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Cadmium sul f ide  (CdS) t h i n  f i l m  so l a r  c e l l s  have come a long way i n  t h e  pas t  
severa l  years and now look promising. Currently being made a r e  4 t o  7 percent e f f i c i -  
en t  3x3 inch c e l l s  with 8 t o  10 percent c e l l s  not an u n r e a l i s t i c  goal i n  t h e  fu tu re .  
When one begins t o  consider a r rays  f o r  space power systems, t h e  necessi ty  of ass igning 
performance parameters t o  t h e  c e l l s  becomes apparent.  A s  a r e s u l t ,  t he  s t a b i l i t y  Of 
t h e  t h i n  f i l m  c e l l s  has come under c loser  sc ru t iny  i n  recent  months. 

F i r s t ,  we w i l l  consider our experience a t  NASA Lewis Research Center on t h e  s to r -  
age s t a b i l i t y ,  moisture degradation, and thermal cycling du rab i l i t y .  Secondly, w e  
w i l l  deal  with some aspects  of t h e  mechanism f o r  t h e  CdS-Cu2S so la r  c e l l .  

The c e l l s  t h a t  we a r e  concerned with have a t h i n  metal or p l a s t i c  subs t r a t e  (1 
or 2 m i l s  t h i ck )  on which i s  deposited a m i l  of CdS, then a b a r r i e r  of Cu2S, a gold 
(Au)  or copper (Cu) current  co l l ec t ing  g r id ,  and f i n a l l y  t h e  adhesive and encapsulat- 
ing  p l a s t i c  of e i the r  Mylar or H - f i l m .  The so la r  c e l l  i s  3x3 inches and about 5 m i l s  
t h i c k .  
of normal handling. However, t h e  c e l l s  do appear t o  degrade during storage i n  a 
double desiccator under ambient conditions or i n  a vacuum des icca tor .  Figure 1 shows 
t h e  e f f ic iency  of severa l  types of CdS c e l l s  as a funct ion of t h e  time i n  s torage .  
The data  presented a re  averages from more than 120 c e l l s .  The gold-gridded c e l l s  
( s o l i d  l i n e s )  t ha t  depend on t h e  pressure of t h e  encapsulating p l a s t i c  t o  hold t h e  
g r id  i n  contact with t h e  b a r r i e r  a r e  qui te  s t ab le ,  degrading about 0 .1  percent every 
two months. The c e l l s  having t h e  Au gr ids  e l ec t rop la t ed  d i r e c t l y  onto t h e  b a r r i e r  
show no degradation with t i m e ,  however t h e  e l ec t rop la t ing  process reduces t h e  power 
output of t h e  c e l l .  
sure  of t h e  encapsulating Mylar t o  hold them i n  place degrade very r ap id ly  but do 
reach a s t ab le  condition i n  3 t o  7 weeks. The Cu-gridded c e l l s  (dashed l i n e s )  t h a t  
depend on t h e  pressure of t h e  H - f i l m  t o  hold them i n  place degrade slower and reach 
a s t ab le  condition i n  2 t o  6 weeks. 
cept  f o r  t h e  cost of t h e  gr id ,  which i s  approximately $8 per  c e l l .  To lower t h i s  
cos t ,  one manufacturer has switched t o  Cu g r ids .  The drop i n  e f f i c i ency  f o r  t hese  
c e l l s  i s  because of an increase of t h e  series r e s i s t ance  due t o  t h e  g r i d  l i f t i n g  from 

* t h e  b a r r i e r  of the c e l l .  Some of t h i s  current  l o s s  can be recovered by t h e  appl ica-  
t i o n  of pressure t o  the  c e l l  package while relamination usua l ly  r e s u l t s  i n  a completely 
recovered c e l l .  

It i s  very f l e x i b l e ,  l i g h t ,  and shows no s ign of wear or damage as a r e s u l t  

The copper-gridded c e l l s  (do t ted  l i n e s )  t h a t  depend on t h e  pres- 

The Au-gridded c e l l s  are qu i t e  s a t i s f a c t o r y  ex- 

The voltage remains v i r t u a l l y  unchanged. 

