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PREFACE

To say that there have been many articles written over the past

few years dealing with phase-locked devices seems almost an under-
statement. Besides this work, I am aware of two books being written

on the subject, those of Viterbi and Van Trees, and there may be still

others. This monograph was prompted by a need at the Jet Propulsion

Laboratory for a practical handbook for the design, testing, evalua-

tion, and philosophy of phase-locked systems. Such a book should

possess several qualities: it should contain all the formulas needed for

the accurate design of a complicated receiver; it should provide a

unified notation with unambiguous definitions of receiver parameters;

it should tell how to pick these parameters, based on any specific job

required of a communications system; it should give special attention

to the general system design problems and procedures, with all the
details included; it should serve as a reference against which a receiver
in the field can be checked to see whether or not it is working prop-

erly, and thereby meet its proper specification; and, finally, it should

contain that philosophy which has evolved to ensure the successful
fabrication of the most sensitive, flexible, and stable receiver in the

world today. It has been my intention to fulfill these goals in the pages

you see here.

The approach I have followed in trying to assemble words and

formulas enough to succeed in my aim is that the presentation should
expose the reader to the reasoning by which the theory evolved and

to a few of the steps necessary for him to follow this evolution mathe-
matically, and should set forth its results in as concise a treatment as

precision could permit.

Thus, not only in intent, but also in approach, is the treatment in

the following pages different from that to be found elsewhere. The

two books mentioned above are theoretical treatments, rigorously

argued, and excellent reading for one desiring specific insight to the

purer aspects of communications. But the content of these works _i
necessarily ends before most of the detailed systems engineering tech-

,,., niques are evoked. For example, the band-pass-limiter loop is no-
where treated with the detail it is here. _

1966008034-012
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PREFACE (Cont'd)

While this is intended as a working book, by no means have I

presumed to consider the practical aspects of building a better VCO,

RF mixer, IF amplifier, etc. These are components that develop nat-

urally with the state of the communications art. What is given is /

• meant to provide the systems engineer with the tools he needs to effect

a successful analysis of his particular job.

Any exposition of a broad topic mathematically is apt to frustrate

the conscientious author almost beyond comprehension in the matter

of notation. He soon exhausts both Roman and Greek alphabets, and,

as the frustration becomes extreme, he begins to eye script, Russian,

Hebrew, and Germanic characters in the desperate hope that he can

use separate symbols for all the quantities to be defined, before all of

these, too, are used up. Suffice it to say that I have retained only the

Roman and Greek at some awkwardness, being forced away, in some

cases, from a common notation because of multiple demands on the

same letter. An attempt was made to resolve these conflicts by giving

the more important quantity precedence. I have also tried to keep

subscripts as simple as possible by keeping subscripted subscripts and

other such complexities to a minimum.

The subject is treated in two volumes, the first of which consists of

ten chapters dealing primarily with the detailed tracking aspects

of phase-locked devices. Topics involving modulation in various modes

are relegated to the second volume. Each of the volumes is further

divided into two portions: the first, a section setting forth theory and de-

sign optimization; and the latter, a summary of formulas and methods.

It is hoped that the reader will find in these pages as much insight into

the mysterious behavior of the phase-locked loop as the author sup-

poses he developed in writing them.

7

XII
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ABSTRACT
This is Volume I of a two-volume work on the theory, of phase-

locked receivers, with pertinent reference material on practical re-
ceiver design. Volume _ is primarily devoted to the performance of
carrier-tracking loops, including a rigorous treatment of narrow-band
systems having IF limiters. The bulk of the work is based on a theo-
retical linear model, but a nonlinear method is also presented to predict
behavior near the threshold. The emphasis throughout the work is
toward completeness, simplicity, and internal consistency of the ma-
terial assembled.

Part I of this Volume is an exposition of the theory, the resulting
equations, and the design philosophy that have enabled the phase-
lock concept to evolve into the basic principle underlying the most
sensitive receivers il, the world today. Part II is a condensed version of
Part I, intended as a quick reference to formulas, definitions, and
salient design considerations.

¢
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THE THEORY OF PHASE-LOCKEDLOOPS
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CHAPTERI

INTRODUCTIONAND HISTORYOF THE PHASE-LOCKEDLOOP

While the origins of automatic phase control date back n (t) : 21/zn (l)cos (_t + 0)
to the 1920's and 80's, the first serious application of the LOOP PHASEERROR

I

c°nceptbcganasah°riz°ntal'linesynehr°nizingdevicecNPUT =___0 _E_RO_

' for television in the late 40's. Shortly thereafter, Jaffee and PHASE
PROCESSRechtin showed how a phase-locked loop could be used as I

a tracking filter for a missile beacon, and how the loop a +( NONLINEARAMPLIFIER4- +
parameters could best be specified. The first analysis _1 sin( l

including the effects of noise appeared in a paper pub- 0 LOOP PHASE

lished by Jaffee and Rechtin in 1955. ESTIMATE ILOOP FILTER ]

Basically, a phase-locked loop is an electronic servo- [
mechanism that operates as a coherent detector by con-
tinuously correcting the frequency of its local oscillator s VCO INPUT

according to a measurement of the error between the
phase of the incoming signal and that of its local oscillator. Fig. 1-2. A mathematically equivalent model of the
The simplest form of loop is shown in Fig. 1-1. The precise simple phase-locked loop. Here there are two

relationship between the input and response functions is separate inputs, 0and nlti, whereas the two
are combined in the ac'ual input.a nonlinear integro-differential equation from which very

little information concerning loop behavior is analytically

available, in the general case at least. With a very few The case in which additive noise is present has been

nonrestrictive assumptions mathematically the configu- treated by a variety of approximate methods, The first
ration given in Fig. 1-1 can be replaced by that in Fig. 1-2 approach, by Jaffe and Rechtin, essentially replaced the

(we shall indicate precisely why this is so a little later), sinusoidal nonlinearity of the model of Fig. 1-2 by a linear
This model first appeared, without proof, in a paper by amplifier of gain A, a case applicable when the phase
Develet in 1956, but in the absence of noise it had been

error is very small. Margolis analyzed the nonlinear oper-
used by several authors, notably Gruen.

ation in the presence of noise by perturbation methods,
obtaining a series solution for the loop differential equa-

Viterbi found solutions for a number of loop filters and tion, and, using only the first few terms of the series, he
various input frequency functions in the no-noise case by determined approximate moments of the phase error.

analog simulation. Develet applied Booton's quasi-linearization technique to
replace the sinusoidal nonlinearity by a linear amplifier

ERRORSIGNAL whose gain is the expected gain of the device. More

INPUT SIGNAL recently, Van Trees obtained a Volterra series representa-
z'aA si, (_t +0) tion of the closed-loop response by a perturbation method

4-.;(,) --_ t _[ ---Loo--ff--'-1 similar to the method employed by Margolis, but with the
"7 FILTER, F(S) ) advantage of the simplified model he obtained more exten-

sive results. Fokker-Planck, or continuous random-walk,

L / techniques yield exact expressions for the statistics of the --RECOVERED VCO _ random phase error process. Unfortunately, expressions
PHASE in closed form are available only for the first-ordee loopPROCESS

z'/2 cos(oJr+ _)---a (i.e., when the filter is omitted). Such techniques were first
applied to this problem by Tikhonov, who was able to

Fig. 1-1. Basic configuration of a simple phase-locked determine the steady-state probability distribution of the

loop. Themixer output, filtered by F is), is used first-order loop phase-error and an approximate expression
to control the frequency of the voltage- for the distribution when the loop contains a one-stage

controlledoscillator(VCO). BC filter. Viterbi extended this work on the first-order

, l
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_ loop also to obtain the mean time to loss-oi-lock (giving narrow-band, sensitive, flexible receivers in the world.

the frequency of skipping cycles). Phase-locked loops are used as filters to "clean up" the

output of frequency multipliers. The phase-lock principle
In what follows, we shall review many of these analyses has been used in ranging devices and in radar systems

and add another, due to the author, wherein the spectral capable of tracking a planet (Venus) with range-jitter less

density of the phase process is approximated. This method, than 500 meters_ It has been used to synchronize telemetry

incidentally, is conceptually as simple as the linear approx- data, to derive bit and word synchronization.., and the
_ imation methods and yields results almost as exact as the list could go on at some length.

results gotten by Fokker-Planck techniques over the entire

useful range of the device. Because there is such a long list of jobs it can do so well,

it is only natural that the phase-locked loop has received
These analyses have not been merely of academic attention. Significant portions of the fruits of this attention

interest. They have paved the way for building the most are revealed in the ensuing chapters.
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CHAPTER2

FUNDAMENTALCONCEPTS

In this Chapter we shall define such concepts as The averaging operator E here, we note, is not the same
auto- and cross-correlation functions, spectral density, as the operator that averages over time. In fact, in the [
bandwidths, etc. This defining must be done carefully, first case above, the mean value depends on t, and in the
as it can lead to one of the prime sources of reader con- second, it does not.
fusion. We shall assume that th_' reader is familiar with

certain statistical properties of signals and noise, so that Generally, a process whose statistical behavior is inde-
the exposition here need not be a tutorial one, but merely pendent of the time originuas is eos(t+0)--is said to be
descriptive, a stationary process, while others not exhibiting this prop

erty are nonstationary.

2-A. Statistics Another point that can be made is that, for A cos t,

First, consider a single time function x(t). Ask yourself: averages over the entire set, or ensemble, of sample func-
Can x(t) be specified exactly at every value of t? If it is, tions are not the same as averaging with respect to time.

A process in which the time averages involving allx(t) is said to be deterministic. Otherwise, there is un-
functions of x(t) are the same as averages taken over thecertainty about the character of x(t). In spch cases, any

partic alar observed waveform x(t) is said to be a sample ensemble of sample functions is said to be ergodic. This is
[unction of a random process (others call x(t) a stochastic a behavior different fi'om stationarity, as witnessed by the

fact that the function A cos(t + 0) has its time-mean-squareprocess). There axe varying degrees of randomness one
can think of here. For example, x(t) = cc,s t is a well value equal to A2/2, whereas its ensemble mean-square
defined, deterministic process. However, x(t) = A cos t, in value is E(A2)/2. Erljodie processes are always t station-
which A can assume any arbitrary value (according to ary, but, as our example shows, the converse need not
some probability law) is a sample function from a random be true.
process, even though we can measure x(0) = A, and from
then on, x(t) is known exactly. The randomness here is If x(t)is a well-behaved sample function, the expression

evident, for ff we were presented with another sample 1 f_'

function from the same process, we would probably have a .q_#(r) = lim _/. x(t)x(t +,)dr (2.3)different A. r-,** r

defines the time-autocorrelation function of x(t). The
Another example that occurs frequently is the sample entire process has a statistical analog

function x(t) = cos(t + e), where 0 can assume any value
over [0,2,] with equal likelihood. Again, 0can be found for R,(tl,t,) = E Ix(t1) x(t2)] (2-4)
any particular observed x(t) very ,easily, and forever there-
after x(t) is known exactly. However, there is a great differ- in which averaging is performed with respect to the
enee in the types of processes represented by A cos t and statistical variables in x(t). When x(t) is from a stationary
¢os(t + e). If one were to ask "what is the mean value of process, the latter is a function of ta-- h, rather than t_and

ts separately, in which case we writex(t) at time t = t,?" ha the first case one would answer

"E( A) cos tt," where E(A ) represevts the expected value R,,(r) = E [x(t )x( t+ r)] . (2-5)of A with respect to its random elements:

f Any process x(_), stationary or not, satisfying this lastE(A) = A p(A)dA (2-1) particular equation is called u,,tde-aense ataflonary. Under
the further restriction that z(t) be ergodic, we have

whereas, in the second, one would answer "zero,"beealuse
for every value of ts, /l_r) = JR,,(,). (2-8)

l f," clebltio,ofem)didty,buttl_ fom_ _.of ,o maeemhere.
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The spectral density of a function x(t) is defined as the is the cross correlation function of the two processes; when
rl

Fourier transform of its time autocorrelation function, stationarity prevails, we set t== tl- r:

6',,(/,)= f D�´�._,(r)e-'w"dt (2-7) I%,(,)= E[x(t)y(t-r)]

= a,,(-,).
and the spectral density of a wide-sense stationary process
is defined as i'he Fourier transform S_(io,) of R,v0") is then called a

cross-spectral density.

