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I. Introduction 

I n  previous papers’ a nonadiabatic theory of e l a s t i c  

sca t te r ing  has been developed and applied, among other things,  

t o  t he  low energy sca t te r ing  of e lectrons from atomic hydrogen. 

A t  present t he  theory i s  being extended t o  cover i n e l a s t i c  S-wave 

scat ter ing,  and hence obtain t h e  sca t te r ing  cross sect ions ales 

and u1s-2s above the  2s exci ta t ion threshold.  This paper deals  

with the  sZilution of the  zeroth order (angle -independent or  

r e l a t i v e  s-wave) problem described i n  Sec. I1 of t h i s  paper. 

Only a b r i e f  review of the  nonadiabatic theory i s  given s ince a 

full descr ipt ion i s  t o  be found i n  I. 

the  e l a s t i c  sca t te r ing  cross a2s-2s m y  a lso  be found from our 

calculat ion i f  it i s  assumed that the  rec iproc i ty  condition i s  

As  pointed out i n  Sec: I11 

f u l f i l l e d  . 
The accuracy of the  solution i s  discussed i n  Sec. IV 

and V. In Sec. V I  t he  nonadiabatic r e s u l t s  are presented and 

compared with the  r e s u l t s  from the  1s-2s close coupling expan- 

sion2’ 3’ 4J ’. The l a t t e r  has been shown t o  be a va r i a t iona l  

approximate solut ion of  t he  zeroth order problem . 1 Final ly ,  

t h e  implication of our r e su l t s  f o r  both the  experimental and 

theo re t i ca l  determination of t he  t o t a l  i n e l a s t i c  cross section, 

 CY^^-^^ is  discussed i n  Sec. V I I .  
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I1 Zeroth Order Nonadiabatic Theory 

It w i l l  be reca l led  from I t h a t  t he  nonadiabatic theory 

starts with a decomposition of the S-wave f’unction 

from which by subs t i t u t ion  i n t o  t h e  ShrUdinger equation an 

i n f i n i t e  s e t  of coupled two-dimensional d i f f e r e n t i a l  equations 

r e s u l t s .  One defines 8 zeroth order problem by neglecting 

the  coupling terms of the  4, = 0 equation: 

where 

a12 = a2/ar12 + a2/ar2 . 

O u r  units a r e  lengths i n  Bohr radii and energy i n  Rydbergs. 

Equation (13.3) cas describe only r e l a t i v e  s - s t a t e s  and 

i s  therefore  a l s o  ca l l ed  the  r e l a t ive - s  problem. I n  t h i s  paper 

we w i l l  consider incident  elec-Lrons with energies g rea t e r  

than 10.2 ev. 

the  2s state by co l l i s ion .  

I n  such cases the t a r g e t  atom may be exc i ted  t o  

Hence the  zeroth order wave function, 
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( O )  , w i l l  be required t o  have the asymptotic form 

@O 

Lim @Lo)(rlr2)=(- A sin k,r,+ae i k  r )Rls(r2)+beik2r1R,s(r2) 
r1- 

(2.1) 
kl 

For incident  e lec t ron  energies g rea t e r  than 12.09 ev higher 

s - s t a t e s  may be exci ted and for  completeness should be included 

i n  (2.1). However s ince each new term added t o  the  r.h.s. of 

(2.1) adds g rea t ly  t o  the complexity of t he  problem, only t he  

(IS) and (2s)  channels are included i n  our  calculat ion.  

In (2.1) k, i s  the  wave number of t he  incident  e lec t ron  

and k2 qk12 - 0.75 

sca t t e red  electron.  

radial hydrogenic s -s ta te .  

t he  incident  plane wave, while a and b a r e  constants w h i c h  govern 

respect ively the  e l a s t i c  and i n e l a s t i c  s ca t t e r ing  cross sec t ions .  

i s  the  wave number of an i ne l a sk ica l ly  

The function Rns(r) equals r times the  n t h  

A i s  an a r b i t r a r y  normalization of 

The zeroth order wave f’unction must a l s o  obey the  addi- 

1 t i o n a l  boundary conditions 

t r i p l e t  

(12.6) 
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and 

Here (a/an) i s  the  normal derivative.  

s t a t e s  t he  s p a t i a l  symmetry of t he  wave function: 

Equation (12.6) simply 

The sca t t e r ing  cross sect ions obtained from (2.1) a r e :  

I n  order t o  insure conservation of current,  t he  constants 

A, a, and b a r e  required t o  obey the  r e l a t ionsh ip  

I m  (A*a) = k, la 1" + k2Ib 1' , (2.4) 

To f a c i l i t a t e  the  solution of ce r t a in  non-linear equations 

which appear in t he  problem, we l e t  6 

Case (i) .A = k, (1-ia) , 
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A s  a check on the calculations the  s i n g l e t  case was a l s o  

7 solved with 

Case (ii) A = k ,  ~ 

( 2 . 6 )  

I n  both cases the  form of b i s  s o  chosen t h a t  eq. (2.4) was 

automatically s a t i s f i e d .  Hence the complex numbers a and b a re  

f u l l y  determined by the r e a l  numbers Re(a),  I m ( a ) ,  and Arg(b). 

