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I. Introduction

In previous papersl a nonadiabatic theory of elastic
scattering has been developed and spplied, among other things,
to the low energy scattering of electrons from atomic hydrogen.
At present the theory is being extended to cover inelastic S-wave
scattering, and hence obtain the scattering cross sections ogjgqq
and 0,g-ps @bove the 2s excitation threshold. This paper deals
with the sadlution of the zeroth order (angle-independent or
'relative s-wave) problem described in Sec. II of this paper.
Only a brief review of the nonadiabatic theory 1s given since a
full description is to be found in I. As pointed out in Sec.” IIT
the elastic scattering cross osg-zg may also be found from our
calculation if it is assumed that the reciprocity condition is
fulfilled.

The accuracy of the solution is discussed in Sec. IV
and V. In Sec. VI the nonadiabatic results are presented and
compared with the results from the 1ls-2s close coupling expan-
sion>’ 35 s 5. The latter has been shown to be a variational
approximate solution of the zeroth order probleml. Finally,
the implication of our results for both the experimental and
theoretical determination of the total inelastic cross section,

is discussed in Sec. VII.

O1s-28
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II  Zeroth Order Nonadiabatic Theory
It will be recalled from I that the nonadiabatic theory

starts with a decomposition of the S-wave function

i
2

it v (24+1) 3,

4=0

Y(r1r2312) = (rer)PL(Coselz) (12-5)

from which by substitution into the Shrddinger equation an
infinite set of coupled two-dimensional differential equations
results. One defines & zeroth order problem by neglecting

the coupling terms of the 4 = O equation:

(o)
(815 + %; +E) g (rmr2) = 0 (r1 > rg) (13.3)

where

Mz =33/ or ® + 3F/ors .

Our units are lengths in Bohr radii and energy in Rydbergs.
Equation (I3.3) can describe only relative s-states and

is therefore also called the relative-s problem. In this paper

we will consider incident electrons with energies greater

than 10.2 ev. In such cases the target atom may be excited to

the 2s state by collision. Hence the zeroth order wave function,
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Qéo) » Will be required to have the asymptotic form

Lim Qéé)(r1r2)=(% sin k1r1+aeik1r1)Rls(r2)+beik2r1325(r2)

Ty - 1
For incident electron energies greater than 12.09 ev higher
s-states may be excited and for completeness should be included
in (2.1). However since each new term added to the r.h.s. of
(2.1) adds greatly to the complexity of the problem, only the
(1s) and (2s) channels are included in our calculation.

In (2.1) k, is the wave number of the incident electron
and ko =Jk12 - 0.75 4is the wave number of an inelastically
scattered electron. The function Rns(r) equals r times the nth
radial hydrogenic s-state. A is an arbitrary normalization of
the incident plane wave, while a and b are constants which govern
respectively the elastic and inelastic scattering cross sections.

The zeroth order wave function must also obey the addi-

tional boundary conditionsl

(o) - .
3 (rlrz)lrz Zrp= O triplet

™ (o) — i
<§E) N (rlrz)lri=ré\\= 0 singlet
/ ~

(2.1)

(12.6)



and
(o _
3 ) (r,,0) =0 (I2.7)
Here (3/on) is the normal derivative. Equation (I2.6) simply
states the spatial symmetry of the wave function:
(o) . (o)
3 (rire) =+ 3 (rary)
The scattering cross sections obtained from (2.1) are:
a2
O1g-15 = 4m L2 (2.2)
hrks |b|2 -
Oi1s-25 = K, A . (2.3)
In order to insure conservation of current, the constants
A, a, and b are required to obey the relationship
Im (A%a) =k, |a|® + k2|0 |® (2.4)
To facilitate the solution of certain non-linear equations
which appear in the problem, we le’c6
Case (i) A =k,(1-ia),
and
a =x 4+ i2%
(2.5)

l .
(k, Jko)® zelé_ .

o'
n



As a check on the calculations the singlet case was also

7

solved with

Case (ii) A =k

?

and

a = (xegiél—l)/2i
(2.6)

3 (k. /kp) (1-x2)7% 102t02)

ko)

1]

In both cases the form of b is so chosen that eq. (2.4) was
automatically satisfied. Hence the complex numbers a and b are
fully determined by the real numbers Re(a), Im(a), and Arg(b).