S,,(,,) = / �°�R,,(r)e-'"dt. (2-8)
,]-ao-

2-B. Linear Filtering

When x(t) is a function from a stationary ergodic process, Consider a device, which we shall label H as depicted
these spectral densities are equal with probability one, in Fig. 2-1, having an input x(t), giving rise to an output

y(t). Suppose first that the input is a very sharp pulse
S,(io,) = S,,(/,_). (2-9) having unit weight; that is, an impulse function 8r(t):

We shall usually not make such distinctions in notation /-
in the future. For the most part, we deal with stationary I_ for 0 _< t _ T

ergodic processes whenever analysis requires a statistical _r(t) = l; (2-13)
treatment, for all other values of t.

Having found S,,(i¢), we may replace jo_by the complex As T approaches zero, ar(t) becomes infinite at the origin,
frequency variable s; the resulting function S,,(s) is the and the result is a Dirac delta function act). One must be
analytic continuation of S,,(j_o)to the entire complex plane, very careful in treating functions of this sort mathemati-
When S,, is known,/_, can be found by inverse trans, cally, because of the lack of uniform convergence. How-
formation. It is usual to insert o, = 9,,rf in S,, and treat

ever, for our applir,ations it has been shown that in all
spectra as functions of f. (Sometimes care must be taken practical calculations we may treat 8(t) as the limit of
in this step; e.g.. I_1_ (-s_)V'.) 8r(t) as r-*0.

The mean of x(t) (i.e., its expected behavior) is denoted

p(t) = E [x(t)] (2-10) |

a,(t) _ y(t)and its variance (i.e., the mean-square variation about H
_(t)), is denoted [

(t) = E{ ix(t) --/_(t)]'} Fig. 2-1. Filteringdevice

= - ,,,(t)
The response of the device H to 8(t) is called the unit-

For stationary processes, both o_ and _,are independent impulse response of the filter, denoted h(t). That is, h(t) is
of t, and, if P_,(oo) exists, the output (Fig. 2-2) of H at time t when an impulse was

applied at time t = 0. The Rlter is called realizable ff h(t)
/A_= K,,( oo) = 0 when t < 0 (i.e., no response before an input). The

filter is said to be linear ff supetlmsition holds:.: = - R..(oo) (2-12)

Equations (2-3) through (2-12) can be altered to yield y(t)=r:'=(t,)h(t-t,)dr,functions of average products of two different processes,
"_ say x(t) and y(t). Then, for example,

f Ü4P,.,(t.,t,) = E[x(t,)y(t,)] = j. x(t-t,)h(t,)dt,.
(9-14)

1 .
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The power 2appearing at the filter output can be found

x (t) _ (t) by inverse transformation

.L/"" iHiJ.)l s.(14, , i 49)'_ e, = a,,i0)= 2.j_®

2-C. Noise Bandwidth /

' h(t):y(t) /_ Suppose n(t) is a zero-mean, ergodic random process of

/l such a nature that n(t) and n(t+f) are completely un-
/_'___ t_ correlated for every T _ 0; that is, R..b- ) = 0 for every

_/ "- ¢ =f=O.Such a process is often called a white noise process.
It is often the character of such noises that

Fig. 2-2. Responseof a realizable filter to a
unit-impulse function R..(I') = No_(_). (2-20)

The spectral density of such a noise is thus uniform in
the frequency domain

Thi- law states that the output g at time t is the super-
pcJition of the input t, seconds ago, weighted by the
decay response of the filter after t, seconds. S..(/_) = No for all - oo < o, < oo. (2-21)

It should be pointed out that R.(0) indicates nit) has
When x(t) and h(t) have Fourier or Laplace transforms infinite power, while S..(jw) shows that over any finite

(call them X(s) and H(s)), then for linear filters, [tit) has a frequency range, the power is finite. The No above can be
transform Y(s) related to the others by thought of either as the weight of the correlation function

impulse, or else as the uniform height of the spectral
_'(s) = X(s_H(s). (2-15) density of the noise.

However, many random processes (notably noise) do Now consider what happens when a white noise n(t) is
not possess transforms, so one cannot perform a system put into a linear filter H(s): the output spectral density is
analysis based on X(s). Instead. one can compute statistics
such as the correlatio, function of the output, S.(J_,) = N,,IH(j_)[_ (2-22)

and the output noise power N from the filter isf ä	œ%fo0

Rnb,) = [ [h(t,)h(h) It:, (¢+t,-h)dt,dh
J-. J.

(role)
Whenever the integral in brackets converges, the output

and this expression can be transformed to yield the output noise power is brought down from an infinite value to a
power spectral density of the process: finite one by the action of the filter. The filter thus has the

effect of limiting the noise, in some sense, to a band of
S,,(jw) = H(jw)H(-jw)S,,(j,.) frequencies. Thus we define the e_ectiv.. _or equivalent)

noise bandwidth of H by

-- IH(t.)ps.(t.). (2-17) I f'"
In0")l'

This equation reveals one of the most important facts We = [H(jw)]'._ (2-24)
about lineL_"filters: the _Tpectml den_tfl of the output
proceu b merely the product of the input density times 'ActuallyR,,(0) isthemean-squarevoltageof theprocessy(t), m
the fi/ter's _s/anuw. By analytic continuation, the unitof imwerwe areqx.tking of here is volt/; ff s l-ohm re-

sistanceis stunned,thepowerIs inwattL However.|e¢ the mint
lain, we sludlbe dealingwithpowerratios,suchas d_-" _-.¢lah

Sw(s ) -" H(s)H i -s)S,=(S). (9"18) m the units are unimlm/llmt, as king as they are comfilRent.

6
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In these terms, the output noise power is
(o) $(/,_J)

N = No_v.IH0_)I,.. (2-_)

Viewed graphically (Fig. 2-3), _V. is the spectral width of _j-_

an ideal band-pass filter whose maximum response is the
same as that of H(s) and whose output power (in the
presence of white noise) is the same as that of H(s). _ f_

Some authors prefer to consider a single-sided behavior
of filters. They argue that negative frequencies are not (b) a(/,,,)
"really" observable, and hence that all the concepts involv- f-_
ing frequency should be defined accordingly, to involve
only positive frequency. This is not efficient mathemati-
cally, for one immediately rules out such powerful analysis
tools as the ordinary Fourier transform. Hence, these
authors are led to a double-sided mathematical analysis f
and a single-sided interpretation.

For example, the filter response i_i Fig. 2-4 has noise Fig. 2-5. Double- and single-s:ded spectra
bandwidth W = 2B, wherea, most engineers would agree
that the band of frequencies passed is only B wide.

The ,ingle.sided equivalent bandwidth is also given a
Working with a single-sided spectral system, as in Fig. 2-5,
one folds the negative frequency response onto the new symbol

positive. The result is thc single-sided spectrum, which 1 f®
we give a different notation: _Jo lH(/,_)[_d_ 1

B.= iH(t.)l, - _.w,, (_-27)

12oS-(,_) -_>oG,#(jw) = (2-28) and in this new notation, the noise power spectralo,<0 .
density is

stir) G,,(I_) = 0 . < 0.

IH(/w)i_o, The resulting noise output is the same as (9-2L;)but ap-

_ _ l _._f'- _,_ v pears written in single-sided parameters as
N = N+B,,IH(J.)IL..½w,,I.-- ° ½,,,,

Fig.2-3. Equivalentnoise bandwidth There is really no practical advantage to be gained from
a single-sided treatment once the engineer realizes that,
since physical filters have both positive and negative fre-
quency responses, it is not possible to measure only the
positive side or o,ll', the negative side of a spectrum by

$(/'_) using linear fllt_to the contrary, it is only possible to
measure the composite effects of both positive and nega-

l__a _ _ tive frequencies with a 61ter. On the other hand, eme can
certainly build a dex.ice that finds the autocondation

"_. J' function of x(t) and then takes its Fourier trandmm.
With such a device, negative frequency spectra are sepa-

Fig. 2-4. Double-sidedfrequencyresponse retely observable;however, the result is a mirror ;mage

7
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of the positive frequency spectrum and hence yields no 2-E. Fiducial Bandwidth
new information. We shall use both concepts more or
less interchangeably in this work, and notation will make The ratio W.IH(io)l 2m__/IH(i(Oo)l_ appearing in (2-35)
it clear which is meant in any particular case: S(io,) is a occurs very frequently in the theory of phase-locked loops,
double-sided spectral density, and W is a double-sided as we shall see in later chapters. It is therefore very

bandwidth, while G(i(o) refers to a single-sided specb'al convenient to give this quantity its own special notation

density, and B is a single-sided bandwidth. 1 f �è�w. = 2b.-- w"ln(f°)l" -- In(f°)l: /

2-D. Sinusoidal Filter Inputs IH(j_,o)[2 [H(joo)l2 (2-37)
Let a sinusoidal cartier having power P be inserted into This quantity is much like the noise bandwidth of H, and,

the filter H. We represent this input as the stationary in fact, reduces to W, when the maximum filter response
process occurs at _,0.It is the same form of definition as that given

x(t) : (2P)'/'cos(_ot+O) (2-29) to Wu, except that it is referenced to an arbitrary fre-
quency o,0rather than to the filter's maximum response.

where 0 is a uniformly distributed random variable, and For this reason, we shall refer to it as the fiducial band-
P is a constant (namely, the carrier power). Then we have w:Mth of H(s). This fiducial bandwidth is then the spectral

width of an ideal band-pass filter whose response at w"- o0
R_(r) = P cos _or is the same as that of H(s) and whose output power (with

(2-80) a white noise input) is the same as H(s).s.(i.) = .e +

The factor of ,r is present in S.. because we must satisfy 2-F. Band.Pass Mixers

1 f+** Now consider what happens whet. a sinusoidal signal
P_,(0) = P = 2= J_** S=(i°')d°'" (2-81) in white noise is heterodyned (a nonlinear operation) into

a different passband by a device such as that shown in
By our formula (2-17), the output spectrum is Fig. 2-6. Let the premixing filter H(s) have bandwidth

Wu = 2B,, as shown in the Figure. The filter input,
S.(f.) = .i' IH(to)l' [S(---o) + S(-+oo)] (9-39-) denoted by x(t), is

and the output signal power (call it S) is x(t) = (2P) v' sin (oot + Or)+ nt(t),

S = Rn(0) = P [H(io,o)l2. (2-88) where nx(t) is white, with spectral density No, and P is the
power in the sinusoid. The premixer filter output y(t) is

If white noise is also present at the input, so that then of the form
x(t) = (2/))v' cos (,_ot+ 0) + n(t), then the output con-

sists of a signal component with power S and noise with y(t) = (2P)V'lH(iwo)lsin (oot + 0_) + n,(t). (2-38)
power _:

Here 0_ = 0t + arg H(im), the new noise n_(t) is band-

R_(0) = S + N. (2-34) limited by H(s) to the filter width W,, and S.2, a (fo,)

The resulting output signal-to-noise-power ratio (SNR) is = N°IH(i_)I_"

S P [H(f,oo)p We shall assume now that y(t) is multiplied by a unit-
Pu = "_ -- NoWu In(to)l'.,,• (z5) power a sinusoid, 2v' sin (o,ht + 03). Thus, the mixer out-

pup is
If the carrier frequency is placed at the filter's maximum
gain point, the $NR L_maximized, and v(t) = P_IH(j.o)[ cos [(oo-o,h)t + (0_-0,)]

e - PIH(j.,o)Icos[(.o+.,,)t+ Co,+o,)]+ n<0.
P""' = Now. • (2e) (2-89)

Throughout this work, we shall consistently use the 'Thisassumptioncan be relaxedby includinga multipliergain K.in the outputv(t).
symbol p to denote signal-to-noise ratios; Pu then denotes _'his supposesan ideal multiplier.Physlcalrealizationof a multi-
the signal-to-noise ratio of the waveform Y(0. pliermay leavea carriertermandharmonics.