The method of  solut ion of equation (13.3) follows t h a t  used i n  I: 

(')is expanded i n  a s e r i e s  consisting of separable eigenfunctions 
@O 

of (13.3) : 

The sum plus i n t e g r a l  means, as usual,  t h a t  t he  continuum s - s t a t e s  of 
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hydrogen i n  addi t ion  t o  the  d i sc re t e  s t a t e s  must be included. 

For the  d i sc re t e  s t a t e s  

1 - 
w = (1 - n 2-k12)2 n 

and f o r  t he  continuum 

= (1 f P2 - k l 2 P  1 

P 

With t h i s  r e l a t ionsh ip  each term of (2.7) i s  an exact so lu t ion  

of (13.3) 

The expansion (2.7) automatically s a t i s f i e s  two of the  

boundary conditions (2.1) and (12.7) but not the  t h i r d  (12.6).  

I n  order t o  s a t i s m  (12.6) we determine a, b, and Cn by the  

v a r i a t i o n a l  conditions 1 

- -  - 0  
axj 

x.. = a, arii;(b),Cn n = 3, .. .,N+2 
J 

(2.8) 

(2.9) 

(2.10) 

N is the  number of terms, beyond the  f irst  two, 



. '  

- 8  - 

included i n  t h e  expansion (2.7) and 

(2.11) 

Since a and the  (Cn)  are  complex, 2 N  -t 3 r e a l  equations 

r e s u l t  from (2.10). 

hence 2 N  of them may be solved immediately t o  obtain the ( C n )  

i n  terms of Re(a),  I m ( a ) ,  and Arg(b). The procedure followed 

i s  analogous t o  t h a t  outl ined i n  p a r t  four  of I, although some 

of the  in t eg ra l s  involved are s l i g h t l y  d i f f e r e n t  i n  form. 

These equations a r e  l i n e a r  i n  the C n' 

The i n t e s r a l s  were obtained i n  ana ly t i c  

form and were checked by numerical in tegra t ion .  Iiowever, i n  

the  s ing le t  case due t o  the  d i f f i c u l t y  of t he  numerical 

in tegra t ions  the  ana ly t i c  r e s u l t s  were i n  some cases only checked 

t o  one or  two s ign i f i can t  f igures .  In order t o  obtain s u f f i -  

c i en t  accuracy it w a s  necessary t o  solve f o r  the  C 

double precis ion ari thmetic,  i . e .  i6 s ign i f i can t  f i gu res  were 

re ta ined  i n  t h e  calculat ions.  

using n 

The remaining th ree  equations a r e  



- 9 -  

highly nonlineas i n  Re (a) ,  I m (  a ) ,  and Arg(b ) and were there-  

fore  solved numerically. A l l  ca lculat ions were done on t h e  IBM 

TO& computer of the  Theoretical  Division of t h e  Goddard 

Space F l ight  Center. 



. 
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I11 The Scat ter ing Matrix 

If an exact so lu t ion  were obtained f o r  t h e  zeroth order 

equation (I3.3), then the  rec iproc i ty  condition8 should be M- 

f i l l e d  and the  sca t te r ing  cross sect ions O ~ S - ~ S  and 0 2 s - 1 ~  

could a l s o  be obtained f r o m t h i s  same calculat ion.  Although 

we have no d i r e c t  check on how closely t h e  r ec ip roc i ty  con- 

d i t i o n  i s  f u l f i l l e d ,  it i s  expected t h a t  when 5 and % are 

small enough, rec iproc i ty  i s  s a t i s f i e d  t o  an  accurate degree 

of approximation. 

l y  from the  rec iproc i ty  condition; one form of which i s  

I 

The cross sect ion 02s-1s follows immediate- 

It is  however necessary t o  introduce the sca t t e r ing  matrix 

S i n  order t o  obtain ~ z s - ~ s .  

Many forms of t he  asymptotic boundary condition, Eq. (2.1), 

have been introduced by various authors. 

mon var ia t ions  a r e  of t he  following types: 

Two o f  the more com- 
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I n  (3 .1 )  the  Tij  are elements of t he  transmission matrix T 

while i n  (3 .2 )  the  Sij a r e  the elements of the  sca t t e r ing  matrix 
A 

S. The coef f ic ien t  (k2/k, ) multiplying TI, and S,, i s  i n t r o -  

duced so t h a t  Tij  aad Sij  w i l l  be symmetric. 