It thus appears t h a t  t he  s to rage - s t ab i l i t y  problems occur because t h e  gr ids  do 
not maintain good contact with t h e  b a r r i e r s .  The movement of t h e  g r i d  can r e s u l t  from 
t h e  re lease  of s t resses  b u i l t  up i n  t h e  c e l l  during lamination. Since t h e  g r id  be- 
comes an in t eg ra l  p a r t  of t h e  adhesive and p l a s t i c ,  it must e i t h e r  move o r  be deformed 
as t h e  s t r e s ses  are re l ieved .  The more d u c t i l e  Au g r i d  can deform more e a s i l y  than 
can t h e  Cu, which would t r a n s f e r  t h e  s t r e s s  d i r e c t l y  t o  t h e  g r id -ba r r i e r  i n t e r f ace .  
Approaches t o  the problem now being evaluated include improved lamination conditions 
and epoxy cements t o  hold the  gr ids  i n  place.  Proper annealing of t h e  laminated c e l l  
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may be a n o t k  r approach t o  t h e  problem. 

Moisture d e g r a b t i o n  of CdS c e l l s  has been a long standing problem. The extent- 
of t h e  problem i s  shown i n  f i g u r e  2 where the percent degradation of t h e  maximum power 
per day i s  p lo t ted  as a funct ion of t h e  r e l a t i v e  humidity. 
and H - f i l m  encapsulated c e l l s  are p lo t ted .  
t h e  c e l l ' s  l i f e  i s  very short ,  t h e  rate of degradation could be t o l e r a t e d  at  low 
humidities.  More w i l l  be s a i d  on t h i s  l a t e r .  

Both 1- and 2-mil Mylar 
Although at 100-percent r e l a t i v e  humidity 

A d e t a i l e d  study w a s  made at 65-percent r e l a t i v e  humidity. I n  f i g u r e  3 t h e  
decrease of both t h e  shor t -c i rcu i t  current and t h e  open-circuit  voltage i s  shown as 
a function of time. The tes t s  were made i n  humid a i r  at  ambient temperature and 
pressure.  It i s  of i n t e r e s t  t o  note t h a t  during t h e  f i rs t  month o r  so t h e  current 
decreased rap id ly  before leve l ing  off while the voltage decreased only slowly. I n  
f i g u r e  4 t h e  s e r i e s  res i s tance  Rs and the  sa tura t ion  current Io are p l o t t e d  as 
a funct ion of time. Both t h e  R and Io increase very slowly f o r  t h e  f i r s t  month 
then rap id ly  increase.  The shunt res i s tance  decreased during t h e  f i rs t  month, then  
tended t o  l e v e l  o f f .  The s p e c t r a l  response of t h e  c e l l s  from 0.4 t o  1.1 u decreased 
uniformly during the  first month. Later t h e  i n t e n s i t i e s  were t o o  low f o r  accurate 
measurements, although t h e r e  was an indicat ion t h a t  t h e  red  response was af fec ted .  

From these  data we concluded t h a t  water penetrates the  c e l l ' s  p l a s t i c  cover and 
i s  adsorbed i n  t h e  junction thus increasing t h e  number of recombination centers so 
t h a t  t h e  current  i s  reduced. No permanent damage i s  done t o  t h e  junction, at  least 
i n i t i a l l y .  It was a l s o  found t h a t  if t h e  degraded c e l l s  were heated i n  a vacuum, a 
port ion of the l o s t  current could be restored, whereas pressure alone had no e f f e c t .  

(This i s  i n  contrast  with t h e  storage degradation where pressure alone did r e s t o r e  
some of t h e  cur ren t . )  Thus, as mentioned e a r l i e r ,  low rates of degradation might be 
t o l e r a t e d ,  s ince once i n  space the c e l l s  can be  expected t o  recover at l e a s t  a p a r t  
of t h e i r  l o s t  power as they  are heated by the  sun. 

The most s t r ingent  t e s t s  and probably the most important f o r  space appl icat ions 
a r e  the  thermal cycling t e s t s  being run at Lewis. 
t h e  two thermal cycling f a c i l i t i e s  now i n  use a r e  l is ted.  Currently, so la r  c e l l s  are 
subjected t o  a s e r i e s  of thermal cycles consisting of 1.5 minutes of l i g h t  and 1-5 min- 
u tes  of darkness. The data, consis t ing oftemperature, open c i r c u i t  voltage V 
and f o u r  load currents ,  are automatically recorded when t h e  c e l l s  approach equi ibrium 
temperature. 
perature  range of -90" t o  -120" C .  
t u r e  of 0" t o  109" C depending on t h e  i n t e n s i t y  of t h e  l i g h t .  
100 t o  200 mw/cm have been used f o r  these  t e s t s .  
years ago c e l l s  barely l a s t e d  10 cycles,  but; progress has been steady and today we 
have c e l l s  t h a t  have not l o s t  any of t h e i r  o r ig ina l  performance a f t e r  2,000, 4,000 
'and even 10,000 thermal cycles.  

