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PREFACE

To say that there have been many articles written over the past
few years dealing with phase-locked devices seems almost an under-
statement. Besides this work, I am aware of two books being written
on the subject, those of Viterbi and Van Trees, and there may be still
others. This monograph was prompted by a need at the Jet Propulsion
Laboratory for a practical handbook for the design, testing, evalua-
tion, and philosophy of phase-locked systems. Such a book should
possess several qualities: it should contain all the formulas needed for
the accurate design of a complicated receiver; it should provide a
unified notation with unambiguous definitions of receiver parameters;
it should tell how to pick these parameters, based on any specific job
required of a communications system; it should give special attention

to the general system design problems and procedures, with all the
details included; it should serve as a reference against which a receiver

in the field can be checked to see whether or not it is working prop-
erly, and thereby meet its proper specification; and, finally, it should
contain that philosophy which has evolved to ensure the successful
fabrication of the most sensitive, flexible, and stable receiver in the
world today. It has been my intention to fulfill these goals in the pages
you see here.

The approach I have followed in trying to assemble words and

formulas enough to succeed in my aim is that the presentation should
expose the reader to the reasoning by which the theory evolved and

to a few of the steps necessary for him to follow this evolution mathe-
matically, and should set forth its results in as concise a treatment as

precision could permit.

Thus, not only in intent, but also in approach, is the treatment in
the following pages different from that to be found elsewhere. The
two books mentioned above are theoretical treatments, rigorously
argued, and excellent reading for one desiring specific insight to the
purer aspects of communications. But the content of these works
necessarily ends before most of the detailed systems engineering tech-
niques are evoked. For example, the band-pass-limiter loop is no-
where treated with the detail it is here.
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PREFACE (Cont'd )

While this is intended as a working book, by no means have I
presumed to consider the practical aspects of building a better VCO,
RF mixer, IF amplifier, etc. These are components that develop nat-
urally with the state of the communications art. What is given is
meant to provide the systems engineer with the tools he needs to effect
a successful analysis of his particular job.

Any expositicn of a broad topic mathematically is apt to frustrate
the conscientious author almost beyond comprehension in the matter
of notation. He soon exhausts both Roman and Greek alphabets, and,
as the frustration becomes extreme, he begins to eye script, Russian,
Hebrew, and Germanic characters in the desperate hope that he can
use separate symbols for all the quantities to be defined, before all of
these, too, are used up. Suffice it to say that I have retained only the
Roman and Greek at some awkwardness, being forced away, in some
cases, from a common notation because of multiple demands on the
same letter. An attempt was made to resolve these conflicts by giving
the more important quantity precedence. I have also tried to keep
subscripts as simple as possible by keeping subscripted subscripts and
other such complexities to a minimum.

The subject is treated in two volumes, the first of which consists of
ten chapters dealing primarily with the detailed tracking aspects
of phase-locked devices. Topics involving modulation in various modes
are relegated to the second volume. Each of the volumes is further
divided into two portions: the first, a section setting forth theory and de-
sign optimization; and the latter, a summary of formulas and methods.
It is hoped that the reader will find in these pages as much insight into
the mysterious behavior of the phase-locked loop as the author sup-
poses he developed in writing them.
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ABSTRACT ,/)3?,3

This is Volume I of a two-volume work on the theory of phase-
locked receivers, with pertinent reference material on practical re-
ceiver design. Volume { is primarily devoted to the performance of
carrier-tracking loops, including a rigorous treatment of narrow-band
systems having IF limiters. The bulk of the work is based on a theo-
retical linear model, but a nonlinear method is also presented to predict
behavior near the threshold. The emphasis throughout the work is
toward completeness, simplicity, and internal con-istency of the ma-
terial assembled.

Part I of this Volume is an exposition of the theory, the resulting
equations, and the design philosophy that have enabled the phase-
lock concept to evolve into the basic principle underlying the most
sensitive receivers in the world today. Part II is a condensed version of
Part I, intended as a quick reference to formulas, definitions, and
salient design considerations.

AU\ﬂ’\OV
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CHAPTER 1

INTRODUCTION AND HISTORY OF THE PHASE-LOCKED LOOP

While the origins of automatic phase control date back
to the 1920’s and 30’s, the first serious application of the
concept began as a horizontal-line synchronizing device
for television in the late 40’s. Shortly thereafter, Jaffee and
Rechtin showed how a phase-locked loop could be used as
a tracking filter for a missile beacon, and how the loop
parameters could best be specified. The first analysis
including the effects of noise appeared in a paper pub-
lished by Jaffec and Rechtin in 1955,

Basically, a phase-locked loop is an electronic servo-
mechanism that operates as a coherent detector by con-
tinuously correcting the frequency of its local oscillator
according to a measurcment of the error between the
phase of the incoming signal and that of its local oscillator.
The simplest form of loop is shown in Fig. 1-1. The precise
relationship between the input and response functions is
a nonlinear integro-differential equation from which very
little information concerning loop behavior is analytically
available, in the general case at least. With a very few
nonrestrictive assumptions mathematically the configu-
ration given in Fig. 1-1 can be replaced by that in Fig. 1-2
(we shall indicate precisely why this is so a little later).
This model first appeared, without proof, in a paper by
Develet in 1956, but in the absence of noise it had been
used by several authors, notably Gruen.

Viterbi found solutions for a number of loop filters and
various input frequency functions in the no-noise case by
analog simulation.

ERROR SIGNAL
INPUT SIGNAL
2245in (w? +6)
+n (1)

LOOP
1 FILTER, Flis)

RECOVERED
PHASE
PROCESS

22 cog (wr +8)—3

Fig. 1-1. Basic configuration of a simple phase-locked
loop. The mixer output, filtered by F (s), is used
to control the frequency of the voltage-
controlied oscillater (VCO).

n(t) = 2'/2n,-(f)cos (wl +5)
LOOP PHASE ERROR

INPUT ¢ =6-6
PHASE
PROCESS
NONLINEAR L4
8 ()L~ AMPLIFIER
- A sin( )
ERROR SIGNAL
A
6| Loop PHAsE )
ESTIMATE LOOP FILTER
Fis)

£ N
s VCO INPUT

Fig. 1-2. A mathematically equivalent model of the
simple phase-locked loop. Here there are two
separate inputs, 6 and n(f), whereas the two
are comhbined in the azual input.

The case in which additive noise is present has been
treated by a variety of approximate methods. The first
approach, by Jaffe and Rechtin, essentially replaced the
sinusoidal nonlinearity of the model of Fig. 1-2 by a linear
amplifier of gain A, a case applicable when the phase
error is very small. Margolis analyzed the nonlinear oper-
ation in the presence of noise by perturbation methods,
obtaining a series solution for the loop differential equa-
tion, and, using only the first few terms of the series, he
determined approximate moments of the phase error.
Develet applied Booton’s quasi-linearization technique to
replace the sinusoidal nonlinearity by a linear amplifier
whose gain is the expected gain of the device. More
recently, Van Trees obtained a Volterra series representa-
tion of the closed-loop response by a perturbation method
similar to the method employed by Margolis, but with the
advantage of the simplified model he obtained more exten-
sive results. Fokker-Planck, or continuous random-walk,
techniques yield exact expressions for the statistics of the
random phase error process. Unfortunately, expressions
in closed form are available only for the first-orde# loop
(i.e., when the filter is omitted). Such techniques were first
applied to this problem by Tikhonov, who was able to
determine the steady-state probability distribution of the
first-order loop phase-error and an approximate expression
for the distribution when the loop contains a one-stage
RC filter. Viterbi extended this work on the first-order
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loop also to obtain the mean time to loss-oi-lock (giving
the frequency of skipping cycles).

In what follows, we shall review many of these analyses
and add another, due to the author, wherein the spectral
density of the phase process is approximated. This method,
incidentally, is conceptually as simple as the linear approx-
imation methods and yields results almost as exact as the
results gotten by Fokker-Planck techniques over the entire
useful range of the device.

These analyses have not been merely of academic
interest. They have paved the way for building the most

JPL TECHNICAL REPORT NO. 32-819

narrow-band, sensitive, flexible receivers in the world.
Phase-locked loops are used as filters to “clean up” the
output of irequency multipliers. The phase-lock principle
has been used in ranging devices and in radar systems
capable of tracking a planet (Venus) with range-jitter less
than 500 meters! It has been used to synchronize telemetry
data, to derive bit and word synchronization...and the
list could go on at some length.

Because there is such a long list of jobs it can do so well,
it is only natural that the phase-locked loop has received
attention. Significant portions of the fruits of this attention
are revealed in the ensuing chapters.

10.

11.
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CHAPTER 2
FUNDAMENTAL CONCEPTS

In this Chapter we shall define such concepts as
auto- and cross-correlation functions, spectral density,
bandwidths, etc. This defining must be done carefully,
as it can lead to one of the prime sources of reader con-
fusion. We shall assume that the reader is familiar with
certain statistical properties of signals and noise, so that
the exposition here need not be a tutorial one, but merely
descriptive.

2-A. Statistics

First, consider a single time function x(¢). Ask yourself:
Can x(t) be specified exactly at every value of t? If it is,
x(t) is said to be deterministic. Otherwise, there is un-
certainty about the character of x(¢). In such cases, any
partic alar observed waveform x(t) is said to be a sample
function of a random process (others call x(t) a stochastic
process). There are varying degrees of randomness one
can think of here. For example, x(t) = ccs ¢ is a well
defined, deterministic process. However, x(t) = A cos ¢, in
which A can assume any arbitrary value (according to
some probability law) is a sample function from a random
process, even though we can measure x(0) = A, and from
then on, x(t) is known exactly, The randomness here is
evident, for if we were presented with another sample

function from the same process, we would probably have a
different A,

Another example that occurs frequently is the sample
function x(t) = cos(t + ), where 8 can assume any value
over [0, 2x] with equal likelihood. Again, 8 can be found for
any particular observed x(t) very casily, and forever there-
after x(t) is known exactly. However, there is a great differ-
ence in the types of processes represented by A cos ¢ and
cos(t + 6). If one were to ask “what is the mean value of
x(t) at time ¢t = ¢,?” in the first cuse one would answer
“E(A) cos t,,” where E(A) represerts the expecied value
of A with respect to its random elements:

E(A) = / Ap(A)dA (21)

whereas, in the second, one would answer “zero,” because
for every value of ¢,,

Efx(t)] = 5 /° Tos(t,+0)d=0.  (22)

The averaging operator E here, we note, is not the same
as the operator that averages over time. In fact, in the
first case above, the mean value depends on ¢, and in the
second, it does not.

Generally, a process whose statistical behavior is inde-
pendent of the time origin—as is cos(t+6)—is said to be
a stationary process, while others not exhibiting this prop-
erty are nonstationary.

Another point that can be made is that, for A cos ¢,
averages over the entire set, or ensemble, of sample func-
tions are not the same as averaging with respect to time.
A process in which the time averages involving all
functions of x(t) are the same as averages taken over the
ensemble of sample functions is said to be ergodic. This is
a behavior different from stationarity, as witnessed by the
fact that the function A cos(t +6) has its time-mean-square
value equal to A?/2, whereas its ensemble mean-square
value is E(A?)/2. Ergodic processes are always! station-
ary, but, as our example shows, the converse need not
be true.

If x(t) is a well-behaved sample function, the expression

Relr) = lim o : w(xt+adt (29)

defines the time-autocorrelation function of x(t). The
entire process has a statistical analog

Rus(t,ts) = E [2(t,) x(t2)] (2-4)

in which averaging is performed with respect to the
statistical variables in x(t). When x(t) is from a stationary
process, the latter is a function of ¢, —¢,, rather than ¢, and
t, separately, in which case we write

Ru(r) = E[x(t)x(t+7)]. (2-5)

Any process x(), stationary or not, satisfying this last

particular equation is called wide-sense stationary. Under
the further restriction that xz(t) be ergodic, we have

Ree(r) = Ryslr). (2-8)

“This is not strictly true under a more formalized mathematical
definition of ergodicity, but this formalism is of no concern here.
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The spectral density of a function x(t) is defined as the
Fourier transform of its time autocorrelation function,

Seelf) = /  Ruulr) o dt (27)

and the spectral density of a wide-sense stationary process
is defined as

Sualfo) = / ™ Boulr) o107 . (2-8)

00

When x(t) is a function from a stationary ergodic process,
these spectral densities are equal with probability one,

Su’(i‘”) = stt(iw)- (2'9)

We shall usually not make such distinctions in notation
in the future. For the most part, we deal with stationary
ergodic processvs whenever analysis requires a statistical
treatment.

Having found S..(jw), we may replace o by the complex
frequency variable s; the resulting function S,.(s) is the
analytic continuation of S..(jw) to the entire complex plane.
When S, is known, R.. can be found by inverse trans-
formation. It is usual to insert « = 2«f in S, and treat
spectra as functions of f. (Sometimes care must be taken
in this step; e.g., [u| = (—5%)*.)

The mean of x(t) (i.e., its expected behavior) is denoted
p(t) = E[x(t)] (2-10)

and its variance (i, the mean-square variation about
#(t)), is denoted

a; (1) = E{[*(?) — u(1)]?}
= E[x(t)] — w¥(t) (2-11)

For stationary processes, both o2 and . are independent
of t, and, if R.,( ) exists,

= R,s()
0; = Rez(0) — Raus(0) (2-12)

Equations (2-3) through (2-12) can be altered to yield
functions of average products of two different processes,
say x(t) and y(t). Then, for example,

Bey (t, t:) = E[x(t:) y(ts)]

is the cross correlation function of the two processes; when
stationarity prevails, we set t.=t,— r:

Re(r) = E[(f) y(t—7)]
= Ry,( - ‘r).

i'he Fourier transform S.,(jv) of R,(r) is then called a
cross-spectral density.

2-B. Linear Filtering

Consider a device, which we shall label H as depicted
in Fig. 2-1, having an input x(t), giving rise to an output
y(t). Suppose first that the input is a very sharp pulse
having unit weight; that is, an impulse function 8:(t):

. % forogt<T
8e(ty = (2-18)
0 for all other values of ¢.

As T approaches zero, 8(t) becomes infinite at the origin,
and the result is a Dirac delta function §(t). One must be
very careful in treating functions of this sort mathemati-
cally, because of the lack of uniform convergence. How-
ever, for our applications it has been shown that in all
practical calculations we may treat §(t) as the limit of
8r(t) as T—0.

x(?) y(t)
M fr—n————— i

L

Fig. 2-1. Filtering device

The response of the device H to §(t) is called the unit-
impulse response of the filter, denoted h(t). That is, h(t) is
the output (Fig. 2-2) of H at time ¢t when an impulse was
applied at time ¢ = 0. The filter is called realizable if h(t)
= 0 when ¢t < 0 (i.e., no response before an input). The
filter is said to be linear if superposition holds:

y(t) = / " x(t,) hit—t,) dt,

= / " x(t—t:) h(t) dt . (2-14)

-
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Fig. 2-2. Response of a realizable filter to a
unit-impulse function

Thi~ law states that the output y at time ¢ is the super-
pc.ition of the input ¢, seconds ago, weighted by the
decay response of the filter after t, seconds.

When x(t) and h(t) have Fourier or Laplace transforms
(call them X(s) and H(s)), then for linear filters, y(t) has a
transform Y(s) related to the others by

Y(s) = X(s)H(s). (2-15)

However, many random processes {notably noise) do
not possess transforms, so one cannot perform a system
analysis based on X(s). Instead, one can compute statistics
such as the correlation function of the output,

Rolr) = f " f " h(t,) hits) Ros (v, —t.)dtsdlts

(2-16)

and this expression can be transformed to yield the output
power spectral density of the process:

Sn(fw) = H(jw) H(— jw) Sss(jm)

= | H(jo)]? Suulju). (2-17)

This equation reveals one of the most important facts
about linear filters: the spectral density of the output
process is merely the product of the input density times
the filter's response. By analytic continuation,

S(s) = H(s)H(—8)S,s(s). (2-18)

The power? appearing at the filter output can be found
by inverse transformation

1
P, = R,(0) = 'z;f

~00 IH(iw)Iz S,,(fw)dw. (2—19)

2-C. Noise Bandwidth

Suppose n(t) is a zero-mean, ergodic random process of
such a nature that n(t) and n(t++) are completely un-
correlated for every r 5« 0; that is, R,.(r) = 0 for every
r 5= 0. Such a process is often called a white noise process.
It is often the character of such noises that

Ruu(r) = No&(z). (2-20)
The spectral density of such a noise is thus uniform in
the frequency domain
Spn(fw) = N,

forall — o <o < o, (2-21)

It should be pointed out that R,,(0) indicates n(t) has
infinite power, while S,.(ju) shows that over any finite
frequency range, the power is finite. The N, above can be
thought of either as the weight of the correlation function
impulse, or else as the uniform height of the spectral
density of the noise.

Now consider what happens when a white noise n(t) is
put into a linear filter H(s): the output spectral density is

Sn{fw) = No|H(jw)|? (2-22)
and the output noise power N from the filter is
N = N[% / " |H () d...] . e

Whenever the integral in brackets converges, the output
noise power is brought down from an infinite value to a
finite one by the action of the filter. The filter thus has the
cffect of limiting the noise, in some sense, to a band of
frequencies. Thus we define the effectiv~ [or equivalent)
noise bandwidth of H by

g, 2 e
T e

(2-24)

*Actually R,,(0) is the mean-square voltage of the process y(t), so
the unit of power we are speaking of here is volts’; if a 1-ochm re-
sistance is assumed, the power is in watts. However, for the most
part, we shall be dealing with power ratios, such as sign-" ‘o-noise,
s0 the units are unimportant, as long as they are consistent.
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In these terms, the output noise power is

N = N, W, |H(ju)|2,, - (2-25)
Viewed graphically (Ilig. 2-3), W, is the spectral width of
an ideal band-pass filter whose maximum response is the
same as that of H(s) and whose ouiput power (in the
presence of white noise) is the same as that of H(s).

Some authors prefer to consider a single-sided behavior
of filters. They argue that negative frequencies are not
“really” observable, and hence that all the concepts involv-
ing frequency should be defined accordingly, to involve
only positive frequency. This is not efficient mathemati-
cally, for one immediately rules out such powerful analysis
tools as the ordinary Fourier transform. Hence, these
authors are led to a double-sided mathematical analysis
and a single-sided interpretation.

For example, the filter response ii; Fig. 2-4 has noise
bandwidth W = 2B, wherea. most engineers would agree
that the band of frequencies passed is only B wide.
Working with a single-sided spectral system, as in Fig. 2-5,
one foldc the negative frequency response onto the
positive. The result is the single-sided spectrum, which
we give a different notation:

2S.:(fw) w20
Corlfe) = 0 w<0. (2-26)
S(jw)
IH (/ “')lzmu
N | 7Y
/ |/ N1
_.' 'ZLWN i‘— ° _.‘ %wﬂ i‘_
Fig. 2-3. Equivalent noise bandwidth
[}
S{/w)
-J 8 (= > 8 = ;
— -

Fig. 2-4. Double-sided frequency response
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(a) ‘ S(/w)

/‘\ \ ,
i — -
(b) AG(/w)

4
—

Fig. 2-5. Double- and single-s.ded spectra

The single-sided equivalent bandwidth is also given a
new symbol

o[ MG e
Bu = —HGa

(S

Wi (2-27)

and in this new notation, the noise power spectral
density is

(2-28)

N, 2N, fore >: 0
0

Ganlo) = ; = 0 w<0.

The resulting noise output is the same as (2-25} but ap-
pears written in single-sided parameters as

N =N, By l"(’“)llznn .

There is really no practical advantage to be gained from
a single-sided treatment once the engincer realizes that,
since physical filters have both positive and negative fre-
qucncy responses, it is not possible to measure only the
positive side or on!/ the negative side of a spectrum by
using linear filters—to the contrary, it is only possible to
measure the composite effects of both positive and nega-
tive frequencies with a filter. On the other hand, nne can
certainly build a device that finds the autocorielation
function of x(t) and then takes its Fourier trantform.

With such a device, negative frequency spectra are sepa-
rately observable; however, the result is a mirror {mage

7



JPL TECHNICAL REPORT NO. 32-819

of the positive frequency spectrum and hence yields no
new information. We shall use both concepts more or
less interchangeably in this work, and notation will make
it clear which is meant in any particular case: S(j») is a
double-sided spectral density, and W is a double-sided
bandwidth, while G(jv) refers to a single-sided spectral
density, and B is a single-sided bandwidth.

2.D. Sinusoidal Filter Inputs

Let a sinusoidal carrier having power P be inserted into
the filter H. We represent this input as the stationary

process
x(t) = (2P)*cos(wqt +6) (2-29)

where 0 is a uniformly distributed random variable, and
P is a constant (namely, the carrier power). Then we have

R;z(‘r) = P COS woT

2-30
Szz(jw) = =P [S(m"wo) + 8(w+wo)]. ( )

The factor of = is present in S, because we must satisfy

R.(0)=P = _2.1; / " Sufo)dw.  (281)
By our formula (2-17), the output spectrum is
Sw(’w) = oP IH(fw)lz [S(w—wo) + 8(w+wo)] (2-32)
and the output signal power (call it S) is
S = Ry(0) = P |H(jwo)|. (2-33)

If white noise is also present at the input, so that
x(t) = (2P)* cos (wot + 6) + n(t), then the vutput con-
sists of a signal component with power S and noise with
power N:

R, {0)=S+N. (2-34)

The resulting output signal-to-noise-power ratio (SNR) is

=S __P __|H(w)|
PN N, . O

If the carrier frequency is placed at the filter’s maximum
gain point, the SNR is maximized, and

P

Pyimaxy = -No_“’u .

(2-36)

Thronghout this work, we shall consistently use the
symbol p to denote signal-to-noise ratios; p, then denotes
the signal-tu-noise ratio of the waveform y(t).

2-E. Fiducial Bandwidth

The ratio Wy|H(ju)|2,, /|H{jw)|* appearing in (2-35)
occurs very frequently in the theory of phase-locked loops,
as we shall see in later chapters. It is therefore very
convenient to give this quantity its own special notation

1 [+ 0
W |H(jo)| 2., _EFL [Hjo) de
“THGao) H{jar)? yon

This quantity is rauch like the noise bandwidth of H, and,
in fact, reduces to W, when the maximum filter response
occurs at w,. It is the same form of definition as that given
to Wy, except that it is referenced to an arbitrary fre-
quency w, rather than to the filter’s maximum response.
For this reason, we shall refer to it as the fiducial band-
width of H(s). This fiducial bandwidth is then the spectral
width of an ideal band-pass filter whose response at o = w,
is the same as that of H(s) and whose output power (with
a whit noise input) is the same as H(s).

Wy = 2bH =

2-F. Band -Pass Mixers

Now consider what happens wher. a sinusoidal signal
in white noise is heterodyned (a nonlinear operation) into
a different passband by a device such as that shown in
Fig. 2-6. Let the premixing filter H(s) have bandwidth
Wy, = 2By, as shown in the Figure. The filter input,
denoted by x(t), is

x(t) = (2P)* sin (wot + 6,) + n,(t),

where n,(t) is white, with spectral density N,, and P is the
power in the sinusoid. The premixer filter output y(t) is
then of the form

y() = (2P)*|H(juwo)[sin (wet + 6;) + nyft). (2-38)

Here 6, = 6, + arg H(juw,), the new noise n,(t) is band-
limited by H(s) to the filter width Wy, and S,,,. (ju)
= No|H(ja)|%.

We shall assume now that y(t) is multiplied by a unit-
power® sinusoid, 2 sin (wt + 6;). Thus, the mixer out-
puttis

o(t) = P“lH(fmo)l (o] [(wo—wh)t + (03'—0;)]
— P*|H(juo)]| cos [(wo+an)t + (6+85)] + me).
(2-39)

*This assumption can be relaxed by including a multiplier gain Kan
in the output v(¢).

“This supposes an ideal multiplier, Physical realization of a multi-
plier may leave a carrier term and harmonics.
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/2P sin (wot+8))
+ﬁ| (’)

> BAND- PASS

V2 cos (w, # +854)

H(s) y(r)

x(1)

\/ZPIH(/'wo)l sin (wo?+82)
+np(#) BAND- PASS
vir) Fis) 2(4)
Sz Jw)
1—’} | 2| )2
i 2
. 2
- Egq = -:,_-N°|H(j(w+ub))F(/w)|m“
S, (jw)

SN
1
>H
o™+
Ny
-+
N

2
lEN0|H|mal

Fig. 2-6. The simple product-mixer

The bandpass filter F(s) following the mixer is centered
at a frequency «,, which can either be w, + o Or @y — wh.
For convenience, say it is the latter, w; = wy — wj, with
wo < wp. One normally chooses By << By, since there is
nothing to be gained with B, > B,. The new noise term
n,(t) is also split into two bands, and unless the band-
widths of F(s) and H(s) are chosen properly, overlapping
of the noise spectra will allow unnecessary noise in the
output of F(s). It is easy to see from Fig. 2-7 that this
can be avoided by choosing®

2Bp < Bp + BH < 4fh

Br < 2fn or Wi < 4fy . (2-40)
When this is satisfied, the output z(t) from F(s) is

z(t) = P* | H(jwo) |

F(fw,) | cos (wit + 64) + nu(t)
(241)

*This may need to be modified by a factor of ¥4 if carrier is present
in the multiplier output.

with 6, = 6, — 8, + arg F(ju,). The output noise spectral
density is, for positive values of o,

2,

F(ju) |* .
(2-42)

Suyralio) = 3 No | H[i(o+ on)]

We have tacitly assumed that F(s) is chosen in accordance
with (2-40) to suppress completely the image term that
would appear in S, (jo) centered at w, + v

Syy (jw)

-—

o

. >
fouty fo fotf

Fig. 2-7. Choosing filter bandwidths to avoid the image
noise problem
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The equivalent noise bandwidth of the mixer is

L[ oo || R | e
Wy = ‘H[j(w-f'mh)] F(jo) ';ax

= F.