Equations (2 .1)  and (3.1) a r e  r e l a t e d  i n  the  following way: 

(3.4) 

The S and T matrices defined by (3.1) and (3 .2)  a r e  r e l a t e d  by 

S = 1 + 2iT (3.3 1 

Here 1 i s  t h e  u n i t  matrix. 

If t h e  S matrix i s  required t o  conserve probabi l i ty  cur- 

rent ,  then it w i l l  be uni tary:  

SSt = 1. (3.6 1 

If  t h e  rec iproc i ty  condition a l s o  holds, then the  S matrix 

w i l l  be symmetric: 

312 = s21 . (3.7) 
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From (3.6) S22 may be found to  be 

F ina l ly  the react ion cross sections a r e  given by the  f o r m l a  

where bij i s  the Kronecker de l t a  function. The 02s-2s thus ob- 

t a ined  are l i s t e d  in Table V I .  



. 

IY. INTERNAL CONSISTENCY OF THE SOLUTION 

The in t eg ra l s  Is and IT, Eq.  (2.11), should idea l ly  be zero.  

Presumably if enough terms could be taken i n  the  wave function 

expansion, (2 .7 ) ,  this should occur  t o  un arbitrary precision, 

however, f o r  N > 8 the  determinant of the C 

generally too small for accurate r e s u l t s  t o  be obtained. 

t r i a l  and e r r o r  s e t s  of terms in t he  expansion were chosen which 

minimized I and I The confidence we have i n  our r e s u l t s  depends 

both on the  smallness of I, and IT, and on the  consistency of the  

cross sect ions obtained by choosing d i f f e ren t  s e t s  of v i r t u a l  

e igenstates .  The magnitude of the  obtainable I and I a re  shown 

i n  Table I. 

energies l e s s  than t h a t  required t o  exc i t e  t he  3s  l e v e l  of hydro- 

gen. A s  soon as the  3s  threshold i s  passed, there  i s  a marked L a -  

crease i n  the  s i z e  of the  diagonal i n t eg ra l s  (pa r t i cu la r ly  i n  t h e  

s ing le t  case) .  

increase out  t o  30.6 ev. 

a marked decrease i n  the  agreement of the cross sect ions ob- 

ta ined  by choosing d i f f e ren t  s e t s  of v i r t u a l  continuum s t a t e s .  

Again t h i s  w a s  most bothersome i n  the  singlet case. 

( j  = 1, N ) ,  w a s  3’ 
By 

S T’ 

a 

S T 

A s  can be seen I and IT a r e  both qui te  small f o r  
S 

The s i z e  of the diagonal i n t e g r a l  continues t o  

A t  these higher  energies there  i s  a l so  



- 14 - 

For t he  s ing le t  case t h i s  behaviour i s  i l l u s t r a t e d  i n  

Table I1 by the  two top en t r i e s  f o r  k, = 0.9 and the  e n t r i e s  

f o r  k, = 1.0 and k, = 1.5. These e n t r i e s  represent  some of 

the  b e t t e r  runs obtained a t  these energies. The uncertainty i n  

the  s ing le t  r e s u l t s  can be gauged by comparing case ( i) and 

case (ii) r e s u l t s .  A t  t he  higher energies the  t r i p l e t  r e s u l t s  

seem t o  be qui te  a b i t  more accurate than t h e  s i n g l e t  r e su l t s .  

it should be remarked tha t  it i s  an assunption t h a t  t he  

zeroth order equation (i3.3) can be exact ly  s a t i s f i e d  subject  

t o  t he  more l imi ted  asymptotic boundary condition (2.1) i n  an 

energy domain i n  which we know t h a t  the  3s state, f o r  example, 

i s  accessible .  The above d ispar i ty  i n  the  qua l i ty  of r e s u l t s  

on the  two s ides  of t he  3s threshold may tend t o  ind ica te  t h a t  

t h i s  assumption i s  i n  f a c t  incorrect.  Hoxever, it i s  our 

opinion t h a t  the  chief d i f f i c u l t y  above the  3s threshold i s  

not i n  the  boundary condition (2.1) but i n  the loss of f l e x i b i l i t y  

i n  the  wave function i n  t h e  region of i n t e rac t ion  caused by the  

absence of the  3s s t a t e .  P a r t i a l  confirmation of t h i s  can be 

found i n  the  last  four k, = 0.9 en t r i e s  i n  Table I1 which 

i l l u s t r a t e  t he  e f f e c t  of omitting various low energy d iszre te  v i ryda l  

s t a t e s  from the  expaision, l'ie-\l-ertheless because there  i s  

a provision f o r  including a f l ex ib l e  choice of continuum s t a t e s ,  

TJe f e e l  t h a t  any theo re t i ca l  irAcom21eteness i n  our expansion 
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above 12.1 ev can be l a rge ly  compensated f o r .  