The method of solution of equation (I3.3) follows that used in I:

_ (o)

2y is expanded in a series consisting of separable eigenfunctions

of(I3.3):

ik, r

A . ik
@O(O)(rlra) = (E;51n kyr,+ ae 1)Rls(r2)+bel 2rlRZs(rg)

(2.7)

+(§+fdp)cne-“hr1Rns(r2) .

The sum plus integral means, as usual, that the continuum s-states of
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hydrogen in addition to the discrete states must be included.

For the discrete states
- 1
n = (1-n"2-k2)% (2.8)

and for the continuum

i
Hy = (1 + 0% - k,%)% (2.9)
With this relationship each term of (2.7) is an exact solution
of (I3.3).
The expansion (2.7) automatically satisfies two of the
boundary conditions (2.1) and (I2.7) but not the third (I2.6).
In order to satisfy (I2.6) we determine a, b, and C, by the
variational conditionsl
BIS _ %
.
J
X3 = % arg(b),cn n=3,...,N42 A (2.10)
ol
E
J

N is the number of terms, beyond the first two,
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included in the expansion (2.7) and

I, = £°°|@c()°)( r, =a) |dx
i 2
IS 5 gn @c()o)(rl 2)Ir =r2d.'r'

Since a and the (Cn) are complex, 2N + 3 real equations
result from (2.10). These equations are linear in the C.»
hence 2N of them may be solved immediately to obtain the (Cn)
in terms of Re(a), Im(a), and Arg(b). The procedure followed
1s analogous to that outlined in paxrt four of I, although some
of the integrals Involved are slightly different in form.

The inteprals were obtained 1in analytic

form and were checked by numerical integration. However, in

the singlet case due to the difficully of the numerical
integrations.the analytic results were in some cases 5nly checked
to one or two significant figures. In order to obtain suffi-
cient accuracy it was necessary to solve for the Cn using

double 'precisioh'arithmetic, i.e. 16 significant figures were

retained in the calculations. The remaining three equations are

(2.11)
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highly nonlinear in Re (a), Im(a), and Arg(b) and were there-
fore solved numerically. All calculations were done on the IBM
7094 computer of the Theoretical Division of the Goddard

Space Flight Center.
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III The Scattering Matrix

If an exact solution were obtained for the zeroth order
equation (I3.3),then the reciprocity condition8 should be ful-
filled and the scattering cross sections gog-zs aad ozg-1s
could also be obtained from this same calculation. Although
we have no direct check on how closely the reciprocity con-
dition is fulfilled, it is expected that when %S and IE are
Asmall enough, reciprocity is satisfied to an accurate degree
of approximation. The cross section Osg., g Follows immediate-

ly from the reciprocity condition; one form of which is

Oz2g-18 = (kl/kZ)z O15-28

It is however necessary to introduce the scattering matrix
S in order to obtaln Tzg-,s-

Many forms of the asymptotic boundary condition, Eq. (2.1),
have been introduced by various authors. Two of the more com-

mon variations are of the following types:

.. (o . ik, r . X ikosr TN
%}meé )(rlr2)=(51nk1rl+T11e 171 Rls(r2)+-(k2/klﬁﬁﬁze 2" 1Rog(rz)  (3.1)
. o -ik 7. ikor = ikor .
Lim é( )=(e lkirl-slle B R s(r2) - (ka/k, 828" 7 'Ras(ra) (3.2)
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In (3.1) the Tij are elements of the transmission matrix T
while in (3.2) the Sij are the elements of the scattering matrix
S. The coefficient (kz/kl)% miltiplying T,, and S,, is intro-
duced so that Tij and Sij will be symmetric.