(2-43)

The output signal-to-noise ratio of the mixer is then
given by

_ __ P|H(juo)l?* [F(juy)|*
P: = NWiu | H[H(wT )] FGo) | 2

max

(2-44)

This attains its maximum value if H and F are built so
that

| H(jw) | fuax = | H(jwo) | *
and
|F<“’)Ifnax = |F<iw1)l2 ’

in which case

— P IH(iw) I xznnx l F("") | fnilx
Pemen) = N Wi | |H i+ on) | F (o) | 2ue

__P P
~ NWa T NoWr

(2-45)

This is one of the important features of a simple
product mixer: the output signal-to-noise ratio is the
same as that of a simple sinusoid passing through a linear
filter having the same bandwidth as the mixer. Thus,
even though mixing is a nonlinear operadon on the in-
coming waveform, there is no degradation in the signal-
to-noise ratio at the output. Also, there would be no
nonlinear distortion if a bandlimited signal were put into
the mixer, rather than a sine-wave. The heterodyne merely
produces a translation in the frequency domain and may
be treated as a linear device otherwise. Care must be
exercised to avoid image noise, and this can be done by
choosing By < 2fy (balanced mixer) or By < f» (non-
balanced mixer).

2-G. Amplitude and Phase Detectors

When the heterodyne frequency is exactly equal to
fo, the mixer becomes an amplitude detector or phase
detector, depending upon the relative phases of the in-
coming wave and the mixing signal. In either case, the

10

resulting output occurs at baseband (i.e., o, = 0), and
the post-raultiplication filter F(s) is now a low-pass, rather
than a band-pass, device. No longer are there four sep-
arate bands of frequencies in the multiplier output ov(t)
as shown in Fig. 2-6. Instead, the two low-frequency
portions merge into one at zero frequency. Because of
this, there is an apparer.t decrease, by a factor of 2, in
the detector bandwidth, for we note that a band of fre-
quencies W, = 2B, at carrier frequency (see Fig. 2-6)
is heterodyned to a width W, = % W, = B, at base-
band. At the same time, the merged noise spectra add
together.

The sinusoidal signal components of the input are also
heterodyned to zero freauency, and depending on the
phase of the mixing frequency, these can add or subtract
in varying degrees. With », = 0 in Eq. (2-41), we have

z(t) = P* | H(jw,) | F(0) cos 8, + n,(t) (2-46)
where 6, = 6, — ¢,. Because of the merging of the het-
erodyned bands, the spectrum of n,(t) becomes

Sngng (12) = R [Hi(o—an)][? + [H(jo+o0)|?} [Flio)]

~ No | H[j(0—wo] |*| F(ju) | * . (2-47)
The latter approximation is valid when F(s) is much nar-
rower in bandwidth than is H(s). The output signal com-
ponent thus has a zero-frequency component with density

S:z(sip) (jo) = P I H(jw,) | * F*(0) E(cos? 6,)(f).
(2-48)

The term E(cos®6,) above is referred to as the cokerence
factor. When 6, and 6, are completely unrelated, then 6,
takes on any value between 0 and 2 with equal likeli-
hood, so the coherence factor in this case is

E(cos,) = 5 . (249)
But when 6, and 6, are fully coherent, i.e, when
0, = @, with probability one, we have

E(cos®,) =1 , (2-50)

Thus, there is a 3-db advantage in signal-to-noise ratios
to be gained by properly phased synchronous detection.
In way event, the output signal-to-noise ratio is

~<t | H(joo) | * F%(0) .
P R T PR o "7
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where the detector bandwidth W, is given by the same
formula (2-43) as was the mixer bandwidth Wy. By
choosing H and F to have maximum response at f, and
0, respectively, the maximum SNR is achieved

P P
Pz(max) = NW, E(cos®6,) ~ N, E(cos?®6,) .
(2-52)

The last two equations resemble those of the mixer,
viz., (2-44) and (2-45), except for the coherence factor.
Also, one should realize that the passband of frequencics
around the carrier is 2W, wide, whereas the detector
bandwidth is only W ,; hence, care must be taken not to
confuse the carrier passband with the detector bandwidth.

Fer a synchronous phase detector, of course, §, and 6,
are purposely made to differ by an angle of about /2,
so very little signal power is present in the output. The
signal-to-noise ratio of a phase detector output is thus
not a very meaningful quantity.

All of the expressions for signal-to-noise ratios above
could have been more simply expressed in terms of
fiducial bandwidths. The treatment here, however, illus-
trates the desirability of locating the signal power at the
maximum response point of the filter.

2-H. Noise

Many sorts of electric signals are called noise. In the
early days of radio, noise was familiar as the crash and
crackle of static. Later, there was the rasp of ignition
noise and the hiss of thermal and shot noises generated
in radio circuits themselves. In the end, many engineers
have come to regard any interfering signal of a more
or less unpredictable nature as noise.

The study of noise began with the consideration of
certain physical sources of noise and the sorts of noise
that they generate. At first, only very simple properties
of the noise signals so generated were understood and
described. As the art has progressed, a mathematical
theory of noise has grown up. This theory is a part of
the general field of statistics, and it deals with signals
that have an unpredictable, statistical, random element.

1. Thermal Noise

Perhaps the most fundamental noise is Johnson noise,
the noise from a resistor. The engineering fact is that a
resistor of resistance R acts as a noise generator with an
equivalent circuit as in Fig. 2-8. In an ordinary resistor,

S —
R >
‘EG:L
/”(r)Q s 7
v Sy tjw)=2kTR | Si, (Jw)=24T6
—0

Fig. 2-8. Thevenin and Norton equivalent circuits of
noisy resistors

it is a summation of the effects of the very short current
pulses of many electrons as they travel between collisions,
each pulse individually having a wide spectrum. In this
case, the noise is a manifestation of the Brownian move-
ment of the electrons in the resistor. In a resistor consist-
ing of two opposed, close-spaced, hot, electron-emitting
cathodes, it is a result of the current pulses of randomly
emitted electrons passing from one cathode to the other.
In a lossy dielectric, it is the result of random thermal
excitations of polarizable molecules, forming little fluc-
tuating dipoles.

For any particular sort of resistor, it should be possible
to trace out the source and calculate the magnitude of
the Johnson noise, and indeed, this approach has been
used.

Any energy involved in thermal noise must clearly
come from the surroundings in the form of heat transfer.
Thus, derivations of the behavior are destined to involve
thermodynamical arguments.

Consider a network containing many resistors. If we
heat one hotter than the rest, energy tends to flow from
the hot resistor to the cooler resistors. Johnson noise is
such energy flowing as electric power. Even when the
resistors are all at the same temperature, power will
flow back and forth between them through the connect-
ing network, always so that, on the average, a resistor
receives just as much power as it sends out.

Statistical mechanics tells us how much energy must,
on the average, be associated with each degree of free-
dom of a system when the system is in thermal equilib-
rium. In an electrical network of inductors, capacitors,
and resistors, the number of degrees of freedom is the
number of inductors plus the number of capacitors.
(Inductors in series and capacitors in parallel are treated
as a single inductance or capacitance, because in setting
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up a signal on the network, we are free to specify arbi-
trary initial currents in all the inductors and arbitrary
voltages across all capacitors.)

Classical statistical mechanics says that in a system
(in our case, such an electrical network) that is in equilib-
rium (all at the same temperature T) there is, on the
average, an energy Y2kT joules associated with each
degree of freedom:

= 1.380 X 1072 joule/degree Kelvin.

According to quantum mechanics, the energy is less
than this at high frequencies; Nyquist and others have
used the quantum-mechanical expression to get the cor-
rect result. However, even up to many thousands of
megacycles, the classical expression is accurate. The only
change that quantum mechanics makes is to say that
the mean energy per degree of freedom is

1 hf

'2" M7kt _"'1

=%k’l‘+ (2-53)

where h is Planck’s constant
h = 6.625 X 10-** joule seconds

and f is the frequency. This reduces to the classical
result when f« kT/h. At 300°K

ﬁhl = 6.25 X 102 cps

Hence the theory holds, to engineering accuracy, up to
60 Gc. Even at very high frequencies, one may define
an equivalent noise temperature Ty as

k

Ty = -e'%{-_—l- =T-+...
In this way the energy per degree of freedom is always
kTx/2 (anyway, Ty is usually inferred from noise power
measurements rather than calculated from T'). Johnson
noise thus often serves as a reference for the noisiness
of radio receivers and amplifiers, and the effective noise
temperature provides a useful way of specifying the
noise output of any source.

Let us consider two simple circuits as particular exam-
ples, to see how things work out. In these circuits an
inductance L is in series with a resistance R at tempera-
ture T, and a capacitance C is in shunt with a conduct-
ance G at a temperature T, as shown in Fig. 2-9.

e
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E(v®)= kT/C
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WW

E(i%)=kT/L

Fig. 2-9. Total Johnson noise current- and voltage-
squared relations in simpie circvits

Let E(i*) be the total mean-square noise current in
the inductor. We can write

1, 1 !
5 LE(®) = 3 kT. (2-54)

On the left we have the average power in the inductance.

On the right we have the average value this must have
according to statistical mechanics. Accordingly,

E(i) = Eg

(2-55)
This must be true regardless of the value of R. If R is
low, we have a narrow-band circuit; if R is high, we have
a broad-band circuit.

In a similar way, in the case of the capacitance C and
the conductance G in shunt, we easily find that

1 1
(2-56)
E(v?) = %T

If the conductance is small, we have a narrow-band
circuit with high low-frequency noise components. If
the conductance is large, we have less low-frequency
noise but more bandwidth.

The relations described above of course apply to
capacitors and inductors not merely in the simple circuits
we have considered, but to capacitors and inductors any-
where in all circuits, no matter how complicated they
may be. In any case, we see that the noise voltage- or
current-squared is proportional to the temperature T.

Among the circuits to which (2-55) and (2-56) apply
is the simple RLC series resonant circuit of Fig. 2-10.
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Fig. 2-10. Tuned circuit for investigating the spectral
density of v,(f)

This circuit is characterized by a resonant frequency f,,
a Q,, and an impedance Z(jv), related by

!
@~ (LCy*
Q. = "’g‘ (2-57)

= _AV_ p @ _ @Y
]Z|2—R2+(wL u)C>~R[1+QO(wO w)]

We can regard this circuit as one excited by the Thevenin
equivalent Johnson noise voltage v,(t). If we make the
Q. very high, so that the bandwidth of the circuit is very
narrow, we can find out something about the spectral
density of this voltage. Clearly, we must have the voltage
and current spectra related by the equation

Sv,,ﬂ,.(i“’)

Sii(iw) = W . (2'58)

The integral of S;i(jo) yields E(i*), given by (2-55).

Thus
E — 1 ' Sv”v"(fw)dw )
e e ) |

Wo w

(2-59)

At very high values of Q,, supposing S, (ju) is fairly
constant about w,, we can bring S, , (jo) outside the

integral: i
LC_T_‘_ = Sv"v"(fwn)/ Qod(tﬂ/(ﬂo)
L 2»LR - 140 .,,i _ c_:_:)_ 2

(2-60)

The value of the integral can be computed by substitut-
ing w/w, = €® to reduce it to a standard form in integral
tables; it is equal to

/ T odlte)
. 1405(2-2)

(2-61)

[0 w

We thus have a white spectral density of the equivalent
noise voltage in the circuit: For every w,

Supry(fuo) = 2KTR . (2-62)

This is commonly referred to as Nyquist’s Law.

The spectral density of the equivalent shunt noise
current in a resistor can be computed similarly.

What happens if we connect two resistances in series
or two conductances in parallel? In a given frequency
range, the voltages or currents produced by differeat
resistances are uncorrelated; they have random phases,
and the mean square of the sum of the separate voltages
or currents is equal to the sum of the mean-square volt-
ages or currents of the separate resistors.

As we have noted, for a complex impedance the series
noise voltage generator at any frequency can be calcu-
lated from the resistive component R of the impedance,
and the shunt noise current generator from the conduc-
tive component G of the admittance. We can calculate
the thermal noise spectral density for any network,
simply by associating with each resistance a series volt-
age generator according to the relation above.

We may ask, what is the thermal noise power N
available from a resistor? We will draw off the maximum
power if we supply a matched load of the same resist-
ance. Thus, the available noise power in the bandwidth
Wy can be obtained by calculating the noise power
flowing into a resistance R from a source with an internal
resistance R and an open-circuit voltage spectral density
given by (2-62). This power is

kT

N = T W)v (WattS) .

(2-63)

This result is usualiy stated in the literature in single-
sided notation:

N = kTBy (watts) . (2-64)
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The conclusion to be reached from this discussion is
that when an amplifier is matched to its source, the
amplifier input noise power spectral density S,.(jo) is

kT

San(fo) = No = 5 R (volts?)

or
N, = kTRforf >0

Ganlie) =7 f<0.

(2-65)

One last point concerning thermal noise: By considera-
tion of the entropy of a system in thermal equilibrium,
it can be shown that individual electrons have a Gaussian
velocity distribution of zero mean in each direction. The
composite effect is a linear combination of Gaussian
processes, and hence the total noise voltages in a circuit
are independent white Gaussian processes.

2. Shot Noise and Other Noises in Electron Tubes

Electricity is not a smooth fluid; it comes in little
pellets, that is, electrons. The flow of electrons in a
vacuum tube is accompanied by a noise of the same
nature as the patter of rain on a roof. Schottky, who
first investigated this phenomenon, called it the
Schroteffekt (from shot); it is now usually called simply
shot noise. Like Johnson noise, shot noise has a fairly
flat spectrum. This is really what we should expect of
a random collection of very short pulses (each of which
has a wide spectrum). However, at frequencies for which
the transit time from cathode to plate is comparable to
the period, the noise induced in the plate circuit is a
function of frequency.

Random processes other than the random emission of
electrons can also give rise to noise. For example, noise
can be introduced into an initially noiseless electron
flow if the electrons randomly hit or miss the wires of
a grid, with a certain average intercept..n of current.
Such noise is called partition noise or interception noise.
If a small fraction only of the current is intercepted,
the added noise is roughly equal to shot noise for the
intercepted current.

At high frequencies and long transit times the excita-
tion of a circuit may depend on the velocity of the
entering electrons. In such a case, the random variation
of velocity of emission from one electron to another,
associated with the Maxwellian velocity distribution of
electrons leaving a cathode, can give rise to noise. This

14

fluctuation in velocity is also responsible for what is
commonly called the modified or reduced shot noise in
space-charge-limited flow of electrons from a cathode.

A very simple theory of noise in space-charge-limited
diodes and triodes (at frequencies low enough so that
transit time is not important) predicts that the noise can
be represented by an impressed noise current i(¢) in the
plate circuit with spectral density

Sii(jw) = (0.644)2kT.g . (2-66)
Here T, is the temperature of the cathode and g is the
conductance of the diode or the transconductance of the

triode. More elaborate theories lead to a factor that, in

various circumstances, may be a little greater or a little
less than 0.644.

At moderate frequencies, noises in triodes and diodes
agree fairly well with (2-66), being perhaps a little higher.
At low audio frequencies and below, flicker noise appears.
This typically, but not always, has a 1/f spectrum (dis-
cussed below). Flicker noise is very variable from tube
to tube. It has been ascribed to fluctuations in the work
function of the cathode surface.

3. Noise With a 1/f Spectrum

Johnson noise is in a sense inherently white noise, in
that the fundamental relation between the noise source
(the resistance or conductance) and the amount of noise
per unit bandwidth is independent of frequency. Shot
noise is, in the same sense, inherently white noise too,
although it can give rise to different spectra in circuits
with different transfer admittances or in tubes of different
transit times. In a close-spaced diode formed of opposed
cathodes at the same temperature and with no average
current, shot noise and Johnson noise are two names for
the same thing,

Some important sorts of r.oise are generated only in
nonequilibrium systems, for instance, in systems in which
dc current flows. Among these are contact noise, such as
is produced in a carbon microphone, and the noise pro-
duced in carbon resistors and in silicon and germanium
diodes and transistors. Both contact noise and transistor
noise have a spechum that varies nearly as 1/f over a
large frequency range, though it may be constant at high
frequencies and at very low frequencies. One could
obtain a 1/f spectrum down to any given frequency by a
Jroper mixture of pulses of various lengths,
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Transistor noise has been attributed to the trapping
of the holes or electrons (carriers) that form the current
flow. The trapping ard subsequent release of a charge
carrier is equivalent to a rectangular pulse in the current.
The effect may be strengthened by the charge of the
trapped carrier modulating the flow of other charges. By
assuming a particular distribution of trapping times, or
pulse lengths, o 1/f spectrum can be obtained, The matter

of noise in semiconductors is by no means thoroughly
understood, and somewhat different mechanisms have
been suggested.

Actually, the power spectrum cannot vary as 1/f right
down to f =0, for this would imply an infinite noise
power. Measurements do show a 1/f spectrum down to
frequencies as low as 10~ cps, however.
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CHAPTER 3

FORMULATION OF THE LOOP EQUATION AND BEHAVIOR
IN THE ABSENCE OF NOISE

In this Chapter, we shall develop the basic equation
governing the phase-locked loop. Assuming that noise is
absent, we shall develop the acquisition and steady-
state character of the loop. This essentially follows the
work of Viterbi.

3-A. The Basic Integro-Differential Equation

The essentials of a phase-locked device are a multi-
plier, a loop filter, and a voltage-controlled- oscillator
(VCO), as shown in Fig. 3-1. Most of the more elaborate
systems using double-heterodyne techniques, IF limiters,
and acquisition aids reduce to this basic model, insofar
as analysis of the behavior is concerned. The input is
assumed to be a sinusoid of the form

x(t) = A(2)* sin [wot + 6(t)] (3-1)

in which the quantities A, w,, and 6(t) are

A = rms voltage amplitude of x(¢)
w, = frequency of the VCO when its input is shorted
6(t) = the input signal phase process.
Normally, 6(t) consists of an information-bearing term
y(t) due to modulation and a term d(t) due either to

doppler shift in the received signal, to drift in the VCO

center frequency, or to some bias voltage appearing at
the VCO input. e

The incoming signal is multiplied by the VCO output

The term () appearing here is the loop estimate of 6(t),
and K, is the rms output of the VCO.

The result of this multiplication, if perfect, would be

y:(t) = AK, {sin [6() — 8(t)] + sin [2wet + 6(t) + 6(t)]}.
(3-3)

However, generally speaking, the multiplication is ac-
complished by a device unable to respond to the double-
frequency term. Also, the multiplying device has some
gain K,, and hence the actual output of the “phase-
detector” is

y(t) = AKle sin ¢(t) . (3'4)
The quantity ¢(t) = 6(t) — 3(t) is called the true phase
error.

The multiplier output is then fed into the loop filter
F(s) and emerges as z(t), which, in turn, supplies the
input to the VCO.

In many actual implementations, the waveform y(t) is
monitored (perhaps multiplied by a gain factor) and is
called the “dynamic phase-error.” Similarly, z(t) is often
referred to as the “static phase-error.” These are func-
tions of sin ¢, rather than the true phase error ¢, and thus
tend to generate some confusion. Little reterence to these

o(t) = K, (2)* cos [wt + 8(t)] . (3-2)  terms will appear in the material that follows.
Y in(wo?+ 6(7 1) AKX K, s
x(1) =4 /Z sin(wo?+ 8(1)) _ y(r)zA4K K, sin ¢m. LooP FILTER 2(#)
F(s)
VCo e +
v(t)2 K /Z cos(wo? + 8(1))
[

Fig. 3-1. The basic phase-locked loop
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The VCO output frequency is, as its name implies, a
linear fur “on of its input.

wvco(t) = wgy + Kv(‘,o Z(t) + KVCO e . (3-5)

Consequently, the phase estimate é(t) developed by the
loop, being the integral of the VCO frequency, can be
written, omitting e for the present,

Bt) = 5;"% 2(2) (3-6)

where p = d/dt is the Heaviside operator. Substitution
for z(t) yields

8(t) = AK.KnKyco = g”’ sin (1) . (37)

At this point it becomes convenient to define
K = K,KKvco (3‘8)

as the open-loop gain® of the loop, and to substitute
8§ = 6 — ¢. This produces the fundamental equation that
specifies the behavior of the loop in the absence of noise,

8(¢) = olt) + AK ﬂ;’—) sin ¢(t) . (3-9)

When F(p) is a constant, (3-9) is a first-order integro-
differential equation. Hence the configuration of Fig. 3-1
is called a first-order phase-locked loop. Similarly, when
F(s) has n finite poles, the system equation is an (n+1)th-
order one, and the device in Fig. 3-1 is said to be an
(n+1)th-order loop.

3-B. Tracking When the Loop Error is Small

The phase-locked loop would be of little use if it were
not possible to use it to reconstruct the input phase
process with some degree of fidelity—that is, unless we
are able to “leck” the loop in the first place. The term
“lock” is somewhat subjective at this point, but it may
generally be thought of as a condition in which ¢(t) never
varies outside an interval of size 2». The mean-phase
value is called the lock-in point; such lock-in points are
located 2r radians apart. Whenever the phase error goes
through 2» radians, we say that the loop has skipped a
cycle. 1f the loop is capable of reducing the phase error
to a small enough value, say | ¢ | < »/6, we can approxi-
mate

Sin ¢ =~ ¢

‘Often the open-loop gain K is defined to contain the dc gain of
F(s2). However, F(0) may not always be finite (e.g., if F(s) has
an integration), so we do not include it here. In cases where it is a
finite value, we shall be careful to design F(0) = 1.

and, in such a case, the loop error is related to the input
phase by a simple, linearized version of (3-9),

o) = EEEE0) o) (3-10)

Generally, the input process can be separated into an
information-bearing part y(¢) and a phase-offset term d(t):

p

_ p
#(t) = 7 T ARFG) yit) + > T ARFp) d(t) .

(3-11)

We see that there are two kinds of error present in the
loop. That part of the error due to the modulation y(t)
is commonly called phase distortion. The remaining error
is that produced, for example, by a doppler shift on the
incoming carrier. To be effective, the loop must be de-
signed to track whatever variations d(t) may have, so
the filter F(s) must be properly chosen. Error arising
from d(t) is called the tracking error, or transient
distortion.

The steady-state tracking error can be determined by
the final-value theorem of Laplace transform theory.
Denoting D(s) = L[d(t)], the Laplace transform of d(t),
this theorem reads

¢es = lim —2 D)

m T AKF(s) (8-12)

An example will elucidate the behavior:
First-order loop: Suppose F(s) =1, and d(t) = 6, +
.t + % A, t?, where ¢, is the initial phase offset, 0, the

initial frequency offset, and A, the doppler rate,

0 QO A()
D(3)=%-+?.7+;3-.

This produces a steady-state tracking error given by

0 = lim 0,8+ Q, + AJ/s

3-13
-0 s + AK ( )

The error is not bounded if A, 0; but when A, = 0,

Q

b = 'H(' . (3—14)

In such a case, ¢,, can be made small by adjustment
of the loop gain. Note: that the loop will track any initial
phase offset 8. with no steady-state error in the absence
of a frequency offset (i.e., 2, = 0).

17
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From this example, one can see that if d(t) = A.t"/n!
(the nth derivative of d(t) is As, so D(s; = A./s™?), and
if F(s) has [ poles at the origin, as

Fi) = 75,90 #0,p0) %0, (315)
then the steady-state tracking error would be
1-n4
o = lim Pl (3-16)

o 87p(s) + AKq(s)

This is not finite if n > [ + 1. When n == 1 + 1 the error
is fiiite and has the value

g = 22 20
" AK q(0) -

(3-17)
When n < [, there is no steady-state error, ¢,; = 0, and
perfect tracking ultimately results.

The conclusion here is the following: In order for a
phase-locked loop to track an nth-degree phase function,
F(s) must have at least (n — 1) poles at the origin.

3-C. Acquiring Lock in the First-Order Loop

Let us concentrate now on the way a first-order loop
(F(s) = 1) behaves in a tracking mode only. We consider
the case in which y(t) (modulation) is absent from the
input phase function 6(t); only the d(t) term due to input
doppler, VCO drift, etc., is assumed to be present. From
the discussion in the previous Section, it is clear that the
first-order ooy can track a function of the type (constant
frequency offset)

0(t) = 6, + Ot (8-18)
whenever Q, is small enough that ¢(t) ~ 0; that is, when

(3-19)

Qo v
AK| <6 °

(1]

in o
(27 =1)w=Sin ax

enw +Sin°'£9-

To investigate the behavior for larger values of Q,, let
us rewrite the loop equation, differ...tiating (3-9),

Q= ¢ + AKsin ¢ . (8-20)
We shall denote the frequency error by () = 0(t), and
plot Q versus ¢ according to (3-20). The result is shown
in Fig. 3-2. Whenever 0 is positive, ¢ tends to increase,
and whenever Q is negative, ¢ tends *o decrease. Note
that if |Q, | < AK, there are regular points at which
Q = 0. Starting at ¢(0) = nx, where n is an even integer,
the system tends to move along the sinusoidal trajectory
of Fig. 3-2 until it reaches the ¢-axis at

b = nw + Sin-1(Qu/AK) . (3-21)
'This is a stable point; @ cannot become negative because
¢ would then tend to decrease and :.turn the system to
the ¢-axis. If n were an odd integer, the system would go
througi» a larger part of the sinusoidal trajectory until it
reached « stable point at

$os = (0 + Dr + Sin™ (%’(-) .