A more relevant  question i s  how these cross  sect ions w i l l  

change by v i r t u e  of the red is t r ibu t ion  of current when the  

t o t a l i t y  of open channels i s  included. 

calculat ion cannot answcr tha t  question, although i n  some sense 

The assumption must be made that  t h e i r  e f f e c t  i s  small. For 

i f  it were not, then the calculation of s ca t t e r ing  i n  thc  

t i o n  region would be a complete impossibilizy, because t h e i r  i n -  

clusion would e n t a i l  a wave function containing not only a d i s -  

c re te  i n f i n i t y  of bound excited s t a t e s ,  

Clearly the  present 

m i z a -  

but  a dense i n f i n i t y  of  ionized s t a t e s  as wel l .  It 

i s  our opinion therefore  tha t  i n  close coupling, f o r  example, 

when addi t iona l  s t a t e s  a re  added a t  an energy where they may be 

exci ted t h e i r  main e f f e c t  a r i s e s  from the increased f l e x i b i l i t y  

they allow the wave f’unction i n  the region of i n t e rac t ion  ra ther  

than i n  the  opening of‘ the channels t h a t  they afford.  

present method, which places v i r tua l ly  no r e s t r i c t i o n  on the  

number of terms t h a t  can describe the  wave function i n  the  region 

of in te rac t ion ,  is  expected t o  contain most of t h e  e f f e c t s  on the  

Is and 2s channels of  a close coupling expansion with a s imilar  

num’oer of terms. 

Thus the 
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V. EFFECT-W W G E  EXPAITSION A13OuT THE 25 TEIRESHOLD 

A f i n a l  check w a s  made t o  insure t h a t  our calculat ivn 

was compatible wi th ,  previous conadiabatic (NA) calculat ions 

below the  2s threshold.  Ross and Sham have recent ly  developed 

a multi-charnel e f f ec t ive  range theory. This i s  an extension 

of t he  ordinary ( s ingle  channel) e f f ec t ive  range theory T-. . :h 

can i n  pr inc ip le  describe a l l  channels of a reac t ion  both above 

and below the  threshold f o r  a new channsl. The cor re la t ion  i s  

accomplished i n  t e r m s  of an M matrix whose elements a romd 

threshold may be expanded i n  a power s e r i e s  i n  the  energy. 

The first two of these coeff ic ients  reduce e s s e n t i a l l y  t o  t i e  

sca t te r ing  length and effect ive range i n  the  one channel case. 

Tne M matrix has been used by Damburg and Peterkop' t o  extrapo- 

l a t e  t he  r e s u l t s  of 1s-2s close coupling calculat ions immediately 

above the  2s threshold t o  in fer  the e l a s t i c  s ca t t e r ing  beloir threshold.  

I n  t h e  same s p i r i t  we have extrapolated OUT present NA r e s u l t s  

t o  below threshold. I n  t h l s  case, however, t he  extrapolat ion vas 

i n  the  nature of a check as the NA r e s u l t s  below threshold have 

already been calculated'C. 

values of ols-l 

order NA ols-ls below threshold. 

was brought home i n  our presem calculat lons,  when the  values 

FGT compatibil i ty t h e  extrapolated 

should -then closely match t h e  computed zeroth 

The usefulness of t h i s  check 

which had been conputed a t  a3 e a r l i e r  s t z g e  gzve an extrapo- 

l a t e d  s ing le t  oi s-l ,that was not compatible with the  e x p l i c i t l y  
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io calculated values below threshold‘ . This helped lead t o  t h e  

discovery of a machine programring e r ro r  which had czused e a r l i e r  

singlet r e s u l t s  t o  ind ica te  a spuriously high peak i n  0’1s-2s cross 

sec t ion  j u s t  above the  2s threshold . 11 

The T and M matrices are r e l a t e d  f o r  r e l a t i v e  s-wave 

9 sca t t e r ing  by t h e  equation 

I 
T = k2(M - i k )  kB 

I n  t h i s  equation k i s  considered t o  be a diagonal matrix with 

diagonal elements k . The e l a s t i c  sca t te r ing  i s  then given by i 

Expanding the  elements of M about a reference incident  
i j  

e lec t ron  energy Eo, we obtain 

M. .(E) = M. .(Eo) -+ 3. .(E-Eo) + ... 
1 J  1 J  1 J  

I n  t h e  e f f ec t ive  range approximation tne  series i s  cut off  

a f t e r  t he  second term. We take Eo t o  be 10.2 ev, t h e  energy 

TecpLred t o  exc i te  hydrogen from the l s  to the  2s state.  ‘The 

expansion i s  va l id  for E < 10.2 ev,but i n  t h i s  case we must 

put k2 = i v e  i n  eqs. (5.1) and (5.2). 
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I n  the  t r i p l e t  case t h e  expansion (5 .3)  is  v a l i d  over a 

f a i r l y  long range, however i n  t he  s i n g l e t  case the  

presence of a resonance j u s t  below the  2s threshold sharply 

limits the  app l i cab i l i t y  of the expansion. According t o  'the 

ana lys i s  of Ross and Shawgthe e f f ec t ive  range approximate forma- 

l i s m  can describe only one narrow resonmce below threshold.  