I n  table  I t h e  main f e a t u r e s  of 

Of: 

During the dark port ion of the  cycle, t h e  c e l l s  a r e  cooled t o  t h e  t e m -  
I n  t h e  simulated sunl ight ,  c e l l s  reach a tempera- 

Light i n t e n s i t i e s  of 
When t h i s  program began almost 2 

I n  fi .gure 5 t y p i c a l  thermal cycling data a r e  shown where t h e  r e l a t i v e  power out- 
'put i s  p l o t t e d  against  t h e  number of thermal cycles.  
sure alone t o  hold t h e  gr ids  i n  place (Au o r  Cu) f a i l e d  i n  t h e  manner shown. Some 
f a i l e d  very soon and o thers  after thousands of cycles but a l l  f a i l e d  i n  t h e  same way. 
They developed short  c i r c u i t s  as a r e s u l t  of t h e  movement of t h e  g r i d  across t h e  bar- 
r i e r  during the thermal cycle.  
them out ,  by relamination, or simply by annealing them. 
because t h e  epoxy d i d  not bond t o  t h e  gr ids .  
where t h e  Au gr ids  a r e  e lec t ropla ted  d i r e c t l y  onto t h e  b a r r i e r .  
very w e l l  i n  thermal cycling. The front-wall  p las t ic -subs t ra te  c e l l s  have a l so  success- 
f u l l y  withstood thermal cycling. 

A l l  c e l l s  t h a t  depended on pres- . 

The shorts  can be removed i n  most cases by buring 
Epoxy-cemented gr ids  f a i l e d  

The best  metal subs t ra te  c e l l s  a r e  those 
They have stood up 

One of these c e l l s  has shown almost no drop i n  power 
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output after 10,000 cycles .  
th in- f i lm c e l l  construction. 
r e l i a b l e  and, as improved f i l m  c e l l s  a r e  developed, we s h a l l  continue t o  evaluate them 
i n  these simulated space chambers. 

Another of t h e  problems of t h i s  c e l l  i s  t h a t  we do not understand very wel l  how 

The thermal cycling t e s t s  have uncovered many defects  i n  
However, subsequent c e l l s  have p r o v e d t o  be much more 

.I 

iteworks. Improvements i n  t h e  c e l l  have been made empirically f o r  t h e  most p a r t .  
we can make some progress i n  understanding t h e  c e l l ,  t h i s  may help t o  improve t h e  

If 

a present c e l l  and may possibly point t h e  way t o  new types of c e l l s .  

To begin with, it i s  necessary t o  character ize  t h e  copper su l f ide  layer  as com- 
' p l e t e l y  as pnss ih lp ,  

of the  chemically formed copper s u l f i d e  l a y e r .  F i r s t  of a l l  e lectron d i f f r a c t i o n  was 
used t o  examine t h i n  layers  of t h e  su l f ide  formed on s ingle  c r y s t a l  C d S .  
t h a t  t h e  copper-sulfide f i l m  had a hexagonal s t r u c t u r e  with l a t t i c e  spacings only a 
f e w  percent d i f fe ren t  from CdS. This corresponds t o  a high T modification of Cu S, 
which i s  normally s tab le  only down t o  105" C .  Thicker f i l m s  of t h e  copper su l f ige ,  
when examined by X-ray d i f f r a c t i o n  show t h e  f i l m  t o  be orthorhombic Cu S o r  chalcoci te .  
Thus,+the f i l m  i s  composed of Cu S with a c r y s t a l  s t ruc ture  t h a t  closeyy matches t h e  
CdS s t ruc ture  at the  in te r face .  ?Further from t h e  interface,  t h e  s t a b l e  chalcoci te  
form of Cu2S i s  predominate. Since t h e  c r y s t a l  s t ruc tures  of t h e  Cu2S and C d S  a r e  
similar a t  t h e  junction, we expect a minimum number of imperfections a t  t h e  i n t e r f a c e .  
This may explain t h e  high l ight-generated current i n  t h i s  c e l l .  

T$le 11 shews t h e  r e s u l t s  of a*&- study of the  c r y s t a l  stTicCt-De' 

It w a s  found 

W e  have learned t h r e e  basic e l e c t r i c a l  propert ies  of t h e  copper s u l f i d e  l a y e r .  
It i s  p-type . From Hall-coeff ic ient  measurem t s  on t h e  f i m we have found t h a t  t h e  
c a r r i e r  concentrations a r e  i n  the  range of 10 
degenerate. 
function of t h e  wavelength and, a f t e r  correct ing for the  f r e e  c a r r i e r  absorption, we 
f i n d  t h a t  t h e  opt ica l  band edge i s  c l e a r l y  defined and corresponds t o  a band gap of 
0.9 eV. 