(3-22)

If Q, > AK, howev=r, the trajectory never crosses the
¢-aiis,and phase lock is never achicved. The maximum
pull-in range of a first-order loop is thus

Oma: = AK . (3-23)
Whenever Q, < AK, the loop ultimately tracks the in-
coming function 6(t) with no frequency error, but with a
constant lagging phase error, given by (3-21) and (3-22).
The loop never skips a cycle.

The multiples of » here are usually cmitted, and the
steady-state phase error is written merely

ou = st (5% (3-24)

AX

+ + } t -+ + > ¢
/(Zn-l)v 2nw \j(:n+l)v 2n¢2)v\

Hg. 3-2. First-order loop pull-in behavior
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that is, the steady-state output of the VCO is a replica of
the input, lagging by ¢.,:

0.(t) = 2" cos [(wo + Qo)t + 0 — ¢4l .

(3-25)

The pull-in time may also be determined from (3-20) as
follows: we can write

dt 1

d¢  Q,— AKsing * (3-26)
This can be integrated to give the pull-in time to any
particular value of ¢, but, since the denominator above
vanishes at the lock-in point, an infinite time is required
before @ = 0. However, if we agree that the loop is in
lock whenever |é — ¢ioek | < 810k, the corresponding
time is finite. The maximum time required to achieve
lock, designated the acquisition time, will be that
time required for the system to pass from — = + 8,
— Sin~! (2,/AK) to Sin™! (Q,/AK) — 8,..x. When the value
of 8,,.x is small, the answer r :duces to approximately

2 2
AK cos ¢,,

(3-27)

tacg = .
res 8 lock

.t.nce, if a loop is designed so that ¢,, = 5 deg when 0,
is 200x rad/sec, and 8.« is taken *o be 5 deg, then the
required pull-in time is approximately 1 msec.

The trajectory described in Fig. 3-2 is called a phase-
plane diagram of the loop behavior. It is particularly
useful for analyzing the lock-in characteristics of low-
order loops.

3-D. Acquiring Lock in the Second-Order Loop
With Passive Loop Filter

The system of interest in this Section is one in which
the loop filter takes the form

1+ rs

Fis) = 1+ s’

(3-28)

The discussion in Saction 3-B indicates that a loop with
this filter can follow a phase function of the type
d(t) = 6, + 0.t (i.e, a constant frequency offset), but
that no higher-order terms may be considered. The equa-
tion governing the behavior, from (3-9), is

R =né + (1 + AKrycos ¢) ¢ + AKsin ¢. (3-29)

The steady-state phase error ¢., is the same as for the

first-order loop,
= sin (=2
¢N! E AK ]

and, clearly, the loop never locks if 0, > AK. Even for
values of 0, less than AK, puil-in possibly may not occur,
even though a stable point exists in the phase plane This
is a consequence of the fact that the trajectory that
takes ¢ to ¢.. is not the simple sinusoid of Section
3-C, but is rati.er the solution to Eq. (3-29).

(3-30)

To simplify things a bit, we can substitute for ¢ the
value
de  de _ _ da
de  dt

O
i grn (330
(note that & is proportional to the slope of the phase-
plane trajectory). This produces the trajectory equation

00=(r,i(l +1+ AKrzcos¢)0+AKsin¢.

d¢
(3-32)

A solution to (3-32) depends not only on ©,, hu also
on Q(0) and ¢,, the ‘nitial conditions of the VCO. For
certain values of Q,, the loop will lock regardless of what
values Q(0) and ¢, take. See, for example, Fif. 5-3. In
this Figure, ¢ has been limited to the region (-, =)
by folding all the trajectories onto this region. When Q
is positive, ¢ increases, and when Q is negative, ¢ de-
creases. Hence, motion as a fuaction of time is from left
to right in the upper half plane, and from right to left
in the lower. Starting a trajectory, say in the upper half
plane, one follows it to the right until ¢ = ». skipping
back *o ¢ = — » at the same value of Q encountered at
¢ = = This continues until the lock-in point is reached.

For values of Q, larger than those in Fig. 3-3, lock-in
may occur for some initial conditions of the VCO but
not for others, as illustrated in Fig. 3-4. This latier Figure
shows that there is a limit cycle towzrd which all higher
trajectories converge, as well as some of those from be
low. Even if 0(0) is negative, lock-in is not assured, since
only those trajectories that ultimately pass through a
strip determined by the asymptotes of the saddic points
can converge to the lock-in point.

By integrating (3-32), Viterts has dcrived a necessary
condition on ,: If lock iis occurs for all initial conditions
of the VCO, then 0, is bounded by

o< 2 [("—") 1+ %Axf,)] " e






JPL TECHNICAL REPORT NO. 32-819

—

LOCK-IN SLO

S

1
S
LS o

Fig. 3-4. Lock-in behavior of a second-order loop with imperfect integrator, Fis) = (1 + 7,5)/(1 + r,3), for 0,/AK
= 0.9 and AKr2/r, = 2. The upper bound of Eq. (3-33) is ©,/AK <0.693. Note that lock-in
occurs only when the trajectory happens to pass through the “slot.” Otherwise,
the trajectory enters the periodic frequency lag region shown.
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Experimental evidence seems to indicate that this is a
fairly sharp bound; that is, for Q, very close to the bound
above, lock always ultimately occurs, although as the
bound is approached, longer and longer times are re-
quired to pass through the region where the limit cycle
would occur should Q, reach the bound.

Acquisition time for this loop is difficult to compute,
but as an approximation, Viterbi has computed the time
required for frequency lock (i.e., that time required be-
fore no more cycles are skipped); when r, is large, it is

]. Q()Tl 2
tfreq req ;" AK sec.

The additional time to acquire phase lock is probably
about the same as t,., of the first-order loop, given in
(3-27).

(3-34)

3-E. Tuning the VCO

In the first four Sections of this Chapter, we have
neglected the effect of the VCO tuning voltage e shown
in Fig. 3-1. Including it in the VCO equation (3-5), we
can write

wvco(t) = wqg + KVCoe + KVCO Z(t) . (3-35)
The effect of e is that it determines the VCO frequency
when z(t) is absent. The loop phase estimate is likewise
changed to

KV(‘O
p
The basic integro-differential equation governing the

loop is almost the same as (3-9), except for a term Kycoet
subtracted from 6(¢). The result can be written

B(t) = (wo + Kvcoe)t + 2(t) . (3-36)

é(t) — Kvcoe = Q(t) + AKF(p) sin ¢(t). (3-37)

The conclusion is now evident: All the answers we have
obtained about lock-in, tracking, etc., are the same as
before, except that we replace 6 by 6 — Kycoe. Alterna-
tively, we can redefine w, 2s w,p = wo + Kycoe.

For example, vhe lock-in points now occur at

o f Qo—Kycoe
¢ss = sin’? (T) .

By choosing e properly, the steady-state error can be
made zero. This value of e is clearly

(3-38)

¢ = (3-39)

KVCO

22

In the first-order loop, the acquisition time with the
foregoing value of ¢ becomes

(2 2
tacg = <—R) In (m> .

3-F. Locking the Second-Order Loop with
Perfect Integrator

(3-40)

When r, s 7., the system whose loop filter is given by
(3-28) behaves much the same as the one with
F(S) — 1 + ‘r-_:S ,

T8

(3-41)

except that the latter is able to track any constant fre-
quency offset with zero steady-state error. However,
there is a steady-state error when a doppler-rate A, is

present:
$un = Sin-l(—T‘A")

and just as there was a limit on Q, in Section 3-D for
lock to occur for all initial conditions of the VCO in the
passive-filter loop, there is a limit on A, in the perfect-
integrator loop. ‘

(3-42)

Clearly, from (3-42), lock cannot occur at all if
Ao > AK/r,. Figure 3-5 is a typical phase-plane diagram
of the way such a loop behaves with a doppler-rate
input. Almost all trajectories with Q(0) < 0 eventually
lead to the lock-in point, while most of those with
(0) > 0 diverge upward, never reaching lock. The Fig-
ure is drawn with the largest value of A, (determined
experimentally) such that all trajectories with Q(0) < 0
ultimately terminate at the lock-in point, while most of
the trajectories with Q(0) > 0 fail to lock. This value of
A, is a function of the parameter AK+: /r, = r;

A, = k(r) (-45) .

T1

(3-43)

Figure 3-6 illustrates the way k(r) varies as a function
of r.

When the VCO is being swept as in Section 3-E to
lock onto a constant frequency offset Q,, the rate by
which e is changed should not produce a A, exceeding
(3-43), and, as Fig. 3-5 shows for positive values of A,,
the sweep should begin with a negative frequency error
(a positive frequency error if A, is negative). That is,

cho% < k(r) (ﬁ) .

T1

(3-44)

In the passive-integrator loop, (3-43) and (3-44) hold
approximately for short periods of time (see Section
6-C3).
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Fig. 3-6. Normalized maximum doppler rate, kir) = A, r,/AK, for which
lock is guaranteed in the absence of noise, as function of the
loop parameter r = AK +2/r,
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CHAPTER 4
BEHAVIOR OF PHASE-LOCKED LOOPS WITH STOCHASTIC INPUTS

The consideration given to phase-locked devices in
the preceding Chapter excluded both the possibility that
the incoming phase process 6(t) was a random, informa-
tion-bearing process and the possibility that the input
wave was a noisy one. We now wish to include these
cases for consideration. Some comments are in order
concerning the effect of noise on the pull-in and tracking
behavior under such conditions. A small amount of
phase jitter due to noise or §(t) will not affect the phasc-
plane trajectories significantly; it will result only in a
small amount of hash being superimposed on the tra-
jectories. Such a small amount of jitter on the trajector-
ies will thus not appreciably change the number of cycles
required to achieve lock. On the other hand, if the input
noise is significant, the disturbance of the trajectory may
easily be such that a drastically different number of
cycles will be required before lock is achieved. The
number of cycles required to achieve lock depends on
the particular noise waveform observed at the input
and is random. If there is a great amount of phase jitter,
the response of the loop may be so erratic that lock never
seems to occur. There are, as yet, no analytic results on
the pull-in time when stochastic inputs are observed.

4-A. Development of a Mathematical Model
and a Basic Loop Equation

We start as we did in Chapter 3, but now the input
consists of a sinusoidal signal with power P = A? im-
mersed in a noise n;(t):

x(t) = A 2'% sin [wot + ﬂ(t)] + n,-(t) . (4-1)
The density of n;(t), denoted S, ,,(jw), will be arbitrary
for a moment, although we shall restrict it later.

Following the same procedure as in Chapter 3, we
derive the basic integro-differential equation, similar to
(3-9):

2 L)
p

6(t) = AK KF (f;)n(t) " Kvco[€ + ni(t)].

sin ¢(t) + 7

(4-2)

Again, ¢(t) = 6(t) — g(t), K = K\KnKyco, € is a tuning
bias applied to the VCO, and the term n,(¢) is the internal

loop-noise referred to the VCO input. The noise n(t)
appearing in (4-2) is

n(t) = ni(t) 2" cos [wdt + 8(t)] . (4-3)

Except in special cases, the spectral density S,.(jw) of
n(t) is not merely a hetcrodyned version of n;(t), because
of the correlation between n;(t) and the phase estimate

A

ae).

As we indicated in Section 3-E, the effect of ¢ on the
loop is that it changes the no-error VCO frequency from
wo t0 wop = wn + Kycoe. We can thus merely redefine w,
to include this offset and proceed with

fe) = i’% sin (t) + @ n(t) + K—;“"’- nalt)

_ AKF(p)

sin [6(t) — 6(t)]

KF(p) Kyco

+ n(t) + T n,,(t) f

(4-4)

This last equation gives us the basis of an exact
mathematical model of the phase-locked loop. As shown
in Fig. 4-1, there are three inputs to this model of the
loop: the first, 4(t), enters, is differenced with 3(t), then
passes through a nonlinear, zero-memory amplifier whose
characteristic is yo.. = A sin x;,. The input system noise
n(t), added to the output of the sine-amplifier, becomes
the input to a filter with transfer function KF(s)/s, whose
output is then #(t); in this way, 8(t) satisfies (4-4).

Solution of (4-4) is really made no easier by the model
in Fig. 4-1; however, we are not generally interested in
the solution to (4-4) for a specific sample function n(t)
anyway. What we are interested in is some measure of
the loop’s average performance, such as rms phase error,
mean rate of cycles skipped, etc. From the Figure, how-
ever, one is led to some natural approximations that aid
in loop analysis, and these are developed in the ensuing
chapters.
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8(#) ~ B (1)

8¢t

- A sin ()
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n(t)

KK, Fis)

R

e+n,(1t)

Fig. 4-1. Exact mathematical equivalent of the phase-locked
loop. Sources of external, as well as internal, noises
are shown; VCJ tuning voltage e is also indicated.

4-B. Discussion of Mathematical Models

As a first approximation, the output phase-jitter of a
phase-locked loop can be obtained by replacing the
sinusoidal nonlinearity of our mathematical model (Fig.
4-1) by a linear or polynomial approximation. However,
the steady-state-error probability density p(¢) is a periodic
function because the loop is sensitive only to errors
modulo 2r; consequently, the steady-state phase variance
in every phase-locked loop is infinite. This is borne out
by the fact that, in actuality, the loop skips cycles at a
certain mean rate, executing a random, nonstationary
motion between lock-in points, much like a discrete ran-
dom walk. The linear and polynomial approximations
mentioned above do not exhibit this periodic lock-in
behavior, and hence they not only give no information
concerning loss of lock, but even come up with a finite-
variance, stationary phase-process: a case that never
actually occurs, as we have said.

But while the steady-state phase process itself does
not possess a finite variance, it does when phase angles
are reduced modulo 2x. On this basis, Tikhonov and
Viterbi were able to provide exact results for the first-
order system.

Considering the exact equivalent model, there is cer-
tainly no loss in generzlity by the explicit inclusion of
the “mod 2»” nonlinear function in the loop as in Fig.
4-2. However, there are several differences one can inject
into the mathematical results: Although the steady-state
¢-process is nonstationary, the ¢(mod 2x)-process usually
is stationary (assuming 6(¢) is stationary); there then
exists an equivalent stationary process (call it &(t) ) with

26

% 1ite variance, which, if reduced modulo 2, would result
:a a random process with the same probability density as
4(t) And so long as our sole interest lies in ¢(mod 2n),
and noi in ;7. Lavior of ¢, we may assume that @ is at
work in the loop, and that stationarity prevails. In fact,
the linear and polynomial approximations are direct
attempts at calculating the behavior of ®.

4-C. Spectrum of the Loop Noise

The noise we deal with in our analysis is not that
occurring at the input, but

n(t) = ni(t) 2** cos [wit + (t)] (4-5)

in which 8() is derlved in part, from n;(t). The non-
independence of 8 and n; means that S,.(jw) is not gen-
erally the convolution of S,,n,(ju) with the spectrum of
2" cos (wt + 6). However, it has been reasoned that
whenever n,(t) has a much greater bandwidth than a),
and whenever S, , (j») is symmetric’ about w,, then the
convolution formula is approximately correct. This gives

SM(,'“,) = "‘,,‘ [f(w wo)] n‘n'[.(w+m0)].
(4-6)

That is, the loop noise has the same spectral shape as n;(t)
does, except that it is heterodyned down to baseband. The
spectral shape of n;(t) usually comes from allowing white
noise with density N, = kT/2 to be passed through a

"This condition is stronger than it needs to be. See Davenport and
Root, p. 162.
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predetection filter H(s), whose bsndwidth is, say, W,.  In the zone about zero frequency, the region of interest,
That is, n;(t) has a spectrum of th. form these two halve- add:
Supnlin) = NofH(jo)| (47)

Snn(O) = NolH(iwu) 2 (4'9)

and, in this case, the loop noise n(t) has as its spectral
density

oy 1 . . , . (Again we note the change in bandwidth by a factor of
Sunlju) = 2 No{[H[{(o=wo)]}* + [H[{(wFwo)] |*}- one-half due to heterodyning n;(t) to zero frequency, as
(48)  in2-6.)

n{r)
a(r) + ¢i{mod 2m) e
st A sin ()
A
a(r
KF(s)
g
s

Fig. 4-2. Equivalent exact mathematical model of phase-locked
loop, with explicit reduction of ¢ (mod 2x). The VCO has been
replaced by Kyco/s (tuning bias and VCO noise omitted).
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CHAPTER 5
THE LINEARIZED ANALYSIS OF PHASE-LOCKED SYSTEMS

Most of the important behavior of a phase-locked de-
vice can be predicted by replacing the loop phase-
detector by an ideal phase-differencer. The distinction
between the two is, of course, that there is a sinusoidal
nonlinear characteristic for the phase detector, whereas
the ideal phase-differencer is a linear error-detecting
device. To justify this linearized analysis, one must as-
sume that the loop error is very small, which usually
means that a high signal-to-noise ratio prevails, and that
modulation on the carrier is not excessive. The latter of
these restrictions can be removed by subcarrier modula-
tion. For a discussion of such techniques, see Volume II
of this work.

5-A. Behavior of a Linear Loop

If the level of n(t) is sufficiently low, and if the loop
is designed properly, the phase error ¢(t) should be very
small. In such a case, the approximation

sing = ¢, (5-1)

when inserted into (4-4), yields a linear equation relating
the loop input aud output

Be) = ﬁ%%[e(:) + ”—Xl] (5-2)

omitting VCO noise.

The output phase is thus the result of a linear filter
acting upon the input phase process 4(t) immersed in a
normalized version of the loop noise, with the normalizing
factor in this case being equal to the rms signal ampli-
tude A. An equivalent circuit of the linearized loop
appears in Fig. 5-1. The overall loop transfer-function
(call it L(s)) is related to the loop-filter F(s) by the rela-

tions
_ AKF(s)
L) = T AREar
sL(s
F(s) = A—[J_L_]K T— L@

(5-3)

As with any linear filter, L(s) has some effective noise
bandwidth W,, which can be found by using (2-24),

1 [+,
[ IHE ey

WI, = 2BL = L2

where we use L? to denote | L(jw) |2,

It is important to remcmber that W, is the bandwidth
of a transfer function at baseband and it is not the sane
as the width of the carrier passband produced by the
loop. As we saw in Section 2-F, the carrier passband has
width 2w,

A slight rearrangement of (5-2) relates the phase error
to the input processes:

s =[1- Liplae) - Lp 2L 55)

(omitting for the present the VCO noise term n.(t), to
be considered later). The first term of (5-5) is an error
due to the incoming phase function, and, hence, it repre-
sents distortion due to filtering. There are usually two
effects comprising 6(¢); one is the “doppler” phase shift
d(t), and the other is the information process y(t). The
distinction between d(t) and y(t) is that d(t) is a non-
stationary, more or less deterministic phase variation,
whereas y(t) is a stationary, zero-mean random process.
The last term in (5-5) is phase error due to the presence
of noise at the input of the loop. The mean-square phase
error, which we shall denote by =2, is thus composed of
three terms:

St = u3(t) + 8 + o (5-6)

The first term represents the transient distortion due to
d(t), the second is modulation distortion, and the third
is the mean-square phase-noise. The latter two, being
stationary, can be computed by using (2-19):

=g [1 = LS G e

(5-7)
._ NW.* _ N.BL
o = A’ tad A’ .

v W s siuraniae St
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+ +

VCO NOISE n,{ 1)

Fig. 5-1. The linearized model of the phase-locked loop

The expression for o° is a very interesting one; it states
that the mean-square phase-noise is precisely equal to
the noise-to-signal power ratio in the loop effective noise
bandwidth times the squared maximum loop response.
This must not be given the wrong interpretation. It
should be realized that N, is the noise density at carrier
frequency, that A* = P is the incoming signal power,
also at carrier frequency, and yet W, is the equivalent
noise bandwidth at baseband, computed by (5-1)! There-
fore «? is not the noise-to-signal power ratio in the pass-
band about the carrier frequency, which has width 2W,,
as discussed earlier.

Equation (5-8) can also be written in terms of fiducial
bandwidth w, (or b.) as

Now N. b,
3= .OA=L=—A”’ (5-8)

and our previous statement can be amended to read: the
mear-square phase-noise is precisely equal to the noise-

to-signal ratio in the fiducial loop bandwidth.

The total transient distortion is defined by the equation

a= [ woa. (59)

It is convenient to include in d(t) the initial phase offset
6,. There is usually a complete lack of knowledge about
6., so it is assumed to be a uniformly distributed random
variable over (—, ), thus with variance »*/3. The re-
mainder of d(t) (call it d,(t)) is a time-varying phase
function (usually due to doppler shift) whose form is
fairly well known. By Parseval’s theorem, the total tran-
sient distortion can bre computed in the frequency domain
by using the relation

" 1 +e0 , .
¢;=2—'/ 1= L{jo) | *E[ | D(jo) |*] do .
(5-10)
Note the resemblance this bears to §* in (5-7). The term
D(s) is the Laplace transform of d(t). Equation (5-10)

results when one substitutes E [D(s)D(—s)] for Syy(s)
in (5-7).

We shall have occasion to investigate these quantities
more fully in Section 5-C, to determine the best loop
configuration.

5-B. Calculation of Loop Bandwidth

The loop bandwidth formula (5-4) is rather easy to
apply to the loops with simple filters. For future refer-
ence, we shall tabulate a few of these.
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1. First-Order Loop

The first-order loop is one with no loop filter, F(s) = 1.
Hence (5-4) gives

w,=W,=5AK or b=B, =4, (511)

This relation enables one to express the loop transfer
function as

2w,

L(s) = gt - (5-12)

2. Second-Order Loop, Passive Integrator

The second-order loop in most widespread use is one
in which the loop filter takes the form (see Fig. 5-2)

1+‘|’;9
1+'r,8

F(s) =

1+ 48

L) = 150 7 174K)s + (7.7AK)s

(5-13)

(again we have normalized F(0) =1, as agreed to in
Chapter 3). In the usual case, F(s) is designed with
7. » 72, to make F(s) appear to have a pole at the origin.
\
It is convenient to define a quantity r as the following
ratio:

_ AKr?

L8

(5-14)

The value of o producing maximum loop response,
? = | L(jo) |2, can be found by differentiation; it is

(.,.....=123[( n)(1+—+2 )]"- 1%"

1 9\ _ 119
~ = [+ 20— 1] (5-15)
R
o ° 1+nys8
R, Flg)= +r,
c WHERE T, ch
T n 2 RR)C

Fig. 5-2. Passive integrator loop filter

The corresponding value of L? is given by the equation

Lt~ r
2(1+ +2r) (1—;—) +<r4 I—-)‘—-z(rﬂ)
1 T
r 5-16
~yIF o2 (5-16)

This last function (Fig. 5-3) is monotone decreasing in
r, approaching unity as r~> o, and becoming infinite as
r—0.

Then, from (5-4), the equxvalent loop noise bandwidth
can be computed,

_ (r+1)
W=7 (I + r./rr,) L?

(r+1)[r*—2r—2+2(1 +2n)"]
21'2"2 ’

~

(5-17)

the latter approximation being valid when rr, » r,. The
fiducial bandwidth (2-37) is a somewhat simpler quantity:

. r+1 r+1 ,
W = 272 (1 + fz/"f)) =~ 272 (5‘18)
0L -—unoenomrzo LOOP ——l-——}—ov:nnmpso Loop i e
' : g ‘
28 |- Lzoa w, WITH w,_:n ‘r P b
| ‘ | |
o |
| | ‘
20 :¢ ’ % J] - 7‘J‘,_____4
i ‘ l ; ! |
i i i ‘ \’
S R 1
“ Oonay WITH sr,_-n l |
10 ~[“"f“/p ‘ /+—|/L2 OR »g_ WITH o1
‘ - 1
os f ey WITH w0l | :
| | _ | |
ol | L i ; I _ ]
o1 2 3 4 8 _ & 7 & 6 10
I-M'rf/r,

Fig. 5-3. Variation of maximum loop response L2, noise
bandwidth W,, fiducial bandwidth w,, and frequency
ot maximum loop response, for sccond-order phase-

locked loop, as a function of the parameter
r = AKrl/x,
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The loop transfer function is then easily expressed in

fiducial bandwidth:
( 2w, ’

r+1 r+i\*,’
1+ (‘W)S‘F (2er%> 8
From (5-13), one may compute the system damping be-
havior. For r < 4, the roots of the system are under-

damped, with damping factor { and loop natural
frequency 8 given by

L (s) ~

(5-19)

rl/l

;=—é-(1+7./n,) ~
_[AK\* _ ™
= (%) =%

For r = 4, critical damping ({ = 1) occurs, and for r > 4,
L(s) has two real negative poles.

(5-20)

3. Second-Order Loop, Perfect Integrator
Whenever an operational amplifier is permissible in
the loop, the loop filter takes the form

1+723
ns

F(s) = (5-21)

We have kept the notation here the same as that in the
previous exar-ple for later convenience. This loop filter
gives the same response as that given in (5-18), (5-19),
and (5-20) when the r./rr, term is dropped. This indi-
cates that whenever rr, » r., the loop with an imperfect
integrating filter (5-13) performs very much the same as
that with the perfect integrating filter (5-21).

5-C. Optimization of Loop Parameters

According to the preceding sections, we can perform
a linear analysis to determine the behavior of a phase-
locked device whenever there is sufficient justification to
warrant the assumption that sin ¢ = ¢. But whenever
noise is present, there will be arbitrarily large phase
deviations if only we wait long enough; because of this,
the assumption above cannot be strictly valid at every
instant of time.

It is natural, then, to design the loop transfer function
to minimize the effect of noise, that is, to choose K and
F(s) to minimize the mean-square '~op error. In this v-ay,

not only does the loop operate in the most lnear manner,
but also 6(#) is most faithfully reproduced by 0(!) As can
be seen from (5-8), the mean-square phase error is not
independent of time; to minimize 3? thus would require
a time-varying loop filter.

