it is easy to show that R (y) = R(y)®
~n RMa) = R(a)® (r-4)
Rs) = R(e)®

That is, the inverse of a rotation matrix is simply equal to its
transpose - in other words R{e), R(8) and R(y) are orthogonal matrices.
Since [D] is the product of three orthogonal matrices , it too

is orthogonal, that is:

1"t = [pI®

R(y)® R(8)® R(a)®

a a (¥-5)

Let RV be a column metrix whose elements are the components of
I_{ in the orthogonal coordinate frame V. Components of this same

vector R in another orthogonal but rotated frame I are related to RV by

B = . DL R (7-6)

D,\Ir is the direction cosine matrix of the V axes referred to the
I axes. It will normally be used synommously with D. Also, D‘:I[' will
represent Dt, the transpose of D.

Differentiating Eq. (F~6) with respect to time yields:

R

]

1 D\Ir ﬁv+f’\];Rv

D i?v+]3Rv (F-T7)
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In general, both D -and R are functions of time.
The time rate of éhange of a vecto:r R in'the inertial frame is:
re],alteq.,to the time rate of change in the vehicular frame by the

1
.Coriolis operator equation:
SRy _ (8B 45 x® -
=l "o =R S
Now define the matrix [mV] to be a nine component symmetric matrix

whose elements are the components :0f angular velocity along the axes

of the V 'frame and with respect to the I Trame.

° ‘mv3 mV2
[“’V] 2 u)v3 0 -u)vl (F-9)
v, *vy 0

The Coriolis equation can then be written in matrix form:

Ry = R+ Lok, (r-10).

Let the wit vecotrs in the two ccordinate systems be

Op = ip*dp tkp-

& = Ltttk

Then GI and, QV are the assoclated column matrices of their components’

‘ Then using Eq. (F-7)
éI = 0=0§ + D@, ,
since !'the unit vectors in the inertial frame are non-rotating constents.’
Also using Eq. (F-lo).:
CIRIIC Y

Combining thege two equations gives

plw,lo, = de,
or R - (F-11)
D = Dlu,l



Expanding the terms in the matrices gives

G1 Gp 43 G Y 45| ° v,
G G p G2 Gpfloy, O
b1 9 4y I 3 Ggzdley ey

Equating components:

.

A7 = Gpuy - gy

e
[}

12 = Y3y - dpy wy

G13 = 30y = dpmy

da} = Gy oy = Ay wy
Ggp = Gpgoy = dy wy )

Aoz = Ay vy = Aoy wy

31 = 3wy = dgzumy

2 T I3y Timey, )

d33 = A3y oy - dpwy

10k.

(F=12)

(7-13)

(F-1k)
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These equations cah be implemented and [Dlean be evaluvated as
a function of time. In a< digital computing system [mv] isknot
continuously availsble since the accelerometers are sampled at
discrete instants of time which are separated by an interval AT.
Between samplings the [V] frame will rotate and since the angles are

non-commutative, computational errors will arise.

2. SOLUTION OF DIRECTION COSINE EQUATIONS USING DIFFERENCE EQUATIONS
The digital solution is based upon the replacement of the
differential eguations by difference eguations.

For the first set of differential equations (F-12) we have:

[

4, (11) = lay,(1) wv3(i) - 4,5(1) mva(i)] AT + 4y, (1)

a),(141) = [a)4(1) mvl(i) - 43,(1) mv3(i)] AT +d,,(1)  (F-15)
dy5(i41) = layy(1) wve(i) - 45(1) o (1)1 AT + a;5(1)

The arguments i and i+l impiy samples at times Ti and Ti 1

respectively. Also, Ty - Ty = AT

+1
Given dp4(1), &;,(1), dla(i), mvl(i), mvz(i) and u)v3(i)a

these equations can be sclved for 4, (1+1), 4, ,(i+l), and

12(
d13(i+l). It is assumed that the inertial package provides the

necessary angular information at each sampling interval i.
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Rearranging slightly and putting into matrix form gives:

Till(iﬂ_) 1 mv,3(.’i.)AT -mvg(i)AT d?jlzi)
a,,(11) | = -wv3(i)AT mvl(i)AT 4y 5(1)
4, 5(141) mve(i)m "wvl(i)AT . d;4(1)

or (ra6)
8y, (3+2) a,(1) 1 oy (BT -y (1)p
dle(i+15 = [1] d,(1)| where L = —mv3(i)AT 1 u)vl(i)AT
313(1+1) | 'dl3(i) mve(i)AT —mvl(i)AT 1

