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INJECTION CONDITIONS FOR LUNAR TRAJECTORIES 

ABSTRACT 

This paper reviews the mechanics of Earth to Moon trajectories as 
affected by geometric considerations and booster capabilities. It formu- 
lates and describes the equations fo r  a computing procedure which, using 
the two body equations of motion, provides approximate initial injection 
conditions near the earth for either a fixed time of arrival at the Moon o r  
a fixed time of flight to the Moon. Consideration of multiple circular 
parking orbits, arbitrary injection elevation angles, arbitrary launch site,  
and booster burning characteristics a r e  also taken into account. The 
trajectory followed is an elliptical Earth to Moon transfer trajectory, with 
respect to the Earth, which intersects the Moon before apo-apsis. A 
digital computer program having the equations programmed in FORTRAN 
I1 is available. 
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INJECTION CONDITIONS FOR LUNAR TRAJECTORIES 

I. INTRODUCTION 

A calculating procedure, using two body equations of motion, has been de- 
veloped which provides approximate injection conditions for earth to moon traj- 
ectories. The resulting injection conditions a r e  intended for  use as a first guess 
in generating precision trajectories. When the results obtained are used in a 
precision digital computer program (for example ITEM, see Reference 1) they 
typically produce a lunar impact. They can be further adjusted by iterating in 
the precision program to provide a specified miss  distance for such missions 
as a lunar orbiter. 

The procedure presented builds on and extends the work of References 2 to 
4. In Reference 2 a study was made to determine the effects on lunar trajectories 
of some typical geometric constraints. This study concludes that application of 
the various constraints seriously restricts the allowable launch t imes during the 
month and day for  direct-ascent launch; whereas, less serious restrictions re- 
sult for  the parking orbit launches. This reference also presents some of the 
equations for the calculation of geometrical parameters involved. Reference 3 
further justifies the parking orbit type of trajectory. It also presents some of 
the equations necessary for  matching the powered phases of the trajectory to the 
geometrical constraints. 
trajectories. 

Reference 4 gives some general discussion on lunar 

The present paper adds the consideration of multiple circular parking orbits, 
arbi t rary injection elevation (or flight path) angle, and booster burning charac- 
terist ics.  Injection conditions can be determined for either fixed time of arrival 
at the moon o r  a fixed flight time to the moon. The mechanics of earth to moon 
trajectories as affected by geometrical considerations and booster capabilities 
are reviewed, and the working equations which are used in a computer program 
are formulated and described. 
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11. NOMENCLATURE 

i 

A 

L 

Components of geocentric‘ equatorial coordinate system 
(Figure 2). 

Unit vectors along geocentric equatorial coordinate system 
(Figure 2). 

Unit vector to launch site. 

Launch time, hours. 

Number of days from January 0.0 U.T. 1960 to 0.0 U.T. on 
the day of launch. 

Unit vector to the Moon. 

Components of the unit position vector to the Moon. 

Time of impact at the Moon, hours. 

Number of days from January 0.0 U.T. 1960 to 0.0 U.T. on 
the day of arrival at Moon. 

Inclination. 

Azimuth (geocentric). 

Right ascension. 

Declination. 

Unit vector normal to the orbit plane. 

Components of the unit vector normal to the orbit plane 
(Figure 2). 

Angle between the and w x  fl vectors, see Figure 2. 

Mean longitude of Sun’s apparent motion around the Earth 
defined by Equation (14), radians. 

Longitude (terrestrial). 
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. 
w Absolute rate of spin of the Earth. 

Rl 

Tb2 

t i  

t 2  

T f 

Total time of flight, defined by Equation (33), hours. 

Distance from the center of the Earth to the Moon. 

First boost burning time, ( t ,  - tl ), hours. 

First boost angle, Earth centered angle between Rr and El .  

Time of injection into parking orbit, hours. 

Time in parking orbit, ( t ,  - t ,  ), hours. 

Reciprocal of the parking orbit rate, defined in Equation (18). 

Parking orbit angle, Earth centered angle between R ,  and E,. 

Earth's gravitational parameter. 

Distance from the center of the Earth to the parking orbit 
injection. 

Angular distance (Figure 5). 

Second boost angle, Earth centered angle between R2 and Ri . 
Translunar trajectory angle, Earth centered angle between Ri 
and Em . 
Second boost burning time, ( t i  - t ,  ), hours. 

Time of injection into translunar trajectory, hours. 

Time at beginning of second boost, hours. 

Time in translunar trajectory, ( tm - t i  ), hours. 

a Semimajor axis. 

M Mean anomaly. 

e Eccentricity . 

3 



E 

P 

v 

Ri 

Yi 

Vi 

vP 

Y m  

Rl 

h P O  

hi 

V C  

V m  

Vc m 

TtA 

Eccentric anomaly. 

Semilatus rectum of an ellipse, a (1 - e ' ) .  

True anomaly. 

Distance from the center of the Earth to injection into trans- 
lunar trajectory. 

Ratio of injection distance, R i ,  to moon's distance, R, . 
Injection elevation angle (See Figure 5). 

Injection velocity. 

Parabolic velocity. 

Ratio of injection velocity, V i ,  to parabolic velocity, Vp . 
Rotation matrix, defined by Equation (42). 

Rotation matrix, defined by Equation (43). 

Rotation matrix, defined by Equation (44). 

Year of lunar impact. 

Distance from the center of the Earth to launch site. 

Parking orbit altitude. 

Injection altitude. 

Circular velocity. 

Lunar impact velocity. 

Earth's radius (taken as 6378.165 km). 

Circular velocity at lunar distance. 

Equivalent to T, defined by Equation (15). 
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Equivalent to Tt defined by Equation (33). Tt B 

AT, Total time difference, defined by Equation (38). 