Below t h i s  resonance t h e  formalism w i l l  not accurately pred ic t  

?ne true sca t te r ing  cross section. 

O u r  expansion pararreters M (Eo)  and R. vere obtained by 
i j  I J  

f i t t i n g  a two term polynomial of  t he  form (5 .3)  t o  t he  computed 

values of M 

i n  atomic u n i t s  i n  Table I11 together with the  coef f ic ien ts  ob- 

i n  the range 0 < kZ2 5 1.5 x They are given 
i j  

ta ined  from the  Is-2s close coupling values by Damburg and 

Peterkop . I n  f igure  1 the  conputed NA e l a s t i c  cross i s  compare5 5 

with our e f fec t ive  range extrapolation. A s  can be seen t'ne 

extrapolat ion qui te  accurately reproduces the  resonance near ki ' = O .  797. 

The second peak a t  k12 = 0.735 is  spurious i n  the  present zeroth or -  

ber problem but  more resonances a re  ac tua l ly  present when r e l a t i v e  

p-waves a re  included i n  the calculation i0,i2 
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V I  RESULTS 

The r e s u l t s  obtained f o r  the  spher ica l ly  symnetric port ion 

of t he  L = 0 sca t te r ing  cross sect ions o ~ ~ - ~ ~ ,  Es1s -25,  02s - 2 s  

a r e  shown i n  Tables IV to V I  and i n  f igures  1 t o  3 .  For compari- 

son purposes the  (Is - 2:) close coupling r e s u l t s  zre a l s o  given. 

A s  previously s t a t ed  t h i s  l a t t e r  calculat ion i s  a va r i a t iona l  ap- 

p rox imte  solut ion of the zeroth order problem. 

consistency of our calculations has already been extensively exaxlned 

i n  Section IV. For the r-onadiabatic en-iries i n  Tables I V - V I  t h?  

,lumber of s ign i f i can t  f igures  given ind ica tes  t h e  i n t e r n a l  consis - 

'iency of the calculat ion with the  l a s t  s ign i f i can t  f igure  being i n  

doubt. r'or t he  s ing le t  en t r ies  a t  kl = 1.5 even the  f i r s t  s ign i f i can t  

f i gu re  i s  uncertain.  

ones which a r e  p lo t ted  i n  those f igures ,  however the  case (ii) 

calculat ions are of equal weight. 

The i&- ,zznz~l  1 

Tlne NA s ing le t  case (i) cross sec t ions  a re  the  

I n  f igu re  2 the  nonadiabatic olS - 2s cross sect ions are corn- 

pared with the  close coupling expansion with the  Is and 2s channels 

open. The close coupling r e s u l t s  j u s t  above threshold were kindly 

computed f o r  us by D r .  Omidvar of the  Theoret ical  Division of t he  

Coddard Space F l ight  Center. They appear t o  be i n  good agreemenr, 

with those of Damburg and Peterkop . The other close coupling r e -  

s u l t s  were obtained from Nar r io t t2  and Omidvar , which i n  tu rn  

8re  i n  good agreement with those of Srnith and h i s  coworkers 

The nonadiabatic r e s u l t s  a re  about bo$ lower than those of the  close 

3 

4 

3,I-j 
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coupling calculation. I n  fac t  t h e  case (i) nonadiabatic 

01s-2s cross sect ions agree qui te  w e l l  with t h e  v a r i a t i o n a l  

calculat ion of Yassey and Moiseiwitsch . G 

F i w e  3 shows t h e  zeroth order nonadiabatic e l a s t i c  s i n g l e t  

cross sect ion i n  t h e  neighborhood of t he  threshold (10.203 ev) 

and out t o  30 ev. A def in i te  Wigner cusp i s  indicated at 3 r e s -  

hold. The close coupling resu l t s ,  dashed l i ne ,  a l s o  ind ica te  

a cusp at  threshold.  

remains 20% l a rger  than t h e  close coupling r e s u l t s  and 01 s-1 s 

as such are l a rge r  than the p lo t ted  case (i) r e s u l t s  w?L i ch  at  

these energies are wit21i.n ?$ cf t h e  close coupling values. 