Rather than derive an optimum time-varying filter,
Jaffee and Rechtin modified the criterion somewhat, bas-
ing their optimization on minimizing a somewhat differ-
ent quantity. They define the total phase error, denoted
by 52 ,a

S2=Ac) 48+ ot (5-22)

2
T
in which A? is a Lagrange multiplier, a design parameter
related to the bandwidth of the locp.

Minimization of 32 by choice of the loop transfer func-
tion L(s) specifies both AK and F(s). But the question
now is, “How does one choose L(s) to minmize 227"
Jaffe and Rechtin recognized that A’z + 8 could be
computed by replacing Syy (s) in(5-7)by A*E[D(s) D(—s)]
+ Syy (s). This led them to the conclusion that 32 is
minimized whenever L(s) is chosen in accordance with
the Weiner optimization technique, which yields the
Yavits-Jackson formula

_ . _ N.,#/A
Lo O =17 T

(5-29)
S(s) = a* E [D(s) D(— 8)] + Syy (s) + No/A® .

Some explanation of the bracket terminology here is in
order. The bracket [ ]* refers to a type of “square-root”
factoring of the enclosed function, retaining in [ ])* the
left-hand-plane poles and zeros of the enclosed function
only; singularities on the imaginary axis are equally
divided between [ ]* and its mirror in.age [ ]-.

The mechanics involved in (5-23) wili be made clearer
in the next Chapter.

5-D. The Etfects of VCO Noise

One of the limiting factors governing the design of
narrow-bend phase-locked devices is the phase noise
‘nherent in the output of the VCO. This noise appcars as
a random flurtuation, drift etc., and is sometimes called
“oscillator iastability.” More often, however, the term
“instability” is used in context to mean “frequency insta-
bility,” whereas the quantity of concern to us here is the
phase stability of an oscillator.
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To represent this effect, let n,(t) be that noise voltage
applied at the input of a perfect noiseless VCO which
produces the same noise us a2ppears in the actual VCO
output. That is, n.(t) is the VCO phase noise referred to
its input. The closed-loop behavior of the loop is now
somewhat modified by the addition of this internal noise:

l'_l__L__(_p_] Kyco ny(t) .

A n t
i = 1) o0 + 2] + [
(5-24)
There are many factors that contribute to the spectral
makeup of n,(t). The two most significant terms that
appear are (1) thermal (Johnson) noise generated in the
resistances of the oscillator, and (2) noise with a 1/f
spectrum, as discussed in Section 2-G, associated with
the transistors, varactor diodes, carbon :esistors, etc.
Thus, the spectrum of Kycon.(t) can be approximated by
Kico Snpn, (jo) = Nop + 2aNso/ | @ |. (5-25)
As we have previously indicated, the 1/f law cannot
ext>nd all the way down to zero frequency, so the equa-
tion above is really valid only when | | is greater than
some small value «. But if [1 — L(s)]/s has a zero at the

origin, this ¢ need not be known.

The amount of phase error in the closed-loop output
due to VCO noise can then be found by integration:

0%‘00 = %/\ l_l—#—li [Nov + 21rNu~/w] d(d
o
(5-26)

At this point, for our treatment, we shall assume that
L(s) is the pussive-inte wator loop of (5-13), and again
set r = AKr?/- . The tc.al phase error due to input and
VCO nois ., in * ~ms of the fiducial bandwidth w,, is

. _ Nowy r+1\N, N
Al +( 4r /wb+g(')W'

g

(5-27)

The function g(r) is shown in Fig, 5-4; it is given by

(r +1p r—2+\ilr=4)
Alr (r -- 4)]“ln[r —2— \/,77':—5:]{“ r>4

o

g =\1g for r=4

(v + 1) Ag— r—2
ArE-n]"| 2 M VE—n)
(5-28)

a2

or r<4.
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%— unoenumper ——-+ —r—m OVERDAMPED LDOP ——
| i ‘
“"*""—"‘F“*’lﬁ . e k- + - —
| R
b ] I
2.0} s S i |
; | |~ MINIMUM 1 549 | !
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X { rs52 J 1 \
: ! skl ’ ! !
! ! 7 ! i
| " i |
1.0 I 1 1 ] i s —
0 | 4 [ [3 7 8 9 10

r!dkf% /r.

Fig. 5-4. Factors governing relative contributions of VCO
noise to output phase noise

1. Optimization of w, and r

Depending on the values of N,/A% N, and N, there
are optimum choices for both w;, and 7.

As shown in Fig. 5-4, there is quite a broad range
of r for which g(r) is fairly constant and is nearly equal
to its minimal value of 1.5491 at r = 5.22. A quite useful
range to use this approximation for g(r) is from about
r = 3 to r = 10. Outside this region, g(r) is increasing,
drastically when r < 3, and more slowly for r > 10.

On the other hand, the coefficient of N,., i.e., (r + 1)/4r,
is a monotone decreasing for all r, asymptotically ap-
proaching the vciue 0.25 as r becomes infinite. If r is
larger than 5 or 6, for most practical purposes, we can
use the value 0.25 with little fear of producing any sig-
nificant error.

As a conclusion, then, we see that the best value of r
to minimize ¢° lies to the righ! of 5.22 and probably is
less than 10, if any N,, is present at all. In fact, the dif-
ference between o2, and ¢* for any r between 5 and 10
is almost inconsequential insofar as o* is concerned. The
same statement cannot be made for r < 4 (an under-
damped loop). Thus we may take a value of r =7 as
being practically as good as 1., regardless of the other
parameters. (This reasoning alleviates the necessity for
differentiating ¢ to find the exact value of r,,,.)

We can now use this value of r, differentiate o* with
respect to w;, equate to zero, and solve for w, to find its
best value. Straightforwardly, w, is the solution to the
equation

T+1 AoNv AN'IL
i~ () (s () .

(5-29)
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2. An Example

Just to see how a typical design should be made, let us
assume that we have parameters

A? .
N, 6 X 10
or = (5'80)

N

N,. = 0.08.
The first of these is typical for an Earth-spacecraft link
at a distance of about 3 miilion kilometers, while the

values of N,. and N,. have been approximated fro.n
plots of o* under very high signal-to-noise conditions.

The optimum value of w,, is then

AZN)V
wy = 3 3098(7)

= 26 cps

and the optimum loop transfer function is

1+ 0.154s

Lo ) =TT 0B 7 3B X 095 -

These parameters also produce a phase deviation of

o= 25X 10 rad = 1.43 deg rms .

3. Conclusion

It should perhaps be mentioned at this point that de-
sigas of this type are most valid for oscillator “clean-up”
loops and spacecraft carrier tracking loops, or in situa-
tions where the tone to be tracked is spectrally a very
pure one. Design of the ground receiver tracking loop
would probably not use this analysis, since its loop must
track phase deviations imposed on the carrier by the
noise in the spacecraft system. There are other factors
that must be considered, such as frequency acquisition
interval, lock-in time, and doppler tracking rate. What
has been presented here should be taken merely as a
guide as to what the ideal bandwidth is from a minimal
noise point of view.
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CHAPTER 6
OPTIMIZED DESIGN OF TRACKING FILTERS (LINEAR ANALYSIS)

A phase-locked .cceiver can be used either to track
the carrier component of the incoming signal, or to
demodulate its information, or both simultaneously. In
space communications, the amount of doppler shift on
the cerrier is always measured, because it provides infor-
maticn about the spacecraft velocity. A carrier tracking
loop is thus always present in a space-communications
receiver.

6-A. Tracking Loop Design

Suppose it is our aim to provide the best filter to track
a given doppler-phase polynomial d(t) of degree N-1,
assuming for the present that modulation of the carrier
is absent. The form of D(s) is then

D(s) = 8,

.—+.(2_“'+...=Q(NS>
by §" §

(6-1)

in which the degree of Q(s) is less than N. The filter
specified by (5-23) is

sV

Lop(s) =1 — [(_ Ve (A_N'(\_,z.)E [O(s)Q(— s)]]+
(6-2)

In the examples worked by Jaffee and Rechtin, the 6,
term was always set equal to zero. This corresponds to
the case in which the loop is initially tracking with no
phase error.

6-B. Optimum Filter for Random Phase Offset

The simplest example of loop optimization occurs for
d(t) = 6,, a uniformly distributed random phase-offset.
To fird L, (s), we insert N = 1 into (6-2): The denomi-
nator in (6-2) is

2A2 2 7Y+
[_82+/\A1r] -+ 7AA

N, 3 BNy (6-3)

Thus, the optimum filter is given by

Lopt(s) = (3/\1;23'@ l: iA'rr ] (6'4>

L,

(3Ng)™

34
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The loop bandwidth, specified by (5-11), is

\An
w, =W, = e .

2(3N,)™ (6-5)

We can now eliminate the Lagrange multiplier to give
the optimum loop design equations in terms of the loop
bandwidth, viz.,

_ 2w,
L) = 5w,
F(s) =1 (6-6)
K=2W,/A.

6-C. Optimum Filter for Frequency and
Random Phase Offset

The next example of interest is the optimization of a
loop with frequency offset Q,:

d(t) = 6, + Qot (6-7)

where again 6, is random. With N = 2 and Q(s) =
6, + Qs inserted into (6-2), the denominator of L,,(s)
becomes

[94 _NAM AAQG ] *_

3N, N,
A 20AQ.\ " AMQ,
5+ (——SNO + B ) s+ (69)
The loop natural frequency is thu:
_ A,
B3 = N(l)/a (6'9)

in which case the optimum filtering function is given by

s[Zﬁz-k-’i—‘]% + B2
s

Loy (s) = TR .
oge L T8 2
8% + [2/32 ! SQ:]S +8

(6-10)
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Comparing (6-10) with (5-13) and (5-14), we recognize
the optimum parameters:

J¢] 2 Q [3r(r — 2)]™
AL =iy
(6-11)
e
w, = O‘Z—’yﬂ” [3r(r — 2)]”’.

We have thus translated the effect of the Lagrange mul-
tiplier implicit in 8 to the design parameter r. It is
important here to note that r must always exceed 2 in
optimized loop design. This comes about because of
the assumption that 6, was a uniformly distributed ran-
dom variable.

The Jaffee and Rechtin example using 6, = 0 produces
a result somewhat different from that ahove:

T = 21/2/B
AK .
T1 - B-
Jaffee-Rechtin.  (6-12)
r=2 (so¢=0.707)
38
T

1. Choice of Parameters

In most cases, Q, is not known prior to locking the -

loop (or else the loop would have been pretuned so as
not to encounter any frequency offset in the first place).
Hence Q, must be treated as a random variable. An ex-
amination of the average transient error in (5-9) reveals
that ¢2 is minimized whenever E(Q,) = 0 (that is, the
loop should be initially tuned to the expected incoming
frequency) and that the Q, of our previous calculations is
replaced, in this case, by the rms frequency offset,
[E(o™

Once suitable values of A/N, w;, and Q, have been
established, 8 (and hence r) can be found, and this speci-
fies what L,,(s) is to be used. The optimum loop filter
F,,.(s) is related to Loy(s) by (5-3):

Fopt(s) — 1 + 128 .

(6-13)

8

But rather than synthesize this F,,.(s), which would re-
quire an operational amplifier, it is quite usual to substi-
tute a passive filter whose characteristic is approximately
the same as (6-12); for example, whenever rr, » r,,

~1+TQS
~1+1'1.S‘

Fop(s) (6-14)

can be used. This will introduce a steady-state phase
error (Fig. 6-1)

=2 & (rt 1)
¢ = AR~ w0, Iy T

which does not exist with the F,,.(s) in (6-13). Once the
loop is locked, however, the VCO can be retuned to
eliminate ¢,,.

(6-15)

As a further consideration, one cannot expect a very
good lock-in behavior when Q, is so large that the carrier
frequency falls outside the initial loop passband.

On the other hand, it is usually desirable to design a
tracking loop with its bandwidth much narrower than the
initial frequency uncertainty region. Such loops are usu-
ally frequency-swept (by controlling the VCO input
voltage e) slowly through the uncertainty interval to
acquire lock. It is thus reasonable to design the tracking
loop with parameters to ensure that lock-in proceeds
optimally whenever the carrier enters the fiducial® loop
passband, i.e., when Q, = 2xb,. Upon inserting this con-
dition into (6-11), the proper value of r can be computed
numerically:

r = 2.28245
¢=0.755.

(6-16)

This compares very favorably with the results obtained
by Jaffee and Rechtin (6-12). The optimum loop param-
eters for r = 2.282 are

T = 1.643/w[,
(6-17)
n/AK = 1130
L

ard the corresponding optimum loop transfer function is
given by

Los () = 1+ (1.643/1,)s

T 1+ (1.643/w.)s + (1.18/w,?)s?
(6-18)

Purely for computational convenience here, we have specified the
fiducial bandwidth b, rather than the noise bandwidth B, as
defining the edge of the passband.
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(b) IDEAL INTEGRATOR SECOND-ORDER
LOOP, FREQUENCY STEP

SLOPE = no
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ERROR

(d) PASSIVE INTEGRATOR SECOND-ORDER
LOOP, FREQUENCY STEP

(d) PASSIVE INTEGRATOR SECOND-ORDER
LOOP, DOPPLER-RATE INPUT

| 2
626, +0,7 +5A,?

Fig. 6-1. Response of first- and second-order loops to various inputs
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2. Evaluation of Transient Error
The total transient error is given by the expression

2_1 +je0 _.,i Qg
T Omj <—3s"+§‘_)

Joo

(6-19)
X [1 — L (s)] [1 — Lope (—s)] ds.

With the form of loop filter given in (5-21), the transient

error is
. 1’11’293 1|-2AK
& = OAKr <1 + 3931'1) . (6-20)
For the optimum loop, then
2 — 1ra(1' - 1) X
€r (opt) 6(20 [3'. (1' _ 2)3]1/, . (6 21)
With the value r = 2.282, and Q, = »w,,
€ (opt)y = 5.37/w,, . (6-22)

The parameters in the Jaffec—Rectin example (6-12) pro-
duce almost the same transient behavior:

Sy = 54/wr,. (6-23)

3. The Effects of Doppler Rates in Second-Order Loops

If we assume that there is a slow doppler rate A,
(rad/sec?) superimposed on a simple doppler shift, the
discussion in Chapter 4 indicates that the passive-filter
(5-13) second-order loop cannot be expected to maintain
a small steady-state error. The ultimate phase motion
due to this doppler rate, A, = A, in the notation of (3-17),
is linearly expanding in time, as

Ay Afr+ 1)/t
$ss(dopp rate) = A_IO< b~ —(L—L <—> .

4r w} ™ (6-24)

On the other hand, when the perfect integrating filter
second-order loop (5-21) is used, there is a finite value of
the steady-state error, viz.,

A()Tl _ A()(r + 1)2
AK ~ 4rwi

¢ss (dopp rate) —

(6-25)

There is naturally a great resemblance here, and at ¢t = 7,,
(6-24) and (6-25) are equal.

In either of the two cases above, it is evident that, with
other things being equal, the value of r causing the least

JPL TECHNICAL REPORT NO. 32-819

steady-state error is r = 1; that is, the loop is an un-
derdamped one with damping factor ¢ = 1/2.

Another observation that can be made is the following:
In using a passive-filter second-order loop to track a
signal having a doppler rate, it is necessary to compensate
periodically for the ever-growing steady-state phase
error. This is conveniently done by manually retuning the
VCO at least every r, sec (as discussed in 3-5) to zero
the phase error due to doppler rate. In this way (6-24)
never exceeds (6-25).

4. Comments on the Choice of r in Second-Order
Tracking Loops

In Section 5-D, we concluded that a value of r between
6 and 10 is desirable to minimize the effects of VCO
noise. In Section 6-C1, we concluded that an underdamped
loop with r = 2.282 is needed to minimize the total phase
error. And in Section 6-C), an underdamped ioop with
r = 1 provides the best tracking of a signal with nonzero
doppler rate.

Normally, in a communications system, the contribution
of VCO noise is not a factor of utmost concern. On the
other hand, minimizing VCO noise is of great importance
in designing frequency-generator “clean-up” loops. Too,
the doppler tracking capability of a loop is critical in the
specification of many receivers. Some ~hoice is thus avail-
able to the design engineer in picking an r to suit his
particular application.

5. Case With VCQ Noise Included

Comparing (5-7), (5-10), and (5-26), one can see that
VCO noise effects can be included in the optimizing
analysis quite easily when §,, ., (s) is a rational spectrum.
However, for the case we have considered, the VCO (in-
put) noise has ¢ 1/f term, or more precisely in the s-plane,
N./K?,(—s%)", and (5-22) and (6-2) are not valid
when such a branch point appears in one of the spectra.
A Wiener optimum L(s) certainly exists, but the resulting
loop filter mav not be a rational function of s. It is more
meaningful to limit the discussion here to optimization
under the constraint that F(s) be rational.

Howeve, we easily recognize that the optimum loop
for an initial frequency-step offset again must be of
second order, and that the loop filter must be of the same
type as that given in (5-21). Then, too, we know that,
depending on values of the various parameters, the
optimum value of r lies between 2.282 and ahout 7. It
remains only to find specific values of r and w,. -
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We have computed separately all of the terms appear-
ing in the total phase error X2 (except distortion due to
carrier modulation). Hence

32 = A + o°

A.21'11'29z (

m2AK ) 4 N.w,

2AKr " 3qir, A?
(r+ DN, , g(r)Ni» 2
+ e el (6-26)

Applying the philosophy that Q, be set equal to »w,
(so that lock-in proceeds optimally once the offset fre-
quency enters the loop passband), we reduce this to

__ Now, | Ax(r + 1)°
=4 T T ierw,
+ (r+1) (aa* LN n g(r)Nyp
4rw, \ 3 o w:

(6-27)

The value of A, of course, is a parameter left unspeci-
fied. Previously (in 6-9), we related it to the loop natural
frequency B (and through r, to the loop bandwidth, as
well), which then became the arbitrary parameter in the
loop. We can also do this in the present case; inserting
(6-9) into (6-27), we find

N2 = N, w,, (1 + T 1 + 4r )

T T A Fr T30 Fry
+ (r + 1N, L+ 8 (r) 1}7,,, (6-28)
4r wy, w;

With this particular evaluation of A, there is an optimum
way to pick r and w,. However, we can note that none
of the coefficients, as functions of r, varies drastically over
the range 2.282 to 7; this means that =2 is not extremely
sensitive to r. Such is not the case with w,, and the de-
signer should, in all practicality, seek to determine that
value of w, which will minimize 32.
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CHAPTER 7
THE DESIGN OF SYNCHRONOUS-DETECTOR AGC SYSTEMS

One of the fundamental circuits built into almost every
receiver today is some sort of closed-loop regulating
system that automatically adjusts the receiver gain to
maintain a constant output level. The most common cir-
cuit used in broadcast receivers is one in which the IF
signal is rectified, filtered, and applied to the grids of
variable-u tubes in the IF amplifier. Such a circuit (often
referred to as Automatic Volume Control, or AVC) is
equally as sensitive to noise voltages in the IF passband
as it is to signal voltages, and, consequently, affords only
moderate stabilization of the signal amplitude.

In phase-locked receivers, it is more usual to use a
synchronous amplitude detector followed by a very
narrow-band filter to derive the feedback voltage. The
output of this filter, chiefly due to the presence of signal
and relatively insensitive to noise, can be used to control
the receiver gain very efficiently.

Such a loop we shall distinguish from the AVC loop
mentioned above by the name Automatic Gain Control
or AGC.

In what is to follow, we shall present a linear feedback
theory for the design of AGC loops. As a result, one may

predict performance analytically as a function of loop
parameters within a certain measure of accuracy. The
treatment here essentially follows the work of Victor and
Brockman, with soine minor extensions.

\
}

7-A. The Synchrorxous-Amplifude-Defecfor
AGCloop \

The block diagram shown in Fig. 7-1 shows the prin-
cipal elements involved in the design of an AGC System.
Briefly, the input 2** A(t) \ros [wet + 6(t)] + n,(t) enters
a variable-gain amplifier whose gain is a function of a
feedback control-voltage c{t). The output (amplitude-
stabilized), appearing as 2"\A cos [wet + ()] + ni(t),
is passed to a phase-locked loop to derive a coherent
reference, against which it is .vxrnchronously detected. At
this point, an external gain-reférence voltage e, is com-
pared with the detector output;‘the resulting error volt-
age, filtered by Y(s), then control\ the receiver gain in a
way that tends to null any differquces between e, and
the detector output.

There is a definite relation betweel AGC voltage c(t)
and the receiver gain (call it 1/A*{c(t)], or merely
1/A*(t)), for if the receiver output is‘l;lld nearly con-
stant at an rms value of A, it follows ‘that c(t) is also

\
\
\
- A \
: + \
prase-Lockep | 72 °8 (uo? +8(1) \
LOOP \
%
A
Y
\
Xo(1)= A(1) /2 cos(wyt +8(1) VARIABLE - GAIN SYNCHRONOUS LY
+ngls) N ” DETECTOR —’c)\‘_
7ot GAIN = 1/a" (#) A/Z cos (wo? +8(1)) \
+n;0r) = x(?) __ . \
\
‘s
e(r) y
‘\
VOLTMETER (7)ee AGC AMPLIFIER AGC LOOP FILTER |

GAIN = A,

Y(s)

Fig. 7-1. A synchronous-detector AGC loop, using a phase-locked loop to provide a coherent reference.
(The actual phase-locked loop may be part of the gain-controllied receiver.)
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related to the rms incoming signal amplitude A(t). Thus,
c(t) can be monitored by a voltmeter as a calibrated
measure of input signal strength.

When double-frequency terms of the detector output
are omitted, the input to Y(s) is

Zace(t) = —eg + AKpcos ¢ (t) + Koni(t)

= —eg + :?%Ko cos ¢(t) + K“;’fzg) .

The constant K, refers to the gain of the synchronous
detector, but otherwise the notation follows that previ-
ously used.

Victor and Brockman recognized that if the AGC loop
is performing well, one may approximate®

At A(t) K, cos
BE ket oo

~ eclnA(f) — €q) [A'I(:Z e"] + ealncos ¢(t).
(7-2)

The error here is less than half the square of the left-hand
quantity.

The next step in the analysis is that of choosing a func-
tion for the variation of receiver gain with AGC voltage.
Mathematically, it is convenient to express the gain in a
logarithmic Taylor series:

eo?(* t) _ 10[Kx+ Kac(t) +...]/20

D

20 log [90—"‘-'19] = Kn + Kaclt) + -

(7-8)
Kp

A characteristic with only the first two terms is nearly
valid for many voltage-controlled-gain amplifiers, al-
though K and K, depend on the operating point to a
certain degree. The quantity A*(t)eqs/Kp is an adjusted
attenuation factor. By retaining only the first two terms
above, we assume the receiver has an adjusted attenuation
in decibels which varies linearly with control voltage (over
a limited range): there is an attenuation of Ki db in the
absence of control, and an additional K, db/v attenuation
when c(¢) is applied. It shovld be stressed that Kz would

‘Here we use “In 1" to denote the natural logarithm of x, and
“log 1" to denote the base-ten logarithm of x.

40

be the adjusted value of receiver attenuation at a particu-
lar operating point if ¢(¢) could be set equal to zero. The
actual receiver attenuation K., corresponding to Kj is°

Krec = K}; + 20 log (%‘2) .
[

Now define the quantities!
a(t) = 20 log A(t)

a*(t) = 20 log [-‘”"“T':f’—)]

That is,a(t) and a*(t) are the signal strength and adjusted
receiver attenuation expressed in decibels. Since In x =

log x/log e,

(7-4)

o(t) = Ke¥(p) [( Bregs) [a() = o]

K,
+ (log e) log cos ¢(t) + A:(“g ) :l

— ﬂ*(t) - K}z

. (75)

From this equation, we can draw the equivalent circuit
shown in Fig. 7-2. Note, however, that the loop is linear in
the logarithms of input and response, rather than these
quantities themselves. The equivalent loop gain Kagc and
AGC-loop: transfer function C(s) are given by

K — K.ieqKo
ASC ™ 201og e

KAQQ Y(S)
[1 + KAQQY(S)]KA )

(7-6)
C(s) =

Straightforwardly, a(t) and a*(t) are related by the
linear operator equation

a*(t) = K.C(p)

% [a(t) + (20—‘;:& Koni(t) + 20 log cos ¢(t)]

+ [1 = KiC (p)] Ka. 1-7)

*The value of Kr.. can be set by a bias added to c(t), if desired.
However, the equation for Kr.. shows this is not necessary, as
adjustment of e; will do the same thing.

"Since the input signal power is related to A(t) by P = A'/Ri,
where R, is the input resistance of the receiver, a(t) differs from
the value of P in dbw by the term 10 log Ri.: 10 log P = a(t)
- 10 10‘ Ria.

s s st
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20 log e
ég
LN clt)
+20 | .
20 log cos ¢ s 20109 e Y (s) - METER
—_— i)
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Fig. 7-2. Equivalent diagram of an AGC loop. Linearized analysis follows the
assumptions that A*() is exponentially related to c(f) and that alf)=a*(f.
The input is alt) = 20 log Al1). Adjusted loop gain a*(f) = 20 log [A*(n) /K]

The AGC voltage is thus related to the input signal level by

e(t) = C(p) [a(t) + (M) Ko n; (1

€g

+ 20 log cos ¢(t) — K,] . (7-8)

7-B. AGC Stability

The steady-state mean and variance of a*(t) due to input
noise are readily found: if A(t) changes slowly with respect
to the time constants in C(s),

E [a%()] = K.C(0)E[a(t)] —K.C(0)(10 log e) o*

(7-9)

var [a*(t)] = [(E(-”Tzﬁ)zl(f, (—1!:{':’—”) A?