Equations (2.1) and (3.1) are related in the following way:

I

k,ah*/|A|® (3.3)

]

kl(kl/kgi%bA*/[A

2 (3.4)

le
The S and T matrices defined by (3.1) and (3.2) are related by
S =1+ 2iT (3.5)

Here 1 is the unit matrix.
If the S matrix is required to conserve probability cur-

rent, then it will be unitary:
sst = 1. (3.6)

If the reciprocity condition also holds, then the S matrix

will be symmetric:

Sip =521 . (3.7)
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From (3.6) Sop may be found to be

Bosn = -§:1 512821 (5_8)

ry—
S12

Finally the reaction cross sections are given by the formula
- 2/ 2
sijl [k, (3.9)

where §.. is the Kronecker delta function. The osg_ng thus ob-
ij .

tained are listed in Table VI.
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IV. INTERNAL CONSISTENCY OF THE SOLUTXION

The integrals Iq and I, Eq. (2.11), should ideally be zero.
Presumably if enough terms could be taken in the wave function
expansion, (2.7), this should sccur to an arbltrary precilslon,
however, for N > 8 the determinant of the Cj’ (3 =1, N), was
generally too small for accurate results to be obtained. By
trial and error sets of terms in the expansion were chosen which
minimized IS and IT. The confidence we have in our results depends
both on the smallness of IS and IT’ and on the consistency of the
cross sections obtained by choosing different sets of virtual

eigenstates. The magnitude of the obtalnable I, and IT are shown

S

in Table I. As can be seen IS and IT are both gquite small for
energies less than that required to excite the 3s level of hydro-
gen. As soon as the Js threshold is passed, there is a marked in-
crease in the size of the diagonal integrals (particularly in the
singlet case). The size of the diagonal integral continues to
increase out to 30.6 ev. At these higher energies there is also

a marked decrease in the agreement of the cross sections ob-

tained by choosing different sets of virtual continuum states.

Again thls was most bothersome in the singlet case.
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For the singlet case this behaviour is illustrated in
Table II by the two top entries for k, = 0.9 and the entries
for Xk, = 1.0 and k; = 1.5. These entries represent some of
the better runs obtained at these energies. The uncertalnty in
the singlet results can be gauged by comparing case (i) and
case (ii) results. At the higher energies the triplet results
seem to be gquite a bit more accurate than the singlet results.
It should be remarked that it is an assumption that the
zeroth order equation (I3.3) can be exactly satisfied subject
to the more limited asymptotic boundary condition (2.1) in an
energy domain in which we know that the 3s state, for example,
is accessible. The above disparity in the quality of results
on the two sides of the 3s threshold may tend to indicate that
this assumption is in fact incorrect. However, it is our
opinion that the chief difficulty above the 3s threshold is
not in the boundary condition (2.1) but in the loss of flexivility
in the wave function in the region of interaction caused by the
absence of the 3s state. Partial confirmation of this can be
found in the last four k, = 0.9 entries in Table II which
illustrate the effect of omitting various low energy discrete virtual
states from the expansion. Nevertheless because there is
a provision for including a flexible choice of continuum states,

we feel that any theoretical incompleteness in our expansion
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above 12.1 ev can be largely compensated for.

A more relevant gquestion is how these cross sections will
change by virtue of the redistribution of current when the
totality of open channels is included. Clearly the present

alculation cannot answer that question, although in some sense
the assumption mist be made that their effect is small. TFor

if it were not, then the calculation of scattering in the .oniza-
tion region would be a complete impossibility, because their in-
clusion would entail a wave function containing not only a dis-
crete infinity of bound excited states,

but a dense infinity of ionized states as well. It

is our opinion therefore that in close coupling, for example,
when additional states are added at an energy where they may be
excited their main effect arises from the increased flexibility
they allow the wave functicn in the region of interaction rather
than in the opening of the channels that they afford. Thus the
present method, which places virtually no restriction on the
number of terms that can describe the wave function in the region
of interaction, is expected to contain most of the effects on the
1ls and 2s channels of a close coupling expansion with a similar

number of terms.
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V. EFFECTIVE RANGE EXPANSION ABOUT THE 25 THRESHOLD

A final check was made to insure that our calculation

was compatible with previous nonadiabatic (NA) calculations
below the 2s threshold. Ross and Shaw 7 nave recently developed
a milti-channel effective range theory. This is an extension

of the ordinary (single channel) effective range theory ** "ch
can in principle describe all channels of a reaction both above
’and below the threshold for a new channéel. . The correlation is
accomplished in terms of an M matrix whose elements around
threshold may be expanded in a power series in the energy.