Minimum value of the velocity ratio, defined by Equation (34). Tl - 
Maximum velocity ratio, defined by Equation ( 3 5 ) .  

v2 

(ATt) 1 

(AT, ) 2  

Total time difference, 

Total time difference, 

Equation (38) , for  T1 , see Figure 6. 

Equation (38) , for  c2 , see Figure 6. 

% 

Second and succeeding assumed velocity ratios, defined by 
Equation (39). 

V k + l  

Final value of assumed velocity ratio, see Figure 6. Tf 
S Parameter defined by Equation (37). 

x component of the moon position vector. 
m x  R 

R y component of the moon position vector. 
my 

z component of the moon position vector. Rmz 

SUBSCRIPTS 

1 Launch. 

1 Start of parking orbit. 

2 End of parking orbit. 

i Injection. 

m Moon. 

n The orbit number. 
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111. GENERAL DISCUSSION OF THE PROBLEM 

A. Requirements for Translunar Trajectory 

In general, there a r e  two requirements that must be met for  launching a 
vehicle from the surface of the Earth to the vicinity of the Moon with a minimal 
amount of energy. 

The first is that the vehicle be launched into a plane that is common to the 
launch site at launch time and the Moon at impact time. To launch in a plane 
other than this necessitates changing the plane of the trajectory after launch. 
This entails a reduction in the payload that will arr ive in the vicinity of the Moon 
since additional fuel is required to accomplish this maneuver. 

The second requirement is that a specific angular relationship must exist 
in the plane between the center of Earth and launch site and the line of centers 
of Earth and Moon. This comes about from the fact that there a r e  a number of 
restrictions on various lunar missions such as booster capabilities, allowable 
time in parking orbit, and the time requirements on the mission. 

The following sections will discuss the type of trajectory that must be fol- 
lowed to satisfy requirements on both launch plane and angular travel in the plane. 

B. Launch Considerations 

In general, for any given launch azimuth there are two times a day a vehicle 
may be launched from the Earth into a trajectory that would take it to the Moon. 
The exceptions occur only when the absolute value of the Moon's declination is 
greater  o r  equal to the inclination of the trajectory plane; then, either none o r  
at most one launch per  day will be possible. 

C. Boost Considerations 

There are two possible methods for  leaving the surface of the Earth and 
going to the vicinity of the Moon. The first is lunar injection from a direct  
launch; the second is lunar injection from a parking orbit. These trajectories 
a r e  shown in Figure 1. Both the lunar injection from a direct launch as well as 
from a parking orbit have been discussed in previous papers (References 2 and 
3). 

In this paper attention will be focused on trajectories that a r e  launched from 
the surface of the Earth and employ a parking orbit  before being injected into a 
translunar trajectory. It will also be restricted to an elliptical Earth to Moon 
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TO MOON 

BOOST 

COAST 

BOOSTER BURNOUT (99% of energy imparted 
to vehicle) AND INJECTION INTO TRANS- 
LUNAR TRAJECTORY 

( a )  Lunar injection from a direct launch 

TO MOON 

INJECTION 
INTO CIRCULAR 
PARKING ORBIT 

LAST STAGE BURNOUT (99% of 
energy imparted to vehicle) AND 

TRAJECTORY 
IGNITED INJECTION INTO TRANSLUNAR 

(b) Lunar injection from a parking orbit 

Figure 1-Traiectories for a lunar mission 
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transfer trajectory, with respect to the Earth, which intersects the Moon before 
the apo-apsis. 

D. Parking Orbit Consideration 

It is envisioned that capability must be provided for the parking orbit to in- 
clude more than one revolution around the Earth. The purpose of this is to pro- 
vide time to check out the various systems on-board the spacecraft and to estab- 
lish the orbit elements so  the position, time and velocity necessary for  sending 
the spacecraft to the Moon can be calculated. In general, the spacecraft may be 
injected to  its translunar trajectory once per revolution from its parking orbit. 

IV. SOLUTION O F  THE PROBLEM 

A. Time of Launch into Proper Plane 

As  stated previously, one of the requirements that must be satisfied for  a 
vehicle leaving the surface of the Earth and arriving in the vicinity of the Moon 
with a minimum amount of energy expended is that the vehicle be launched into 
a plane that is common to the launch site at  the time of launch and the Moon at 
the time of impact. This plane may be defined if the declination of the launch 
site, the launch azimuth, the position of the Moon at the desired day and time of 
impact are given. In addition, the times of launch per day into this plane may be 
found if the longitude of the launch site and the desired day of launch are known. 
In this section the equations for  finding the time of launch will be presented. 

Consider the geocentric equatorial coordinate system, x ,  y, and z shown - -  
in Figure 2. Associated with these coordinates are the unit vectors I , J ,  and K. 

The unit vector is directed toward the launch site at time of launch, tz , 
on the day of launch, D l ,  and the unit vector ?, is directed toward the Moon at 
time of impact, t , on the day of impact, D . The plane that contains both unit 
vectors has an inclination angle, i, at the equator and an azimuth angle, A1 , at 
the launch site. The launch site is defined by the right ascension, a ,  , and the 
declination, 6 ,  . The unit vector W is normal to the plane defined by T r  and 'fm . 

m 

The following equations may be written 

wz = c o s  i = c o s  6, s in  A, 
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I which is derived in Appendix A 

- -  
w * r m = O  

where 

Equations (2) and (3) may be solved simultaneously (Appendix A) to yield 

Y 2 
rix + ‘my 

-w r 
y m y  - wz ‘mz w =  - (7 )  

1 mx 

Examining Equations (l), ( 6 ) ,  and (7), it is seen that the launch declination, 
launch azimuth and position of the Moon at  impact define two planes that are 
fixed in space. Launch into these planes is possible when the launch site on the 
rotating earth passes through the planes and the launch azimuth is in the plane. 
This occurs, in general, twice each day. Figure 3 is included to further clarify 
the geometry of the problem. Launch will be possible once a day o r  not at all 
depending on whether the value of the radical in Equation ( 6 )  is zero o r  imaginary, 
respectively. 