5Y 3 carriers/cm . Hence, t h e  mater ia l  i s  
We have measured the  o p t i c a l  absorption coeff ic ient  of t h e  f i l m  as a 

Since w e  know something about t h e  proper t ies  of t h e  copper su l f ide ,  it i s  pos- 
s i b l e  t o  sketch t h e  band s t ruc ture  f o r  t h e  c e l l .  The bar- 
rier height of 0.8 eV shown i n  t h e  f i g u r e  w a s  determined by capacity-voltage measure- 
ments. Nearly a l l  of t h e  band-bending occurs i n  t h e  CdS, due t o  t h e  high c a r r i e r  
concentration i n  the  Cu2S. 

NOW we would l i k e  t o  consider what m i g h t  be expected f o r  t h e  s p e c t r a l  response 
of t h i s  heterojunction as a photovoltaic device.  We should expect t h a t  t h e  c e l l  
would begin t o  yield current from r e d  l i g h t  a t  an energy near 0.9 e V ,  t h e  Cu2S band 
gap. W e  should a l so  expect t o  see an increase i n  t h e  photocurrent when t h e  photon 
energy reaches the band gap of CdS at 2.4 eV. Figure 7 shows t h e  s p e c t r a l  response . of a C d S  f i l m  c e l l .  The spec t ra l  response shown here  are a l l  r e l a t i v e  t o  t h e  maximum ' 
response a t  around 2.6 eV. The expected increase 
i n  photocurrent a t  2.4 eV occurs, but t h e  threshold energy f o r  t h e  c e l l  i s  about 1 .2  

It should be mentioned t h a t  t h e  magnitude of t h e  * 

r e d  response of t h e  c e l l s  ( t h e  response from 1 . 2  t o  2.4 e V )  i s  qui te  var iable ,  depend- 
ing on how t h e  c e l l  i s  made. More w i l l  be s a i d  about t h i s  l a t e r .  
t y p i c a l  CdS f i l m ,  t h e  threshold remains at about 1 .2  e V .  This r e s u l t  suggests t h a t  
t h e  red  response i n  t h e  c e l l  does not o r i g i n a t e  i n  t h e  Cu S l a y e r .  
b i l i t y  i s  t h a t  it arises from deep impurity l e v e l s  i n  t h e  C d S  located at an energy 
depth of about 1 .2  eV. 

This  i s  done i n  f i g u r e  6.  

No bias or green l i g h t  w a s  used. 

. eV r a t h e r  than the expected 0.9 eV. 

However, for a 

The other  possi-  2 

We next t r i e d  t o  ident i fy  t h e  impurity. Af te r  considering several  p o s s i b i l i t i e s ,  
we have come t o  the t e n t a t i v e  conclusion that  t h e  impurity responsible for t h e  r e d  
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response i n  t h e  c e l l  i s  excess cadmium. Evaporated CdS f i l m s  are known t o  be non- 
stoichometric and recent work has shown t h a t  they  contain excess Cd. 
been shown t h a t  some of t h e  excess Cd Can be evaporated out of t h e  f i l m  by heat t r e a t -  
ment. 
if Cd i s  responsible.  We took two nominally i d e n t i c a l  CdS films, both from t h e  same 
evaporation, and heated one i n  argon f o r  1/2 hour a t  575" C .  
both f i l m s .  The r e s u l t s  a r e  shown i n  f igure  8. The red  response of t h e  heated f i l g  
i s  lowered considerably. 

* r e s u l t s .  I n  a second experiment, we investigated t h e  e f f e c t  of pu t t ing  C d  i n t o  t h e  I 

f i l m s .  Two i d e n t i c a l  f i l m s  were hea t t rea ted  t o  remove some of t h e  excess bd. I 

t h e  two w a s  coated with a t h i n  f i l m  of Cd metal and again heated b r i e f l y .  I 
' response of t h e  c e l l  made from t h e  Cd-treated f i l m  w a s  higher than t h e  untreated c e l l .  
This i s  again evidence t h a t  excess Cd i s  i n  some way responsible f o r  t h e  red response. 