The first two of these coefficients reduce essentially to the
scattering length and effective range in'the one channel case.
The M matrix has been used by Damburg and Peterkop5 to extreapo-
late the results of ls-2s close coupling calculations immediately
above the 2s threshold to infer the elastic scattering below threshold-
In the same spirit we have extrapolated our present NA results

to below threshold. In this case, however, the extrapolation was
in the nature of a check as the NA resulils below threshold have
already been calculatedlo. For compatibility the extrapolated
values of o;g.,g should then closely match the computed zeroth
order NA O,._,o below threshold. The usefulness of this check
was brought home in our present calculations, when the values
which had been computed at an earlier stege gave an extrapo-

lated singlet o.

Ls-1s that was not compatible with the explicitly
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calculated values below thresholdlo. This helped lead to the
discovery of a machine programming error which had caused earlier
singlet results to indicate a spuriously high peak in o,g-pg CTross
section just above the 2s thresholdll.

The T and M matrices are related for relative s-wave

9

scattering by the equation

ol

pe
T = k3(M - ik) k (5.1)

In this equation k is considered to be a diagonal matrix with

diagonal elements ki. The elastic scattering is then given by
Oy gor 5= Bm(Ma2® + k22)/1(M11—ik1)(MZZ_ikz)_wleQl |2 (5.2)

Expanding the elements of Mij about a reference incident

electron energy Eg,we obtain

Mij(E) =Mij(Eo) + %Rij(E-Eo) +oees (5.3)

In the effective range approximation the series is cut off
after the second term. We teke Ep to be 10.2 ev, the energy
required to excite hydrogen from the 1s to the 2s state. The
expansion is valid for E < 10.2 ev,but in this case we must

put kz = ine in egs. (5.1) and (5.2).
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In the triplet case the expansion (5.3) is valid over a
fairly long range, however in the singlet case the
presence of a resonance justvbelow the 2s threshold sharply
limits the applicability of the expansion. According to the
analysis of Ross and Shaw9the effective range approximate forma-
lism can describe only one narrow resonance below threshold.

Below thils resonance the formalism will not accurately predict
the true scattering cross section.

Our expansion parameters Mij(EO) and.Ri‘j were obtalned by
fitting a two term polynomial of the form (5.3) to the computed
values of Mij in the range O < ko2 < 1.5 x 1078, They are given
in atomic units in TablerIII together with the coefficients ob-
tained from the ls-2s close coupling values by Damburg and
PeterkopB. In figure 1 the computed NA elastic cross 1s compared
with our effective range extrapolation. As can be seen the
extrapolation guite accurately reproduces the resonance near k12=O-797.
The second peak at klg = 0.725 1is spuriocus in the present zeroth or-
der problem bul more resonances are actually present when relative

p-waves are included in the calculationLo’lE,
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VI  RESULTS

The results obtained for the spherically symmetric portion
of the L = O scattering cross sections Cig~™igs Ols -25» 028 - 28
are shown in Tables IV to VI and in figures 1 to 3. For compari-
son purposes the (ls - 23) close coupling results ere also given.

As previously stated this latter calculation is a variational ap-
proximate solution of the zeroth order problemn. 1 The ix.ornal
consistency of our calculations has already been extensively exemined
in Section IV. For the nonadizbatic entries in Tables IV-VI the
number of significant figures given indicates the internal consis-
tency of the calculation with the last significant figure being in
doubt. TFor the singlet entries at ki = 1.5 even the first significant
figure is uncertain. The NA singlet case (i) cross sections are the
ones which are plotted in those figures, however the case (ii)
calculations are of equal weight.

In figure 2 the nonadiabatic o, - ,g Cross sections are com-
rared with the close coupling expansion with the ls and 2s channels
open. The close coupling results Just above threshold were kindly
computed for us by Dr. Omidvar of the Theoretical Division of the
Goddard Space Flight Center. They appear to be in good agreement
with those of Damburg and Peterkop5. The other close coupling re-
sults were obtained from Marriott2 and Omidvara, which in turn
3,13

are in good agreement with those of Smith and his coworkers

The nonadizbatic results are about 40% lower than those of the close
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coupling calculation. In fact the case (i) nonadiabatic
0y g-2s Cross sections agree quite well with the variational
calculation of Massey and Moiseiwitsché.