The difference equation form for Eq. (F-13) is:
dy (i+1) = [a (1) mvs(i) - dpql1) mvg(i)} AT *+ 45, (3)
dpp(i#1) = [d,5(1) (uvl(i) - a5 (1) %3(1)1 AT +a (1) (F-1T)
dpglitl) = [a,(1) wvg(i) - app(1) wVi(i)l AT + d,5(1)
Put into matrix form, this becomes:
d21(1+l) d2l(i)
dpp(141) = (1] |a,(4) (F-18)

d23(i+l) d23(i)
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Likewise » the difference equation for the differential equations

(F-14) are

45 (311) = lagn(1) mv3(i) - dg4(1) mVE(i)] AT * dg (1)

d35(i+1) [a35(1) wy (1) - d5;(1) oy (1)1 AT + a,.(1) (r-19)

Iy

d';la3(:i+1) fag, (1) u’v2(i) - dgp(1) ?\"V;(i)] a7+ ag(a)

In matrix form these equations appear as:

Ay (142) n)
d32(i+l) 1l dgp 1) (r-20)
d33(1+1) (9334

It is to be noted that {Ll is not an orthogonal matrix. This.
is true even for the case in which rotation is about only one,a.xis._
Since .the fundamental requirement for a coordinate transformation is
that the transformation matrix be orthogonal, we see that Eqs. (F-16),
(r-18) and (F-20) will deviate from their desired true values with
the passage of time. No mention has yet been made regarding the
effect of errors in the measurement of 'T’V Errors in this quantity, ’
which will be considered as our study advances, will also contribute
to misorientating the coordinate system.

The, difference equation approach introduces not only mis'orientgtion
errors but it also results in a transformed coordinate frame:for which

the "wnit" vectors ave neither mutually orthogonal nor of unit length:
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In other words, a right handed cgrtesian coordinate system must satisfy

'the following mathematical constraints.

i-.i =1 i .

i ¢ 1
E ip-
ok =1 dp °
i“I{iV:l {V.
E T i -
R R - -
TI’jI

“

< S

SF

(p-21)'

(r-22)

and k_[ are 'the wnit vectors in the 1nert1al frame B

lV s JV and kV are the wnit veetors in the vehicular frame, Expanding .

Eg. (F-21) gives:

2 .o 2
dyy ¥ dyp vz = 1 dy19p; * d1ofpp *
2 ; 2 2 = + +
Ay Y dpp = 1 411931 * 410830
2 2 .2
= + +
a5 vag, vag = 1 gy * iy

dl3d'23 o}
dl3d33 o}
Gpglzz = O

(7-23)
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Expending Egs. (P-22) yields:
2 2 2

Ay ¥y *dz = 1 dyp8yp * dpp, *dgydgy = O

dia * dge * d§2 =1 113 * gy dp3 g8z = O

dia'*’ dgs * ‘1§3 =1 %ioh13 * dppfp3 * A3z = O
(P-24)

All of the twelve equations (F-23 and FP-2k) must be satisfied
by any real orthogonal transformation matrix.
A usval frocedwe for evaluation of the direction cosines is to

compute six of them using, for example Eqs. (F-16) and (F-18).

Using Eq. (F-16), the three components of {I are computed in terms of

{V’ j—v and T:V Likewide, using Eq. (F-18), the three components of
j_I are computed in terms of the vehicular frame unit vectors. Then.
the following three equations, taken from Eq. (F-24) are necessary’

3

and sufficient to insure that i_ and EI are othrogonal and each of.

T
wit length:
dil + dgl + d§l = 1
dig + dga + dge = 1 (F-25)
d, .4 o

11%2 * Aydep * dgqds,
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The computer must evaluate the left hand si':dés' of Eg. (F-25).
If the results do,not—c_oincide with the desired valu:es', the first
equation is normalized to unity.
An algorithm is then provided for satisfying the second two
equations utilizing the vajlues of dll B d21 and d31 Just comput_ed.

Tﬁe three components ofTsI are then evaluated through the relationship
o= ox g
(ayy Ty + 8y 3y a3 | x (8 Ty + 4y, 3y + 355 k)
(a),8,5 - daedla) I+ (a0 - dpgdyy) 3y
* (a8 - andn) Ky (F-26)

3. SOLUTION OF DIRECTION COSINE EQUATIONS BASED UPON A
TAYLOR SERIES EXPANSION

Kosmola2 has suggested a solution in the form of a Taylor
series. Supposing the elements of Wy to be continuous functions
of time, the direction cosine matrix-D is expanded into a Taylor
series about Ti:

. . . 3
D(T; +aT) =D(T;) + D(T,) AT + B(T;) -,——(é"f)e + B(z,) %?L +

(r-27)
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From Eq. (F~11)

i) = D[u)v]

D = Dlu + 2yl = Dlu1® + plad D (w12 + [, 1)
D= Dl 13+ 3] o) + L) (v-26)
ete.