+ 2(10 log )* o* (%:) J CHO)K:.

In this calculation, we have approximated In cos ¢ by
— 4 ¢ and we have assumed that ¢(t) is a Gaussian
process. Both of these assumptions are somewhat in error,
but behavioral indications are sufficient for our purposes.
It should be noted that N, is the spectral density of the
stabilized noise n;(2), and not the input noise no(t); for this
reason, it is referred in (7-8) to A%, the stabilized signal
level, as No/A? (which is the same as Noo/A%t) at the re-
ceiver input, however). As a fair approximation, A = €4/K»
can be used in evaluating the variance of a*(t) above.
When KAOO is high, C(O) ~ 1/ KA .

The fluctuation of a*(¢) depends not only on the input
signal-to-noise ratios in the phase-locked loop bandwidth
w, and in the AGC loop bandwidth we, but also upon the:
value of stabilized signal level at receiver output. The
mean value of a*(2) is less than that of a(t) by about 4.35db
ato® = 1.

7-C. Calibration Equation

Equation (7-7) shows how attenuation varies with signal
strength and noise. Moreover, a(t) is related to c(t) by (7-8).
Thus, it is possible to relate the steady-state mean value
of a(t) (call it a), to that of c(t), or merely c, and thus, to
relate ¢ to the average input signal*? strength a:

1
a=K; + —6(3)-0 + (10loge) o*
1
C(0)

= Kveo + 20 log(ea/Ko) + ( ) ¢ + (10log ) o* .

(7-10)

This calibration curve is well demonstrated in actual
practice, as attested to by the results shown in Fig. 7-3.
The receiver whose characteristic is depicted is the S-band
receiver at Pioneer Site, Goldstone Tra. “ing Station, Cali-
fornia.

The variance of this estimate of a for a particular
measured value of ¢ is the same as the variance of a*(t)/K,
given in (7-9), because, as shown in (7-8), ¢(t) and a*(t)/K4
have the same fluctuations due to noise.

“If 10 Jog R.. is subtracted irom the right-hand side of (7-10), the
calibration curve relates ¢ to signal power in dbw,

41
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Fig. 7-3. Measured AGC curve showing departure from
linear behavior

7-D. Dynamic Behavior of AGC Loops

In calibrating the AGC loop, we assumed that A(t) was
more or less constant—or was at least changing very slowly
with respect to time constants in the loop. But this may not
be a realistic assumption during the early postlaunch
phases of a spacecraft flight, or even later when the space-
craft is perhaps tumbling through space. In such cases,
one must investigate the transient behavinr of the loop
in more detail and, if one can predict what types of
transients are to be expected, choose parameters to
optimize performance.

Fluctuations in signal amplitude can be of two types:
first, there can be a nonstationary waxing and waning ¢
the signal, such as is due to the effects of changes in range;
and second, there can be superimposed o~ the first a
stationary perturbation such as might occur as the space-
craft antenna seeks to retain its bearing toward Earth, or
as a result of tumbling.

The modified Wiener formula /5-23) can be fitted to
this problem by expressing
A(t) = Adt)Ay(t)
a(t) = adt) + ay(t)

(7-11)

where w ' have put

adt) = 20 log Adt)

aalt) = 20 log As(t) (7-12)

and in which we have designated Ay(t) and At) as the
stationary and nonstationary parts of A(t), respectively.
For convenience, ay(t) can be taken to be a zero-mean
process by lumping the mean value of a(t) into a4t).
The Wiener optimum filter is

C 1 M E[du(s)ad —s)] + Sayay(s)
M ) B EO) .

(7-19)
$'(6) = ALE[@u(8)d ~8)] + Seyayls) + (20log e)? (%)
+ (10 log €)°5 ,42(s) .

For convenience, we have apprcximated eq/Kp = A in
the equation above and set du(s) = L[ad(t)].

The bracket [ ]- is the right-half-plane image of [ ],
and [ 1,, refers to the physically realizable part of the
enclosed function.

The iatter can be computed as LF* [ ] (ie, the
Laplace transform of the inverse Fourier transform of
the quantity). An equivalent method for computing ; ‘..
when the enclosed quantity is a rational function is vu-
tained by expancing the function in a partial fraction
expansion, but retaining only those terms having left-
half-plar:s poles, poles at the origin, and poles at infinity.

For simple transients, much can be learned about the
form of C.,.(s) without resorting to solution of (7-13). For
example, if we are concerned with gain-tracking an input
of the form a(t) = a4t) = Ai/nl, then by a reasoning
similar to that in Section 3-B, we find (neglecting the term
due to roise)

Mp(0)2-? forn>1
E [adt) — a*(:)Jeu~ Kiooq(0)(n—T)!
0 forn<l.
(7-14)

We assumed here that Y(s) takes the form
Y(s) = ;Ygé; 4(0) 40, p(0)s40. (7.15)

Thus, for stable AGC operation, Y(s) must have at least as
many poles at the origin as the degree of a,(t).

|
!
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i
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As a particular case, when a,4(t) = a, Y(s) may take the
form

1

Y(s) - 1+ rage

(7-16)
in which case there will be a constant gain-tracking
transient error

E [adt) — a*()]es = K:‘oc

(7-17)

Buc if a,(t) = a,t, the loop filter (7-16) produces a steady-
state transient error that grows linearly in time:

t

TAGC

E[adt) — a*()].— K(:Lc = 2‘:;0 (

)- (7-18)

The AGC l»op bandwidth in both cases is
1 + KAQ—C_ ~ KA(](' )

W, =
21’Agc

(7-19)

2TAoc

By making Kaqc large enough, a signal-strength change of
a few db/sec can be tolerated for a short time.

A better Y(s) to follow a,t would, of course, be of
the form Y(s) = 1/7qc s, in which case there would be
a steady-state gain-tracking error

E [a(t) — a%(t)] = 2% = ™ (7-20)

Kaac 2we
A comparison of (7-18) and (7-20) immediately shows that
when K,qc is large, the two AGU loops perform a’ >ut the
same for t < r40c.
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CHAPTER 8
THE DOUBLE-HETERODYNE PHASE-LOCKED RECEIVER

Communications requirements for deep-space missions
require receiving systems whose capabilities at first sound
so extreme as to be unrealizable. The development of the
double-heterodyne receiver with phase-locked carrier
reference, however, has made coherent communications
the standard language of the systems engineer. Indeed,
except for a few minor refinements, parameter optimiza-
tions, etc., there are few questions concerning the behavior
of these receivers that cannot be readily answered.

A doubje. .eterodyne receiver, briefly, is merely one in
which ther. are two separate intermediate-frequency
amplification stages. Such receivers can be designed to
operate at very low signal levels with a great measure of
stability, precision, and reliability.

8-A. Basic Configuration of the Receiver

The receiver shown in Fig. 8-1 combines the advantages
of intermediate-frequency amplification to produce high
gains (and there are two such stages' with those of the
phase-locked loop: namely, coherent communications
capability at low bandwidths and predictable stability.
It is not immediately obvious that the concatenation of
front-end mixing, subsequent 'F stages, and ultimate
phase detection constitutes a phase-locked loop as we
have seen it in previous chapters. There are practical
necessities, as well as subtle advantages, to the use of a
limiter prior to phase detection, and although we have
nowhere accounted for such a device in our previous
theory, there is little, if any, deleterious effect due to its
presence.

The tracking portion of the receiver operates as follows:
The input function is 2% A{f) cos[wet + 6(t)] + no(?),
where A(t) is a slowly varving rms signal amplitude and
n,(t) is a wide-band noise with density Ny, The input is
mixed with a multiplied-up version of the VCO output,
so the first IF output process is

Ki, [2"* A(t) cos(wit + 6 — 9 + m(t)].

The heterodyne operation followed by linear gain does
not alter the signal power/noise-spectral-density ratio, as
we have discussed in Chapter 2. The first IF frequency is

(We assume o, > o, as a practical matter, although our
analysis does not require it.) The signal is now hetero-
dyned against a locally generated, free-running reference
of the form cos (wss(t) — 6,), so the output of the second
IF amplifier is

KiKpe {2% A(t) cos [(w — wre)t + 68— 0+ 6,] + naft)} -

Again, the signal-power/noise-spectral-density ratio is
preserved, now centered at the second IF frequency

(In general, f, may take a negative sign when wp; > o.
This is a purely mathematical distinction, and need cause
us no great concern here.)

Each of the IF amplifiers has a known bandwidth, so
the overall IF bandwidth or predetection bandwidth W y
can be computed as in (2-43); however, the first IF nor-
mally has much wider bandwidth than does the second,
so Wy is essentially the equivalent noise bandwidth W,
of the second IF filter H(s).

As a matter of theory, either or both of the IF amplifiers
can be gain-controlled by an AGC voltage, although it is
practically necessary to control only one of them, say the
first. Hence, in the terminology of Chapter 7, KK,
= 1/A*(t), so the second IF output is, in our previous
notation,

2t) = 2% Acos (vt + 60— 8+ 6) +ni (t).

This voltage feeds a band-pass limiter whose saturation
limits are =+ [l v. The limiter mean-square output is, of
course, constant at a value I, of which 2(2]/x)? lies in the
frequency zone about f;. A signal component is present
whose mean-square value is, let us say, 2(2la/r)* the
factor o? is then a signal-power suppression factor, with
0 < a < 1. The remainder of the limiter output in the IF
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Fig. 8-1. The double-heterodyne receiver, with equations for signals at each point

zone is noise; it has total power 2 (2l/x)? (1 — a?). The
limiter output signal-to-noise ratio p; is thus a function
of a only:
a2

PL=1T—F- (8-1)
We shall investigate the way a behaves as a function of
its input signal and noise a little later; for the present,
let us express our answers in terms of a.

The limiter sutput feeds a phase detector whose refer-
ence input is rationally related to the free-running oscil-
lator used to produce the second IF frequency; i.e., for
some (relatively) fixed 6,, it may be taken as being of
the form

sin (Mw)hgt e M1 01 e 02).

(and M,, like f, and f,, may take on a negative sign, if
desired).

(1) zpge (1) = -6 + x,,{A cos [(wo- Wy = (1 F M) wp )t + 8-
H(1+m)6,+6,]+n (1}
(2) c1) = K ¥ (p) Zpgc (1)
Correspondingly, the detector output is
y(t) = Ki(asin {[wo = om = (1 + My) wn]t +6—8
+(1+ M) 6+ 6.} +n(t)) (8-2)

The constant K; includes the gain of the detector, the
limits = [, etc. When the loop is in lock, the multiplied-
up VCO output must have as its frequency

Why — wy = (1 + Ml) Who . (8-3)

The values of the IF frequencies are thus directly related
tO f}.g:

ft = (1 + Ml) fhz

fz = M, fhz

which may vary with any fluctuation fi; may have.

(8-4)

435
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The heterodyne signal coming into the first mixer from
the VCO through a frequency multiplier wil! then be
one of the form

v(t) = cos {wmt + oMK, Kveo Fi}p)
X [sin(o—- O+ 1+ M6 +6,)+ -'%]

+ Mchonv(t)} (8-5)

p
including the equivalent VCO input noise, n,(t). The

receiver estimate of the incoming phase function 4(t) thus
satisfies the following relation:

é\ = QK,ichoA.’

F;p) 3sin[0 — B+ 1+ M6, (1) + 0]

+ ﬂs + ——MI;V“ nt) .

a

(8-6)

If properly designed, the loop naturally adjusts itself, try-
ing to zero the error; a linear analysis applies whenever
the detector output error ¢ = 6 — b+ 1+ M)e +6,
is small; in this case, the loop estimate is

b\(t) — (lechoMF(p)
p +- (IK,IKV(V()MF(p)

aK.F(p)
(8-7)

X [O(t) +1‘?+ (14 M,) 6 (t) + 6. +—3@—]

This response is the same form as that given in (5-2),
except for the term (1 + M,)é, + 6,, which contributes
to the loop noise, and which may also cause a varying
phase lag between 8 and 4, even in the absence of input
noise. This term represents a heterodyne noise present in
the loop.

The fact that § does not follow & exactly (due to
(1 + M,)8, + 6.) need cause little concern so long as
synchronou; detection of information processes, such as
doppler shift, phase modulation, etc., are also accom-
plished using the same reference frequencies wi, and
M,wh: combined in the same manner as above. For ex-
ample, the AGC detector uses a 90-deg shifted version
of M,wn: to derive the stabilized amplitude of the signal;
hence the input to the AGC filter and amplifier is

—eg + AK)p [cos¢ +ﬂf{-@-] .

46

So when the receiver is tracking, ¢ =6, —§ + (1 + M,)8,
+ 6, is small, and the AGC detector works precisely as
described in Chapter 7. Detection of phase modulation
by a second synchronous detector also follows the same
behavior exactly. Doppler-frequency extraction can also
be implemented in a similar way.

There are, however, some other minor differences be-
tween the simple phase-locked loop and the double-
heterodyne receiver, principally in the phase-detector
outputs. It is necessary to distinguish between ¢4 =49 — 8,
the loop tracking-error, and the quantity ¢ == 9 — 8
+ (1 + M,)8;, + 6., the loop detector-error. The latter of
these is the only one that need concern us if care is taken,
as above, in proper information demodulation. In the
simple no-heterodyne loops of Chapters 4, 5, and 6, ¢
and ¢y were the same, but they are not the same quantity
in the receiver above.??

Note that fluctuations in ¢ occur (compare (8-7) with
(5-24), for example) as if (1 + M,) 8, (t) were added to
the input signal 6(t). Of course, the input signal itself has
been generated by an oscillator whose output frequency
has been multiplied to carrier frequency by some factor
M., and generally M, » 1 + M,. Assuming that the
oscillators associated with 6(¢) and 6,{t) are of equal
quality, insofar as phase purity is concerned, we observe
that unwanted fluctuations due to (1 + M,) 6,(¢) are
masked by those of 6(t), the latter being roughly
M./(1 -t M,) times as large. Hence, the contribution of
6,(t) to ¢ can usually be neglected.

The loop transfer function L(s) is exactly the same
form as (5-3) with the parameter AK replaced by

AK = GKdecoMF . (8-8)
(Here we have made explicit inclusion of F, the loop-
filter dc gain, previously assumed to be unity, in the
event that some loss is present. In this way, we may
assume that F(s) takes the previously treated form.)

“There are ways of reducing the difference between ¢ and ey; For
example, wy; can be derived as wua -+ ws, wherein a spectrally
very pure standard reference frequency, such as one derived from
an atomic-resonant oscillator, is mixed with a local free-running
oscillator w,; fina) phase detection then uses w;. The effect of this,
in our terminology above, is that M, is set to —1, so that ¢
differs from ey only Ly 6; plus the standard oscillator phase, 8.
However, 6. is a constant, and theﬁstandard is very stable; hence
for most practical purposes, 8 and 6 differ by a constant phase lag,
tunable if desired.
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8-B. Effects of Band-Pass Limiting

In Chepter 7 we discovered that AGC action may
jitter the value of A by several db even at a given con-
stant-input amplitude A(t). Without a limiter in the loop
(A then replaces a in (8-8) above), the loop bandwidth
would jitter in the same manner as A. But with a limiter,
a is related directly to the predetection signal-to-noise
ratio, generally a much more stable quantity. Further, a
is usually much larger than A, so the loop gain need not
be so great to give a desired bandwidth.

Since the AGC alone is unable to maintain a constant
receiver output level, limiting also tends to increase the
effective dynamic range of the phase detector, and hence,
that of the entire receiver. These reasons make it almost
necessary to have IF limiting in a quality receiver.

The limiter output zonal signal-to-noise ratio varies as
a function of its input SNR in a known manner, derived
by Davenport in 1953. However, Davenport’s result is a
relation between the output signal strength and the total
noise in the output zone. Generally speaking, a limiter
tends to have a wider output noise bandwidth than does
its input, whereas L(s) is usually chosen to have a much
narrower response than either of these bandwidths. Neg-
lecting internal oscillator noises and assuming that S,,(jw)
is fairly constant over the response region of the loop
(i.e., wy» wy), one may derive a result similar to (5-8):

o = S,m (O) w,,
a? ’

(8-9)

The limiter output spectrum has some fiducial noise
bandwidth w;:

1 |1 [f=, . 1 \
=50 [ﬂ f ) Sun (jo) d«] =500 (1~ a?)

(8-10)

since, of course, the integral represents the total normal-
ized zonal noise power in accordance with the implicit
definition of n(t) in (8-2). Now as a result,

(8-11)

Davenport’s result, which we mentioned earlizr, is that
p1 =~ 2py when the predetection SNR, p, = A*/(N, wu),
is large, and p,~(n/4) py when py is very small. The
actual formula for p; is very complicated. However, one
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14023845,
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Fig. 8-2. Davenport's band-pass limiter zonal SNR curve

approximation to this, which fits extremely well (see Fig.
8-2) over the entire range of A*/N.wy, is

0.7854 + 0.4768pn
1 + 0.2384p,

P/ pu ~ (8-12)

The corresponding signal amplitude suppression factor is

e
=[ 0.7854p, + 0.4768p2 ] . (8-13)

1+ 1.024p, + 0.4768p

As the loop bandwidth w, is a function of loop gain,
it is thereby a function of a. The bandwidth of a passive-
integrator loop whose filter is that of (5-13) is related to
the parameter r of (5-14). In the double-heterodyne re-
ceiver with IF limiting, this r is

, = (!KdecoMF 1'§ (8'14)

T1

and therefore the loop fiducial bandwidth is approximately

ﬂKdecoMF ‘l’: + T
w, = .

(8-15)

21’21‘1

At very high input SNR’s, a approaches unity, a result
that causes the loop bandwidth to approach asymptoti-
cally the value

KiKvcoMF 2 +
Wi (max) = = 27212 i ~ % KiKvcoMF r,
row1‘
o e 4 8-16
ao (ro + 1) ( )

The phase variance can be related to input signal and
noise parameters by introducing p, = A?/N,wy into

47
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(8-11). With this done (again assuming negligible oscil-
lator noise), the following expression for o® results:

g2 = N (Wi pu
A \w py

_ Now,
==5tT. (8-17)

The factor T' = wypu/wip, is the lim.ter performance
factor. One might at first presume, on the basis of Daven-
port’s result, that o> would be degraded by a factor of
=/4 (about 1 db) at very low predetection SNR’s. But
limiting tends to spread bandwidth, making w; > wy.
This effect tends to compensate somewhat for the »/4
expected loss, and measurements indicate that, in truth,
this is the case,

As the predetection SNR becomes large, a different
behavior results. There is a factor-of-2 improvement in
o? due merely to the Davenport phenomenon. But, in
this case, it is not difficult to show that there is no
further improvement, because the limiter’s output noise
spectrum has the same shape as that at its point. This
makes w; asymptotically equal to wy,.

Going back to Davenport’s original analysis, Springett
has computed the factor that we would have denoted
here by (wipi/twupy). His result, shown in Fig. 8-3, is
well approximated by

w; P 0.862 + 04.6_520[)”
W pn = 1 T 03450 (8-18)

“Springett’s result is based on the assumption that the predetection
noise has an ideal band-pass characteristic. The results for an
arbitrary unimodal noise density, however, to engineering accu-
racy, are the same.
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Fig. 8-3. The ratis» of band-pass limiter output signal-
to-noise spectral density to that at input. The
reciprocal of this curve gives the limiter
performance factor I'.

The expression in (8-18) is the reciprocal of the limiter
performance factor, T'.

The final resulting value of ¢* for a loop containing an
IF limiter is therefore given by

10 + 0.345 (— A’ )

o = 2 Now”
A* | 0862 + 0.690( A’ )
Nowy
e, (819

This latter approximation is valid within % db over the
usual operating range of signal levels (p, < 1). More
accurate analyses should, of course, proceed under the
more exact expression.
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CHAPTER 9
BEHAVIOR OF PHASE-LOCKED LOOPS (NONLINEAR ANALYSIS)

Most of the important characteristics of phase-locked
devices can be predicted by the linear analysis presented
in earlier chapters. But since the linear representation of
a loop is predicated on high SNR'’s in the loop passband,
one can expect that, as this assumption begins to fail,
significant accuracy is lost. At this point, it becomes
apparent that another method of calculating loop per-
formance is needed.

There have been many who have tried to perform a
rigorous, exact analysis of the noisy loop, but most of
these have failed. Develet modified the linear model to
a “quasi-linear” model, and Van Trees was able to approx-
imate the loop character by a Volterra-series expansion.
Both of these techniques are capable of extending loop
analysis past the range of linear theory, but they ulti-
mately fail when the loop gets sufficiently noisy.

Tikhonov and Viterbi indepenJdently were able to solve
for the exact steady-state behavior of the first-order loop
by Fokker-Planck techniques. The second-order loop has
been treated with some measure of success by Lindsey.

This Chapter presents still another method, due to the
author and applicable only to the calculation of output
variances and spectra, subject only to rather general
assumptions. One assumption necessary to the analysis is
that the joint-probability function of the phase error can
be expressed as a diagonalized orthogonal expansion. Such
an assumption is known to be vahd for Gaussian proc-
esses, sine-wave processes, and the output process of a
square-law device whose input is a narrow-band Gaus-
sian process, and, in fact, it does not seem to be too
restrictive. The second assumption is that the steady-state
phase-error spectrum can be simply related to the spec-
trum of the detected phase error.

The analysis is not limited to Gaussian noise inputs or
to wide-band processes, although such assumptions gen-
erally make calculations easier. The Gaussian assumption,
in fact, yields results that agree excellently well with
the known exact theoretical behavior of the first-order
loop over the entire useful range of signal and noise
values.

The advantages of this method are that it is simple in
concept, and easy to perform and, further, that its ac-

curacy improves as the loop-degree increases and as the
loop filter becomes narrower-band.

9-A. The Spectral Equation

Since we are interested in the behavior of noisy loops,
the small contribution of oscillator noise can be omitted
from consideration. We focus our attention on the steady-
state stationary equivalent phase process ®, discussed in
Section 4-B, and the process ¢. A slight rearrangement
of the exact loop equation (4-4) gives

—PL¢+AKsin¢=fﬂ—0—Kn(t). (9-1)

F(p) (p)

When we replace ¢ by its stationary equivalent &, mul-
tiply (9-1) evaluated at ¢ = ¢, by its evaluation at t = ¢,,
and average the resulting product, there results an equa-
tion involving various correlation functions in &, sin &, 6,
n(t), etc., whose double-sided Laplace transform gives
the analytic continuation of the power spectral density:

_s2

For(—s

+ AK [‘F% SQ, sin 0(3) - ﬁ s’, sin 9("_ 8)] (9"2)

+ APKZ Syin 0. ain o(8) = F—(s—)%(%s—) Seo (5) + K*Sun (s)

A result of Bussgang extended by Barrett and Lampard
to a wide class of stochastic processes reveals

Re, ain (1) = n Res(r) (9-3)

where 7 is a functional of p(¢), given by
. =%/”° (® — E®)sin® p(@)do.  (9-4)
We have used a? as the variance of ®.

The condition on ® needed to justify (9-3) is that its
two-dimensional frequency function be expressible in the
form

pla(t,), o(t.)] = ple(t,)] plo(t.)] éanfu [(t)] fal ®(t.)]
(9-5)

in terms of polynomials f,(®) orthonormal with respect to
the kernel p(®). When such an expansion is valid,

S., sin 0(3) = SO, ain 0(_3) = ")S“(s)' (9'6)
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Even if (9-5) is not valid, the only modification needed in the theory is that » in
(9-8) must be replaced by »(s).

Next, when & is passed through the nonlinearity, sin &, there is a distortion
of the zonal spectrum from Sss into S,in ¢ in o(s). Hence we define a function
¥(s) y(— s), which relates the way this occurs:

oh(-s) = sl (©-)

Substituting these latter relations into the spectral equation, we obtain an expres-
sion for the spectrum of &, namely

—8%800 (5) + K2F (s) F(—5) S,5 (5)

Sesls) = =T ARToF (—s) — sF (s)]+ A*K* F(s) F(—s) y(s) y(—s)  (9-8)

from which the variance of ® can be computed:

1 [+

=1 " See(s) ds. (9-9)

a2

Generally (9-9) will be transcendental, since both 5 and (s) are nontrivial func-
tions of a2

If y(s) y(— s) is reasonably well-behaved, and if F(s) is a very narrow-band
device, then | y(jo)F(ju) |* ~ y*(0) | F(jw) |*. Similarly, under the same condition,
San(jw) | F(jw) |* ~ N, | F(j) |?, where N, = S$,,(0). These relations, then, are
particularly applicable when F(s) is a filter with a high cutoff rate. In fact, as
long as the noise n(t) is wider-band** than F(s), the system performance is essen-
tiully the same as if the noise were white, and the approximate Ses in this case
s given by

—~§°Sse (S) + KN, F (S) F (— S)
—s* + 7AK [sF (—s) — sF (s)] + A*K*y? F(s) F(~s)

See(s) = (9-10)

This method of analysis is thus called a linear spectral approximation.

As usual, there are two terms that contribute to the phase error: one due to
the input signal component, and one due to noise. The term we wish to explore
more fully here is that due to noise:

K:N,F(s) F(—s)
—s* + yAK [sF (—s) — sF (s)] + (AKy)* F(s) F(—s)

Soo(&‘) = (9-1 1)

Concerning the spectral approximations, one further point can be made: In the
linear and quasi-linear models of the loop, ¢ is approximated by a linear function
of @, 50 in turn, Sun ¢ 41 o(s) and Se ,ine(s) are proportional to Ses(s). Hence, the
method above yields the linear results when the value for 5 and y(s) are replaced
by the common value given them by either the linear or the quasi-linear model.
However, while including the linear cases, the linear spectral approximation is
a more general concept, because 5 and y are not necessarily equal. It is thus
more apt to provide results closer to the exact behavior of the loop.