Referring to Figure 2, additional equations that may be written are: 

and 

- - 
( W x r , )  - K = c o s  7 = c o s  6, C O S  A, 

10 



z 
LAUNCH SITE AT 

FIRST LAUNCH 

SECOND LAUNCH PLANE 

x (MEAN EQUINOX OF DATE) 

Figure 3-Geometry of the launch planes 
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which is derived in Appendix A where 

- - - - 
r, = I c o s  a ,  c o s  b + J s i n  a ,  c o s  6, + K s i n  6, I 

Equations (8) and (9) may be solved simultaneously (Appendix A) to yield 

(11) 
wz wx s i n  6, + w c o s  8, c o s  A, 

Y C O S  a ,  = 
(w; - 1) cos 6, 

(12) 
w wz s i n  8, - wx c o s  6, cos  A, 

s i n a l  = 
(w2 - 1) cos 3 ,  

and the right ascension, n ,  , at  the time of launch may be found. Figure 4 shows 
the relationships that exist between the time and angles on the day of launch. 
The following equation may be written for the time of launch on the launch day. 

a, - Y - L, 
t, = 

w 

where o is the Earth's absolute rate of spin per mean solar hour, the angle Y 
is the mean sidereal time at Greenwich, given by the expression 

2 

Y = 1.72218633 + 1.720279168 x D, t .67558729 x (A) (14) 

whereY is in radians and D, is the number of days from January 0.0 U.T. 1960 
to 0.0 U.T. on the day of launch. 

Equation (14) is Newcomb's expression given in Reference (5) with the units 
changed to radian measure and the reference time changed from Noon 1900 Jan- 
uary 0 at the Greenwich meridian to Midnight 1960 January 0 at the Greenwich 
meridian (Appendix A). 

Since the time of lunar impact was assumed and the time of launch calculated, 
the total t ime of the flight in hours may be obtained 
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W ICH 
) 

(ZERO 

GREENWICH J (ZERO HRS. UT) 
X 

HRS. UT) 
al = Y + utl +L, 

Figure 4-Position of the launch site relative to Greenwich 
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In summary, the time of launch for  a vehicle going from the surface of the 
Earth to the Moon without a plane change may be found if the launch declination, 
longitude and azimuth at the time of launch as well as the position of the Moon 
at the time of impact are known. 

B. Motion in the Plane 

Once the launch time is established, the vehicle can be launched into the 
proper plane that will intersect the Moon at the time of impact. Launch into the 
proper plane is a necessary but not a sufficient requirement for  the vehicle to 
impact the Moon at the preselected time of impact. Figure 5 shows the geometry 
in the space fixed plane in which the vehicle is moving after launch. At the pre- 
selected time of impact with the Moon, t, , the Moon passes through the plane at 
the position denoted by the vector Em . In order  to impact the Moon, the vehicle 
must arrive at the proper position in the plane at exactly the right moment. 
Since a parking orbit approach is to be used in this paper, the problem of the 
in plane motion may be broken into four phases: the first  boost, the parking 
orbit, the second boost, and the translunar trajectory. The conditions for  a lunar 
impact a r e  then that the sum of the times of each of these phases must be equal 
to the total time given by Equation (15) and the vehicle must be at the position 
denoted by the vector E,. 

1. First Boost - The first boost phase of the problem begins at the time of 
launch and terminates at injection into a circular parking orbit. Both the total 
boost time, Tbl , and the boost angle, C b l ,  will be assumed known constants. The 
total first boost time may be expressed by the following equation: 

2.  Parking Orbit - The parking orbit phase of the problem begins at time of 
injection into the parking orbit (end of first boost) and terminates at the beginning 
of the second boost. Since a circular parking orbit will be assumed, the total 
time in the parking orbit can be expressed by the equation 

T = t, - t, = C, <,, PO 
(17) 

where C, is the reciprocal of the orbital rate of the parking orbit (Reference 6) 
given by 

c, 1 

14 
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Figure 5-Geometry of the transfer ellipse 
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In Equation (18) p is the Earth's gravitational parameter, R, is the known 
magnitude of the parking orbit vector, and <,, is the parking orbit angle, ex- 
pressed by (See Figure 5) 

in which < b l  and cb2 a r e  known constants, and the angular distance, 6, from 
launch to impact may be obtained from the following equation 

which may be rewritten 

( = c0s-l (rmx cos al cos 8, + r s i n a l  c o s  8, + rmz s i n  b l )  (21) 
my 

The translunar trajectory angle, Cf, is obtained from the expressions given 
in Section (4) following. 

3. Second Boost - The second boost begins a t  the time the vehicle leaves 
the circular parking orbit, t, , and terminates at injection into the translunar 
trajectory, t i .  The total boost time, Tb2 , and the boost angle, <b2 , and injection 
radius, Ri  , will be assumed known constants. The total boost time may be ex- 
pressed by the following equation. 

Tb = t i  - t, 
2 

4. Translunar Trajectory - The translunar trajectory is the portion of the 
flight between the injection time, t i  , and the time of lunar impact, tm.  The total 
time of flight during the translunar trajectory, T, , is given by the expression 

T = tm - t i  f 

In order  to study this portion of the flight, it was assumed that the translunar 
trajectory could be approximated by the two-body equations which neglect the 
effect of the Moon gravity on the vehicle. References (2) through (4) indicate that 
this assumption is adequate in obtaining f i r s t  order  estimates of injection condi- 
tions. Utilizing the above assumption, Equations (24) through (31) may be written 
(Reference 6). These lead to a solution of Equation (23). 