Figure 3 shows‘the zeroth order nonadiabatic elastic singlet
cross section in the neighborhood of the threshold (10.203 ev)
and out to 30 ev. A definite Wigner cusp is indicated at thres-
hold. The close coupling results, dashed line, also indicate
a cusp at threshold. Above 30 ev the case (ii) nonadiabatic
J1g-1s remalins 20% larger than the close coupling results and
as such are larger than the plotted case (i) results which at
these energies are within 5% cf the close coupling values.

The 0y 5.1g curve is shown as varying smoothly above the
25 threshold. Actually tentative results indicate that thére
is probably a slight ripple in the elastic cross section jJust
below the 38 excitation threshold. The magnitude of this
rivple appears to be only a few percent of the total cross
section and it is difficult to seperate 1t from the ordinary scat-

ter in the calculated cross section at this point. This ef-

fect also occurs in the (ls-2s) and (2s-2s) channels, and it
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may be analogous to the resomance in o, 4.,y below the 2s
threshold but much reduced in scale.

Our triplet elastic cross sections agree with the close
coupling results to vetter than l%. Since the triplet cross
sections dominate in this region, the total nonadiabatic elastic
cross section (gs + Ot) lies within 2% of the close coupling
result.

It would be of interest to be able to solve the zeroth
order equation (I3.3) exactly by numerical means. A continuing
effort 1s being made to do this with the noniterative method
which has already been used in the triplet case below thresholdlk.
So far the results have been unsatisfactory. This is at least

vartly due to the large effective interaction radius between

the 2s state of hydrogen and the scattered electron .



_22_

VII DISCUSSION

Figure L compares the spherically symmetric portion of
the inelastic cross section with the total close coupling
theoretical cross section and with the total experimental cross

B
15 .04 Lichten and SchultzC.

sections obtained by Stebbings et al
Examination of the grapn indicates that the nonadiabatic L = O,
1s-2s cross section is reduced from the 1ls-2s CC results by
about the same percentage as the Lichten and Schultz cross sec-
tion is reduced from the ls-28-2pCC results around the region
of maximum cross section (15 ev) or as the Stebbings et al. are from the
%é%%& %5 over most of the energy range. Thus this calculation
reinforces what one would be tempted to believe on looking at
the ls-2s-2p results in comparison with the experimxenteal
results: a more exact theoretical calculation will reduce the
theoretical cross section toward the experimental results.

As to the amount of this decrease one must be infinitely
more circumspect in guessing. In the language of the nonadia-
batic theory the L = 0 part of the ls-2s-2p calculation refers

to the relative s + p wave problem vhereas the ls-2s calcula-

tion refers to only the relative s-wave problem,
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From that point of view, the latter appears to be a better
approximation relative to its complete solution (to which the
present paper is addressed) than the former is to its complete
solution. In either case, it might seem ridiculous to try to
approximate by two or three terms what in principle is described
by a singly or doubly (discrete plus continuocus)infinite set of
functions. Here, however, one rmust recall what Seaton17 long
ago emphasized, that the explicit (anti) symmetrization of the
wave function in fact doubles the number of terms and goes a
long way in including the effects of the continuum in these
calculations. Secondly, with regard to the ls-2s~2p calculation,
the singlet L = 0 gives only the second largest contribution
t0 0y5-25¢ The largest contribution comes from the triplet
L = 1 state. Experience thus far indicates that the close
coupling approximation is much more accurate in triplet as
opposed to singlet states.

Thus it is very difficult at this time to infer the cor-
rect normalization of the experimental result. In view of the

many cbmpeting elements which are either included or left out

of the close coupling calculation, our own opinion is that the
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correct normalization of the experimental result is between
those of Lichten et al. and Stebbings et al. and closer to the
latter, very close, in fact, to that curve where the error bars
of the respective experiments overlaplag’ This conclusion is
supported by a recent (ls—2s-2p-58-5p) close coupling calcula-

tion by Taylor and Burke19 which produced more than a 30% de-
creage in oy g_pg &% 10.5 ev from the close coupling
(1s-2s-2p) calculationz’u. |

Cur results and those of Danmburg and Peterkop5 also show
that one must be very cautious in naively extrapclating cross
sections to threshold using the Wigner threshold behaviour lawgo.
The present results, Table 5, indicate that the law's range
can be exceedingly small. When the 2p state is'included in the

calculation the 2s and 2p states are degenerate and Wigner's

1
threshold laws no longer necessarily apply 2.
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Table I

Satisfaction of the diagonal boundery condition, IQ=IT¢O,
»

at various incident momenta k, .