8
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4_ cos(%t+83)
/

_,,. c.o,+O,) ._l-,;<_o)l.,.C-o,*O,)_ r
+hi (f) I SAND- PASS +nzCf)_/<_ --I SAND-PASS

x(t) H($) y(#) • I __I____ -_1 v(t)- F(s) zCt) -

I

, ,_..... , ;/ // /If-".... \
/ ,p I •p\ /" / * I _-;1"<,_(,_,'I_

" ,//A %v.<,., \ + ';J
--PIH(-/'o)12 P z

I l-a.-.I I -m.l:o:11 I _ _ )
\1, I I i ;, k/\-i ren,b_ "1
\ % fo/ \ fo-f, fo fo+f,\/

Fig. 2-6. The simple produd-mixer

The bandpass filter F(s) following the mixer is centered with 0, = 82 - 03+ arg F(i_ol).The output noise spectral
at a frequency _a, which can either be o,o+ _ohor o,o- o,h. density is, for positive values of o,,
For convenience, say it is the latter, o,_= o,o- o,h,with

o>o_ ,oh. One normally chooses BF_ B,, since there is 1 12" l=nothing to be gained with Br > B,,. The new noise term S.,.,(t-)= _NoI'[#(=+=h)] IF(#=) .

n._(t) is also split into two bands, and unless the band- (2-42)
widths of F(s) and H(s) are chosen properly, overlapping
of the noise spectra will allow unnecessary noise in the

We have tacitly assumed that F(s) is chosen in accordance
output of F(s). It is easy to see from Fig. 2-7 that this

with (2-40) to suppress completely the image term that
can be avoided by choosing 5 would appear in S,,t,,l(#_) centered at =o+ o,h.

2Br <_ B_. + B, < 4fh

Br < 2fhor Wr <_4fh . (2-40) s. (/_)

When this is satisfied, the output z(t) from F(s) is -_ 8F _-ii._-
r---l,

z(t)=P'lH(i.o)l.lF(i.l)ico_.(.lt+o,)+n,(t) I I ii1, , #....

(,.ax) ,o-',,_o,_+,, -
Vl'his may need to be modified by a factor of 1/_ ff carrier is present Fig. 2-7. Choosing filter bandwidths to avoid the Imago
in the multiplieroutput, noise problem

9
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The equivalent noise bandwidth of the mixer is resulting output occurs at baseband (i.e., (ol = 0), and
the post-raultiplication filter F(s) is now a low-pass, rather

1/',o than a band-pass, device. No longer are there four sep-
T./,, IH[ i(°' ]I_'lF(i'°)l _

W,, = IH[i(_+_h)] F(i,o)Im,. _ W,. a, ate bands of frequencies in the multiplier output v(t)2 as shown in Fig. 2-6. Instead, the two low-frequency

(2-43) portions merge into one at zero frequency. Because of
this, there is an apparent decrease, by a factor of 2, in
the detector bandwidth, |or we note that a band of fre- [

, The output signal-to-noise ratio of the mixer is then quencies W, = 2Bu at carrier frequency (see Fig. 2-6)
given by is heterodyned to a width Whet = _/_Wn = B, at base-

band. At the same time, the merged noise spectra add
elH(i'°)12"IF(i°')I_ (2-44) together.O_= NoW.In [i(_+_h)]V(i_)IL, "

The sinusoidal signal components of the input are also
This attains its maximum value if H and F are built so heterodyned to zero fre_uency, and depending on the
that phase of the mixing frequency, these can add or subtract

in<i.)[_ _-in<i_o)i, in varying degrees. With ,ol : 0 in Eq. (2-41), we have

and z(t) = e '/_I H(io,o) IF(0) cos 0, + n,(t) (2-46)

where 04 = 02 - 03. Because of the merging of the het-
IF(_,)I_m.= IF(io,1)I_, erodyned bands, the spectrum of n,(t) becomes

in which
s_,,,(i,) -----_{In[i(,o-_)] 12+ In(io,+_)12}lF(i,o)l2

case

P Ilmi°')l_.,-I]'(i°')l_-'l _-Nol-[i(o,-oo]I_lF(io,)l= (m-47)
P:('") - NoW, _ n[/(---_+o,--_,)]F_) i _. j The latter approximation is valid when F(s) is much nar-

- P P (2-45) rower in bandwidth than is H(s). The output signal com-
NoWN _ NoWe ' ponent thus has a zero-frequency component with density

This is one of the important features of a simple S_(,lg)(i')=/'lH(/'°o) 12F2(0)E(cos20_)_(f)•
product mixer: the output signal-to-noise ratio is the (2-48)

same as that of a simple sinusoid passing through a linear The term E(cos204) above is referred to as the coherence
filter having the same bandwidth as the mixer. Thus, [actor. When 02 and 03 are completely unrelated, then 0_
even though mixing is a nonlinear operadon on the in- takes on any value between 0 and 2,r with equal likeli-
coming waveform, there is no degradation in the signal- hood, so the coherence factor in this ease is
to-noise ratio at the output. Also, there would be no
nonlinear distortion if a bandlimited signal were put into 1
the mixer, rather than a sine-wave. The heterodyne merely E(cos20_) = _. (2-49)
produces a translation in the frequency domain and may
be treated as a linear device otherwise. Care must be But when 0, and 03 are fully coherent, i.e., when
exercised to avoid image noise, and this can be done by 02 = 03with probability one, we have
choosing Br < 2fh (balanced mixer) or Br < fh (non-
balanced mixer). E(eos20,) = 1 . (2-50)

Thus, there is a 3-db advantage in signal-to.noise ratios

2-G. Amplitude and Phase Detectors to be gained by properly phased synchronous detection.
In a ay event, the output signal-to-noise ratio is

When the heterodyne frequency is exactly equal to

fo, the mixer becomes an amplitude detector or phase e lu(1_)12F2(0) E(cos'a,)
detector, depending upon the relative phases of the in- P__N----o-oW_IH[t(.-_o)]F[i(.)]
coming wave and the mixing signal. In either case, the (2-51)

IO
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where the detector bandwidth Wo is given by the same o <_

formula (2-48) as was the mixer bandwidth W_. By
choosing H and F to have maximum response at fo and R

=1
0, respectively, the maximum SNR is achieved a

in(t)

P E(cos_0,)._ Ppz(max)-- NoWo N--'--o-o_FE(c°szo') • v(t)_ Svv(/_)=zkrR ,.¢/,(j_)= 2,re

o o

The ]ast two equations resemble those of the mixer, Fig.2-8. Theveninand Norton equivalent circuitsof
viz., (2-44) and (2-45), except for the coherence factor, noisy resistors
Also, one should realize that the passband of frequencies
around the carrier is 2Wo wide, whereas the detector
bandwidth is only W,; hence, care must be taken not to it is a summation of the effects of the very short current
confuse the carrier passband with the detector bandwidth, pulses of many electrons as they travel between collisions,

each pulse individually having a wide spectrum. In this

For a synchronous phase detector, of course, Ozand 0:, case, the noise is a manifestation of the Brownian move-
are purposely made to differ by an angle of about _r/2, ment of the electrons in the resistor. In a resistor consist-
so very little signal power is present in the output. The ing of two opposed, close-spaced, hot, electron-emitting
signal-to-noise ratio of a phase detector output is thus cathodes, it is a result of the current pulses of randomly
not a very meaningful quantity, emitted electrons passing from one cathode to the other.

In a lossy dielectric, it is the result of random thermal
All of the expressions for signal-to-noise ratios above excitations of polarizable molecules, forming little fluc-

could have been more simply expressed in terms of tuating dipoles.
fiducial bandwidths. The treatment here, however, illus-

trates the desirability of locating the signal power at the For any particular sort of resistor, it should be possible
maximum response point of the filter, to trace out the source and calculate the magnitude of

the Johnson noise, and indeed, this approach has been
used.

2-H. Noise

Many sorts of electric signals are called noise. In the Any energy involved in thermal noise must clearly
early days of radio, noise was familiar as the crash and come from the surroundings in the form of heat transfer.
crackle of static. Later, there was the rasp of ignition Thus, derivations of the behavior are destined to involve
noise and the hiss of thermal and shot noises generated thermodynamical arguments.
in radio circuits themselves. In the end, many engineers

have come to regard any interfering signal of a more Consider a network containing many rt._istors. If we
or less unpredictable nature as noise, heat one hotter than the rest, energy tends to flow from

the hot resistor to the cooler resistors. Johnson noise is

The study of noise began with the consideration of such energy flowing as electric power. Even when the
certain physical sources of noise and the sorts of noise resistors are all at the same temperature, power will
that they generate. At first, only very simple properties flow back and forth between them through the connect-
of the noise signals so generated were understood and ing network, always so that, on the average, a resistor
described. As the art has progressed, a mathematical receives just as much power as it sends out.
theory of noise has grown up. This theory is a part of

the general field of statistics, and it deals with signals Statistical mechanics tells us how much energy must,
that have an unpredictable, statistical, random element, on the average, be associated with each degree of free-

dom of a system when the system is in thermal equilib-
1. Thermal Noise rium. In an electrical network of induetors, capacitors,

Perhaps the most fundamental noise is Johnson noise, and resistors, the number of degrees of freedom is the
_" the noise from a resistor. The engineering fact is that a number of inductors plus the number of capacitors.

resistor of resistance R acts as a noise generator with an (Induetors in series and capacitors in parallel are treated
equivalent circuit as in Fig. 2-8. In an ordinary resistor, as a single inductance or capacitance, because in setting

!!
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up a signal on the network, we are free to specify arbi- _ /
trary initial currents in all the inductors and arbitrary it t}_

voltages across all capacitors.) J / i c

R /. 0 v(t)

Classical statistical mechanics says that in a system }
(in our case, such an electrical network) that is in equilib-

rium (all at the same temperature T) there is, on the _ (i 2 ) :, r/L _ (v 2):, r/c /
average, an energy 1AkT joules associated with each

' degree of freedom: Fig. 2-9. Total Johnsonnoisecurrent- and voltage-
squaredrelations in sirnpie circuits

k ::- 1.380 Y, 10-23joule/degree Kelvin.

According to quantum mechanics, the energy is less Let E(i _) be the total mean-square noise current in
than this at high frequencies; Nyquist and others have the inductor. We can write
used the quantum-mechanical expression to get the cor-

rect result. However, even up to many thousands of 1 LE(F)= 1
megacycles, the classical expression is accurate. The only _ _ kT. (2.54)
change that quantum mechanics makes is to say that

On the left we have the average power in the inductance.the mean energy per degree of freedom is
On the right we have the average value this must have

1 hf = 1 kT according to statistical mechanics. Accordingly,+
2 ehi?_r- 1 _ """

kT
where h is Planck's constant E(i_) = -_. (2-55)

h = 6.625 × 10-_4joule seconds This must be true regardless of the value of R. If R is
low, we have a narrow-band circuit; ff R is high, we have

and f is the frequency. This reduces to the classical a broad-band circuit.
result when f<<kT/h. At 300°K

kT In a similar way, in the case of the capacitance C and
= 6.25 × 1012cps the conductance G in shunt, we easily find that

Hence the theory holds, to engineering accuracy, up to CE(v 2) = _ kT60 Go. Even at very high frequencies, one may define
an equivalent noise temperature T_ as (2-56)

E(v_) _ kTC"hf/k
TN = ehl/kr_l = T + ...