16 



where the mean anomaly, M , is given by Kepler's equation 

M. = E .  - e s i n  E .  ; j = m , i  
J J J 

the eccentric anomaly, E ,  may be obtained from 

where 

and 

P a =- 
1 - e2 

(27) 

p = R j ( l  t e c o s v . ) ;  j = m o r i  (2 8) 
J 

The expressions necessary to find the true anomaly, v, and the eccentricity, 
e ,  are given by 

and 

l)I 
= cos-1 [k ( 2 W  cos2 yi - 

v i  = cos-'[;(2v"2 cos2 yi - I)] 

The particular form of these equations are derived from their more familiar 
form in Appendix A. 

Upon assuming an injection velocity ratio, v", fo r  an injection elevation angle, 
yi , Equations (29), (30), and (31) a r e  solved which in turn yields a solution for 
Equation (23). 

17 



4 

The value of the translunar trajectory angle, C f ,  necessary to solve Equation 
(19) may be found from 

if = urn - ui 

The total time of the flight, T, , can be expressed by the equation 

This equation can be solved since Tbl , Tpo , Tb2 and Tf are known from Equations 
(16), (17) ,  (22), and (23) respectively. 

It will be noted that the total time of flight, Tf ,  had been previously calculated 
by Equation (15). Therefore, for a solution of the problem to exist, the total time 
of flight, Tf , in Equations (15) and (33) must be equal. If they are not equal, then 
another velocity ratio, ?, is assumed; and the total flight times calculated again. 
This iteration process is continued until the total flight times in Equations (15) 
and (33) are equivalent. At this time the velocity ratio which yields a solution to 
the problem, qf , has been found. 

5. Range of Velocity Ratios and Flight Times - As previously stated, the 
translunar trajectory will be an ellipse, with respect to the Earth, which intersects 
the Moon before the apo-apsis. This type of trajectory yields a specific upper 
and lower limit between which the velocity ratio, q,  is to be assumed. 

The lower limit, , may be calculated by the following equation (derived 
in Appendix A). 

1 - R ”  (34) 

- 
The upper limit, V, , is taken to  be that of parabolic flight. 

(35) 
- v, = 1.0 

The velocity ratio which yields a solution to the problem, Tf , lies between 
these two limits. In order to get an idea of the values of these limits, Equation 
(34) may be solved for  its minimum anticipated value. To do this some numbers 
consistent with the ideas previously proposed must be assumed. 

18 
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Assume: 

a. The earth to moon distance, I$,, varies between a maximum of 63.8 
earth radii to a minimum of 55.8 earth radii. These values were ob- 
tained from Reference 7. 

b. The earth injection distance, Ri  , varies between 1.0 earth radii and 1.1 
earth radii. These values seem adequate to cover the injection range of 
current boosters. 

c. The injection elevation angle, Yi , varies between zero degrees and 20 
degrees. This seems to be a reasonable assumption. 

Using these assumptions, Equation (34) has been evaluated and the results tabu- 
lated in Table I. From this table it is seen that the minimum anticipated velocity 
ratio, min Vl , is 0.990264. The range of velocity ratios that will yield a solution 
is, therefore, seen to lie between 0.990264 and 1.0. 

-u 

Since one of the given pieces of data wil l  be the day of launch, D, , it is im- 
portant to find what the range of flight times from injection to lunar impact, T, , 
are. This may be done by utilizing the previous assumptions and corresponding 
velocity ratios. To calculate the maximum anticipated flight time, max T, , 
Ecpations (23) to (31) must be evaluated using vl. 

This has been done and the results appear in Table I. From this table it is 
seen that the maximum anticipated flight time, max T, , is 130.1477 hours. To 
calculate the minimum anticipated flight time, min Tf , the value of V, must be 
used. Since this is a parabolic flight, Equations (24) to (28) a r e  no longer valid. 
Instead they a r e  replaced by the following equations (Reference 6). 

,-I, 

which holds for parabolic flight when V, - vi < 7r and where 

1 / 2  
S = [Rf t R; - 2 R i R m  c o s  (vm - vi)] (37) 

The calculation is then made using Equation (35), Equations (29) to (31), and 
Equations (36) and (37). Results appear in Table I where it is seen that the 
minimum anticipated flight time, min T, , is 44.9697 hours. The range of flight 
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Table I 
Range of Velocity Ratios and Flight Times 

I 
Calculated I Assumed 

R m  
earth radii 

55.8 I 
I 

6T 55.8 

63.8 

1 

Ri 
?arth radii 

1.0 

1.1 

1.0 

1.1 

1.0 

1.1 

1.0 

1.1 

Yi 
ctegrees 

0 
20 

0 
20 

0 
20 

0 
20 

0 
20 

0 
20 

0 
20 

0 
20 

I * 
* 
* 
* 
* 
* 
* 
* 
1 .o 

.991158 

.991139 

.990287 

.990264 

.992253 

.992240 

.991489 

.9914 72 
* 
* 
* 
* 
* 
* 
* 
* 

Tf hours 

106.5595 
106.1230 
106.8411 
1 06.3 54 2 
12 9.8469 
129.3886 
130.1477 
129.637 0 
4 5.2 046 
44.9697 
45.3196 
45.0562 
55.0896 
54.8449 
55.2131 
54.9389 

times that will yield solutions is, therefore, seen to lie between 130.1477 and 
44.9697 hours. Knowing this, along with the desired day of lunar impact D, , and 
the desired number of parking orbit revolutions, it is seen that solutions of the 
problem will exist anywhere between seven and one days before lunar impact. 
Therefore, a good choice for D, to obtain all solutions would be in the range f rom 
D m - 7 t 0  D m -1. 