CLomic units) 0.6662° 0.9 1 0.9% | 1 0.95 | 1.0 1.1 1.2 115
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| ; | | i

5x107° | 2x107°1 3x10 ° | f 1¥107% ) 1x1077 | 2:10 S| 4x107% 1x10
¢ : ! ;

<
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Table IT

Investigation of the internal consistency

I

calculations.

wiits case (i) case (ii) case 1

5%x10 ©

10°

1x10 ¢

8x10 ¢
-0107®
7}(10_3

~1

1x10

g J18-25 Oi18:+-
case 11 case 1
1x10 © 0.0339 0.0338 0.L67%
7x10 ° 0.0339 0.0339 0.L674
5x10 ° 0.033Lk 0.0335 0.L676
3x10 % 0.0309 0.0310 0.4680
7x10 % 0.0289 0.0291 0.4672
3x10 2 0.0L69 0.0b88  0.3263
Lx10 3 0.0L63 0.0481 0.32853
8x10 2  0.0131 ©.0196 0.0958

of the singlet nonadiabatic

18

case 1i discrete

0.46TL
0.L6Tk

0.4676

0.L4684

0.4680

0.3290

0.25519

0.1126

This %eble is discussed in Section IV.

virtual states

3,4
3

continuum
0.05,0.5,0.6,0.9,1.

0.05,0.3,0.5,0.7,0.
1

}_l

0.05,0.3,0.5,0.7,0.
1.1

0.05,0.3,0.5,0.7,0.
1.1,1.3

]

C

—

C

-

C



Table I1IT
The first two coefficients in the expansion of the M matrix

elements at the 2s threshold, eq. (5.3)

NA = nonadiabatic CC = close couplinga
Singlet Triplet
NA ce NA ce
V., (0) 1.0610 1.300 0.0293 0.0301
ey (0) -0.0569 -0.0629 -0.0017 -0.0017
22(0) -0.0368 -0.0356 0.1208 0.1206
=, L.2o67 L.82 1.1373 1.20
R o -3.9292 -L.32 0.0642 -0.06
R. o 11.489 11.54 5.1528 5.1k

(a) Close coupling coefficients taken from Dexburg and Peterkop reference 5.



Table IV

The spherically symmetric portion of the L = O elastic (ls-1s)
cross section Tor the scatbtering of electrons by atomic hydro-

gen in units of aoz. l\lA--\TORad_'LabuulCa, CC=Close coupling 13 -og”
Singlet Triplet Sum
wo (. ) Encrgy (ev) NA ce NA ce NA ce
¢.810 10.C61 0.635
0.E63 10.152 0.760
0.86k 10.155 1.20
0.86L29 10.163 1537
30L5 10.169 0.0
> 10.179 0.2625
1¢.189 0.3895
10.19L 0.4255
10.298 04465
10.205 0.L743
0.55601 10.2033 0.4768
0.86602 10.20%6 0.4795
0. oouO"i case (i case (ii) Threshold
10.20L0 0.L790 0.4789
10.2055 0.L755 047554 O.bh2kh 3.995 3.995 L.70 L.L1o
10.2C85 0.47k2 04740 0.4235 3.99%  3.993  L.u68  LLIOE
\ 10.2958 0.4955 0.k541 3.958  3.957 L.L5hL L 312
(¢ 10.536 0.4955 0.495L 0.4568 3.864  3.66h L.359 L.320CE
ey 10.777 0.1826 0.k825 0. Lksk 3.773  3.772 L.256  L.2l7:
.50 11..02 0.L67Th 0.4673 O.4324 3.684% 3.68h L.151 L1164
Cuok 12.02 <399 399 3.3k9 3,768
1.0 13.605 0.327 0.330 0.282L 2.905 2.905 3.233
1.1 16. h6 , 0.239 0.250 0.1865 2.500 2.297 2.550
1.2 19.6 0.175 0.190 0.1397 1.833  1.829 2.023
1.5 30.6 0.095 0.113 0.0905 0.97+ 0.9716 1.087

L ws ztatistical factors 1/L and 3/L4 are included in the cross sections. When

wailable case (ii) results were used to find the total scatitering cross sections.