If the conductance is small, we have a narrow-band

In this way the energy per degree of freedom is always circuit with high low-frequency noise components. If
kTs/2 (anyway, T_ is usually inferred from noise power the conductance is large, we have less low-frequency
measurements rather than calculated from 7'). Johnson noise but more bandwidth.
noise thus often serves as a reference for the noisiness

of radio receivers and amplifiers, and the effective noise The relations described above of course apply to
temperature provides a useful way of specifying the capacitors and inductors not merely in the simple circuits
noise output of any source, we have considered, but to capacitors and inductors any-

where in all circuits, no matter how complicated they
Let us consider two simple circuits as particular exam- may be. In any case, we see that the noise voltage- or

ples, to see how things work out. In these circuits an current.squared is proportional to the temperature T.

inductance L is in series with a resistance R at tempera-

ture T, and a capacitance C is ha shunt with a conduct- Among the circuits to which (2-55) and (2.56) apply
ance G at a temperature T, as shown in Fig. 2-9. is the simple RLC series resonant circuit of Fig. 2-10.

t2
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¢ The value of the integral can be computed by substitut-

e( ing _o/_o= e_ to reduce it to a standard form in integral

tables; it is to

equal
i(

R L Q.d(=/_o) . (2-61)

o°)*. 1 + Q; 2. 2

v, ( t)( We thus have a white spectral density of the equivalent
noise voltage in the circuit: For every _o

I _aOL
ca0 = O 0 = _ , .

R = 2kTR. (2-62)
,,, co0 2

Iz(J"l'°"'['+°g _ ) ] This is commonly referred to as Nyquist's Law.

Fig.2-10. Tunedcircuitfor investigatingthe spectral
densityof v.(t) The spectral density of the equivalent shunt noise

current in a resistor can be computed similarly.

This circuit is characterized by a resonant frequency fo, What happens if we connect two resistances in series
a Qo, and an impedance Z(i,,), related by or two conductanees in parallel? In a given frequency

_ 1 range, the voltages or currents produced by differe',lt
_o (LC)_ resistances are uncorrelated; they have random phases,

and the mean square of the sum of the separate voltages
,_oL (2-57) or currents is equal to the sum of the mean-square volt-po = --if-

ages or currents of the separate resistors.

( 1) 2 E (o, _)"]IZ I s = R2 + o,L - _ = R2 1 + Qo '_o • As we have noted, for a complex impedance the series

We can regard this circuit as one excited by the Thevenin noise voltage generator at any frequency can be calcu-
equivalent Johnson noise voltage v,(t). If we make the laced from the resistive component R of the impedance,

and the shunt noise current generator from the conduc-Qo very high, so that the bandwidth of the circuit is very
narrow, we can find out something about the spectral tive component G of the admittance. We can calculate

density of this voltage. Clearly, we must have the voltage the thermal no.ise spectral density for any network,
and current spectra related by the equation simply by associating with each resistance a series volt-

age generator according to the relation above.

S,.,,.(f.,) (2.58)
Sii(jto) =iZ(jto) i _ • We may ask, what is the thermal noise power N

i The integral of S,(j,,) yields E(i2), given by (2-55). available from a resistor? We will draw off the maximum
': Thus power if we supply a matched load of the same resist-

i ante. Thus, the available noise power in the bandwidth

fi** ) W N can be obtained by calculating the noise power

kT _ 1 S_,_,(/_,)d_o • (2-59) flowing into a resistance R from a source with an internal
_ L 2wR" [,%0 5
j . 1 + Q=o\ _o ' resistance R and an open-circuit voltage spectral density

given by (2-62). This power is
At very high values of Qo, supposing S_,_,(j_) is fairly

I constant about _o, we can bring S_,_,(io,) outside the

integral: N = _ WN (watts). (2-63)
kT S_.,.(f,o.) Qod(o,/=o) This result is usually stated in the literature in single-

. ,q, / _, O,o_ = " sided notation:.. -c-= :)
(9.60) N = kTBs (watts). (R-64)
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The conclusion to be reached from this discussion is fluctuation in velocity is also responsible for what is
that when an amplifier is matched to its source, the commonly called the modified or reduced shot noise in
amplifier input noise power spectral density S..(/_) is space-charge-limited flow of electrons from a cathode.

S,,(/_) = No = kT R (volts_) A very simple theory of noise in space-charge-limited
diodes and triodes (at frequencies low enough so that

or transit time is not important) predicts that the noise can /

N+ = kTR for f/> 0 be represented by an impressed noise current i(t) in the• G,,(jo,) = 0 f < 0. (2-65) plate circuit with spectral density

S,,(io,) = (0.644)2kT, g. (2-66)
One last point concerning thermal noise: By considera-

tion of the entropy of a system in thermal equilibrium, Here Tc is the temperature of the cathode and g is the
it can be shown that individual electrons have a Gaussian conductance of the diode or the transconductance of the

• velocity distribution of zero mean in each direction. The triode. More elaborate theories lead to a factor that, in
composite effect is a linear combination of Gaussian various circumstances, may be a little greater or a little
processes, and hence the total noise voltages in a circuit less than 0.644.
are independent white Gaussian processes.

At moderate frequencies, noises in triodes and diodes
2. Shot Noise and Other Noises in Electron Tubes agree fairly well with (2-66), being perhaps a little higher.

At low audio frequencies and below, flicker noise appears.
Electricity is not a smooth fluid; it comes in little

This typically, but not always, has a 1/f spectrum (dis-
pellets, that is, electrons. The flow of electrons in a

cussed below). Flicker noise is very variable from tube
vacuum tube is accompanied by a noise of the same to tube. It has been ascribed to fluctuations in the work
nature as the patter of rain on a roof. Schottky, who function of the cathode surface.
first investigated this phenomenon, called it the
Schroteffekt (from shot); it is now usually called simply
shot noise. Like Johnson noise, shot noise has a fairly 3. Noise With a 1/J Spectrum
fiat spectrum. This is really what we should expect of
a random collection of very short pulses (each of which Johnson noise is in a sense inherently white noise, in
has a wide spectrum). However, at frequencies for which that the fundamental relation between the noise source
the transit time from cathode to plate is comparable to (the resistance or conductance) and the amount of noise

per unit bandwidth is independent of frequency. Shot
the period, the noise induced in the plate circuit is a
function of frequency, noise is, in the same sense, inherently white noise too,

although it can give rise to different spectra in circuits
with different transfer admittances or in tubes of different

Random processes other than the random emission of transit times. In a close-spaced diode formed of opposed
electrons can also give rise to noise. For example, noise cathodes at the same temperature and with no average
can be introduced into an initially noiseless electron current, shot noise and Johnson noise are two names for
flow if the electrons randomly hit or miss the wires of the same thing.
a grid, with a certain average intercept,_'l of current.
Such noise is called partition noise or interception noise.
If a small fraction only of the current is intercepted, Some important sorts of r,oise are generated only in
the added noise is roughly equal to shot noise for the nonequilibrium systems, for instance, in systems in which

dc current flows. Among these are contact noise, such as
intercepted current, is produced in a carbon microphone, and the noise pro-

duced in carbon resistors and in silicon and germanium
At high frequencies and long transit times the exeita- diodes and transistors. Both contact noise and transistor

tion of a circuit may depend on the velocity of the noise have a spectaum that varies nearly as 1/f over a
entering electrons, In such a case, the random variation large frequency range, though it may be constant at high
of velocity of emission from one electron to another, frequencies and at very low frequencies. One could
associated with the Maxwellian velocity distribution of obtain a 1/f spectrum down to any given frequency by a
electrons leaving a cathode, can give rise to noise. This proper mixture of pulses of various lengths.

14
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Transistor noise has been attributed to the trapping of noise in semiconductors is by no means thoroughly
of the holes or electrons (carriers) that form the current understood, and somewhat different mechanisms have
flow. The trapping and subsequent release of a charge been suggested.
carrier is equivalent to a rectangular pulse in the current.
The effect may be, strengthened by the charge of the Actually, the power spectrum cannot vary as 1/[ right
trapped carrier modulating the flow of other charges. By down to f = O, for this would imply an infinite noise
assuming a partJcular distribution of trapping times, or power. Measurements do show a 1/f spectrum down to
pulse lengths, a 1/f spectrum can be obtained. The matter frequencies as low as 10-' cps, however.
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CHAPTER3

FORMULATIONOF THE LOOP EQUATION AND BEHAVIOR
IN THE ABSENCEOF NOISE

In this Chapter, we shall develop the basic equation The term _(t) appearing here is the loop estimate of O(t), /
governing the phase-locked loop. Assuming that noise is and K1 is the rms output of the VCO.
absvnt, we shall develop tile acquisition and steady-
state character of the loop. This essentially follows the
work of Viterbi. The result of this multiplication, if perfect, would be

yl(t) = AK1 {sin [0(t) - 0(t)] + sin [2_ot + O(t) + _(t)]}.
3-A. The Basic Integro-Differential Equation

The essentials of a phase-locked device are a multi- (3-3) i
plier, a loop filter, and a voltage-controllea:oscillator
(VCO), as shown in Fig. 8-1. Most of the more elaborate However, generally speaking, the multiplication is ac-
systems using double-heterodyne techniques, IF limiters, complished by a device unable to respond to the double-
and acquisition aids reduce to this basic model, insofar frequency term. Also, the multiplying device has some
as analysis of the behavior is concerned. The input is gain K,, and hence the actual output of the "phase-
assumed to be a sinusoid of the form detector" is

x(t) = A(2) '/"sin [_ot + O(t)] (8-1) y(t) = AK,Km sin _(t) . (8-4)

in which the quantities A, wo,and 0(t) are The quantity q,(t) = 0(t) - _(t) is called the true phase

A = rms voltage amplitude of x(t) error.

_o = frequency of the VCO when its input is shorted
The multiplier output is there, fed into the loop filter

#(t) = the input signal phase process. F(s) and emerges as z(t), which, in turn, supplies the

input to the VCO.
Normally, O(t) consists of an information-bearing term

7(t) due to modulation and a term d(t) due either to
doppler shift in the received signal, to drift in the VCO In many actual implementations, the wavefonn y(t) is
center frequency, or to some bias voltage appearing at monitored (perhaps multiplied by a gain factor) and is
the VCO input. • .... called the "dynamic phase-error." Similarly, z(t) is often

referred to as the "static phase-error." These are rune-

The incoming signal is multiplied by the VCO output tions of sin 4, rather than the true phase error 4, and thus
tend to generate some confusion. Little reference to these

v(t) = Kt (2) v"cos [_,ot+ _'(t)]. (8-2) terms will appear in the material that follows.

"(' ) :A/'2 ""(_°'+O('_AA" K""" _"'I_ . LOO.f(.,F,Lre_"("

Fig. 3-1. The basic phase-lockedloop
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The VCO output frequency is, as its name implies, a and, in such a case, the loop error is related to the input
linear fu," "'mof its input, phase by a simple, linearized version of (3-9),

o,vco(t) = O,o+ Kvco z(t) + Kvco e . (3-5) O(t) - p + AKF(p) _b(t) . (3-10)
Consequently, the phase estimate 0(t) developed by the P

loop, being the integral of the VCO frequency, can be Generally, the input process can be separated into an
written, omitting e for the present, information-bearing part g,(t) and a phase-offset term d(t):

$(t)= Kvc_oz(t) (3-o)
P - P P d(t)

where p = d/dt is the Heaviside operator. Substitution P + AKF(p) _(t) + P + AKF(p) "
for z(t) yields (3-11)

_t) = AK:KmKvco F(p_.._)sin _(t) . (3-7) We see that there are two kinds of error present in the
P loop. That part of the error due to the modulation _,(t)

At this point it becomes convenient to define is commonly called ptmse distortion. The remaining error
is that produced, for e_ample, by a doppler shift on the

K = K,KmKvco (:3-8) incoming carrier. To be effective, the loop must be de-
signed to track whatever variations d(t) may have, so

as the open-loop gain_ of the loop, and to substitute the filter F(s) must be properly chosen. Error arising
0'= 0 - _. This produces the fundamental equation that from d(t) is called the tracking error, or transient
specifies the behavior of the loop in the absence of noise, distortion.