6. Obtaining Successive Velocity Ratios - Having established a lower limit 
velocity ratio, v, , and an upper limit velocity ratio, v2 there remains a pro- 
cedure to be followed in obtaining successive assumed velocity ratios that will 
ultimately lead to a solution. There are many methods by which this iteration 
may be done, the one described below is known as the Regula Falsi  method of 
iteration. Calling T, from Equation (15) TtA and T, from Equation (33) TtB, 
the quantity AT, may be calculated by 
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. 
Q 

The object of the iteration is to yield a AT,, which is a function of V ,  equal to 
zero. Figure 6 shows the procedure when AT, is plotted as a function of ?. 
After Equation (34) is used in calculating vl, this value is used along with other 
knowns in calculating TtB, called ( T t B ) l  since was used in its calculation, by 
use of Equations (23) to (33). Since Tt, is already assumed known, and constant 
for this procedure; the maximum value of AT, viz. (AT,), may be calculated 
by Equation (38). The upper limit, q 2 ,  is known and another value of TtB  , viz. 
(TtB)2, is calculated by use of Equations (29) to (33) along with Equations (36) 
and (37), since the trajectory is parabolic. This quantity along with the constant 
and known T,, is used in evaluating Equation (38) for the minimum value of AT, , 
viz. (AT,),. Through the two points on the solution curve, [(AT,),, TI] and 
[(AT, ) 2 ,  q,] , a straight line (straight line 1) is constructed. The next value of 
the velocity ratio to be assumed, T3 , is located at the intersection of straight 
line 1 and AT, = 0. Analytically the expression yielding this new assumed velocity 
ratio and successive assumed velocity ratios is found to be 

The value of v3 is then used to calculate (TtB),  by use of Equations (23) to (33). 
A new minimum value of AT, 
(38). A new straight line (straight line 2) is constructed through the two points, 
[ (AT,)1 , v"1] and [(AT,), G3], on the solution curve. The next velocity ratio to 
be assumed, V4 is the intersection of straight line 2 and AT, = 0. Analytically 
this also may be found by Equation (39). The iteration continues in this manner 
yielding values of ATt closer and closer to zero as it proceeds. When (AT,), 
equals zero, the point where the solution curve intersects ATt = 0 has been 
found, and the velocity ratio yielding a solution to the problem, ?f is known. 

viz. (AT, ) 3 ,  may then be calculated by Equation 

Q 

7. Initial Injection Conditions - If a solution to the problem exists, a value 
fo r  vf is found; and it is then possible to calculate the initial injection conditions 
for a translunar trajectory. These conditions can be obtained in either Cartesian 
coordinates (xi , yi  , z i  , X i  , Y i  , Zi ) or  polar coordinates (Li , 6 i  Ri  , Vi , A, , 
Yi ). 

The Cartesian coordinates may be found by the following equations. 

R i  

0 

0 
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and 

x i  

jri 

Z .  

where the rotations R, (e), R, (e), andR3 (8) are defined as 

0 - s i n e  c o s 8  

c o s 6  0 - s i n e  

R2(B)  = [ 0 1 0 ] 
s i n e  o C O S B  

Vi 

0 

0 

(43) 

The injection velocity, Vi , may be obtained since the final velocity ratio, 
V,, is known, and the parabolic velocity at injection, Vp , is given (Reference 6) as 
% 

v P =&F 
Therefore 

b 

P 
vi 5 v, v 
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(45) 

(46) 



In polar coordinates three of the quantities Ri  , Vi , and yi a r e  known by 
products of the solution, and the remaining quantities may be found by the equations - 

and I 
Ri - yi<i )  (49) 

yi(yizi - Zi+) - x i  (ZiXi - 
A,  = t an - '  
1 

8. Solutions for  Successive Orbits - The problem as outlined thus far will 
yield a solution for the f i rs t  revolution of the parking orbit around the earth. To 
obtain a solution for successive orbits, the following technique is used. 

Figure 7 is  a sketch of the geometry fo r  the solutions in the plane of the 
trajectory. The position of injection for  the f i rs t  parking orbit solution is indi- 
cated by the vector (Fi) and the position of injection for the second parking 
orbit solution by vector (Ri )2 .  Note that the second position occurs after re- 
maining in the parking orbit somewhat more than one full revolution in inertial 
space. This comes about from a combination of facts. 

a. The time of launch from the surface of the earth to the time of lunar 
impact remains the same. 

b. The injection elevation angle, yi , is the same. 

c. The moon is essentially in the same position since the time for one 
parking orbit ( 2  1.5 hrs.) does not allow for the moon to move very 
much (moon's motion % 12O/day). 

I 

d. Since more time is spent in the earth parking orbit as the number of 
parking orbits is increased, it is evident that the time in the translunar 
trajectory must decrease in order for a. to be true. 

The above facts necessitate a higher energy translunar trajectory which 
goes through essentially the same point indicated by the vector gm. The only 
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way this can be accomplished is by rotating the position injection vector from 
(Ri ) ,  to (Ei)* in a counter-clockwise sense a s  shown in Figure 7.  

To find solutions f o r  successive orbits, the procedure is to subtract ( n  - 1)  
2 77 C, from the total time given by Equation (15) or  

where n is the number of the orbit in which the solution is to be found. In all 
other respects the problem remains the same. 

V. 

1.  

2.  

3. 

4. 

5.  

6 .  