Above 30 ev t h e  case (ii) nonadiabatic 

The Ols-ls curve i s  sho.wri as varying smoothly above t h e  

2s threshold.  Actually t en ta t ive  r e s u l t s  ind ica te  t h a t  there  

i s  probably a s l i g h t  r i pp le  i n  the e l a s t i c  cross sect ion zust 

below the  3s exci ta t ion  threshold. The lragnitude of t h i s  

r i pp le  appears t o  be only a few percent of t h e  t o t a l  cross 

sect ion and it i s  d i f f i c u l t  t o  seperate  it from t h e  ordinary sca t -  

t e r  i n  t h e  calculated cross sect ion a t  this  point.  Tnis e f -  

f e c t  a l s o  occurs i n  t h e  (1s-2s) and (2s-2s) channels,and it 
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may be analogous to Yne resonance i n  o’ls-ls below t h e  2s 

threshold but  much reduced in sca le .  

OLX t r i p l e t  e l a s t i c  cross sect ions e p e e  with the  close 

coupling r e s u l t s  to b e t t e r  than l$. Since the  t r i p l e t  cross 

sect ions dominate i n  t h i s  region, t‘ne t o t a l  nonadiabatic e l a s t i c  

cross sec t ion  ( 0  

r e su l t .  

f ot) l i e s  within 2$ of t h e  close coupling 
S 

It would be of  i n t e r e s t  to be able  t o  solve the  zeroth 

order equation (13.3) exactly by numerical means. 

e f f o r t  i s  being made to do this with the  noni te ra t ive  method 

which has already been used in t he  t r i p l e t  case below thresholE 

So far t h e  r e s u l t s  have been unsat isfactory.  This i s  a t  l e a s t  

A continuing 

i4 . 

p a r t l y  due to t h e  l a rge  effect ive in t e rac t ion  radius  between 

the  2s s t a t e  of  hycbogen and t he  sca t te red  e lec t ron  . 
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V I 1  DISCUSSION 

Figure 4 compares the  spherical ly  syxmetric port ion of 

t he  i n e l a s t i c  cross sect ion with the  t o t a l  close coupling 

theo re t i ca l  cross sect ion an;. with the  t o t a l  experimental cross 
16 sect ions obtained by Stebbings e t  al l5 and Lichten and Schultz . 

Examination of the  graph indicates  t h a t  t he  nonadiabatic L = 0, 

33-2s cross sec t ion  i s  .reZ.uced from the  1s-2s CC r e s u l t s  by 

about t h e  saze percentage as t h e  Lichten and Schultz cross sec- 

t i o n  i s  reduced f romthe  ls-2s-2pCC r e s u l t s  around t h e  region 

of maximum cross sec t ioz  (15 ev) or as t h e  Stebbings e t  a l .  a r e  Z ~ o n  t h e  

Lich n e t  a1 /res&%s over bost of t h e  energy range. Ehs t h i s  calculat ion 

reinforces  what one i\roLLd be tempted t o  bel ieve on looking a t  

The 1s-2s-2p r e s u l t s  i n  cozp~rison > ~ i z L  t'2e experizeccr l  

r e su l t s :  a more exact theore t ica l  calculat ion w i l l  reduce the  

theo re t i ca l  cross sect ion toward the  experimental r e s u l t s .  

A s  t o  t he  amount of t h i s  decrease one must be i n f i n i t e l y  

more circumspect i n  guessing. I n  the  lmguage of t h e  nonadia- 

b a t i c  theory the  L = 0 part of the Is-2s-2p calculat ion r e f e r s  

t o  the  r e l a t i v e  s + p wave problem vbereas t h e  1s-2s calcula- 

t i o n  r e f e r s  t o  only t he  r e l a t ive  s-wave problem, 
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From that point of view, the latter appears to be a better 

approximation relative to its complete solution (to which the 

present paper is addressed) than the former is to its complete 

solution. In either case, it might seem ridic-ilous to try to 

approximate by two or three terms what in principle is Cescribed 

by a singly or doubly (discrete plus continuous)infinL" 1 be set of 

functions. Here, however, one must recall what Seaton long 111 

ago emphasized, that the explicit (anti) symmetrization of the 

wave function in fact doubles the number of terms and goes a 

long way in including the effects of the continuum in these 

calculations. Secondly, with regard to the Is-2s-2p calculation, 

the singlet L = 0 gives only the second largest contribution 

to 01s-2s. The largest contribution comes from the triplet 

L = 1 state. Experience -t;hus far indicates that the close 

coupling approximation is mdi nr3re accurate in triplet as 

opposed to singlet states. 