It must be remembered, however, that n(¢) is the result of multiplying n, (¢) by cos (wt+#),
and hence will be somewhat wider-band than n,(¢).
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9-B. Calculation of 7

The calculation of 5 as the constant relating Sse to
Se »in # involves first knowing p(®), and second, knowing
that p[&(t,), ®(t.)] has the diagonal form of (9-6).

At very low noise levels, assuming a Gaussian channel,
the density for p(¢) certainly approaches a Gaussian
density, as does p(®), and all analysis methods give com-
patible results; at high noise levels the density on ¢ (mod
2r), viz., p(¢), approaches a uniform density of 1/2» on
the interval (— , ). In what follows, we denote ¢
(mod 2#) merely by ¢.

As an approximation to this behavior, for definiteness,
we may assume that ¢ is Gaussian, with variance a?; such
an assumption satisfies both limiting conditions on the
density of ¢, which is then given by

;(21ﬂ'7 i exp [—(¢ + 2mn)?/2a%];

p(¢) = for|¢[ <~

0; for[¢|>w. (9-12)
The variance o of the ¢-process is related to the variance
a? by straightforward evaluation. The 1esult is graphically
presented in Fig. 9-1 along with the approximate formula

For the density in (9-12), the value of 3 can be readily
computed:

n= ¢2‘“2/2 .

(9-14)

9-C. Calculation of y*

For loops in which F(s) is very narrow, y(s)y(— s) can
be replaced by its value at s = 0, viz., y> = y*(0). In the
case that F(s) has a very wide bandwidth, we can still
use (9-11), but a better approximation to y(s)y(— s), in
this case, is the ratio of the total power in sin ¢ to that in
¢, rather than y?, the ratio of powers around zero fre-
quency. This total power value, y2,, is

s — Bain®sine(0)

Y9 T T Res(0) -

Since we have assumed that & is a Gaussian process,
Price’s theorem can be used to compute the autocorrela-
tion function of sin &:

R.m o('r) == 8'“2 sinh Ro(r) .

(9-15)

(9-16)

The relation above is certainlv valid when a? is small,
because we are sure, in this case, that & is nearly Gaus-
sian, For larger a?, (9-16) is only approximate. But insofar
as the Gaussian assumption 1s justified,

e® [ " sinh Re(r) dr
2 — 3

12 ( 2 - ] : 7
o = 5 l L -- exp [~ % 1+ 0.1302)]2 . (9-13) Y 4/; Re(r) dr .
Nt: ) wl -lg'(l-b.llh')
a e 3o )
é 4"-———_' |
3
b - \ ot
§
L g
g
3
a,
&
;
g ° 2 * . . 10 12 14 . . b

VARIANCE OF GAUSSIAN PROCESS, o?

Fig. 9-1. Relationship between the variance of ¢ (mod 2») and that of a Gaussian stationary process &
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for a loop with a narrow-band F(s), and

y?, = a? e sinh a? (9-18)

for a loop with a wide-band F(s).

The former quantity, y?, cannot be evaluated directly,
since Re(1) is not known until y? is, and vice versa. How-
ever, if loop noise is not completely overpowering, y? is
probably not as sensitive to the shape of Re(r) as it
is to the value of a®. As a verification of this conjecture,
the several diff-rent forms of Re(r) shown in Fig. 9-2
produce values of y that are in very close agreement
over the range of interest. The upper curve is equivalent
to y:p. The values of y are probably very well approxi-
mated by that in the middle:

y = 2a?e**?sinh (%) =a2(l —e*®). (9-19)

To see how well thr spectral approximation method
works, let us calibrate it by a few examples.

0.8

0.6

0.4

0.2

0 l

0.8 1.2 (X} 20
a?

Fig. 9-2. Variation of the parameter y as a function of
the Gaussian variance a?, for various forms of Res (7).
Note that, fora® < 1, there is not o significant
dependence on the form of Res (v).

9-D. Behavior of the Firs: Order Loog

The spectrum of & for a fir:*:order loop is approxi-
mately R
N.K*

Ses =

=+ MKy (520

for we merely insert F(s) = 1 into (9-11). "Ve use ¢, to
approximate y(s), because F(s) is wide-band. \Integratxon
of (9-24) yields the estimate

NOK
2A7¢p

AY'PK) h ‘Q
9-21
A? Y!p( v N )

a’ =

This equation compares in form with (5-8), except thé\.\

{

the bandwidth of the loop has apparently changed to a *«

new equivalent value because A reduced to Ay,,:

:—M'

W (eq) ) (9“22)

1. Linear Loop

Under the usual linear assumption, y;, = 1, 80 Wy, (eq)
reduces to w,, the linear loop bandwidth, and, of course,
the usual answer (5-8) results.

2. Quasi-linear Loop

When the constant gain A in the linear loop is replaced
by the equivalent statistical gain Ae=*/? derived by
Develet, i.e., when y?, = e<*, the result is

N.K

a? = —2—:1- e’ (9-23)

Notice that there is no solution for a* here when

NoK/2A 2 1/2. For No.K/2A < 1/2, there is an equiva-
lent bandwidth

AK

- 2
Wiieq) = T e,

(8-24)

3. Spectral Approximation

If we use the analysis presented above with y,, as
given in (9-18), the phase variance of the equivalent sta-
tionary process @ is related to the linear-loop prediction by

ae"* (sinh g*) = 1"2%-. (9-25)

Here there is a solution a? for every value of N, K/2A.

4. Reduction Modulo 2»

The real indication of system performance, as we have
agreed, is given not by the parameter a* (the variance of

AY

A3

A}
.
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¢), but by o? the variance of ¢ (mod 2x). These are
related as shown in Fig. 9-2. Each of the various per-
formance approximations, reduced mod 2, is compared
with the actual loop behavior (Fokker-Planck method)
in Fig. 9-3; notice the closzness with which the spectral
method predicts the actual behavior. We have also indi-
cated that the spectral approximation method should
yield results that improve as the fiter F(s) becomes
higher-order and narrower in bandwidth. Thus, the first-
order system should be the one predicted with least
fidelity — but, as shown in Fig. 9-3, even this proves to
be very good.

The conclusion to be reached at this point, then, is
that the linear spectral approximation method provides
a very accurate means of predicting loop phase devia-
tions (mod 2») over the entirc useful range of input signal
and noise values. In addition, we have shown that the
linear analysis is valid whenever A?/Now,, > 10.

R 9-E. Calculation of the Behavior of the

\\ Second-Order Loop

?/\'\ci now show the performance of a phase-locked loop
whoa\loop filter is the passive integrator of (5-13). This

\
N

\

\

aor T
\ QUASI-LINEAR
/ APPROXIMATION
¥
T

Y
" ACTUAL
8 20 s~ BEMAVIOR
/s
/ S
‘&
\
A
Y
10 -y -~
LINGAR
AP?{!OXIMATION
\
0 i\
o] 10 20 \ 3.0 40

Nowe /A% « NoK/>A

Fig. 9-3. Comparison of linear, qucsl-lliaocr, and linear-
spectral approximate methads with the actval
behavior of the first-order locp
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filter function inserted into the spectral equation (9-11)
produces the density

Sea(&) =
K2 N, (1 — 257
rist — ¢* rl + 2AKy (1, — ) + (AKy r.)?] + (AIGY2
(9-26)

The density (9-28) is quite different from what one ob-
tains from a simple linear model of the loop. Still, we
canse the same types of ideas to express the output
phase variance. For one thing, Ses(jo) has a fiducial
bandwidth

1 +00 ..
Weieq) = m [w Ses (jw) dow . (9-27)

Note that this is computed in the same way as w,, except
that we must use See(ju) as given in (9-26) rather than
| L(jw) ), as one would do if the linear model were in
effect. In these terms

Nowieq)
2 — 0" Lleq) -
(Ay)? (6-28)
Again, it is evident that there are two effects in the
second-order loop that deviate a* from the value it would
take in a linear analysis: w; ) must be used rather than
wy, and A is reduced to Ay.

The value of wy (., can be found by integrating (9-27):

1+ry)

Uy — 9)(1 — 2o/7) |
2r, (1 + fz/fﬁ'Y) [1 + ';2 (ln—}- 7,/!1"7)’ ]

Wi(eq) =

1+ry

- 2,,[1 +%;;‘—=ﬂ]“ '

(9-29)

The approximation follows the natural assumption
"17 » Ta.

A “damping factor” can be defined almost in the same
way as it is for the linear loops, a way that reduces to
the linear care for high input signal-to-noise ratios. We
have already derived Ses; it is of the form

_ 1—ag
Sl = =BT c

The routs of the denominator govern the “damping be-
havior” of &(t). If these roots are r,, r,, —r,, —r,, then
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we can define, for the left-half-plane factor s* + (r, +1.) s
+ r.12, an equivalent damping coefhicient

_(rntr)

b= g8 (9-31)

We relate r,r, and (r, + r.) to the parameters of Sss(s) by
noting

(rura)? = (AKy )’

T1

(9-32)

(1'1 + "'2)2 — 2, = T;Z [1 + 2AK’7(72 - Tl) + (AKYTz)z] :

Hence, the equivalent output damping factor of the loop is

{ee = bl_rz)i [(1 + r/rry) + 20y — 1’)5')1/2_ "2/7'1)]%

~Z [1+ 3(1—“—’12] " (9-39)

~5 e

1. Linear Analysis

It is easy to see when 5 = y == 1 (the linear analysi
parameters) that (9-28), (9-29), and (9-33) reduce to (5-8),
(5-18), and (5-20), respectively.

2. Quasi-linear Analysis

The quasi-linear analysis replaces A everywhere by
Ae?* 2 (i.e,, y= 9 = €*°/2), Thus the behavior predicted
in this case is given as

ae® = N O‘Xl;(eq)
1+ reo
Wi (eq) ™ -—%‘5— (9-34)

T
{oq =~ —- €71,

2

From this it is important to note that while Landwidths
and damping are less than the value predicted by the
linear model, the overall value of a? is larger than its
linearly predicted value.

54

3. Linear Spectral Analysis

In a still more general analysis, we set n = /2 and
y =a? (1 — ¢°*). The loop behavior is then approxi-
mated very closely by

Nw, (1—e®)? w,
Az a?

Wi (eq)
1+1r(1—e*)/a?
2a2(1 — e® — a%*/?) | %
r(l — e®)?

Wiew)

e (1+r)[1+

(9-35)

b _(L—e®)" [ 2 (1—e®—ate?)]™
T a [ (1l — e®) '

Again, the same type of behavior results: 0y, eq) and {eq
are less than their linearly predicted value, while a? is
greater. Although the quantities in (9-35) are generally
transcendental in o2, nevertheless Newton’s rule is easily
applied by a digital computer for solutions. Figure 9-4
relates various parameters above to corresponding values
of o, based on a constant value of r (viz.,, r = 2). Figure
9-5 then shows how ¢* compares with the value pre-

T
%"7(‘0)/ Wi
R
AN — ‘Y
’\ ~LINEAR BEORY " MLeq
N |
. -NONLINEAR THEORY
B
.-
b
w o
Q
2 AN
: A\
g N
7
(o]
-4
7
q 00
X
Q
W\
0001

o -] i0 15 20 28 30 33
SIGNAL STRENGTH, db ABOVE 45 = Now,,,

Fig. 9-4. Comparison of linear and nonlinear theories
for second-order, constant linear bandwidth loop, i.e.,
the value of r is kept constant at r, = 2,
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dicted by a linear analysis as a function of signal power
for a fixed N,; since r varies with input signal level, we
have arbitrarily'® chosen a value r, = 2 at A2 =3N,/2r..

*Reasons for this choice are given in Chapter 10.

|0 \—' _"—“—— ——t 1T
DN N A S P D
\\\
N — LINEAR-SPECTRAL ___ _| _ |
\/ APPROXIMATION
% I N A i
- LINEAR }
) o1l APPROXIMATION N -
g N —
2 N
@x l \
g 1 > ; |
w |
o
Q P B!
Z
w \
2 oo
I ——
a
0001
0 5 10 15 20 25 30 35

SIGNAL LEVEL, db ABOVE 45 = Npu,

Fig. 9-5. Comparison of phase-noise variances by linear
and linear-spectral approximations. The noise density
is fixed, and the signal level is varied. The value of r
is taken as r, = 2 at a reference signal level of A?
= 3N./2r, = N,w_,. Note that the ult::.ate roll-off
is 5db/decade, rather tha: 10 db/decade, as in
Fig. 9-4. Note also that even the linear approxi-
mation produces some curvature of »* near AL

Figure 9-6 illustrates the way w;q, Wi, £ (- and ¢
vary; parameters here are the same as those in Fig. 9-5.

4. Conclusions About the Second-Order Loop

The behavior depicted in Figs. 94, 9-5, and 9-6 indi-
cates that a linear theory can be expected to yield satis-
factory accuracy whenever A?/N,w, > 10. Beyond this
point, the linear spectral approximation probably agrees
with actual results, if we may extrapolate the results
obtained for the first-order Irop, for ¢ < 1.5 rad? This
figure lies beyond the useful ange of most receivers.

/

100 7

"?-/"Lo_\y P/

a2V C(eq)

0l

o 5 10 15 20 25 30 35
SIGNAL LEVEL, db ABOVE 43 = Nyw,

Fig. 9-6. Variation in bandwidth and damping param-
eters as a function of signal strength. The value of r ot
a reference signal level A? = 3N,/2r, = Now,,
was taken as r, = 2.
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CHAPTER 10
DESIGNING A DOUBLE-HETERODYNE TRACKING LOOP

So far in this work, we have concerned ourselves, for
the most part, in predicting the performance of a receiver
when its parameters were specified. Exceptions to this
dealt only with ways of choosing some of the receiver
parameters, given the others. We may now pick a set
of parameters, and, through the formulas that have been
presented, predict quite accurately how the loop will
operate. Once the receiver is built, it performs just so.

What we require for design, however, is an effective
method for picking a nominal set of values that produces
a desirable tracking function over a reasonable variation
of the input signal power.

As long as the operation of the loop is to remain within
the linear-analysis region, the task is much simplified,
because there have been analyses put forth for extracting
an optimum result from the linear loop. Nonlinear op-
timization in most cases is difficult, if not analytically
impossible.

It is customary to optimize, insofar as possible, receiver
performance at the “worst-case” parameter values; in this
way one is sure that, while perhaps not operating optimally
at any other set of values, the loop will do the best that
it possibly can in those cases that require it most. This
procedure is purely an arbitrary one, in that it is apt to
change in accordance with the philosophy of the design
engineer, and with the particular mission for which the
receiver is intended.

What design rules are given here will be somewhat
abstract, but perfectly general, so that the designer may
issue his own philosophy in choosing values.

10-A. Definition of Receiver Threshold

The words “receiver threshold” conjure up a different
image to each engineer: to one, it is that shaky, ill-
defined signal level at which the receiver transits from
operability to nonoperability; to another, it is some point
at which the receiver operates with the least acceptable
reliability; to still another, it may mean the signal level
at which the receiver exits from its linear range. There
are no absolutes when it comes to defining such a point;
in ¢ :h of the cases above, the engineer meant that the
system hit “threshold” when its performance was in some

way no longer tolerable, when the receiver no longer
produced meaningful data, The trouble with such defini-
tions tied to performance is that they tend to be sub-
jective — what is tolerable in one case is not in another.

The word “threshold,” as we shall use it here, is a
precisely defined quantity, which can be subjectively
interpreted as desired. Some give it the name “design-
point threshold” and, in some cases, it has been called the
“absolute receiver threshold.” The concatenation of modi-
fiers does not seem to be necessary at all, and we shall
use the word “threshold” in only one sense.

Specifically, the loop threshold is defined as that input
signal power A2 given by

Az = No(ro + 1)
o Ty
21‘2 (1 + )
1'01'1
= Ngwbo . (10‘1)

Here, wy, is the value of linear-loop fiducial bandwidth
at threshold, i.e., computed by (5-18) using the threshold
value of r, ,. One must not be mistakenly led to believe
that the loop is operating linearly; w,_is merely the
bandwidth a loop would have if A, were to lie in a linear-
analysis region. In actuality, A, is a signal level at which
the linear theory does not apply, for, in fact, o> > 1.

In the notation that is to follow, all quantities sub-
scripted by “0” refer to the value of that particular
parameter at threshold.

10-B. Tracking Loop Performance of the
Double-Heterodyne Receiver

Once the values of the receiver’s physical parameters
KiKvcoMF, 1, r,, and W, have been determined, per-
formance proceeds as specified by the formulas'’ in
Chapter 8. But with a fixed receiver, the loop bandwidth
changes as a function of signal or noise level. Rather than

"Although Wx is a measured physical quantity, it may not be
equal to wy if the loop is not operating at the frequency pro-
ducing H(fw) *mex.Care must often be taken to assure that H(s)
is properly tuned for maximum response at the loop operating
frequency.

87
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calculate each receiver characteristic separately, it is
easier to evaluate the performance in terms of a reference
signal level and to relate the remainder of the loop be-
havior to this point. One convenient reference point is the
threshold signal level. Specifically, we define the ratio

Az
- Ar

o

m (10-2)

as the loop performance margin. In terms of this m,

_ Az _ éi wLo _ ]
PH B N"wu - (A0)< Wy > - mPHo ) (103)

As a result, all of the lo p characteristics are expressible
in terms of m, wy, wy, and ./r, (and this latter quantity
is not needed if r, » r,). Thus a design consists really of
specifying these three (or four) quantities.

However, it is often necessary to compute the perform-
ance of a receiver when wy, KiKvcoMF, 7, and r, are
given — quantities that can be measured. Most of the
formulas we have given are in terms of s, w,’s, etc. How
does one proceed with the set of parameters above? We
merely need to find r,, and the rest then follow. When
10w, < wa, of is very well approximated by =wy,/4ws;
from this, a slight manipulation of (8-14) produces the
desired result:

_ ‘lf(KdKVcoMF)2T:
8‘!’12 Wy
_{ U~ r/m, 4U Ve
fo—<—""—'—2 >{1+[1+_—————(U—1’z/71)2]}
U 4\%
Ui d)] 04

We can also express U in terms of r,,

— ro(ro + 1'2/1'1) r: X
U= fot1l o+l 10-5)

10-C. Nonlinear Behavior of the
Double-Heterodyne Receiver

The formulas in preceding chapters can be made to
apply to loops with predetection bandpass limiters by
making a few minor alterations, and we have seen how
these: changes come about in Chapter 8: first, AK is re-
placed by aK;KycoMF, as in (8-8); and second, the ex-
pression (9-28) must be multiplied by the limiter
performance factor I' = wypu/w;ipi, shown in Fig. 8-3.

These steps lead to a set of equations which characterize
the double-heterodyne receiver:

w
Pu = m( w";) = myn, (10-6a)
_ 0.7854p, + 0.4768p% * 6b
¢ = | T+102p, T 0.4768p,2,] (10-6b)
1+ 0345p,
I'= 586z 06%0p, (10-6c)
dechoM F (0)1’2 a a
r = - 2=Fo_r0=.r§2=7'-;(a_o)ﬂ§
(10-6d)
2 —

2= {1 - exp[ 32“2 (1 + 0.18a2) ]}
~ a? (10-6¢)
y=(1—e*)/a (10-6f)
n = e""2/2 (10—6g)

1+ 1+<-%)ro
r 1tr wr,

wb=2fz<1+-r_z>~ 21'2 1+rO

71

(10-6h)
w - 1+
Lteq) %, (1 4 T2 ) 1+ 2y —7)A — 1'2/21'1) v
L ()
(10-6i)
c=-;-(l+:—i)f"=%(l +;1—712-'B—2)1'2B
s
~T = (1046
_1 T2 20y — )1 — =/m) ™
eu ° ) (1 + ryn) {'7 [1 + (1 + ral/ryrs)? ]
1 w» Va
~ 5 ()" ~ Ly (10-6k)
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Y
Bea = QT)L =By" (10-61)
2
_ Nowpeo' _ 1 105 o)
a* = A2y “m W, y° (10'6m)
2w, _ o 2wy,
B~T%1° (u(,) ro +1° (10-6m)

The use of y as given in (10-6f) requires =, » r,; otherwise,
yep of (9-18) should be substituted in its place. Notice that
the only quantities needed to specify everything in (10-6)
are the margin m, the predetection SNR p,, = wu /wh, 1.,
and 1’2/ T1e

The performance observed here is very much the same
as that exhibited in loops without limiters, except that the
value of K;KvcoMF required is drastically less than the
value of K required when there is no limiter in the loop.
This, of course, is due to the fact that while A, is very small
(the threshold rms signal level) «, is many orders of magni-
tude greater, approximately equal to the predetection SNR.

10-D. The Signal Level Producing o* =

Since it is doubtful that one would ever expect a loop
to operate usefully with a value of ¢* greater than unity,
the specific value of a2 is more a point of academic interest
than anything else. Furthermore, if we may judge from
the first-order lcop result, the threshold value of phase
noise predicted by the linear spectral theorv would
probably not be a very accurate one, for the theory
begins to fail somewhere near this point.

Holding the rest of the loop parameters constant, we
can solve for the value of margin (call it m,) that produces
a® =a? = 1. This is a more meaningful quantity, and
certainly much more accurately calculable by the methods
in Chapter 9. It follows from (10-6) that when a? = 1, the
value of A;/A, = m}* satisfies the equation

The subscript “1” on T, y, 5, etc., refers to evaluation at
a* = 1. Under the usual assumption y,r,r, » 7., the approxi-
mate value for m, is

— ro Iy 2
m, = [———2}[1(%_{_1)] {1 + [1 +

The value of ¢* is within 0.5% of unity when a? = 1;
hence to the accuracy we need, the values of m, and r,
above give ¢* = 1. The curves in Fig. 10-1 show how m,
varies as a function of r, and r,/~,. As r./r, nears unity, it is
necessary to replace y by y;, (see 9-18). The values given
in the Figure result bv -ssuming that y, in (10-3) takes
the value

Y= (1 - %2-) 1—e?)+ (:—) e

= 0.6321 (1 - -’—) + 0.60653 (2) )

4ro+1)7 2
[r2 )

(10-8)

T1 Tt

(10-9)
w 38 TT
5 '/ 72/ =
o
o
7] y ~8.5
W |
I T 0.l
F 1T 00!
‘;' 3.4 | |t > T
2 - !
< o
< L~ Y
5 3.2 %
z 7 5.0
<
= 3.0 —4.8
] 10 100 1000
ro, abs

Fig. 10-1. Variation in margin producing 0> = 1 as a
function of threshold design parameter,
ro = uOKdecoMFT:/Tl

_A_; _ Ly(ro + Ta/Tx)(Ax/Ao + 1/76y1)
A, ) 2ys = m)l1 — ma/71)(AV/Ao) |
71(1'0 4 1)(A1/A0 + 1'2/’0‘/171) [1 + 7: ro(Al/Ao + Tz/'Y)'oTx)z
. Y '
L ~ A, fo.

(10.7)

MARGIN m,, db
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10-E. Choice of Receiver Parameters

Choosing values of N, wy,, 7o, KiKvcoMF, and wy speci-
fies a typical receiver design. Values for r,, 72, pu,, @, and
I, follow directly from (10-1) and the first four parts of
(10-8). The value of r./r, is a measure of how well the
imperfect integrating loop filter performs in the loop; with
r/r = 1, for example, the loop filter is merely F(s) = 1,
and all the results in (10-8) reduce to the first-o:der loop
equations. On the other hand, the results in (10-6) are
approximately the same for all values of r,/r, less than
about r,/10. There is some flexibility in chioosing loop gain
parameters because K4, Kvco, M, and F appear as a single
factor in the theory.

However, the only things an cngineer needs to know
in order to know how well any receiver will perform are
m, 1o, pu,, and perhaps r,/r,. This latter set of quantities
depends on several things: r, sets the loop damping factor,
to be chosen in accordance with the discussion in Section
6-C4; the value of pu, depends on w,, and wy; wy, is
determined by considering the desired acquisition ease,

100
AN
S =NONLINEAR THEORY,
XN\ LmiTER compensaTion
- RN ~LINEAR THEORY,
E: N LIMITER COMPENSATION
o =
w LINEAR THEORY, NO A
B o] LIMTER COMPENSATION
I \
a N
a NS
3 N
-
[2]
E ro*®* 2
WLO /’N . IO'3
r/r =107
. |
] -] 10 15 20 25 30 3%
MARGIN m, db

Fig. 10-2. Comparison of linear and nonlinear approxi-
mations to loop rms phase error, as a function
of loop margin
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the doppler tracking capability, the state of the art in VCO
design, the spectral purity of the received carrier, the
expected incoming A?/N,, and the amount of phase jitter
that can be tolerated at that operating level. In addition,
7. should be chosen (Section 6-C3) so that the phase error
due to the expected doppler rate is increasing slowly
enough that only infrequent retunings of the VCO are
required.

Once 7, and py, (and perhaps r,/r,) are given, the re-
ceiver performance in terms of margin can be found from
(10-6); a typical plot of o vs m is given in Fig. 10-2, wherein
linear approximations are compared with actual behavior;
Fig. 10-3 shows how bandwidth and damping factor
change as a function of margin. With assumed values of
N, and w,,, threshold is specified (10-1), so the curves are
easily referenced to the actual incoming signal power.