7. 
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Appendix A 

DERIVATIONS 

1. Derivation of Equation (1): Refer to Figure Al ,  and use the law of sines 

s i n  (90" - i) - s i n  (90" - S i )  
s i n  A, s i n  90" 

- 

:. wz = cos i = c o s  6, s i n  A, (1) 

2. Simultaneous solution of Equations (2) and (3) to yield Equations ( 6 )  and (7): 

- -  
w - w = 1  

w 2 = 1 - w ; - w ; = 1 -  
Y 

Which upon simplification becomes 

(3) 



Solving this quadratic equation in wy yields 

-wz rmy rmz k rmu J1 - r,22 - w,2 
w =  
Y 2 

r,2, + r m y  

3.  Derivation of Equation (9): Refer to Figure A2, it is seen that 

( W X  f ,  ) '  I( = cos 77 

The direction cosines of TT yield 

Substituting in Equation (1) for the f i rs t  term, transposing, and simplifying 

cos2 7) = 1 - cos2 6, s in2  A, - s in2  6, = cos2 6, cos2 A ,  

Upon taking the square root of both sides 

cos 7) = cos 6, cos A, 

where the positive value is considered only if launch is in the northern hemisphere 
@/2 > 6 ,  > 0) and eastward ( 7~ > A,  > 0) 

(9) - :. (W x ; I I )  K = C O S  77 = C O S  6, C O S  A, 

4. Simultaneous solution of Equations (8) and (9) yield Equations (11) and (12). 

Since 

(10) 
- - - - 

rI  = I C O S  a ,  cos 6 ,  -+ J s i n  a, cos 6, t K s i n  6, 
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Performing the vector operations yields 

- 
r, * W = c o s  al cos  6, wx t s i n a l  cos  6, w t s i n  6, wz = 0 

Y 

- 
(W x f , )  K = s i n  a, c o s  6, wx - c o s  a ,  c o s  6, w = cos  6, c o s  A,  (A2) 

Y 

Upon substituting (A2) into the second te rm of (Al)  

Which upon transposing and solving f o r  cos a ,  yields 

w, wx s i n  6, t w c o s  6, cos  A, 
Y c o s  a l  = 

(w; - 1) cos 6, 

Upon substituting (Al)  into the second t e r m  of (A2) 

W 
s i n  z I  c o s  6, wx -2  ( - s i n  a ,  c o s  6,  w - s i n  6, wz) = cos  6, c o s  A, 

wx 
Y 

which upon transposing and solving for sin a ,  yields 

w wz s i n  6, - wx cos 6, cos  A, 
s i n a l  = Y (12) 

( W i  - 1) c o s  6, 

5. Changing the reference time and units of measure in Newcomb's expression. 

Greenwich mean siderial time at zero hours universal time on successive 
dates are computed from Newcomb's expression (Reference 5). 

Yo = 6h 38"45?836 t 8640184342 T + 0?0929 T2 (A3 1 

where for any date, T denotes the number of Julian centuries of 36525 days which 
have elapsed since noon on 1900 January 0.0 at the Greenwich meridian. 
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This equation may be written as 

Yo = Y l g o ,  t AT t BT2 

To shift  the reference time from January 0.5, 1900 to January 0.0, 1960 

yo = y 1 9 0 0  t A (T t T1) t B (T t T , )  * = Y l g o o  t AT t BT2 t (A t 2BT)T1 t BT: 

where T is the time in Julian centuries between January 0.5, 1900 and January 
0.0, 1960 and Tl is the time in Julian centuries after January 0.0, 1960. The 
value of T in this case is 

T =  365 6o  13*’  = .599958932 J u l i a n  c e n t u r i e s  
36525 

:. Yo = Yl 6 o  t [ (8640184.542 + 2 ( . 0 9 2 9 )  ( . 5 9 9 9 5 8 9 3 2 ) 1  T, t .(I929 Ti  

and the Equation (A3) becomes 

Yo = 6 h  34m41:762  +86401845653T1  + OSO929Ti (A4) 

where T, denotes the number of Julian centuries which have elapsed since 1960 
January 0.0. 

The units of Equation (A4) may be changed to yield 

Y = 1.72218633 t 1.720279168 x D, t 0.67558729 x lo-’ - 
(36?25) (14) 

where Y is in radians and D, is the number of days from January 0.0 U.T. 1960. 

6. Equations (29), (30), and (31) may be obtained in the following manner. Start- 
ing with the basic equations (Reference 6). 

P = c o s 2  y 
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p = a ( I  - e 2 )  

Equating P in Equations (As) and (A6) and solve for e 2  

Substitute for l /a  using Equation (A7) 

Equation (AT) also implies for parabolic velocity (Le. a =a). 

vp = d v c  = 

Substitute this relationship in and solve for e yields 
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Combining Equations (A5), (A9), and (A8) yields 

(30) 1 -  
e cos vi = - (2 v 2  cos2 y; - 1) 

Applying Equation (A5) for  ear th  injection distances and lunar distances yields 
the results 

2 2 

p = Rm($) cos2 y, = Xi(?) cos2 yi 

Substitutingp /R, from above results along with (A9) into Equation (A8) yields 

urn = cos- f  [+ ( 2 i w  cos2y; - 

7. Derivation of the lower limit for assumed velocity ratios. 

Equation (35) for the lower limit, T1, is obtained in the following manner. 
Upon substitution of Equation (31) into Equation (29) and squaring yields 

- 2 ‘“4 - - 2  4 R  V C O S ’ Y ~  - 4 R V  + 1  
cos2 urn = 

4 T 2 ( T  - l)cos2 yi + 1 

The limiting case occurs when cos2 urn = 1 which corresponds to a lunar 
impact at the apo-apsis of the translunar ellipse. Making this substitution and 
solving for  the velocity ratio Equation (A10) becomes 

1 - 2  
1 - ( R  c o s  yi 

(34) 
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Figure A-1-Geometry of the orbit 

F x  7, 

-UNIT VECTOR 

Figure A-2-Geometry describing the angle -q 
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APPENDIX B 

CALCULATING PROCEDURE 

A. Data Required 

In order to solve the problem of a lunar impact from a given launch site, 
various data a r e  required before the calculation may begin. A summary of these 
input data and its source a r e  given below. 