Thus, we cgn write Eg. (F-28) as:

2
D(1; + AT) = D(T,) (1 +ar log(m)] + B8ty (2,)12 + (o (z,)])
3
+ %L f[mV(Ti)]3 + 3 loy(z)] [&V(Ti)j+[mv(Ti)]_}

e > (F-29}

Thus, the new transformation matrix D(Ti +AT) = D(Ti +1)

can be derived from D(‘I‘i) by &n infinite series of matrix operations.
We now malé a fundamental assumption that makes the problem of

findi’.ng an exact direction cosine maetrix solvaeble. The assump‘cion is

that Wy remains constant during each sampling inte:fval AT. TUnder

these conditions all derivatives of vy become zero and Eq. (F-29)

can be written:

2

D(T;+aT) = B(T) {1+ Loy(m)] AT + Loy (z,)1® ST
3 b :
*loy(z) D2 4 (e LI 4

e[u)v(Ti)]AT

n(zy) (F-30)
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Let Ti + AT .
log(z, MaT = Loy (7)1 = Loy (T,)] at (F=31)
L
and rewrite Eq. (F-16) as
p(z, +aT) = D(T) e[gV(Ti)‘.] (r-32)

where[@vl is a skew symmetric matrix ;since[wV] is a\‘skew symmetric matrix.

0 -Q 9
Vg v,
le,] = Y 0 -9 F-33)
v Vg v,
- 9 0
@Vz 7
2 2 2 2
Let 1= = + @ + ¢ (F-3k)
vt %, o,

and note 'l;he following two properties of the skew symmetric matrix[QV]:

2m+2

o, = ()" [gJ% /& (r-35)
2m+l n om
le,] = (1) el 2 m=1, 2,3 ....(F=36)

Using these two recurrence relations in Eq. (F=32) yield:



113

Dl +aT] = D7) T 1+ [9,(z,)] + [g,(z)1® 37 ‘
e

. C . -
SRCRCHI I R CHC R TP S CHC L &

- L 6 ) 6
+la)1? & - layln)] - lo2)1 &

To o o +1}

= D(Ti)
' 2 4 6
e R A A
+o(g) lo(z)l {1 -dp+dp - by v oey
2 4 6
*+ (%) [ev(Ti)]2 { %’f’ - 1% * %“’ - g? *oeed
= D(Ti)
p(z;) [ey(,)] B35 T
A R—— r’z”§T+5’?'7T+ 3
(T, ) [OV(T.)]2 2 L 6 8
25,8 4.8
n—nj——?——:l;—_{l_ﬁ-'—'ﬁ-g?q-ﬁ 3
2
. -D(Ti)[ e_g(mi.) 15
2 .
lo.(r.)] le (T, )12
=n(r) [ 1+ V‘z_’- sin g + —Y—2 {1 - cos 4}]
— 2
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Now
K 0 -u)v3AT wVEAT
‘ [év(Ti)] mVSAT 0 -mleT (¥-38)
"”VQAT u)VlAT 0
» ) l
2 2 2 2 2 2
T AT T T
-wvs(A ) -y)ve(A ) ‘”Vl"’Vg(A ) mvlmv3(A )
[o (r.)1% = )2 2 (am)%2 (p1)2 )
(T *tnvlwvz(A ) -usv3(A ) -le(A ) ‘”Va"’v3(A
2 )2 2 m2 2 )2
wvlwva(A ) wvng?)(A ) "”VQ(A ) "(I)V](.A )
{(F-39)
vhere it is understood that the w's are evaluated at time t = Ti
Also from Eq. (F-3k)
1/2
N R T b
oy, ey, tep) s (r-lo)

Expanding Eq. (F-37) in terms of its components yields:

() () 35T 4)

A1 (Ty4q) pp(Ty4) 23Ty 40)

51 (Tyag) Agp(Tyyy) dg3(T;44)
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a;,(1;) a,,(z,) a,4(z,) ,/ a -ate Pig
4 (1) agle) ap(m) | X ate b b
az) (7;) a5,(1;) d55(T;) | “f+g  hHi e
(r-h1)
where
& = 1-xM £ = N
1 . Yo
b = 1~ x2M g = mbM
e = 1-x h = N
3 by
d = w ¥ 1 = wM
'3
e = u)aM
2 2
X, = + [0 =
3 (”Vl. mVE a “’Vl wv2
X, = ey *on B T Uy Uy
2 "’vl "’v3 1 Vs
2 2
= + w =
*). %, "’vs e "“v2 “?v3
(72 (AT)3(1 - cost) (1 - cos 4)
M = (1 -cos #) 7= = %

(o * ug + mv?m')e wg
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N = AT sin § _  sin ¢
2 Joog |
Equation (F-4l) can be solved on a codiputer to give the
exact direction cosine matrix at the future time, Ti e
is presently being directed towards a) an error analysis for the

Effort

case in which (I)v is not known precisely but has a specified probability
density function and b) an extension of the above results for the case of

non zero angular acceleration between samples.
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