I
ASYMPTOTE

24%

w;, CpS /
| N
W, (eq): OP% 7
<
s 1/ ¢
7 £t
1.0 A/ *
/ /
-/
o=2.0
WLO s .0
WLO/W” 1073
Ta /7y = 1073
0. ] |
o] ] 10 18 20 28 30 38
MARGIN m, db

Fig. 10-3. Variation of loop bandwidths and damping
factors, as a function of loop margin
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PART I
SUMMARY OF PHASE-LOCKED LOOP DESIGN CONCEPTS

In this second part, the important definitions, concepts, and formulas are col-
lected chapter by chapter. The notation used in these formulas is listed in the
Appendix with names, units, and text references. Many of the formulas here are
only approximations of more accurate ones in Part L.

Since not all of the subdivisions in Part I are referred to in Part II, there are
some discontinuities both in the headings and in the figure and equation numbers
of Part II.

JPL TECHNICAL REPORT NO. 32-819
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CHAPTER 1
INTRODUCTION AND HISTORY OF THE PHASE-LOCKED LOOP

The first serious application of the phase-lock principle was as a synchrorizing
device for television in the late 1940’s. Since then it has evolved as the heart of the
most sensitive, versatile, and flexible receiver in existence today. There are many
approximate analyses for predicting the behavior of the loop (Fig. 1I-1-1); some
of these are set forth in the ensuing chapters.

ERROR SIGNAL
INPUT SIGNAL

2245 (wr+8)
+ﬂ,'(’)

LooP
FILTER, F(s)

E——
RECOVERED veo

PHASE
PROCESS

272 cog (wt +68)

Fig. ll-1-1. Basic configuration of o simple phase-locked
loop. The mixer output, filtered by Fls), is used to
control the frequency of the voltage-
controlled oscillator (VCO).
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CHAPTER 2
FUNDAMENTAL CONCEPTS

2-A. Statistics

Process: a time function, x(t).

Deterministic process: a process x(t) for which x(t) is
specified at every value of ¢.

Stochastic (or random) process: a set, or ensemble, of time
functions {x(t)}, any particular member of which is
observed according to some probability law.

Stationary process: a stochastic process whose statistical
behavior does not depend on its time origin.

Ergodic process: a stochastic process wherein time aver-
ages produce the same results as statistical averages.

Time-autocorrelation of the function x(t): given a function
x(t)

Ree(7) = 332 517.- f : x(t) x(t+7) dt. (2-3)

Statistical autocorrelation of a stochastic process {x(t)}:

R‘g(tl, tz) = E [x(t,) x(tg)] (2‘4)
= R.(t; — t;) (if x(2) is stationary) (2-5)
= Ru(t, — t;) (if x(¢) is ergodic). (2-6)

Cross-correlation R.(t,—t;): obtained by replacing x(t,)
by y(t.) above.

Spectral density of 2 function x(t):

Sealio) = f: Realr) €7 dir. e
Spectral density of a stationary process {x(1)):

Sulfu) = /_:" Reu(r) €17 ds . 28

Cross-spectral density Sn(jw): similarly defined as the
Fourier transform of R,,(r).

Mean value of x(t):

u(t) = E [x(t)]

=pu (ifx(t)isstationary).  (2-10)
Variance of x(z):
oX(t) = E [x(t) - w(t)]*
= E [()] ~ w¥t). (2-11)

2.B. Linear Filtering

Unit impulse response of filter H (Fig. 11-2-1): The output
h(t) of H when the input is 5(t), the unit-weight Dirac
impulse function (see Fig. I1-2-2).

Linear filter: any filter v hose input x(t) and output y(t) are
related by

y(t) == /’*“ x(t;)h(t - t;)dtl .

(2-14)
x(2) r(t)
—_— H —
Fig. I1-2-1. Filtering device
(9 3N
’
N >
ar)zy(r)

Lq —
I b
Fig. l1-2-2. Response of filter to a unit-impulse function
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When x(t), y(t), and h(t) have Laplace transforms X(s),
Y(s), and H(s), respectively, linearity reduces to

Y(s) = X(s) H(s) . (2-15)
When x(t) is a stationary process,
Su(fu) = |H(fw)|* Seelfo) . (2-17)
2-C. Noise Bandwidth
White noise: a random process n(t) such that
Ruu(r) = N, 8(r)  (volts?) (2-20)
San(jo) = N, forall —w <o < +w (volts?/cps).
(2-21)
Effective noise bandwidth of a linear filter H(s):
2| G
Wy, = 2By = —= (cps) . (-4}

lH(f“’)'w

Note that W, is the two-sided bandwidth end By, 1s the
single-sided bandwidth of H(s) in cps (see Figs. 17-2-3,
11-2-4, and 11-2-5). The output noise power with a white
noise input is

N = N.W, |H(ju)| 2

(volts?) . (2-25)

S(jw)

LI .
//\\ /i N7

- fwy fe ° | Lu, e

Fig. 11-2-3. Equivalent noise bandwidth

Sjw)

-~ 8 1m- > 8 |w
—_— —— -

Fig. I{-2-4. Deuble-sided frequency response

(a) ‘ S(/w)
.
{b) ? G(jw)
r/
4
>

Fig. 11-2-5. Double- and single-sided spectra

2-D. Sinusoidal Filter Inputs

If 2% P sin{wot -+ 6) + nit) is put into H(s), where n(t) is
white with spectra! density N,, the output SNR of H(s) is

=_F |H(jwo)* _ P
Py =Nw, ° Hio)[%e Noww (2-35)

2-E. Fiducial Bandwidth

Fiducial bandwidth: equivalent (2-sided) bandwidth re-
ferred to a s;..cific frequency wo, such as the carrier
above, rather than that » producing |H(jw)|?

max *

1 [
Gl o)L G
=2V g = T TG

(cps).
(2-37)

1t is this fiducial bandwidth that is needed in most of
phase-locked loop theory, rather than the equivalent
noise bandwidth W,,.

2-F. Bond-Pass Mixers

Heterodyning (Fig. 11-2-6) does not affect signal-to-noise
ratios so long as the heterodyning frequency and the
carrier frequency are independent. However, when the
two are the same, the output signal-to-noise ratio p is

P = Ny Elcos*9) (252)
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/2P sin (wo?+8))

+n (?) BAND- PASS

V2 cos (wy,t +8)

x(P H(s) ym

} S (/W)

‘/_IH(/“'O)l sin (wo/+6'2) 1
+na(4) BAND PASS .
Fis)
v(f) ‘ 2(1)

Spzljw)

I-ﬁ- |iwo || w2
1

A/°|H /(w"'u, F\/w)l

0-8” -

\\ ] - mox
oy

P 2
# Gwo)l
1-5 /wo I{-’IH (Jwo)| 2 .

o5, Nol# I:u '

. L4, i
~f f
y\g% |# e
Fig. 1-2-6. The simple product-mixer

where P = inpat ~ignal power (watts), N, = 2-sided input So v.(fo) = 2kTR  (volts?/cps) (2-62)

noise density (watts/cps), wp is the fiducial bandwidth of
the detector (cps), and ¢ is the phase angle between the
carrier and the detecting sinusoid. The term E(cos? ¢) is
the coherence fuctor of the detector. Image noise must be
eliminated by post-heterodyne filtering (Fig. 11-2-7).

2-H. Noise

Johnson (or thermal) noise: noise due to thermal agitation
of electrons in a resistor. There is a noise voltage v.(t) in
series (see Fig. 11-2-8) with each such resistance R, with

fs,, ( jw)

> 8, o

"

’
e -
fo-fy fo fotl)

Fig. I1-2-7. Choosing filter bandwidths to avoid the image
noise problem

where F is Boltzmann’s constant and T is the resistor
temperature in degrees Kelvin. This is Nyquist's Law.
Maximum noise power obtainable from such a source
in a bandwidth Wy is

= 'k—g: Wy = f\TBN (watts). (2—63)
(Compare this with (2-25), for a filter with t .ndwidth

Wy and gain |H(jw)|2,,.)

Hence for a white thermal noise the matched-load noise
voltage appearing across the ioad resistance R has uni-
form spectral density N, = 1kTR volts*/cps.

3
<
y

A
wn) iy

S$iiljw)s24T6

v INAY)  Swiliw)s2err

) e )

Fig. I-2-8. Thevenin and Norton equivalent circuits of
noisy resistors
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CHAPTER 3

FORMULATION OF THE LOOP EQUATION AND
BEHAVIOR IN THE ABSENCE OF NOISE

3-A. The Basic Integro-Differential Equation

The basic equation relating to the device in Fig. I1-3-1
is

8) = #(t) + AK Efoﬂsin #(t) (3-9)
where A = rms signal amplitude, volts
K = total open-loop gain, sec™ volt™
6(t) = input phase function, rad
#(t) = phase-error function, rad
p = d/dt, the Heaviside operator.
3-B. Tracking When the Loop Error Is Small
If |¢| < /6, then sin ¢(f) ~ ¢(t), so
o) ~ 220 ). (3-10)

Considering 6(t) = d(t) radians, i.e., a doppler-shift func-
tion only, the steady-state phase-error is

1 s:D(s)
$o = lim ARG (3-12)
where D(s) = L[d(t)]. If d(t) = Aut*/nl, and if F(s) has
I poles at the origin, as F(s) = q(s)/s'p(s), thenforn > 1+1

M (0) tn-l-1
¢ AKq(0) T—1=101

Forn <l + 1, ¢,, = 0, so perfect doppler tracking ulti-
mately results. When n = 1 + 1, there is a constant steady-
state error

ast—> oo ,

(3-16)

— Mp(0)

bae = m (rad) .

(3-17)

3-C. Acquiring Lock in the First-Order Loop

A phase-plane diagram of first-order (F(s) = 1) lock-in
is given in Fig, II-3-2. Lock-in proceeds as

Quax (rad/sec) = AK = 2W,, (cps) (8-23)

$ss = sin™? (%) = sin! ( 2&2) (rad) (3-24) -

tacq = W 1 In
L COS ¢y S1ock

(2-87)

(sec)

where Q.. is the maximunr value of Q,, the initial loop
frequency offset in rad/sec ‘or which the loop ultimately
locks, t,., is the maximum time in seconds required to
achieve lock within 8,, radians, and W, is the 2-sided
loop bandwidth in cps.

3-D. Acquiring Lock in the Second-Order Loop
with Passive Loop Filter

With a loop filter of the form
F(s) = 1tms (3-28)
1 + T8

where 7, 7, are in seconds, for d(t) = 9, + Qt, there

results
. Qq . Q12
Pss — sin™? (—A—> = sin™! (Tr:—) (rad) .
(3-30)

But for lock-in to occur for all initial conditions of the
VCOo,

2 rr, Ve r T v
<2 B () B

(rad/sec) . (3-33)

The time to reach frequency lock (not phase lock) is

r+ 12 /Q.\?
tfreq acq =% SS’TD-LL (w_L) (sec)

(3-34)
where r = AKrZ/r, and w, is the loop fiducial band-
width (see Chapter 5). We assume rr, » r,. Typical plots
of lock-in behavior are illustrated in Figs. II-3-3 and
I1-3-4.
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=4 i r+ 8(¢ 1) =AK K t
x(1) =4 /2 sin(wot+ 8(£)) _ y(#)=AK K, sin $! ). LooP FILTER z(¢)
F(s)
veo +
V(1)= K, /2 cos(wg? + B(1) |

Fig. I1-3-1. The basic phase-locked loop

Q
. ’Q'O . = -Q-o
(2n =1)wr=Sin K 20T +Sin yTd
‘Q'O

t T T T —
/(Zn-l)v 2nw \/(Zn-H)w 2n+2)w

Fig. [1-3-2, First-order loop pull-in behavior
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3-F. Locking the Second-Order Loop
with Perfect Integrator

With a loop filter of the form
l + 1'28

T8

F(s) = (3-41)
where r, and r, are in seconds, the doppler polynomial
d(t) = 6, + Q,t + % At* produces a constant steady-
state error given by

A, . MQ+D3
g2 = SIin~! { —-} = sin! —r 3-42
$as = si ( ﬁ.) < Wi (3-42)

where 8 is the loop natural frequency (see 5-20). To guar-
antee lock-in for r = 2, it is necessary to have (see Fig.
I1-3-5)

JPL TECHNICAL REPORT NO. 32-819

| A, l < k(r) B‘Z
sgn [2(0)] = — sgn (Ad)

When r = 2, the value k(r) in (3-43) is about 0.5; for
other values of r, factors are given in Fig. II-3-6.

(3-43)

When the VCO is swept for lock-in with @, = 0 and
A, = 0, the equations above restrict the VCO input
sweep e by

de

Kveo ar < k(r) B* (3-44)

These relations are approximately true for the passive
loop of Section 3-D when 7, » r,.

06
(a)
04 il
o O
~N
< d N
< /
02
(o]
10
(b)
08
/ d
A
06
o~
S -
< e /
: ACTUAL "
02 ///‘\
N~ 2
APPROXIMATE Ao/B
lﬂ ?.!77 In r + 0387
0 [oX] 02 04 06 1.0 20 40 60 100

rs Al(rg/rl

Fig. 11-3-6. Normalized doppler rates A,/ and A./w? for which lock is
guaranteed in the absence of noise, as a function of the locp
parameter v = AKr2/7,. Note that for a fixed bandwidth w.,
the optimum value of r is about two ({ = 0.707).

4l
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CHAPTER 4
BEHAVIOR OF PHASE-LOCKED LOOPS WITH STOCHASTIC INPUTS

With input and VCO noises n(t), n,(t), the basic equa-  and equivalent mathematical models are shown in Figs.
tion is I1-4-1 and I1-4-2.

Owing to noise, the loop skips cycles at a certain rate,

6(:) = AKE(p) sin [6(¢) — 9(t)] + KFE(p) n(t) executing a nonstationary random walk between lock-in
P p points. The actual phase-error variances are thus non-
stationary, growing without bound as time goes on. When

+ Kvco ) (4-4) phase angles are reduced modulo 2r, however, the re-
p sulting steady-state phase error process is stationary.
INPUT
n(t)
INPUT " .
¢
81 E{TL L4 - 4 sin ()
A
e(r)
A +
_;_‘Lc.". ‘ KK, F(s)

e+ n,(t)

Fig. l-4-1. Exact mathematical equivalent of the phase-
locked loop. Sources of external, as well as
internal, noises are shown; VCO tuning
voltage ¢ is also indicated.

n(r)
189 + $(r) $(mod 2m + X+
o et A 80 { )
A
8(r)
Kr(s)
s .
|

Fig. lI-4-2. Equivalent exact mathematical model of phase-locked loop,
with explicit reduction of ¢ (mod 2x). The VCO has been replaced
by Kvoo/s (tuning bias and VCO noise omitted).
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CHAPTER 5
THE LINEARIZED ANALYSIS OF PHASE-LOCKED SYSTEMS

5-A. Behavior of a Linear Loop

When ¢(t) is very small, we can approximate sin ¢p~¢.
In such a case there is a linear equation relating the input
phase function 6(¢) to the loop estimate 4(t),

AKF(p)

Ae) = mﬁ@[o(t) + fgi)] (5-2)

omitting VCO noise. An equivalent circuit appears in
Fig. I1-5-1. Hence we can define a loop transfer function

_ AKF(s)
L) = s 2k 59

_ L(s)
F8) = 2R = L]

and L(s) has some fiducial bandwidth w, (see (2-37)).

There are two effects in 4(¢): doppler d(t) and modula-
tion y(t). As a result, there are three kinds of phase 2rrors
in the loop; the mean-square phase-crror 32 is of the form

$2 = u2(t) + 82 + o2 (rad?) (5-6)

where u(t) is transient (or doppler) distortion due to d(t),
82 is modulation distortion, and o* is phase noise:

R / :” |1 = L(jo) | Syyljo) do  (rad?)
(5-7)

2 — Nowl,

A2

(rad?).

o

Total transient distortion ¢2 is defined by the integral

éE = j - p? (t)dt (rad-sec)? (5-9)

n(?) n(?)
o+ A ¢+ A LOOP FILTER
J(i}_ —> KK FLs)

VCO EQUIVALENT

Kveo
8

+ +
B TUNING BIAS o
* +

VCO NOISE ()

Fig. 11-5.1. The linearized model of the phase-locked loop
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and the total phase-error X2 is defined as

S o=Ne + 8+t (rad?). (5-22)

Here A% is a Lagrange multiplier, in units of seconds,
which can be evaluated in terms of loop bandwidth.

5-B. Calculation of Loop Bandwidths
1. First-Order Loop

IfF(s) =1,
w, =W, = 4% (cps) (5-11)
2w,,
L(s) ST 2, (5-12)
2. Second-Order Loop, Passive Integrator
With a loop filter of the form (Fig. 11-5-2),
_ l + T2 s
F(s) = 1+7s
(5-13)
L (3) - 1 + T2 8
1+ (1 + >s + (r2/1)s?
where r is the loop parameter ratio,
= 2K (5-14)

T1

We shall assume rr, » 7, in the formulas that follow.
The loop fiducial bandwidth is

w, = r+1
L 21’2

(cps) - (5-18)

The loop has a damping coefficient { and natural fre-
quency B given by

rVo
(=1 (5-20)
=2
B=Tqwe (rad/sec) . (5-20)
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RI
O ~© I+7,s
R, ATy
. WHERE T, = R,C
T T, (R +R,) C
O~ - -0

Fig. i1-5-2. Passive-integrator loop filter
The maximum gain of the loop occurs at wmax

oms = — [(1 +2n)% — 17"

B [w]% (rad/sec)

r
(5-15)
-0 (asr— )
- B (as r —0).
The maximum value of L? of loop power gain is
2 1 r?
L= L) [ = gA T 2™ 4 F = 27 = 2
(5-16)

These effects are shown in Fig. II-5-3.

30 [ UNDERDAMPED 1.00P T——‘f OVERDAMPED LOOP ————
: i !
! l ( |
25 L20R w, WITH W) [ A o
o .
| .
20
| O
i L ‘
8 | \ N
‘ ! {
! Wmax WITH MWy 31 : |
{ max i
re "[wm“/p + /-§—I/Lz OR W, WITH ws!
: L L
o l Wmax WITH wy el - :_;
I mox L‘ |
) | 1 I L |
o v 2 3 4 8 & 7 & 9 10

l"KT:/T.

Fig. 1-5-3. Variation of maximum loop response L,
noise bandwidth W,, fiducial bandwidth w,, and fre-
quency at maximum loop response, for second-order
phase-locked loop, as a function of the parameter
= AK?‘Z /7
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3. Second-Order Loop, Perfect Integrator
With a loop filter of the form

1 + T §

TS

F(s) = (5-21)

the values of 1w, {, B, wux, and L* are the same as those
given in Section 5-B3 when r./7,—0 in such a way that
r in (5-14) remains fixed.

5-C. Optimization of Loop Parameters

The Weiner optimization of the total phase error
NZ =2 A?¢2 + §2 + ¢ is achieved by choosing

Lop(s) = ] — =" (5-23)

S(s) = AE [D(s)D(—s)] + Syy(s) + No/A%.

5-D. Effects of VCO Noise

The total phase noise in the linear lvop due to input,
as well as to VCO noise, is

o? = Noty + (r * 1) Nox + g(r) —-—Z" (rad®)
L

A? 4r 1y,
(5-27)

where N, is the white-noise-spectrum portion of
Kycon,(t), and Ny, is the coefficient of the 1/f noise com-
ponent of Kycon.(t):
K2 Snpn,(jo) = Nuy 4 22N/ j 0! (rad?/sec? ¢ps) .
(5-25)
The function g(r) is given in Fig, 1I-5-4, but to good
accuracy we can use g(r) = 1.55 for 3 < r < 10,

Optimum values of r and tw,, that minimize o¢° can be
found: o* is fairly insensitive to r, «nd any value in the
range 3 < r < 10 is acceptable; w, can be found as
the solution to

H 2
w} — 0.286 (—A;,V“)w,, ~ 31 /-A——Nl.‘"") - 0.

(] v

(5-29
>l UNoERDAMPED }--L—Lzaozéo LOOP | o]
| l L]
! I
\(0(’) |
2.0 \ T
| MINIMUM 1.549
S~ A
| rss.2 /r-;-l m
-
-0 l 4'7 sz % [ ]
rs ANy

2/M
Fig. )i-5-4. Factors governing relative contributions of
VCO noise to output phase noise
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CHAPTER 6
OPTIMIZED DESIGN OF TRACKING FILTERS (LINEAR ANALYSIS)

6-A. Tracking Loop Design

Tte fiter L, (s) that minimizes 2 when the doppler
polyromial d(t) has a Laplace transform D(s) given by

D=y By By Q0 g

(the degree of Q(s) is less than N) is given by the Wiener
formula

Lo (s) =1 — F-l)wsw - (%s) E lQ(s)Q(—s)]]+ :

(6-2)

6-B. Optimum Filter for Random Phase Offset

When d(t) = 6,, where 6, is a uniformly distributed
random phase cffset, we find

4 o

Lo 9) = s | — 5 (6:6)
BN

A=

WL =w, = W (CpS) . (6-7)

6-C. Optimum Filter for Frequancy and
Random Phase Offset

When d(t) = 6, + Q¢ in which 6, is uniformly dis-
tributed over (—w, »), it follows that

. 72,8" va .
3(23 + 302 ) + B
= (6-13)

¢+ (28 + 2B s+ g
307

Loy (8) =

where the loop natural frequency g is given by
0, \"
8= (X)- (6-12)

76

This L., (s) can be realized with F(s) = (1 + r,s)/rs by
setting

7, = _1_(9 +- "ZB:)‘/’: nr
B\ 3 Qu[3r(r — 2)]™

o 6. is random.
r=2+ %Qﬂ—"
v =S afarr - 9))
(6-14)

When 6, = 0 above (not random), the value of 8 given
in (6-12) remains unchanged, but the loop parameters
are somewhat different:

'
Ty — -B—'
K -— 2
™ A when 6, = 0.
r=2 (so¢=0.707)

1. Choice of Parameters
If we design the loop optimally to lock onto an Q,
appearing at the bandwidth edge (i.e, 0, = 2#b.), the
proper values of r and ¢{ for 8, random are
r = 2282

¢ = 0755 (6-19)

Hence the loop configuration is described by
T = 1.643/ wL

A wj

1 l.lSU

1+ 1.643le8
1+ (1643/w.)s + (L18/wh)e® *
(6-21)

(6-20)

Loy (8) =




The resulting transient error is

. w=1
—6q, [3r(r — 2)']™

52
“T (opt)

(-25)
= 0.537/w,; forr =2282and Q, = rw,,.

3. The Effects of Doppler Rates in Second-Order Loops

If there is a small doppler-rate term A,(rad/sec?) in d(t),
the loop with F(s) = (1 + r.s)/r,s has a steady-state error

_ An‘h

_ A(r+ 1)
=% =

4ruwi

(rad).
(6-28)

¢A.! (dep) rate)

When the imperfect-integrator loop filter F(s) = (1 + r.s)/
(1 + 7.s) is used, there is a stcady-state growth in phase
error

-
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A AIPH )/
¢M ¢lopp rate) —> AK = —4" u:.'_; ( Tl ) (rﬂd) .
(6-27)

These values are minimized, tor a fixed w} and =, by
choosing r = 1. Parameters must be chosen to maintain
less than about 30 deg error :a the loop, and the loop
must be periodically retuned. Representative types of
transient behavior are illustrated in Fig. 11-6-1.

4. Comments on the Choice of r in Second-Order
Tracking Loops

Apn r between 6 and 10 minimizes the effects of VCO
noise, whereas a value of 2.282 (or 2 if 8, = 0) minimizes
the total phase error in tracking a frequency offset, und,
further, r = 1 provides the best doppler-rate tracking
capability. However, loop performance is generally rather
insensitive to changing values of r.
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Fasobe v N

(

8 —

¢) FIRST-ORDER LOOP, PHASE STEP

D>

D>

g—e

(e) FIRST-ORDER LOOP, DOPPLER—-RATE INPUT

- | 2
B:8,+2,7 +3Aqt
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(b) IDEAL INTEGRATOR SECOND-ORDER
LOOP, FRCQUENCY STEP

LOPE = no

8o ZERO STEADY-STATE
ERROR

>

(d) PASSIVE INTEGRATOR SECOND~ORDER
LOOP, FREQUENCY STEP

8 —»

(d) PASSIVE INTEGRATOR SECOND-ORDER
LOOP, DOPPLER~RATE INPUT

. 1, 42
9-9°+QOI+EA°f

Q A
0 0
Poe~an tar '

/ 1 1 ] |

! —>

Fig. l1-6-1. Response of first- and second-order loops to various inputs

Mottt 5,
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CHAPTER 7
DESIGN OF SYNCHRONOUS DETECTOR AGC SYSTEMS

7-A. Synchronous Detector AGC Locp

With the AGC device in Fig. I1I-7-1, the AGC voltage
c(t) is given by

c(t) =

Clp) l:a(t) n (3‘%3—") Kuni(t) + 20 log cos é(z) — KR:]
(7-8)

where

a(t) = 20log A(t)  (db-volts?)

K.\GC
€)= Ri[T+ KeoeX (9]

_ K.ecKo

Kace = 55 loge

and Y(s) is the AGC loop filter. The other quantities are
given in the Appendix with units. To convert a to db-
watts, subtract 10 log R,, from g, with R;, in ohms. An
equivalent circuit is shown in Fig, II-7-2.

VARIABLE -GAIN

X, (1) A(#) /2 cos r+a(r
° (wo ) RECEIVER,

7-C. Calibration Equation

The steady-state mean value of AGC voltage c is re-
lated to the input signal strength a by

a = K. + 20log (ie\;"—) + (ﬁ) ¢ + (10 log e)o®

(db-volts?) (7-10)

Thus, given c, one can infer a value of a. A typical cali-
bration is given in Fig. II-7-3. The AGC voltage fluctu-
ates with noise; its steady-state variance is approximately

var [c] = [(20 log )2 (lf:w—c)

+ 2(10log eyt ] Cx(0).

wy,

(7-9)

where ¢* is the phase noise variance (5-7).