Thus it is very difficult at this time to infer the COT- 

rect norr?;tlization of the experinental result. In view of the 

m y  cozpting elements which are either included or left out 

of the close coupling calcuhtion, our o m  opinion is ;kat the 



correct normlization of the experimental result is between 

those of Lichten et al. and Stebbings et al. and closer to the 

latter, very close,  In fact, to that curve where the error bars 

of the respective experiments overla;? . Tais coriclusion is 18, Il 

supported by z recent (1s -2s-'2p-3-33) close coupling calcula- 

tion by Taylor and Bm-;rc:'-'' vhieh produced more than a 3% de- 

crease in o'1s-2s a t  16.5 ev f'rom the c lose  coupling 
3,  It. (IS -2s -2p) calculation e 

Cur results and those of Can;bmg and Peterkop 5 also show 

that one must be very cautious in naively extrapolating cross 

sections to threshold using the Wigner t'nreshold behaviour law 20 . 
The present results, Table 5, indicate that the law's range 

can be exceedingly s r i l l .  When the 2p state is included in the 

calculation the 2s and 2p states are degenerate and Wigner's 

threshold laws no longer necessarily apply 12 . 
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Table I 

Sa t i s f ac t ion  of t h e  diagonal boundzry condition, I,=ITd, 

at various incident conenta k, 

u 



Tzble I1 

Investigation of the  internd. consistency of the  singlet nonadiabatrc 

calculations. This -;able is discussed in Section IV. 

i'. IS gl s ->?s 

r;i;ot,,.~.. ,.i;-ts case (i) case (ii) case i case ii 

3x10- 

lxlo-" 

,x10-< 

8x10 -4 

-3 , - r10 

7~10-~ 

l x 1 O - l  

0.0339 0.0338 

0 .039  0 .039  

0.0334 0.0335 

0.0309 0.0310 

0.0289 0.0291 

0.0469 0.0488 

0.0463 0.0481 

0.0131 0.0196 

virtual states 0 1 S T l S  

case i case ii discrete continuun 

0.4674- 0.4674 3 4 0.05 0.3 0.6 0.3 1.1 

0.4674 0.4674 3 0.05,O. 3 , O .  3,O - 7,O. 5 
1.1 

0.4676 0.4676 4 0.05,0.3,0.5,0.7,~c .: 
1.1 

0.4683 0.4684 - 0 . 0 5 ~ 0 .  j 0 .>) c . :lJ 0. c, 
1.1,l. 3 

0.4672 0.4680 - C .2,0.4, 9.6,O. :.5 C. 5 
1.05 
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Table Iii 

Tne first two coeff ic ients  i n  the expansion of  the M matrix 

elenents at the 2 s  threshold, eq. (5.3) 

NA = nonadiabatic 

Singlet  

NA cc 

It- ( 0 ) 1.0610 1.300 

4zi (0) -0.0569 -0.0629 

-:99 L- (0) -0 0368 -0.0356 

_. 4.2267 4.82 

fr- 2 -3.9292 -4.32 7 

RL2 11 4-89 11.54 

cc = close couplingE 

Triplet 

KA cc 

0.0293 0.0301 

-0.0017 -0.0017 

0.1208 0.1206 

1 1373 1.20 

0 0642 -0 .G6 

5 .1528 5.14 

(3) Close coupling coef f ic ien ts  taken from B x b z g  and Peterkop r e f e r e x e  5 .  



Table IV 

Thie spher ica l ly  symmetric portion of k3.e L = 0 e l a s t i c  (1s-1s) 
ci'oss sec t ion  f o r  t h e  sca t te r ing  of e lec t rons  5y atomic hyciro- 
gen i n  .uai-ts of 7 a. . 3 NA=Xonadizbz,tic"; CC=Close coupling 15-2s- 2 

B l l c r ~ y  (cv) 

10 " C 5 l  
13 " :32 
1;) * 155 
10.165 
io. iGg 
13. iT3 
1c " 189 
12 " 194 
i i 3  e 3 8  
10 203 
10 203 3 
10.2Gj6 

10 * 2Sli.O 
LO. 2053 
10.2c85 
10.299 
10 .556 
10 . :f 77 
11.02 

12.02 
13.605 
16 "4.6 
19.6 
30.6 

S ingle t 
NA CC 

0.635 
0.760 
1.20 
1 ., ;:i7 
0 .o 
0 .25.,;3 
0 "83;- 
0.4233 
0.4163 

0.4768 
0 9 4795 

case (i) case (ii) 
0 . 4 p o  0.4789 
0 A755 0.4751:- 0.424-4 
0 A742 0.4@.0 0 .k235 

0.4955 0.4541 

* J  9 

0. L!-743 

G .4955 0.4934 0.4568 
0.4.826 0 .&F&5 0 " k.2.5 4- 

0 327 0 3 0  0.2w 
0.239 0 0230 0.1865 

0.095 

0.11674 0 A673 0 .it324 

399 -399 

0 01-75 0.190 0 e 1397 
0.113 0.0903 

Tr ip le t  
XA cc 

Toreshold 

3.995 3.s35 
3.994- 3.993 
3.958 3.957 
3.864 3.664 
3.773 3.T2 
3.684 3.684 
3.349 
2.305 2.903 