O(t) = #_(t)+ AK F(p...__)sin _(t) . (8-9) The steady-state tracking error can be determined by
P the final-value theorem of Laplace transform theory.

When F(p) is a constant, (8-9) is a first-order integro- Denoting D(s) = .E[d(t)], the Laplace transform of d(t),
differential equation. Hence the configuration of Fig. 3-1 this theorem reads
is called a l%st-order phase-locked loop. Similarly, when

s'D(s)
F(s) has n finite poles, the system equation is an (n + 1)th- _,, = lira . (3-12)
order one, and the device in Fig. 3-1 is said to be an ,-,o s + AKF(s)
(n + 1)th-order loop.

An example will elucidate the behavior:

3-a. Tracking When the Loop Error is Small First.order loop: Suppose F(s) = 1, and d(t) = 0,, +
The phase-locked loop would be of little use if it were fl,t + 1£,A,,t2, where ¢,,,is the initial phr_se offset, t% the

not possible to use it to reconstruct the input phase initial frequency offset, and A,,the doppler rate,
process with some degree of fidelity--that is, unless we

are able to "lock" the loop in the first place. The term D(s) = -_-_° + -_-..+f& Aos"-7 .
i "lock" is somewhat subjective at this point, but it may

generally be thought of as a condition in which _(t) never
varies outside an interval of size 2,r. The mean-phase This produces a steady-state tracking error given by
value is called the lock-in point; such lock-in points are
located 2,r radians apart. Whenever the phase error goes _,, = lim o,,s + fl. + Ads (8-18),-,o s + AK
through 2T radians, we say that the loop has skipped a

cycle. If the loop is capable of reducing the phase error The error is not bounded if A,,_,_0; but when Ao = 0,
to a small enough value, say [ _ [ < _-/6, we can approxb

to (3-14)mate _°, = _ .
sin 4__ 4,

In such a case, _,, can be made small by adjustment
,,_ 'Oftenthe open-loopgain K isdefinedto containthe dc gain of of the loop gain. Notv. that the loop will track any initialF(#). However,F(0) may not alwaysbe linite (e.g., if F(s) has

an integration),sowe do not includeit here.In caseswhereit is a phase offset 0,_with no steady-state error in the absence
finitevalue,we shallbe carefulto designF(0) = 1. of a frequency offset (i.e., to = 0).

17
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From this example, one can see that if d(t) = X.t"/nl To investigate the behavior for larger values of Q_, let
(the nth derivative of d(t) is X,, so Dis ) = M/s"*_), and us rewrite the loop equation, differ._.::iating (8-9),
if F(s) has I poles at the origin, as

_2o= _ + AK sin _ . (3-20)

F(s) = q(s) q(0) :f: 0, p(0) _ ¢J, (3-15)s'p(s)' We shall denote the frequency error by _(t) -- flit), and
plot l_ versus _ according to (3-20). The result is shown

then the steady-state tracking error would be in Fig. 8-2. Whenever fl is positive, h tends to increase, /

_.. = lim X"P(S)SZ'" �´�(3-18)and whenever fl is negative, _ tends ,o decrease. Note
•_o st+_p(s)+ AKq(s) that if I flo I< AK, there ace regular points at which

f_ = 0. Starting at _(0) = mr, where n is an even integer,

This is not finite if n > l + 1. When n = l + 1 the error the system tends to move along the sinusoidal trajectory
is fil_iteand has the value of Fig. 3-2 until it reaches the 0-axis at

X,, _(0) (3-17) #,,,,,= n,a-+ Sin-x(f2o/AK) . (3-21)¢" = q(0) '

When n < l, there is no steady-state error, _, "- 0, and 'Fhis is a stable point; fl cannot become negative because
perfect tracking ultimately results. 4, would then tend to decrease and :..turn the system to

the _-axis. If n were an odd integer, the system would go

The conclusion here is the following: In order for a through a larger part of the sinusoidal trajectory until it
phase-locked loop to track an nth-degree phase function, reached a stable point at
F(s) must have at least (n - 1) poles at the origin.

6,,=(n+l)-+Sin-:(_K). (3-23)

3-C. Acquiring Lock in the First-Order Loop If to > AK, however, the trajectory never crosses the
Let us concentrate now on the way a first-order loop h-a:_is,and phase lock is never aeb_cved. The maximum

(F(s) = 1) behaves in a tracking mode only. We consider pull-in range of a first-order loop is thus
the case in which _(t) (modulation) is absent from the
input phase function 0(t); only the d(t) term due to input fl==== AK . (3-23)
doppler, VCO drift, etc., is assumed to be present. From
the discussion in the previous Section, it is clear that the Whenever flo < AK, the loop ultimately tracks the in-
first-order :oo;'.can track a function of the type (constant coming function O(t) with no frequency error, but with a

constant lagging phase error, givel: by (3-21) and (8-22).freq, ency offset)
The loop never skips a cycle.

o(t)= Oo+ aot (8-18)
The multiples of 7 here are usually omitted, and the

whenever flo is small enough that 0(t) -- 0; that is, when steady-state phase error is written merely

ft

fto ., ft
n AK

)

Fig. 3-=. Ftrst-oNlerleop pull-in behavior
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that is, the steady-state output of the VCO is a replica of The steady.state phase error _,_ is tile same as for the
the input, lagging by 4)-: first-order loop,

v,(t) = 2"' cos [(0,o+ flo)t q- Oo- cb,,]. (k- = sin-' _--_) ,
(3-30)

(3-25) and, clearly, the loop never locks if iL > AK. Even for
values of ft. less than AK, pull-in possibly may not occur,

The pull-in time may also be determined from (3-20) as even though a stable point exists in the phase plane This
follows: we can write is a consequence of the fact that the trajectory that

takes q) to _b, is not the simple sinusoid of Section
dt 1

(3-2(}) 3-C. but is r'lfi:f'rthe solution to Eq. (,3-29).
= fro - AK sin

To simplify tl-,ings a bit, we can substialte for 4) the
This can be integrated to give the pull-in time to any value

partit.ular value of 0, but, since the denominator above dr _. dit dcb di: (3-31)
vanishes at the lock-in point, an infinite time is required _ = dt d-'-_" dt = fl d'-_
before f_ = 0. However, if we agree that the loop is in

lock whenever 14, - Ck_o_k[ < 8_o_k,the corresponding (note that _ is proportional to the slope of the phase-
time is finite. The maximum time required to achieve plane trajectory). This produces the trajectory equation

lock, designated the acquisition time, will be that ( dfl
time required for the system to pass from - _. + 8_o,k to = \r' _ + 1 -t AKr2 cos 4_/ fl + AK sin 4).
-Sin-' (fl,,/AK) to Sin-' (f_./AK) - 8_,,_k.When the value (3-32)
of 8,.,.k is small, the answer r rduces to approximately

A solution to (3-32) depends not only on f_,,, huz also

2 In _ (8-27) on _(0) and _0, the ;nitial conditions of the VCO. For
t,_q - AK cos 4'- _,o_k' certain values of rio, the loop will lock regardless cf what

values _(0) and q,,, take. See, for example, Fi_. ,3-3. In
_..nce, if a loop is designed so that ,k,, = 5 deg when rio this Figure, (k has been limited to the region ( -- _.,,)

is 200_ rad/sec, and 8,,ok is taken to be 5 deg, then the by folding all the trajectories onto this region. When fl
required pull-in time is approximately 1 msec. is positive, _k increases, and when fl is negative, 4' de-

creases. Hence, motion as a function of time is from left
The trajectory described in Fig. 3-2 is called a phase, to right in the upper half plane, and from right to left

p/ane diagram of the loop behavior. It is particularly in the lower. Starting a trajectory, say in the upper half
useful for analyzing the lock-in characteristics of low- plane, one follows it to the right until ,k = ,r. skipping
order loops, hack ,o _ = - ,r at the same value of fl encountered at

q, = 1,. This continues until the lock-in point is reached.

3-D. Ac,quiring Lock in the $e(ond-Order Loop For values of rio larger than those in Fig. 3-3, lock-in
With Passive Loop Filter may occur for some initial conditions of the VCO but

not for othcrs, as illustrated in Fig. 8-4. This latter Figure
The system of interest in this Section is one in which shows that there is a limit cycle tow:rd which all higher

the loop filter takes the form trajectories converge, as well as some of those from be
low. Even if fl(0) is negative, lock-in is not assured, since

F(s) = 1 + r=, (3-28) only those trajectories that ultimately pass through a
1 + r,s strip determined by the asymptotes of the saddle ;'mints

tan converge to the lock-in point.
The discussion in S.,_etion3-B indicates that a loop with

this filter tan follow a phase function of the type By integrating (3-32), Viterb, has derived a necessary
d(t) = e. + fl,_ (i.e., a constant frequency offset), but condition on llo: If lock ,, occurs for all initial conditions

that no higher-order terms may be considered. The equa- of the VCO, then t_o is bounded by

AK + (a.az)
tion governingthe behavior, from (3-9), is I t'lol< 2 _ .a, = + A/O,cos¢)d+ sin (3-29)
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,, 0

-,r -,/_ 0 ,_/_ ,r

Fig. 3-3. Lock-in behavior of a second-order loop with imperfect integrator, F(s) = (1-l-_-_s)/(1 "l-_-ls), for _o/AK

= 0.4 and AKI._/1.1 = 2. The upper bound of Eq. (3-33) is _/AK <_ 0.693.
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Fig. 3-4. Lock-in behavior of a second-order loop with imperfect integrator, F(s) = (1 +_-2s)/(1 +_-:s), for flJAK

= 0.9 and AK_2:/_': = 2. The upper bound of Eq. (3-33) is _dAK_0.693. Note that lock-in
occurs only when the trajectory happens to pass through the "slot." Otherwise,

the traiectory enters the periodic frequency lag region shown.

%.-k
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Experimental evidence seems to indicate that this is a In the first-order loop, the acquisition time with the
fairly sharp bound; that is, for fz,,very close to the bound foregoing value of e becomes

above, lock always ultimately occurs, although as the ( 2 ) ( 2 )bound is approached, longer and longer times are re- t_q = _ In _ . (3-40)
quired to pass through the region where the limit cycle
would occur should 120reach the bound.