-

422 close couvling results were computed by K. Omidvar, refcrence L,



Table V
e spherically symmetric portion of the L =0 (1s-2s) cross
section for the excitation of atomic hydrogen by electrons
in units 7 ac”. NA=Nonadiabatic and CC=Close coupling ic-2:.
Singlet Triplet Sum
k) (z.u.) Encrgy(ev) cace (i)NAcase (11) cc NA cC NA
GBS0k 10,2004 0.0065 0.0066 0.0006
LTS 10.20176 0.01k2 0.01k2  0.0168 9.9%10 © 9x10°®  0.01L2
05650 10.20k1 0.020k 0.0204 0.0266 1.5x10 ° 1.6x10 > 0.0204
OG0 10.294 0.0%5k 0.0k20 7.8x107° 8.3x107° 0.0355
0.280 1C.536 0.0313 0.031k 0.0356 1.8x107% 1.9x10 % 0.0316
0.£55 10.776 0.0318 0.0319  0.0355 2.7x10°% 2.9x10 % 0.0322
0.9C 11.02 0.0339 .0338 0.0375 3.8x107% Lx10™*  0.0%i2
Lo 12.02 0.0148 .0LL8 9.1x10 % 0.C437
1.0 13.605 0.016 0.048 0.0725 1.9x10 2 2.1x10°2 0.050
1.1 16.46 0.035 0.040 0.0701  3.3x10° 2 L.4x10 2 0.043
1.2 19.59 0.031 0.039 0.0547  k.7x107° 6.1x10°° 0.04k
1. 30.61 0.013 0.019 0.0251  5.6x10°° 7.3%10°°2 0,025

o sz Table IV footnotes.

0.0286
0.0L20
0.0558

0.0222



Table VI

The spherically symmetric portion of the (L = 0)2s-2s cross
section for the scattering of electrons by atomlc hydrogen
in units of m ao_ . NA=Nonadiabatic™; CC=Close coupling ls-2s.

Singlet Triplet sum
Ko la.u. ) NA ce NA ce NA cc
casa (i) cape (11)

0.0..,03 65k esk.
0.01:4 622. 622. 650.3 205.0 8z7.
0.0774 579. 579. 602.0 204 .0 206 .8 735. 808.8
0.0351 137, 125.55 170.56 172.3 307.6 307.85
C. 19.6 19.6 19.36 110.4 110.5 150.0 129.86
0,202 3.69 3.50 3.515 71.21 71.20 7589 7 TS

C.uh1 O.bh1 0.3303 145.99 L5, 9l 15,531 L6.27
C 0.k3 0.l 7.37 7.78
O, 6§80 1.8 1.9 1.532 0.C2 0.2102 1.92  1.7420
¢ o0 1.8 1.8 1.115 1.37 1.36 3.17  2.k75
C 5L 1.3 1.3 0.8980 2.45 2.112 3.75  3.01C
3 {67 0.60 0.55 0.5702 1.9k 1.811 2.bg 2,381

{

a See Table IV footnotes.



'
i

TIGURE CAPIIONS

Comparison of the computed nonadiabatic (ls-ls) cross scc-
tion (solid line) near the 2s threshold with effective range
extrapolations. Circles are the nonadiabatic effective
range extrapolatlon. Triangles are the (1ls-2s) close coup-
ling effective range extrapolation of Darburg and Peterkon.
The figure is discussed in the text.

Comparison of zeroth order nonadizbatic ls-2s excitation
cross section with the close coupling ls-2s expansion. The

figure is discussed in the text.

Comparison of the zeroth order ronadizbatic elastic scattering

cross section with the close coupling ls-2s expansion. The
Tigure 1s discussed in the text.

The top four curves represent the total close coupling the-
oretical and the experimental cross sections for the ls-2s
excltation of H by electron impact. The two bottom curves
give the 1L = 0, angle independent portion of this cross

section. The figure is discussed in the text.
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