1.833 1.829 
0.974 0.9716 

2.300 2.297' 

sum 
3:-I CC 

:'I 

. ,  ~ v - 2  close cou2iing r e s u l t s  were conputed by K. Omi&vai*, r e Z c r e r c e  b o  

i. s t a t i s t i c a l  f ac to r s  1/4 and 3/h a r e  included i n  the cross sect ions.  When 
, . - x2 .do le  case (ii) r e s u l t s  were u s e d  t o  f i n d  t h e  t o t a i  sczttei-ing cross sectiofis. 

. -  



Table V 

r-r ,ne sphereczlly sy-rfifiietric portion of the L = 0 (1s-2s) crca.s 
sect ion f o r  the exci ta t ion or" ELXX+S.C hy&ogen by elecxrG:x 
in wits ~i ao2. XA=XonadLabs-Lic ar-d CC=Close coiiF1ing 12-2s .. a 

Energy(ev) 

10. ;GO4 

10.20176 

10.20lil 

10.294 

ic 3 3 6  

10.7:'6 

11. c2 

12.02 

ij 605 

15 .) 46 

19 -59 

30 -61 

Sinzlet  

x.4 cc case (i) case (ii) 
0 .I ooc; 

0.0142 

0 0204 

0 . O X 3  

o a 0318 

0 0339 

0 a 0448 

0 .ob6 

0 .035 

0.031 

0.013 

0 .GO66 

0.01~2 

0.0204 

o .035b 

0.0314 

0 e 0319 

.0338 

.oi;k8 

0.048 

0.040 

0 -039 

0.019 

0.0168 

0.0266 

0.0420 

0.0356 

0 0355 

0.0375 

0.0725 

O.O?V"l 

0.05.k.7 

0.0241 

Triplet Ei-..n 

EA cc CC 

0. ociG 

1 . 3 Table I V  footnotes.  



Tz'ole VI 

m e  spherically s y m e t r i c  portion of t h e &  = O ) ' ; ' S - ~ S  cross 
s e c t i o n  f c r  the s c z t t e r i n g  of electrons by a t o m i c  hydrogen 
i n  u n i t s  of 7 a0 . XkXonzdiabatiC"; CC=Close coupling 1s-2s. 2 

S ingle t  T r i p l e t  sum 
E x r g y  (ev)  NA 

caoo(i) c a r r c ( ~ i )  

654. 654. 

622. 622. 

579- 579. 

137 

19.6 19 "6 

3.69 3 .sa 
0.441 0.441 

0.43 0 "41 

1.8 1.9 

1.8 :L .8 

1.3 1.3 

0.60 0 055 

cc 

650 -3 

602 .0 

135 055 

19 -36 

0.3303 

1.532 

I. 1.25 

0.8980 

0 .?TO2 

3A 

205 -0 

204 .O 

170.6 

110.4 

71.21 

45 -99 

7-57 

0.c2 

1-31 

2.43 

1.94 

CC EA cc 

71*2.0 

45 "94 

0 0 2102 

1.36 

2.112 

1.811 

a See Table IV footnotes. 



1. Corrparison of t>e  ::on:puted noc-dizbztic (IS-1s) cross  see- 

t i o n  ( s o l i d  l i ; ~  ) ixzr the 2s threshold with efZective r z g e  

extrapolat ions.  Circles  a re  the  nonadia'aatic efi 'ective 

range extrapolat ion.  Triangles &re the  ( is-2s) close cous- 

l i n g  e f fec t ive  rin.:;Se extrapolat ion 03 Dax5mg and Feterkog (. 

The figure i s  di.scu.ssed i n  t h e  t e x t .  

2.  Coxparison o f  zeroth order nomdlaba t ic  Is-2s exc i t a t ion  

cross sec t ion  wi--  Lh the  close coupling Is-2s expsnslm.  Tfie 

f i g c e  i s  discussed i n  the text. 

C m p r i s o n  of t he  zeroth order  ronadihbatlc e l a s t i c  scat"ierlr;_g 

cross sectLon wi th  the ciose coupling 1.5-2s expansion. 

l igxre i s  discu-ssed i n  the t s x t .  

Tne t o p  four carves represent tfie total close co-rpling t%e- 

o r e t i c a l  and the  experixentzl  cross sec t ions  f o r  ?le l s - 2 ~  

exc i t a t ion  of Bby electron ix2zct .  The t w o  bo t tox  curves 

give t h e  iL = 0, angle independent portLon 02 t h i s  cross 

sect ion.  The f igure  i s  discussed Ln t h e  t e x t .  

3.  

Ti;? 

4.. 
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