3-F. Locking the Second-Order Loop with
Acquisition time for this loop is difficult to compute, Perfect Integrator /

, but as an approximation, Viterbi has computed the time When _-_>>r.,, the system whose loop filter is given by
required for frequency lock (i.e., that time required be- (8-28) behaves much the same as the one with
fore no more cycles are skipped); when r_ is large, it is

1 + r,_.s

1 {12,,r_ 2 F(s)- , (3-41)
ttre, _,.q_ -- \ AK ; sec. (3-34) r,sT.. except that the latter is able to track any constant {re-

The additional time to acquire phase lock is probably queney offset with zero steady-state error. However,
about the same as ta_, of the first-order loop, given in there is a steady-state error when a doppler-rate A,, is
(3-27). present:

,,. __/_,Ao\

3-E. Tuning the VCO and just as there was a limit on 12oin Section 8-D for

In the first four Sections of this Chapter, we have lock to occur I:or all initial conditions of the VCO in the
neglected the effect of the VCO tuning voltage e shown passive-filter loop, there is a limit on Ao in the perfect-
in Fig. 3-1. Including it in the VCO equation (3-5), we integrator loop.
can write

Clearly, from (3-42), lock cannot occur at all if
o,vco(t) = o,o+ Kvcoe + Kvco z(t). (3-35) A0 > AK/r_. Figure 8-5 is a typical phase-plane diagram

of the way such a loop behaves with a doppler-rate
The effect of e is that it determines the VCO frequency input. Almost all trajectories with 12(0)< 0 eventually
when z(t) is absent. The loop phase estimate is likewise lead to the lock-in point, while most of those with
changed to 12(0) > 0 diverge upward, never reaching lock. The Fig-

ure is drawn with the largest value of Ao (determined
O(t) = (o_o+ Kvcoe)t + Kve.___...£oz(t). (3-36) experimentally) such that all trajectories with 12(0) < 0P

ultimately terminate at the lock-in point, while most of
The basic integro-differential equation governing the the trajectories with fl(0) > 0 fail to lock. This value of
loop is almost the same as (3-9), except for a term Kvcoet Ao is a function of the parameter AKr_/rt = r;
subtracted from 0(0. The result can be written

_(t) - Kvcoe = 12(t) + AKF(p)sin 4,(t). (3-37) Ao = k(r)/\A_--_-)
(3-43)

Figure 3-6 illustrates the way k(r) varies as a function
The conclusion is now evident: All the answers we have of r.
obtained about lock-in, tracking, etc., are the same as

before, except that we replace _ by # - Kvcoe. Alterna- When the VCO is being swept as in Section 3-E to
tively, we can redefine tooas O_op= oJo+ Kvcoe. lock onto a constant frequency offset _,,, the rate by

which e is changed should not produce a A,, exceeding
For example, "he lock-in points now occur vt (3-43), and, as Fig. 8-5 shows for positive values of Ao,

(12o-Kvcoe'_ the sweep should begin with a negative frequency errorsin -1
_-_ j. (3-38) (a positive frequency error if A. is negative). That is,X

I del  (-Zl)By choosing e properly, the steady-state error can be Kveo _- < k(r) . (8-44)

made zero. This value of e is dearly In the passive-integrator loop, (3-¢3) and (a-44) hold

12o (a-39) approximately for short periods of time (see Section
e = Kvc-'_' 6-C8).
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-,r -,r/2 o Ir/2 ,r

V_

Fig.3-5. Phase-planetrajectoryof a second-orderloop with perfect integrator to a doppler-rate
input Ao for AK TI/T_ "" 2, and Ao -- AK/2_,
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1.0

O.8 J J, /J

N 0.6 /

'_ 0.4 ACTUAL-_ f

o._ "'_" "_'_
X-APPROXIMATE AO/_2 I_= 0.177 In • + 0.387

o., o., o., o_ ,.o 2.o ,.o _o,o_
• =A_-,_/,,

Fig. 3-6. Normalized maximum dappler rote, k(r) = Ao ,I/AK, for which
lock is guaranteed in the absence of noise, as function of the

loop parameter r -- AK _/_._
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CHAPTER 4

BEHAVIOR OF PHASE-LOCKED LOOPS WITH STOCHASTIC INPUTS

The consideration given to phase-locked devices in loop-noise referred to the VCO input. The noise n(t)x

the preceding Chapter excluded both the possibility that appearing in (4-2) is
the incoming phase process 0(t) was a random, informa-

tion-bearing process and the possibility that the input n(t) = n,(t) 2 '/'cos [o,ot + _(t)]. (4-3)
wave was a noisy one. We now wish to include these
cases for consideration. Some comments are in order

concerning the effect of noise on the pull-in and tracking Except in special cases, the spectral density Snn(i,,) of
behavior under such conditions. A small amount of n(t) is not merely a hetcrodyned version of ni(t), because

phase jitter due to noise or 0(t) will not affect the phe.sc- of the correlation between ni(t) and the phase estimate
plane trajectories significantly; it will result only in a _(t).
small amount of hash being superimposed on the tra-

jectories. Such a small amount of jitter on the trajector- As we indicated in Section 3-E, the effect of e on the

ies will thus not appreciably change the number of cycles loop is that it changes the no-error VCO frequency from

required to achieve lock. On the other hand, if the input o,0 to Q,op= _,° + Kvcoe. We can thus merely redefine ,_,,
noise is significant, the disturbance of the trajectory may to include this offset and proceed with
easily be such that a drastically different number of
cycles will be required before lock is achieved. The

number of cycles required to achieve lock depends on _(t) = AKF(p._____._)sin4,(t) + KF(p)n(t) + Kvc--------L°nv(t)19 p p
the particular noise waveform observed at the iqput

and is random. If there is a great amount of phase jitter, AKF(p) sin [0(t) _(t)]the response of the loop may be so erratic that lock never - -
seems to occur. There are, as yet, no analytic results on P
the pull-in time when stochastic inputs are observed.

+ KF(p)n(t) + Kvc_.._..__on,,(t). (4-4)
P P

4-A. Development of a Mathematical Model

and a Basic Loop Equation This last equation gives us the basis of an exact

We start as we did in Chapter 3, but now the input mathematical model of the phase-locked loop. As shown
consists of a sinusoidal signal with power P = A: im- in Fig. 4-1, there are three inputs to this model of the
mersedin a noise n_(t): loop: the first, 6(t), enters, is differenced with _(t), then

x(t) = A 2 '_sin [oJot+ (t(t)] + n_(t). (4-1) passes through a nonlinear, zero-memory amplifier whose
characteristic is [/out = A sin xt,. The input system noise

The density of nt(t), denoted Sn_(jo,), will be arbitrary n(t), added to the output of the sine-amplifier, becomes
for a moment, although v, e shall restrict it later, the input to a filter with transfer function KF(s)/s, whose

output is then _(t); in this way, _(t) satisfies (4-4).

Following the same procedure as in Chapter 3, we

derive the basic integro-differential equation, similar to Solution of (4-4) is really made no easier by the model

(3-9): in Fig. 4-1; however, we are not generally interested in
the solution to (4-4) for a specific sample function n(t)

#(t) = AK F(P)sin _(t) -_ KF(p)n(t) + Kvco[e + n,,(t)], anyway. What we are interested in is some measure of
' p p p the loop's average performance, such as rms phase error,

(4-2) mean rate of cycles skipped, etc. From the Figure, how-
_. ever, one is led to some natural approximations that aid

Again, _(t) = O(t) - _(t), K = KtK=Kveo, e is a tuning in loop analysis, and these are developed in the ensuing
'_ bias applied to the VCO, and the term nv(t) is the internal chapters.

_ IR9
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INPUT
n(t)

O(t) _( _ (t )
= A.i.()- I

^ /Olt)
b

e+nvlt)

Fig. 4-1. Exactmathematical equivalent of the phase-locked
loop. Sourcesof external, as well as internal, noises
are shown;VC_ tuning volta.qe• is also indicated.

4-B. Discussion of Mathematical Models _aitevariance, which, if reduced modulo 2_r,wou]d result

As a first approximation, the output pha_e-iitter of a _aa rao.-!om process with the same probability" density as
phase-locked loop can be obtained by replacing the ,k(t) And so long as our sole interest lies in 6(mod 2_r),

and not i_ t:': ;,t :;avior of 6, we may assume that 4, is at
sinusoidal nonlinearity of our mathematical model (Fig. work in the loop, and that stationarity prevails. In fact,
4-1) by a linear or polynomial approximation. However,
the steady-state-error probability density p(_) is a periodic the linear and polynomial approximations are direct
function because the loop is sensitive only to errors attempts at calculating the behavior of q,.
modulo 2,r; consequently, the steady-state phase variance
in every phase-locked loop is infinite. This is borne out

4-C. Spectrum of the Loop Noise
by the fact that, in actuality, the loop skips cycles at a
certain mean rate, executing a random, nonstationary The noise we deal with in our analysis is not that
motion between lock-in points, much like a discrete ran- occurring at the input, but

dora walk. The linear and polynomial approximations n(t) = n,(t)2 '/"cos [,o,,t + _(t)] (4-5)mentioned above do not exhibit this periodic lock-in

behavior, and hence they not only give no information in which _(t) is derived, in part, from ni(t). The non-
concerning loss of lock, but even come up with a finite- independence of _ and n_ means that S..(i,o) is not gen-

variance, stationary phase-process" a case that never erally the convolution of S._._(i_o) with the spectrum of
actually occurs, as we have said. 2 '/' cos (o,,,t + _). However, it has been reasoned that

whenever ni(t) has a much greater bandwidth than _(t),
But while the steady-state phase process itself does and whenever S._.i(i_ ) is symmetric 7 about =o, then the

not possess a finite variance, it does when phase angles
are reduced modulo 2w. On this basis, Tikhonov and convolution formula is approximately correct. This gives
Viterbi were able to provide exact results for the first- 1 1
order system. S..(/o,) = _ S.,., [/(=-o,o)] + _ S.,., [/(o,+=o)].

(4-6)
Considering the exact equivalent model, there is cer-

tainly no loss in generality by the explicit inclusion of That is, the loop noise has the same spectral shape as n,(t)
the "rood 2_" nonlinear function in the loop as in Fig. does, except that it is heterodyned down to baseband. The

4-2. However, there are several differences one can inject spectral shape of ni(t) usually comes from allowing white
into the mathematical results: Although the steady-state noise with density No = kT/2 to be passed through a
b-process is nonstationary, the _(mod 2_)-process usually

/s stationary (assuming O(t) is stationary); there then 'This condition is stronger than it needs to be. See Davenport and
exists an equivalent stationary process (call it 4,(0 ) with Root,p. 162.
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predetection filter H(s), whose bzndwidth is, say, W.. In the zone about zero frequency, the region of interest,
That is, n_(t) has a spectrum of th, form these two halve; add:

S.,.,(io,) = NolH(i,o)I: (4-7)

and, in this case, the loop noise n(t) has as its spectral S..(0) = N,,IH(i_,,)I". (4-9)

. density

1 No{inl.i(,__,_o)-ii_ + [n[i(_+_0)] [=}' (Again we note the change in bandwidth by a factor ofS..(ico) = _ one-half due to heterodyning hi(t) to zero frequency, as

(4-8) in 2-6.)

n_ t)

_- j_.__._ _ .. _._ Asin( , ._

gFls)
$

Fig. 4-2. Equivalent exact mathematical medal of phase-lacked
leap, with explicit reduction af _ (mad 2_}. The VCO has been

replaced by Kvco/s (tuning bias and VCO noise entitled).
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CHAPTER5

THE LINEARIZEDANALYSIS OF PHASE-LOCKEDSYSTEMS

Most of the important behavior of a phase-locked de- As with any linear filter, L(s) has some effective noise
vice can be predicted by replacing the loop phase- bandwidth WL, which can be found by using (2-24),
detector by an ideal phase-differeneer. The distinction t

' between the two is, of course, that there is a sinusoidal l f �nonlinear characteristic for the phase detector, whereas Wt, = 2BL = 2"_j_® L(/oJ) [2 d_ (5-4) i

the ideal phase-differencer is a linear error-detecting L2
device. To justify this linearized analysis, one must as-

sume that the loop error is very small, which usually where we use L z to denote [ L(/,o)I_,,,-
means that a high signal-to-noise ratio prevails, and that
modulation on the carrier is not excessive. The latter of It is important to remember that WL is the bandwidth

these restrictions can be removed by subcarrier modula- of a transfer function at baseband _nd it is not the same

tlon. Foi a discussion of such techniques, see Volume II as the width of the carrier passband produced by the
loop. As we saw in Section 2-F, the carrier passband has

of this work. width 2WL.