A
+
prase-Lockep | /2 0% (wo? +8(1)

LooP l

VOLTMETER @4

GAIN=1/4"(1)

c(t)

7.4,/5 cos (wo? +8(2))
+n;0t) = x(1)

AGC AMPLIFIER

GAIN = A,

J SYNCHRONOUS + 6
DETECTOR CP '

AGC LOOP FILTER
Y(s)

Fig. 11-7-1. A synchronous-detector AGC loop, using a phase-locked loop to provide a coherent reference.
(The actval phase-locked loop may be part of the gain-controlled receiver.)
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80

20t
o(t) ~Kp+ =25 k0, (1) ,
e; K, c(#)
+20 log cos ¢ 0 1oge + ¥Yis)

K j—

- METER

Fig. I-7-2. Equivalent diagram of an AGC loop. Linearized analysis follows
the nssumptions that A*{1) is exponentially related to ¢(f) and that
ali=a*(1). The input is alt) = 20 log Al#). Adjusted

CARRIER SIGNAL LEVEL, dbm

loop gain a*(f) = 20 log [A*(1) e;/K,].

-0 \
-~130| \
-140 A DEPARTURE FROM LINEAR_|
\\ CALIT;RATION, OWING
TO DEVIATION OF
\ DETECTOR PHASE
Y e At
ﬁ;&‘; gl N\ O RARTEC A
HIGH SIGNAL \f
-1€0}— LEVELS
=70
-7 -6 -5 -4 -3 -2 - 0
AGC VOLTAGE ¢, v
Fig. I1-7-3. Measured AGC curve showing departure

from linear behavior
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CHAPTER 8
THE DOUBLE-HETERODYNE PHASE-LOCKED RECEIVER

8-A. Basic Configuration of the Receiver This is the same form that governs the behavior of a

imple ] h t
A block diagram is shown in Fig. II-8-1; the input and simple foop when We s

output phases are related by AK = aKiKycoM F  (sec™)
6=0—0+ 1+ M) +6, (rad).

The term F is the dc gain of F(s), viz., F(0).

(8-8)

= aRiKoonht 112 { sin [0 — 8-+ (1 + M,)6, + 6.]

8-B. Effects of Band-Pass Limiting

+ nt)y , MKveo (*) (8-6) The parameter « above is the signal suppression factor
a p e derived by Davenport (Fig. 11-8-2). In addition to this,

FREQUENCY
FREE-RUNNING
OSCILLATOR _r. M“";”;,Ll'ER
AGC AGC AMPLIFIER [ G? T\ .
AND FILTER, K, r(s) T+ ¢
: SYNC
\@ AMPLITUDE [«8=90 deg {—@
DETECTOR
' ) 4
INPUT FIRST FIRST SECOND PREDETECTION SECOND BAND-PASS PHASE
MIXER [ IF 'g MIXER ™1 FILTER, #(s) =% ~ F [ LMITER [ ™]o€ETECTOR
I\@ FREQUENCY Q ! LooP
, MULTIPLIER | veo FILTER
X M 4——| Fls)
e
(D) %ot =12 A1) cos [ug 1 +8(1)] +ao(r) (@) 7 1=Ky {a sin [(wo-wmi - (1 + M) wpg) 14+ §-8
@v(r)~J'Ecos[w,,,r+5(r)] +(I+M|)9|+92]+n(l)}
() mnin = Kk {VZ cos [(wo-wm) r+e-6]+n,.(n} 2(1) = Flp) y (1
4 K Flp)
@ V(1) ~ VZ cos (wpp 1~ 8)) ®V|(f) ~ \/'z-cos[wz + vcop p y(f)]
() xt1=VZ 4 cos [(wo-wni-wpz) 746~ §+8)]+mn V3l 1)~ VZ sin(Mwpy 1 + M5, - 83)
@ ”l“)= % {»/?a cos [(wo- wm—w,,z) t+ 9-6 +0|] @ Zage (1) 2 ~eg + K {l cos [(wo- wyy — (I +M|)un)f + 0-3
+ g1} +(1+4,)8,+ 68, ] +0 (1}
~— (2) ¢t = K ¥ (p) 2agc (1)

Fig. I1-8-1. The double-heterodyne receiver, with equations for signals at each point
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207" —
T T 1A Pes
UPPER ASYMPTOTE*2.0 el
1.8f— -1 y
/
| / i
t6f - 4- - pt— / T
ACTUAL +— ¢ /
1.4 /
$ /A
\,‘ \- APPROXIMATE,
N ief - /1~ 0.7854+0.47685, -
/ 1+02384p,
10 >
A
osf— ]
-LOWER ASYMPTOTE=0.7654
08 | 1 | I | L
0.01 0.l (K] 100 1000

LIMITER INPUT SNR p,,

Fig. 1l-8-2. Davenport’s band-pass limiter zonal SNR
curve

the ratio A*/N, at the limiter input comes out of the limiter
as A‘/N,I', where I" is a factor shown in Fig. II-8-3.
With the loop filter F(s) = F+ (1 + r,5)/(1 + ,5), we
thus have (linear theoretic approximation):

—_ an[, s T F i 2
o = e I' = o (1 + o« ro> (rad?®)
(8-19)
KiKvcoM F+:
p= eV T @ (8-14)
T Qo
a
14+ 1+<;;—)r0 (cps)
W= g = w, T o cps
(8-15)
e\
(=1 = (a—) & (5-20)
No=2L (watts/cps) (2-65)
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. T o TT7 =
20 I F l l 'H ] f ’4_‘,4
I8 UPPER ASYMPTOTE » 2.0~ e
} I I %/'/ 1
ACTUAL 1~ | 4 L
18—+ -+ v —
5 )
T 14 EEn
‘E M| aperoximate,
§ / 0862+00690p, |
i /[ Tivosess | ||
) V/ C
d 1
1O L S
|4+
08 A . nE
: U
LOWER ASYMPTOTE = 0,862
06 IR
001 o1 1.0 100 1000

LIMITER INPUT SNR pyy

Fig. I1-8-3. The ratio of band-pass limiter output signal-
to-noise spectral density to that at input. The
reciprocal of this curve gives the limiter
performance factor I'

1 + 0.345px

T = 3862 T 06900 (8-18)
A:;' = Now,, (watts) (10-1)
_(AYV
m= (%) w02
=1 ( - > (10-3)
Wy
_ ( 0.7854p, + 04768p % \u 1o
*=\T+1024p, + 0.4768p ; (8-13)
.- __ W(KdecoM F)?'rg _ fg
v= 872wy T e+ 1 (10-5)
Y 4\
fo—'2—[1+(1+ U) ] (10_4)
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CHAPTER 9
BEHAVIOR OF PHASE-LOCKED LOOPS (NONLINEAR ANALYSIS)

9-A. The Spectral Equation where 1wy, . is the loop equivalent bandwidth,

s = = $00(0) / "Seelio) o (cps).

Ses(s) = - (9-27)
K*N F(s)F(—s)

—s*+7AK [sF(—s) — sF(s)] + (AKy)? F(s)F(—s)

(rad?/cps) (9-11)

The phase-noise spectrum can be approximated by

+

9-D. Behavior of First-Order Loop
For F(s) = 1, a better value of y than (9-19) 1s (see

Fig. 11.9-%)
7= 3‘02/2 (9-14) h .
sinh ¢® \"
1 _ e_qi! Y”, = ( 02 eoz ) (9'18)
Y=—=— (9-19)

for ¢ < 1. The phase-noise va-iance is thus a transcend-

ental equation in ¢*, whose resulis are given in Fig. 11-9-3,
when o* <1 (rad®). Then (9-11) can be integrated to

give o%; -0%/2 (o3 2\Ve — LIS. = Now,, . 9-25
y ce (sinh ¢?) oA yE (9-25)
2 — VoWi(eq) 2 %
7 A? y? (rad?) (9-28) At ¢* = 1, the value of N, w./A® is 0.357.
10
40 T
QUASI-LINEAR
[ APPROXIMATION
0.8
2|
30
\\ LINEAR SPECTRAL
APPROXIMATIOI
0.6
ACTUAL
~ o ~— _ / BEHAVIOR | |
a 2,1 |
o4 # e /
T,
1T
0.2 1o
LINEAR
APPROXIMATION
0
0 04 08 .2 1.6 20 o
2 ] 1.0 20 3.0 4.0
? 2
NoAVL/A ® NoK/ZA
Fig. 11-9-2, Variation of the parameter y as a function of
the Gaussian variance a?, for various forms of Res {1). Fig. 11-9-3. Comparison of linear, quasi-linear, and
Note that, for a® < 1, there is not a significant linear-spectral approximate methods with the
dependence on the form of Reslr). actual behavior of the first-order loop
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PHASE NOISE VARIANCE o2, rod?

Fig. 1-9-4. Comparison of linear and nonlinear theories for second-order, constant linear bandwidth loop, i.e.,

0.1

0.01

0.00!

/" WL(oq)/WLo

A

y

N A —— L

(eq)

\ NONLINEAR THEORY

LINEAR THEORY

N

10 L] 20
SIGNAL STRENGTH, db ABOVE Ag : ”O'Lo

the value of r is kept constant at r, = 2.

30
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LINEAR-SPECTRAL
\\ /" APPROXIMATION

AN

LINEAR APPROXIMATION —/>\\
(A} \

~C |

PHASE NOISE VARIANCE o2, rad?

0.01

0.001
] 5 10 15

20 23 30 3s

SIGNAL LEVEL, db ABOVE Ag = Now,

Fig. 11-9-5. Comparison of phase-noise variances by linear and linear-spectral approximations. The noise density
is fixed, and the signal level is varied. The value of r is taken as r, = 2 at a reference signal level of

Sen

A3 = 3N,/2r, = Now,,. Nols that the ultimate roll-off is 5db/decade, rather than 10db/decade,

as in Fig. 9-4. Note also that even the linear approximation produces some curvature of o near A].
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9-E. Calculation of Behavior of the
Second-Order Loop

With the usual passive-integrator filter second-order
loop,

Wieq) _ 1+ry
- Ya .
Y+ [1 + —2(7,7———-.. 7 ] 529

’ — \' Ya
b = [1 + 2_w_m'.] (9-33)

3 ry*

These, with (9-28) above, specify the loop behavior.

Figures 11-9-4, 11-9-5, and 11-9-6 indicate the true loop
behavior compared with that predicted by linear theory.

T /
00 //
d i
"'L/WLO\>/ "L(oq)/”Lg/
7// ]
0 A
aN g(eq)
¢
°'5 5 10 15 20 25 30 35

SIGNAL LEVEL, db ABOVE 43 = Agw,

Fig. 11-9-6. Variation in bandwidth and damping param-
eters as a function of signal strength. The value of r
at a reference signal level A2 = 3N,/2r, =
N,w., was taken as r, = 2.
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CHAPTER 10
DESIGNING A DOUBLE-HETERODYNE TRACKING LOOP

10-A. Definition of Receiver Threshold
Threshold is defined as a signal level A2 such that®

_ Ny(r, + 1)
T2

A2 = Nuw,, = 3 (volts?)  (10-1)

(assuming 7,r, » 7;). The loop is not acting linearly at
this signal level; nevertheless w,, is the bandwidth a
linear locp would have at A = A,.

10-B. Tracking Loop Performance of the
Double-Heterodyne Receiver

The ratio (A/A,)? is the receiver margin:
m = (A/A5)° . (10-2)

With measured parameters W,,,KiKyvcoMF, 7., and r,, the
value of r, can be calculated (when 10w,, < wy) as

ro = %[1 + (1 + %)v’]

w(KeKycoMF)? 72
U= -
87; Wy

(10-4)

TS
fo+1°

The only modifications to the linear theory in Chapter 8
that need concern us for ¢* < 1 are that A is replaced by
Ay, r by 1y, and w;, by Wi (eq). The resulting equations
that specify loop behavior are

by =m () (10-63)
Wy
2 v
o= 0.7854p, + 0.4768p3% (10-6b)
1+ 1.024p, + 0.4768p3
r= 1+ 0.345p, (10-6c)

= 0,862 + 0.690p,

aKiKvcoMFr} a
= Slelfrl o (2)r = (28 080

“Since No = kTR/2 (volts*/cps), the threshold signal power is
Py = A2/R = kTw./2 = kTb, (watts).

MARGIN m ABOVE THRESHOLD, abs

y=Q1-e")/0 (10-6f)
7= e“’z/af (10'6g)
1+ 1+ ai T
r o
w;, = o = w, T (cps) (10-6h)
1+
Wr(ea) = = 2( ’\/__ ) 1%
2|1+ —"—-’-’—]
L Yr
=w,,| 1+ (T} 7)1".] (cps) (10-6i)
0
L 147
_ r’A _ a l/’ _ l 14 r l:: )
=T =(2)e=(2) 5 o

L = 1—”—)3[1 + 2"—"”)] . (& )c (10-6K)

2 ry
- [Lﬂ] (rad?)

Ary? my 1+
(10-6m)
2w, o va 2w,n
= = — ‘ 10-6n
B=T7 («;) 1 (10-6n)
38 T
'/'1'2/11 .
3.8
ol'5 8.8 g
"] 0.1 =
oe P ad 00! :
B S e $ o
B~ [ s
A 0 3
3.2 s
?/ 480
3.0 4.8
1 10 100 1000
ro, abs

Fig. 1-10-1. Variation in margin producing ¢ = 1 as a
function of threshold design parameter,
P = ﬂuxdxvaFf:/n

a7
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10-D. The Signal Level Producing o = Hence the ¢* = 1 margin is about 5 db at r, = 2. (This
result is shown in Fig. 11-10-1.)
The signal level A% producing ¢* = 1, corresponds to

a margin m, approximately equal to
10-E. Choice of Receiver Parameters

m, =( r, I )2 [1 + <1 + A(ro + 1!)"‘]"’ Choosing values of N, wy,,Ki, Kvco, MF, and wy

2y,(ro + 1) I re specifies a typical receiver design. However, the only /
parameters required to plot performance are m, y,, pu, °
and perhaps r./r, (r./7, is not noeded of 7, g 7). Such
~ 3.13 (forr, = 2). (10-8)  plots are given in Figs. 11-10-2 and 11-10-3.
100 -
A
\\ \/4» NONLINEAR THEORY,
DN LIMITER COMPENSATION
NN 1
N LINEAR THEORY,
\\ LIMITER COMPENSATION
AN N
™~
™~
. W
N

™~
\.
LINEAR THEORY, NO NS
LIMITER COMPENSATION ~

RMS LOOP PHASE ERROR, deg
o

N
N
N
.
N
N
fo : 2
w‘°/1v~ £10°3
rz/'r. s 1073
'
] ] 10 18 20 1.1 30 38

MARGIN m, db

Fig. 11-10-2. Comparison of linear and nonlinear approximations to loop rms phase error, as & function
of loop margin
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ASYMPTOTE 24 cps
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APPENDIX

Nomenclature

Those symbols used throughout the text are listed here, along with assigned
names, proper units, and the equation number that either defines the quantity,
gives its first use, or else refers to its approximate point of first introduction.
Quantities labeled “abs” are dimensionless.

either mean value of a(t) below, or square
root of a* below.

coeflicients in expansion of p(é,, ¢.), (9-5).
variance of ®(¢), in rad?, (9-4).

input rms signal A(t) expressed in db-volts?,
(7-4).

that part of a(t) due to deterministic and non-
stationary changes in signal, in db-volts?,
(7-11).

tha* part of a(t) due to stationary random
signal fluctuations, in db, (7-11).

the Laplace transform of a.(t), (7-13).

adjusted receiver attenuation A*(t) expressed
in db-volts?, (7-4).

rms signal amplitude into loop, volts, (3-1).

rms signal amplitude into receiver at time ¢,
in volts, (7-1).

receiver attenuation factor at time ¢, abs, (7-1).
nonstationary part of A(t), in rms volts, (7-12).

stationary gain fluctuation part of A(t), abs,
(7-12).

receiver rms signal level producing ¢ =1
rad, volts, (10-7).

fiducial (one-sided) bandwidth of the linear
transfer function H(s), cps, (2-37).

equivalent noise (one-sided) bandwidth of
the linear transfer function H(s), cps, (2-27).

AGC control signal, volts, (7-3).
capacitance, farads.

AGC closed-loop transfer function, (7-8).

d(t)

d\(t)

D(s)

€q

E( )

f
f2
fm

fhz

F(s)

g(r)
G

Gu(f“’)
h

h(t)

doppler phase function on input signal, rad,
(8-11).

time-varying part of doppler phase function
on input signal, rad, (5-9).

doppler phase function in s-domain, D(s) =

L{d(t)], (3-12).

VCO tuning bias, volts, (3-5).

AGC gain-adjust bias, volts, (7-1).

statistical expectation operator (2-1).
frequency variable, cps.*

first IF frequency, cps, (8-1).*°

second IF frequency, cps, (8-1).°

first-mixer heterodyne frequency, M times
VCO output frequency, cps, (8-1).1°
second-mixer heterodyne frequency, from in-
ternal oscillator, cps, (8-1).*°

(finite) dc gain of loop filter, abs, (8-8).

linear loop-filter transfer function, (3-7).
Fourier transformation operator.
conductance of diode, or transconductance of
triode, mhos, (2-66).

VCO noise term coefficients, abs, (5-28),
conductance, mhos, Fig. 2-9.

single-sided spectral density of x(t), volts?/
cps, (2-26).

Planck’s constant, 6.625 X 10-3¢ joule-sec,
(2-53).

unit-impulse response of linear filter H, volts,
(2-14).

“May take on a negative value.
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H(s)
i(t)

k(r)

K,
K.
K AGC

KVOO

Krec

Lz
L(s)

M,

Sow no(t)

ny(t)

a filter operator, Section 2-B.

linear filter transfer function, .L[h(t)], (2-26).
current, amperes, (2-54).

V —1, the imaginary unit.

Boltzmann's constant, 1.38 X 10-%* joule/°K,
(2-53).

maximum normalized lock-on doppler rate,

abs, (3-43).

n(t)
N.(t)

N
N,

NOO

K, K,uKvco, equivalent simple-loop gain, volts'sec™?,

(3-8).

rms VCO signal output, volts, (3-2).
receiver AGC attenuation, db/volt, (7-3).
AGC-loop equivalent loop gain, abs, (7-6).
AGC amplifier gain, abs, (7-6).

phase detector gain, volts/rad, (8-2).

AGC detector gain, (volts peak out)/(volts
rms in), (7-3).

first IF gain, abs, (8-1).

second IF gain, abs, (8-1).

mixer gain (simple loop), volts™, (3-4).
adjusted receiver attenuation with no AGC,
db, (7-3).

VCO gain constant, rad/sec-volt, (3-5).

actual receiver attenuation with no AGC, db,
(7-3).

limiter rms output level, volts, (8-2).
inductance, henries, Fig. 2-9.

maximum value of | L(jw) |*, abs, (5-4).

linear loop phase-transfer function, (5-3).
Laplace transformation operator.

receiver margin above threshold, abs, (10-2).

VCO output frequency multiplication factor,
abs, (8-1).

internal oscillator frequency multiplication
ratio, (f,/f».)—1, abs, (8-4). It must be a ra-
tional number, and may be negative.

receiver input noise waveform, volts, Sec-
tion 8-A.

loop input noise waveform, volts, (4-1).

N,
Nox

N

p(A)
p(s)

q(s)
Qo
Q(s)

R,

Rﬂl (th tZ)

R:(7)

Ree(7)

su(f"’)

Seelfo)
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simple loop baseband noise waveform, volts,
(4-3).

equivalent VCO noise referred to VCO input,
volts, (5-24).

noise power out of linear filter, volts?, (2-23).

noise (two-sided) spectral density, volts®/cps,
(2-20).

receiver input noise (two-sided) spectral den-
sity of no(t), volts®/cps, Section 8-A.

noise (one-sided) spectral density, voltsz/cps,
(2-27).

VCO adjusted input white-noise density,
(rad/sec)*/cps, (5-25).

VCO adjusted input 1/f noise density,
(rad/sec)*/cps, (5-25).

Heaviside operator, d/dt, (3-6).
probability density on A, abs, (2-1).
denominator of F(s), (3-15).

input signal power, A2, volts?, (2-29).

power in y(t), volts?, (2-19).

numerator of F(s), (3-15).

resonance quality factor, w,L/R, abs, (2-57).
numerator polynomial of D(s), (6-1).

second-order loop-parameter ratio AKr2/r,,
abs, (5-14).

resistance, ohms, Fig. 2-9.

statistical cross-correlation between x(t,) and
y(t:), volts?, (2-4).

statistical autocorrelation of stationary proc-
ess x(t), volts?, (2-5).

time autocorrelation of the function x(t),
volts?, (2-6).
complex frequency variable, rad/sec.

output signal power of linear filter, volts?,
(2-33).

two-sided spectral density of stationary proc-
ess x(t); F[Res(r)], volts’/cps, (2-8).
two-sided spectral density of function x(t);
G [.(R,,(r)] , volts?/cps, (2-9).
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S(s)
§'(s)

t
tl, t2

iacq

tl req acq

T, Ty

T.

W (eq)

Wll

W,

x(t)
X(s)

y(t)
Y(s)

z(t)
Z(jw)

ay

¥(s)

spectral density of total phase-error, rad?/cps,
(5-23).

spectral density of total AGC error, (db-
volts®)*/cps, (7-13).

time, sec.

specific instants of time, sec.

first-order loop phase-acquisition time, sec,
(8-27)

second-order loop frequency-acquisition time,
sec, (3-34).

equivalent noise temperature of receiver, °K,
(2-53).

cathode temperature of diode or triode, °K,
(2-66).

receiver measured-parameterratio, abs,(10-4).
VCO output, volts, (3-2).

two-sided fiducial bandwidth of linear filter
H(s), cps, (2-37).

two-sided fiducial linear loop bandwidth of
phase transfer function L(s), cps, (5-3).
equivalent two-sided fiducial bandwidth of
loop output spectrum, cps,(9-29).

two-sided noise bandwidth of a linear filter
H(s), cps, (2-24).

two-sided noise bandwidth of a linear loop
whose phase transfer function is L(s), cps,
(5-4).

arbitrary time function.

Laplace transform of (t), L[x(t)].

time function.

AGC loop-filter response, (7-5).

time function.

»

complex impedance function, ohms.
signal voltage suppression factor, abs, (8-1).
value of a at threshold, (10-6).

second-order loop natural frequency
(AK/7)", rad/sec, (6-12).

sinusoidal-error spectral ratio function, abs,
(9-7).

¥(0).

Ytp

a2
vco

T1

T2

sinusoidal-error function total-power transfer
ratio, abs, (9-15).

modulation distortion, rad?, (5-6).

first-order loop “in-lock” constant, rad, (3-27).
rectangular unit-pulse function, volts, (2-13).
Dirac delta function, lim 8(t)ast— «,(2-13).
total transient distortion, rad?, (5-9).

loop tracking error, rad, (8-7).

linear loop damping factor, abs, (5-20).
nonlinear loop equivalent damping factor,
abs, (9-33).

Bussgang coefficient, abs, (9-3).

phase angle, rad.

6(0), initial value of loop phase offset, rad,
3-13),

input signal phase function, rad, (3-1).

loop estimate of 6(t), rad, (3-2).

Lagrange multiplier, sec?, (5-22).

d™(0 +), the nth doppler moment, rad/
sec”, (3-1F).

mean of a stationary random variable, volts,
(2-12).

mean of a nonstationary random variable,
volts, (2-10).

3.14169. ..

signal-to-noise ratio of y(t), abs, (2-35).
variance of stationary random variable x, (x
units)?, (2-12).

variance of nonstationary random process x(t)
at time ¢, (x units)?, (2-11).

variance of loop phase-noise, rad?, (5-7).
variance of loop phase-noise due to noise in
VCO, rad?, (5-26).

t, — t,, time difference, variable of R..(r), sec,
(2-4).

second-order loop denominator time constant
ot F(s), sec, (3-28).

second-order loop numerator time constant of
F(s), sec, (3-28).



¢(t) = ¢
s

&o

o

Wmax

ay
()]

Wh1

two-heterodyne loop detector error (same as
¢ for simple loop), rad, (5-8), (8-6).
steady-state loop detector phase error, rad,
(3-12).

initial value of loop detection phase error, rad,
(3-32)

stationary equivalent phase-error process,
rad, Section 4-B.

angular frequency variable, rad/sec.

VCO short-circuit output frequency, rad/sec,
(8-1).

frequency at which |L(jw)| is maximum for
second-order loops, rad/sec, (5-15).

first IF frequency, rad/sec, (8-1)."*

second IF frequency, rad/sec, (8-1)."*

first mixer heterodyne frequency, M times
VCO output frequency, rad/sec, (8-1)."

A,
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second mixer heterodyne frequency, from
internal oscillator, rad/sec, (8-1)."*

limiter performance factor, wip;/wyupy, abs,
(8-17).

initial value of doppler phase-rate, rad/sec?,
(3-13).

3? mean-square phase error, yad? (5-6).
32 total mean-square phase error, rad?, (5-22).
¢(t) modulation phase function, rad, (3-11).
Q = Q(t) &(t), loop frequency error, rad/sec, (3-20).
Q, initial value of loop frequency offset rad/sec,
(3-12).
Qmax  maximum value of © for which loop locks in
absence of noise, rad/sec, (3-23).
*May takc on a uegative value.
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