1. The f i rs t  boost a r e  C b l  : Refer to Figure 5. This is a characteristic of 
the booster to be used in the mission, It is usually available o r  may be 
obtained from data in reports giving the booster characteristics. 

2. The first boost time, Tbl  : Refer to Figure 5. The same remarks in 
Item 1 apply here. 

3. Parking orbit altitude, h,, = R, - I?, . The altitude at which the first  
boost injects its payload into a circular orbit. The same remarks in 
Item 1 apply here. 

4. The second boost a rc ,  c b 2  : Refer to Figure 5. This is a characteristic 
of the booster used to boost the vehicle from circular parking velocity 
to translunar injection velocities. This information may be obtained from 
data in reports giving the booster characteristics. 

5. The second boost time, Tbp : Refer to Figure 5. The same remarks in 
Item 4 apply here. 

6 .  Injection altitude, hi = Ri - R, . The altitude at which the second boost 
injects the vehicle into its translunar trajectory. The same remarks in 
Item 4 apply here. 

7. Injection elevation angle, yi : Refer to Figure 5. This angle is a function 
of the particular guidance system employed during the second boost. 

8. Launch azimuth, A i .  The desired launch azimuth at launch site. Depends 
upon range safety and tracking requirements. 

9. Parking orbit revolutions. The number of parking orbit revolutions f o r  
which solutions are desired. 
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10. Launch days(s), D, . The number of days before impact that the launch 
is to take place. For  the elliptical trajectories described this is from 
7 to 1 days before D,. 

Flight time, T , the time of the flight f rom injection to impact may be 
given instead of D, . 

11. Lunar impact time, Y,,, , D, , t,. The year ,  day and time it is desired 
to impact the moon. 

B. Calculating Steps 

A flow diagram indicating the solution of the problem is given in Figure B1. 
This figure is a guide to  the solution of the problem and indicates the general 
flow from equation to equation in the  text. Steps in the calculating procedure 
which may be used in conjunction with this figure a r e  given as follows: 

1. Given a year ,  Y, , day, D, , and time, t, , it is desired to impact the Moon. 
The position of the Moon in geocentric equatorial coordinates, KX, Gy , 
R,, may be obtained from an ephemeris of the Moon. The resultant of 
these coordinates, I?,,, , as we l l  as the components of the unit vector, rmx , 
rmy , r,, , are then calculated. 

2. Given the launch site declination, 6 1  , and a launch azimuth, A i  , compon- 
ents,  w, , wy , w, of the unit vector % normal to and defining the plane of 
motion from the surface of the Earth to the Moon are obtained from Equa- 
tions (l), (6), and (7). Depending upon the value under the radical in 
Equation (6) the unit vector w will  have two values, one value, o r  be imag- 
inary. These results indicate for the launch azimuth, A i ,  launch into the 
plane is possible twice a day, once a day, o r  not at all. If a real  value 
of W exists the calculating procedure is continued. If two real values of 
Z exist, use one of them at a time. 

3. The right ascension at launch, a1 , may be calculated by Equations (11) 
and (12). A desired day of launch, DI , is given (i.e. D, is an integer in 
the range of D,,, - 7 to D;, - 1) and the angle Y is calculated by Equation 
(14). Since the launch longitude, Li , and the Earth 's  spin rate,  W ,  are 
knowns, the time of launch after zero  hour U.T. on the day of launch, Dl  , 
can be calculated from Equation (13). The day of launch, DI , and the time 
of launch, t,, , as well as the day of impact, 0, , and time of impact, t, , 
are now all knowns; the total time of the flight, T, , can be calculated from 
Equation (15). This time is designated as TtA . 
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4 .  A value of the injection angle, y; , is given, and the injection radius, R; , 
can be calculated from the given injection altitude, h i  , and Earth's radius 
R, . A velocity ratio, , calculated by Equation (34) is now obtained. 

5. Using this velocity ratio, the eccentricity, e ,  as well as the t rue anomalies 
to the Moon, v, , and to the injection point, v i  , a r e  calculated by Equations 
(31), (29), and (30) respectively. The translunar trajectory angle, [ f  , 
may now be calculated f rom Equation (32); and the angular distance, E , is 
calculated by Equation (21). Since the booster burning angles, [b,  and 
i b 2  , a r e  given, the parking orbit angle, <,, , can be calculated from Equa- 
tion (19). 

A circular  parking orbit was  considered in this analysis; and therefore,  
the parking orbit radius, R 1 ,  is constant and is obtained from the given 
parking orbit altitude, h,, , and Earth 's  radius. The inverse orbital rate 
of the parking orbit, C1 , is defined by Equation (18). This is used in 
calculating the time in parking orbit, Tpo , given by Equation (17). 

6 .  Since the velocity ratio yields an elliptical flight path, the calculation 
continues as follows: The semilatus rectum, p , and the semimajor 
axis, a , may be calculated by Equations (28) and (27) respectively. Hav- 
ing these quantities the eccentric anomalies to the Moon, E, , and to the 
injection point, E i  , can be calculated by Equation (2G); and the mean 
anomalies to the Moon, M,, and to the injection point, M , can be calculated 
by Kepler's equation, viz. Equation (25). The time difference on the t rans-  
lunar trajectory between injection and lunar impact, t, - t i  , can be cal- 
culated by Equation (24). This t ime difference, called Tf ,  is the same as 
that defined by Equation (23).  