5-A. Behavior of a Linear Loop A slight rearrangement of (5-2) relates the phase error
to the input processes:

If the level of n(t) is sufficiently low, and if the loop

is designed properly, the phase error 4,(t) should be verysmall. In such a case, the approximation _(t) = [1 - L(p)] O(t) - L(p) (5-5)

sin _ = 4', (5-1) (omitting for the present the VCO noise term n¢(t), to
be considered later). The first term of (5-5) is an error
due to the incoming phase function, and, hence, it repre-

when inserted into (4-4), yields a linear equation relating sents distortion due to filtering. There are usually two
the loop input a,d output effects comprising 8(t); one is the "doppler" phase shift

d(t), and the other is the information process _,(t). The

AKF(p) [0(t)+ -_], (5-2) distinction between d(t) and _(t)is that d(t)is a non-_(t)-p T'A--'k'ff(p) stationary, more or less deterministic phase variation,
whereas if(t) is a stationary, zero-mean random process.

omitting VCO noise. The last term in (5-5) is phase error due to the presence
of noise at the input of the loop. The mean-squaw phase
error, which we shall denote by _, is thus composed of

The output phase is thus the result of a linear filter three terms:
acting upon the input phase process O(t) immersed in a

normalized version of the loop noise, with the normalizing _2 = t2(t) + 8' + o". (5-6)
factor in this case being equal to the rms signal ampli-

tude A. An equivalent circuit of the linearized loop The first term represents the transient distortion due to
appears in Fig. 5-1. The overall loop transfer-function d(t), the second is modulation distortion, and the third
(call it L(s)) is related to the loop-filter F(s) by the rein- is the mean-square phase-noise. The latter two, being
tions stationary, can be computed by using (9-19):

L(s) - AKF(s) ls + A (s) 8'= 11 - LO.) l" (/.)a.d'_

(5-7)

F(s) =. sL(s) .... uz = NoW,L' _ N.B,L'
AK[I - L(s)]" A' i'
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• "A'-- i LOOP FILTER

A +._) KIKmF(s)!
2,

h

"_ 0

VCO EQUIVALENT __._Kvco 91_ TUNINGBIAS 0
4- 4-$

VCO NOISE nv(f)

Fig.5-1. The linoarized model of the phase-locked loop

The expression for o-"is a very interesting one; it states It is convenient to include in d(t) the initial phase offset
that the mean-square phase-noise is precisely equal to 0,,. There is usually a complete lack of knowledge about
the noise-to-signal power ratio in the loop effective noise 0,,,so it is assumed to be a uniformly distributed random
bandwidth times the squared maximum loop response, variable over (-7, r), thus with variance ,r'-/8. The re-
This must not be given the wrong interpretation. It mainder of d(t) (call it dJt)) is a time-varying phase
should be realized that N. is the noise density at carrier function (usually due to doppler shift) whose form is

1 frequency, that A2 = P is the incoming signal power, fairly well known. By Parseval's theorem, the total tran-
: also at carrier frequency, and yet Wt, is the equivalent sient distortion can be computed in the frequency domain

noise bandwidth at baseband, computed by (_1)! There- by using the relation

fore o-2 is not the noise-to-signal power ratio in the pass- 1 [ �'band about the carrier frequency, which has width 2WL, -- _-j_,, Ix - L0=)I=E [ ID0=)l=]d.,.

as discussed earlier. (5-10)E

Equation (5-8) can also be written in terms of fidueial Note the resemblance this bears to 82 in (5-7). The term
bandwidth wL (or b,)as D(s) is the Laplace transform of d(t). Equation (5-10)

results when one substitutes E [D(s)D(-s)] for SW(s)

Now,. N. b,, in (5-7).
¢P= A= - A= , (5-8)

We shall have occasion to investigate these quantities
and our previous statement can be amended to read: the more fully in Section 5-C, to determine the best loop
mear,-square phase-noise is precisely equal to the noise- configuration.
to-signal ratio in the fiducial loop bandwidth.

5-B. Calculation of Loop Bandwidth
The total transient distortion is defined by the equation

x.., The loop bandwidth formula (5-4) is rather easy to

f:=_.= _,=(t)dt (5-9) apply to the loops with simple filters. For future refer-' ence, we shall tabulate a few of these.
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1. First.Order Loop The correspondii:g value of L 2 is given by the equation

The first-order loop is one with no loop filter, F(s) = 1. r2
Hence (5-4) gives Lz_

( )°( 4 ( *:y2 1 + _+2r l-r° + r-t -2(r+ 1)
AK _1

1 = (5-11)wl, = WL = "_ AK or bl, B,, = "T"
r 2

This relation enables one to express the loop transfer _2(l+2r)V' + r_ -2r-2 " (5-16) /
' function as

This last function (Fig. 5-3) is monotone decreasing in

L(s) - 2W_, (5-12) r, approaching unity as r--, o_, and becoming infinite ass + 2W,. " r_0.

2. Seeond-Order Loop, Passive Integrator Then, from (5-4). the equivalent loop noise bandwidth
can be computed,

The second-order loop in most widespread use is one

in which the loop filter takes the form (see Fig. 5.2) (r + 1)
WL = 2r-, (1 + r..,/rr,) L"1 + _:_

F(s) - l + ,_s (r + l)[r z-2r-2+2(1 +2@']
(5-17)1 + _ 2r_r2 '

L(s) = 1 + (_2 + 1/AK)s + (r_/AK)s _ (5.13)

(again we have normalized F(0) = 1, as agreed to in the latter approximation being valid when rrt >)r2. The
Chapter 3). In the usual case, F(s) is designed with fiducial bandwidth (2-87) is a somewhat simpler quantity:
rt >) r_, to make F(s) appear to have a pole at the origin.

r + 1 r + 1 (5-18)\ wL= 9,.,(1+ ,'dr,O
It is convenient to define a quantity r as the following

ratio:

AKr'_ (5'-14) s.o.2_U,BE_pE0 L00P-_--_-0vEfi_uPEb t.o_;----,----_r=_. : ! : I1"1

The value of ,_ producing maximum loop response, I ,
, / ]L: = IL(/_) {m,, can be found by differentiation; it is 2.0 _ , --_

_'m,,=-- 1-- l+--+2r --1 ,.s , i - 1
rz rl ; ; ; I

I WITH Wg • I L

1 ,.o _ w,WITH-L'*
--- [(1 + 9r)v'- 1]". (5-15)

O.S
tcnle_ WITH I,t.,I

P

RI 0 I 2 _ 4 S S 1' • 9 I0

F(a) : I+ rl''_Z

IqI. 5-3. Vadallan of maximum loop response L2, noise
WHERE r2 : RIC bandwidth WL, flduclal bandwidth wL, and frequency

r, : (R,+_2) c at maximum loop r_.Jponse,for sQcond-orderphase-
o_ _ locked loop, as a functionof the parameter

Fill. 5-2. Passiveintegrator loop filter r : AKr==/r_
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The loop transfer function is then easily expressed in not only does the loop operate in the most ]:near manner,
fiducial bandwidth: but also O(t3is most faithfully reproduced by 0(t). As can

be seen from (5-6), the mean-square phase error is not

1 + _ r + 1 _ s independent of time; to minimize 2z thus would require
\ 2wL / a time-varying loop filter.r. (s) _- (5-19)

1 + \ 2wL /s + \ 2WnrV,] Rather than derive an optimum time-varying filter,
Jaffee and Rechtin modified the criterion somewhat, bas-

From (5-18), one may compute the system damping be- ing their optimization on minimizing a somewhat differ-
havior. For r < 4, the roots of the system are under- ent quantity. They define'the total phase error, denoted

damped, with damping factor ¢ and loop natural by 2_,as

frequency B given by _ _ = X2c _ + S2 + oa (5-22)

f_
1 (1 4 r..,/rr_) r '_ ._ in which X-_is a Lagrange multiplier, a design parameter

¢ = "2" _ related to the bandwidth of the 1ooI_.

= ( AK " = (5-20) Minimizationof bychoiceoftheloop,ransferfunc-
\ r_ / r._ tion L(s) specifies both AK and F(s). But the question

now is, "How does one choose L(s) to minmize _.?"
For r = 4, critical damping (_ = 1) occurs, and for r > 4, Jaffe and Rechtin recognized that x',_ + 8z could be
L(s) has two real negative poles, computed by replacing S¢¢(s) in (5-7)by x_E[D(s) D( - s) ]

+ S¢¢ (s). This led them to the conclusion that 2_. is
3. Second-Order Loop, Perfect Integrator minimized whenever L(s) is chosen in accordance with

the Weiner optimization technique, which yields the
Whenever an operational amplifier is permissible in

the loop, the loop filter takes the form Yavits-Jaekson formula
N,'/,/A

F(s) = 1 + r___.__2s (5-9_1) L,,p,(s) = 1 [S(s)']=
•,s

We have kept the notatiov here the same as that in the S(s) = x'-'E [D(s) D(- s)] + S¢_ (s) + No/A'
previous exa:--ple for later conve,ieuce. This loop filter

gives the same response as that given in (5-18), (5-19), Some explanation of the bracket terminology here is in
and (5-20) when the r.../rrt term is dropped. This indi- order. The bracket [ ]" refers to a type of "square-root"

eates that whenever rrt )) r._,the loop with an imperf_t factoring of the enclosed function, retaining in [ ]' the
integrating filter (5-13) performs very much the same as left.hand.plane poles and zeros of the enclosed function
that with the perfect integrating filter (5-21). only; singularities on the imaginary axis are equally

divided between [ ]" and its mirror in,age [ ]'.

5-C. Optimization of Loop Parameters The mechanics involved in (5-23) will be made clearer

According to the preceding sections, we can perform in the next Chapter.
a linear analysis to determine the behavior of a phase-
locked device whenever there is sut_eient iur_ifieation to
warrant the assumption that sin 4, = 4,. But whenever 5-D. The Effeds of VCO Noise
noise is present, there will be arbitrarily large phase One of the limiting factors governing the design of g"
deviations if only we wait long enough; because of this, narrow-lured phase-locked devices is the phase noise
the assumption above cannot be strictly valid at every "n:ierent in the output of the VCO. This valse appears as
instant of time. a random fluet,..:a_on,drift etc., and is sometimes called

"oscillator i'astability." More often, however, the term
"" It is natural, then, to design the loop transfer function "instability" is used in context to mean "frequency tnsta-

to minimize the effect of noise, that is, to choose K and hility," whereas the quantity of concern to us here is the

F(s) to minimize the mean-square '_:p error. In this v'ay, phase stability of an oscillator.

:Ill
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To represent this effect, let n,,(t) be that noise voltage 3.o---_ _ _ .... r T 7 ! r----_
,P--- UNDERDAMPEI: -----_p----_ --- OVEROAMPEDLOOP ----_,,

applied at the input of a perfect noiseless VCO which Loop --| r ]
produces the same noise as appears in the actual VCO -=--- ! Ioutput. That is, n,.(t) is the VCO phase noise referred to ,...... _ - _---_ .....

-g(,) I ! / I
its input. The closed-loop behavior of the loop is now , | _ | ,
somewhat modified by the addition of this internal noise: n.o "- L _ f_ : - -

I i ,- MINIMUM 1.549

8(0= L(p) 0Ct)+ + 1 - Lip) 1<vco.,,(t). _ .._2 '
L P i , i F,+__..L

(5-24) ,.o J _ ', 1
o _ 2 3 4 ._ • r n 9 io

There are many factors that contribute to the spectral ,.AK,_//'1

makeup of n,(t). The two most significant terms that Fig.5-4. Factorsgoverningrelative contributionsof VCO
appear are (1) thermal (Johnson) noise generated in the noise to output phase noise
resistances of the o_cfllator, and (2) noise with a 1/f
spectrum, as diso,ssed in Section 2-G, associated with
the transistors, varactor diodes, carbon iesistors, etc. I. Optimlzatlonofwz. and r

Thus, the spectrum of Kvcon,,(t) can be approximated by Depending on the values of No�A:, No,., and N,., there
are optimum choices for both wt, and r.