It has a l s o  

Hence, we expect t h a t  heat treatment of a f i l m  should lower t h e  red  response, 

We then  made c e l l s  from 

This experiment was repeated several  times with i d e n t i c a l  

One of 
The r e d  

A t h i r d  experiment was performed by exposing t h e  c e l l  t o  hydrogen s u l f i d e .  W e  
expect H2S t o  reac t  chemically with t h e  excess Cd thereby removing it. 
ance degrades rap id ly  on exposure t o  H2S. 
degraded c e l l s  showed a considerable loss  of red  response, which can be explained b y  
t h e  removal of free Cd. 
ponse of t h e  c e l l  i s  l a r g e l y  due t o  excess Cd i n  t h e  l a t t i c e .  

Cell perforrn- 
Spectral-response measurements of s l i g h t l y  

I 

We conclude from these t h r e e  experiments t h a t  t h e  red  r e s -  
I 

We then became i n t e r e s t e d  i n  t h e  p o s s i b i l i t y  t h a t  other metals besides Cd might 
be used t o  produce deep donor impurit ies.  
t o  C d  i n  t h e  per iodic  t a b l e  and have similar s izes .  
might en ter  t h e  CdS l a t t i c e  i n  a way similar t o  Cd. Figure 9 shows t h e  e f f e c t  of in-  
troducing these  metals i n t o  CdS f i l m s .  
t h e  c e l l s .  

Si lver  (Ag) and indium ( I n )  are adjacent 
Therefore, w e  expect t h a t  they  

Both I n  and Ag increased t h e  r e d  response of  

I n  summary, t h e  major problem areas associated with t h e  CdS f i l m  c e l l s  are s t o r -  
age, humidity, thermal cycling and mechanism. The storage s t a b i l i t y  problem can be 
eliminated by t h e  use of gr ids  t h a t  are f i rmly attached t o  t h e  c e l l .  For humidity 
damage, we f i n d  t h a t  t h e  c e l l s  can be exposed t o  20-percent r e l a t i v e  humidity f o r  long 
periods of time ( i . e . ,  long enough t o  assemble an a r r a y  with l i t t l e  o r  no damage). 
By proper construction methods, f i l m  c e l l s  t h a t  a r e  very r e s i s t a n t  t o  thermal cycling 
can be made. P l a s t i c  subs t ra te  and electroplated-grid c e l l s  have been made t h a t  can 
withstand 10,000 cycles,  which i s  equivalent t o  2 years i n  Earth o r b i t .  
mechanism of t h e  c e l l s ,  they  appear t o  be heterojunctions of CdS and Cu S, with t h e  
r e d  response of t h e  c e l l  due t o  excess cadmium i n  t h e  f i l m .  
of  t h e  Cd content or t h e  use of other  metals may improve t h e  c e l l .  

A s  t o  t h e  

Possibly, g e t t e r  cont ro l  
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Table I. - T H E W  CYCLING FACILITIES 

Tank s ize  

Pumping system 

Min. Pressure, Torr 

Cooling medium 

No. of s o l a r  c e l l s  
( 3  i n .  by 3 i n . )  

Solar  simulation, watts 

10-in.  diam by 26-in. I 
10-5 

m2 

4 

7 - 600 SUI guns 

I NO. 2 

30-in. diam. by 4 - f t  . 1 
10 i n .  D.P. 

10-7 

LN2 

25 

5 KW Xenon 
900 tungsten 

TABLE 11. - CRYSTAL STRUCTUFE OF COPPER SULFIDE BARRIER LAYER 

Technique Result 

Cu S, Hexagonal, High 2 
Electron Diffract ion 

(Thin Layer) 

X-ray Transmission 

Temp Modification, 
Close Match t o  CdS 
L a t t i c e  

Cu2S, Orthorhombic 

(Chalcocite) 

. 



STORAGE STABILITY OF CdS SOLAR CELLS 
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Figure 2. 



S E R I E S  
R E S I S T A N C E ,  

OHMS 

DEGRADATION OF Voc AND Isc BY MOISTURE 
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IHERMAL CYCLING OF CdS SOLAR CELLS 
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ENERGY BAND STRUCTURE FOR CdS FILM CELL 
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SPECTRAL RESPONSE OF TYPICAL CdS FILM CELL 

R E L A T I V E  
Q U A N T U M  

Y I E L D  

B A N D  G A P  
C d S  l ; T  600 

. 6  1. 0 1.4 1. 8 2. 2 2.6 3.0 3.4 
P H O T O N  E N E R G Y ,  e V  cs-37320 

Figure 7. 
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REMOVAL OF EXCESS CADMIUM REDUCES RED RESPONSE OF CdS CELLS 
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METALS DIFFUSED INTO CdS FILM INCREASE RED RESPONSE OF CdS CELLS 
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