7 .  The boost t imes,  T b l  and Tb2 , are both given and are used with T,, and 
Tf to calculate the total t ime of the flight, T, , f rom Equation (33). This 
time is designated as T tB .  In step (3)  above, it is seen that the total time 
of flight, T, = T,, , has already been calculated by another method, viz. 
Equation (15). The difference in these t imes,  AT, , is given by Equation 
(38)- 

8. The particular AT, as calculated by Equation (38) for from Equation 
(34) is designated, since k = 1, as (AT,), on Figure 6. I€ (AT,), is less 
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9. 

10. 

11. 

than zero, the solution of the problem requires that the transfer trajectory 
intersect the Moon after apo-apsis and the calculation is concluded. A 
new value of the launch day, D, , greater than before is used, and the cal- 
culation is reinitiated at step (3),  Equation (14). If (AT,) l is greater than 
zero, continue. 

T-u 

The next velocity ratio used, V, , is given by Equation (35). Step (5) is 
then repeated. Since the velocity ratio corresponds to a parabolic trajec- 
tory, the parameter, s , is calculated by Equation (37) and is used in cal- 
culating the total time from injection to lunar impact, Tf , given by Equa- 
tion (36). Step (7) is then repeated. The particular AT, as calculated by 
Equation (38) for ?, from Equation (35) is designated, since k = 2,  as 
(AT,), on Figure 6. If (AT,), is greater than zero, the solution of the 
problem requires a velocity ratio greater than parabolic; and the calcu- 
lation is concluded. A new value of the launch day, Dl , less  than before 
is used, and the calculation is reinitiated at step (3),  Equation (14). If 
(AT,), is less than zero, a new velocity ratio, T3,  must be calculated. 

The next velocity ratio to be assumed may be calculated by Equation (39). 
Steps (5), (6), (7), and (10) are repeated in that order and are continued 
to be repeated until the value of AT, given by Equation (38) is as close to 
zero as desired. When this occurs, a velocity ratio which has yielded a 
solution to the problem, ?f , has been obtained. 

At this point several things m a y  be calculated depending upon the partic- 
ular purpose of making the calculation. Two possibilities come to  mind, 
and to distinguish them one will be called Option A and the other Option B. 

Option A: In this case it is assumed the purpose for making the cal- 
culation is to obtain all the possible injection conditions that will yield a 
lunar impact at a given desired time for given launch azimuth, booster 
conditions, and injection elevation angle if the parking orbit is allowed to 
orbit the earth several (sayn ) times. For this option n was  assumed to 
be equal to one through steps 10. The value of n is now increased to two, 
and Equation (50) is used in place of Equation (15), the entire calculation 
being repeated from step 4. This value of n is increased as many times 
as desired repeating the calculation from step 4.  Having done this, a 
solution has been found for each revolution of the parking orbit (i.e. n 
of them). Assuming two values of wy were obtained when Equation (6) 
was solved (see step 2),  there remains now to repeat the calculation from 
steps (3)  to (10) for the second possible value of wy . Having done this 
(for n = l), the values of n are increased again one at a time as was 
previously done. Now the two possible solutions per day for  each parking 
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orbit revolution have been found, yielding 2n possible solutions. The 
results thus fa r  have been for  only one assumed launch day, D, . Since 
lunar impact at  the desired time is possible, a s  previously explained, 
for launch times between 44.9697 and 130.1477 hours before lunar im- 
pact, more launch days must be investigated. To be sure  to include all 
possible cases ,  the launch days to be investigated a r e  between D, - 7 
and D, - 1, or a total of 6 days. Doing this for n revolutions in the 
parking orbit for each day is seen to yield a possible 12 11 solutions per  
launch azimuth per elevation angle that will impact the moon a t  the same 
time. 

Option B: In this case it is assumed the purpose for  making the cal- 
culation is to obtain initial injection conditions that will have a given 
desired flight time, Tf , from injection to lunar impact. Lunar impact 
will be near  the desired time, but not a t  it. Solutions will be obtained 
in the f i r s t  parking orbit for  a given launch azimuth, booster conditions, 
and injection elevation angle. The calculation is made as indicated in 
steps 1 through 10, and a solution is obtained. At this point the desired 
flight time (Tf )D ,  is compared with flight time, Tf , that was the solution 
to the problem, and their  difference, ATf = (ATf)D - Tf , is obtained. 
This time difference is algebraically added to the original lunar impact 
time (thus having the effect of moving the moon), and steps 1 through 10 
a re  again repeated, yielding a new solution. Again a time difference 
ATf ,  is obtained, and the process is repeated until this time difference 
is zero. A solution during the first revolution of the parking orbit  having 
a given time of flight f rom injection to impact has thus been found. This 
solution will yield a lunar impact near  (say within a day) the original 
impact time desired. The original impact time is then utilized with the 
second value of wy obtained when Equation (6) was  solved, and the entire 
process of Option B is repeated. The final results will yield a total of 
two solutions, having the same desired flight time, in the f i r s t  parking 
orbit for a given launch azimuth, injection elevation angle, and boost 
conditions that impact the moon close to the desired impact time. 

12. Having found the final velocity ratio, ? f ,  all the by-products necessary 
fo r  finding the injection vector components in both Cartesian coordinates 

may be found. Parabolic velocity, V, , is found using Equation (45) which 
then enables the calculation of V i  f rom Tf , Equation (46). All  the neces- 
sary data is now known to calculate rotation matr ices ,  Equations (42), 
(43), and (44), which are used in obtaining the Cartesian position com- 
ponents and velocity components f rom Equations (40) and (41) respec- 
tively. Using these components the remaining unknown polar coordinate 
components, viz. L , 6 , and Ai , may be calculated by use of Equation 
(47), (48), and (49) respectively. 

( X i ,  Yi, Zi, G i  , Yi , i i  ) or  polar coordinates (Li, S i  , X i  , Vi  , A i  ,Yi) 
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Figure B- l -Flow diagram indicating the solution of the problem. 
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