K_cos.,._(i_)= N0.+ 2._,,,/i _ I. (5-z5)
As shown in Fig. 5-4, there is quite a broad range

As we have previously indicated, the 1/f law cannot of r for which g(r) is fairly constant and ":snearly equal
extend all the way down to zero frequency, so the equa- to its minimal value of 1.5491 at r = 5.'22. A quite useful
tion above is really valid only when I o,! is greater than range to use this approximation for g(r) is from about
some small value t. But if [1 - L(s)]/s has a zero at the r = 3 to r = 10. Outside this region, g(r) is increasing,
origin, this c need not be known, drastically when r < 3, and more slowly for r > 10.

The amount of phase error in the closed-loop output On the other hand, the coefl_oent of No,., i.e., (r -P 1)/4r,
due to VCO noise can then be found by integration: is a monotone decreasing for all r, asymptotically up-

l f+*° I1 - L (ion)I_ proaching the v,.lue 0.25 as r becomes infinite. If r is
= = _ [No, + 2_rNa_./o_]cl_. larger than 5 or 6, for most practical purposes, we canOr_,,CO

"Jo ,o- use the value 0.25 with little fear of producing any sig-
nificant error.(5-_)

As a conclusion, then, we see that the best value of rAt this point, for our treatment, we shall assume that

L(s) is the u,,sswe-inte _rator loop of (5-13), and again to minimize a"-lies to the righ," of 5.0-3,and probably is
less than 10, if any N,, is present at all. In fact, the dif-

set r = AKr_/. _. The tc.al phase error due to input and terence between a_,,,, and a" foz any r between 5 and 10
VCO nois,., in ' "_s of the fiducial bandwidth wL, is is almost inconsequential insofar as a°"is concerned. The

o._ Now_ ( r + 1 _ N,_, + N,, same statement cannot be made for r < 4 (an under-
A' + \_]-'_-_ g(r) w---_"(5-9.7) damped loop). Thus we may take a value of r = 7 as

being practically as good as rapt, regardless of the other
The function g(r) is shown in Fig. 5-4; it is given by parameters. (This reasoning alleviates the necessity for

differentiating o2 to find the exact value of rovt.)

I (,+x), ,

4)]-,.L; for r > 4

- 2 - _'-'= 4-_j We can now use this value of r, differentiate _2 with
respect to WL, equate to zero, and solve for wL to find its

for r = 4 best value. Straightforwardly, wL is the solution to the
g(r) = ,_g" equationI

-tan-'_ ,or r<4. w_ jwL-2g(r) =0.

(5-28) (5-29)
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2. An Example and the optimum loop transfer function is

Just to see how a typical design should be made, let us 1 + 0.154s

assume that we have parameters Lopt (s) = 1 + 0.154s + (3.38 × 10-3) s= "

A__ These parameters also produce a phase deviation of
= 6 X 10'

- No o = 2.5 X 10-" rad = 1.48 deg rms.

No,, = 0 (5-80) 3. Conclusion

N,. = 0.08. It should perhaps he mentioned at this point that de-
sig,as of this type are most valid for oscillator "clean-up"

The first of these is typical for an Earth-spacecraft link loops and spacecraft carrier tracking loops, or in situa-

at a distance of about 3 miilion kilometers, while the tions where the tone to be tracked is spectrally a very

values of N.,, and N1,. have been approximated from pure one. Design of the ground receiver tracking loop

plots of a'-' under very high signal-to-noise conditions, would probably not use this analysis, since its loop must
track phase deviations imposed on the carrier by the

The optimum value of wL is then noise in the spacecraft system. There are other factors
that must be considered, such as frequency acquisition

,_ (_) interval, lock-in time, and doppler tracking rate. What
wL = 3.098 has been presented here should be taken merely as a

guide as to what the ideal bandwidth is from a minimal

= 26 cps noise point of view.
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CHAPTER6

OPTIMIZEDDESIGN OF TRACKING FILTERS(LINEARANALYSIS)

A phase-locked _eceiver can be used either to track The loop bandwidth, specified by (5-11), is
the calrier component of the incoming signal, or to

,\A,r
demodulate its information, or both simultaneously. In WL = W_,--9 '"_" (6-5) /

• space communications, the amount of doppler shift on -(3N,,)
the carrier is always measured, because it provides infor-
maticn about the spacecraft velocity. A carrier tracking We can now eliminate the Lagrange multiplier to give
loop is thus always present in a space-communications the optimum loop design equations in terms of the loop
receiver, bandwidth, viz.,

2WL
L,,p,(S) --

6-A. tracid.qg Loop Design s + 2WL

Suppose it is our ,,Jm to provide the best filter to track F(s) -- 1 (6-6)

a given doppler-phase polynomial d(t) of degree N-l, K = 2Wt./A.
assuming for the present that modulation of the carrier
is absent. The form of D(s) is then

6-C. Optimum Filter for Frequency and

D(s) = sO"+ _f_"+ . _ Q(S)sN (6-1) Random Phase Offset
The next example of interest is. tt_e optimization of a

in which the degree of Q(s) is less than N. The filter loop with frequency offset fl0:
specified by (5-23) is

sz, d(t) = Oo+ fzot (6-7)

L.p,(S)=l [ {A.,AZ_E 1+(-1)'Vs _-v+ k-_-f,,] [f(s)p(-s)] where again 0,, is random. With N = 2 and f(s) =
(6-2) Oo + fZoSinserted into (6-2), the denominator of Lopt(s)

becomes

In the examples worked by Jaffee and Rechtin, the O,,

[ X2A2,r2 x2A'T£ ]term was always set equal to zero. This corresponds to s4 s-"+ _ =the case in which the loop is initially tracking with no 3No No
phase error.

/A_X_'_r" 2,_.A_o\ '_ ,kAf&

+ ) "+vy-r" (6-8)
6-B. Optimum Filter for Random Phase Offset

The loop natural frequency is thu:
The simplest example of loop optimization occurs for

d(t) = 0o, a uniformly distributed random phase-offset. AAf&
To fir.d Lop_(s),wt. iosert N = 1 into (6-2): The denomi- /j2 - (6-9)
nator in (6-2) is

I A"A_ _r23 + _-xA in which case the optimum filtering function is given by- s"-+ N--'7-_-J = s + (3No)-------_. (6-3)

s 2# -_+'3f_,/ +f12
Thus, the optimum filter is given by Lopt(s) = °" v,

Lovt(s) - xA_r 1 (6-4) s' + 2B2 . "_oJ s +AA_" "

(3N°) _' + _.J (6-10)
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Comparing (6-10) with (5-13) and (5-14), we recognize But rather than synthesize this F,,,,(s), which would re-
the optimum parameters: quire an operational amplifier, it is quite usual to substi-

tute a passive filter whose characteristic is approximately

= l I"2 + rF/3:l '_= _r the same as (6-12); for example, whenever rr, >)r..,"/'2

,-iST_l [m.(r- 2)]t., m

. AK _/3., = _3f2_ (r - 2) Foo,(s) _ 11++r,srOS (6-14)
r_ _r_ (6-11) can be used. This will introduce a steady-state phase

7r'-'/3'-' error (Fig. 6-1)

r=2+
.,, ( r + .., (6-15)

(r + 1)f_,, [3r(r - 2)] '12t/P1, -- 2_r/"
which does not exist with the F,,,,(s) in (6-13). Once the
loop is locked, however, the VCO can be retuned to

We have thus translated the effect of the Lagrange mul- eliminate 4'_,.
tiplier implicit in /3 to the design parameter r. It is

important here to note that r must always exceed 2 in As a further consideration, one cannot expect a very

optimized loop design. This comes about because of good lock-in behavior when fl,, is so large that the carrier
the assumption that 0,, was a uniformly distributed ran- frequency falls outside the initial loop passband.
dom variable.

On the other hand, it is usually desirable to design a
The Jaffee and Rechtin example using 0,, = 0 produces tracking loop with its bandwidth much narrower than the

a result somewhat different from that above: initial frequency uncertainty region. Such loops are usu-
ally frequency-swept (by controlling the VCO input

ro = 2'/_/B voltage e) slowly through the uncertainty interval to

AK acquire lock. It is thus reasonable to design the tracking
-/3_ loop with parameters to ensure that lock-in proceeds

r_ Jaffee-Rechtin. (6-12) optimally whenever the carrier enters the fiducial s loop
r -- 2 (so _ = 0.707) passband, i.e., when f_o = 2_rbL.Upon inserting this con-

dition into (6-11), the proper value of r can be computed

3// numerically:
wL = 2(2,/_)

r = 2.28245
(6-16)

1. Choice of Parameters /7= 0.755.

In most cases, _o is not known prior to locking the
This compares very favorably with the results obtainedloop (or else the loop would have been pretuned so as

not to encounter any frequency offset in the first place), by Jaffee and Rechtin (6-12). The optimum loop param-
Hence t% must be treated as a random variable. An ex- eters for r = 2.282 are

amination of the average transient error in (5-9) reveals r2 = 1.648/wL

that _ is minimized whenever E(ll,) = 0 (that is, the (6-17)
loop should be initially tuned to the expected incoming r_/AK - 1.180
frequency) and that the f_oof our previous calculations is w_
replaced, in this case, by the rms frequency offset,

! [E(f_o2)]v,. ard the corresponding optimum loop transfer function is

[ given by
; Once suitable values of A/N_, w,_, and f_ohave been 1 + (1.648/wL)s

established, B (and hence r) can be found, and this speci- Lopt (s) = 1 + (1.643/wL)s + (1.18/wz,2)sz "
! ties what Lopt(s) is to be used. The optimum loop filter (6-18)
[ Fopt(S)is related to Lop,(s) by (5-3):-.4

'Purely for computationalconveniencehere, we have specifed the
! 1 + r_s
i Fopt($)- (6-13) fiducial bandwidth b,. rather than the noise bandwidth Br as

i r18 definingthe edge of the passband.

l
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(o) FIRST-ORDER LOOP, PHASE STEP (b) IDEAL INTEGRATOR SECOND-ORDER
LOOP, FREQUENCY STEP

(C) FIRST-ORDER LOOP, FREOUENCYSTEP (d) PASSIVE INTEGRATOR SECOND-ORDER
LOOP, FREQUENCYSTEP

L..eo

:_- _..:_-

V I l 1 A V 8 I I I I

(e) FIRST-ORDER LOOP, DOPPLER-RATE INPUT ] (d) PASSIVE INTEGRATOR SECOND-ORDER
LOOP,DOPPLER-RATE INPUT

t , 1 I I_ 1 I I I

t-.,-m, t

Fig. 6-1. Response of first- and second-order loops to various inputs
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2. Evaluation of Transient Error steady-state error is r = 1; that is, the loop is an un-

The total transient error is given by the expression derdamped one with damping factor _ = 1/2.

1 r+jo0 Another observation that can be made is the following:

J_j ( 7r'-' f_o2_ In using a passive-filter second-order loop to track a_ = 2_ - 8s"?_q- s_J signal h_avinga doppler rate, it is necessary to compensate
o0

(6-19) periodically for the ever-growing steady-state phase
error. This is conveniently done by manually retuning the

X r 1 - Lopt(s)] 1-1- Lopt(-s)] ds.
VCO at least every rl sec (as discussed in 8-5) to zero
the phase error due to doppler rate. In this way (6-24)

With the form of loop flter given in (5-21), the transient never exceeds (6-25).
error is

4. Comments on the Choice of r in Second-Order

TIT2_O I _2AK__'_- 2AKr 1 + 312orl] . (6-20) Tracking Loops
In Section 5-D, we concluded that a value of r between

For the optimum loop, then 6 and 10 is desirable to minimize the effects of VCO

_3(r -- 1) noise. In Section 6-C1, we concluded that an underdamped
_2 _opt_= 6tL [3r (r - 2)'_]V_ (6-21) loop with r = 2.282 is needed to minimize the total phase

error. And in Section 6-Cb, an underdamped loop with
r = 1 provides the best tracking of a signal with nonzeroWith the value r = 2.282, and f_o= _rwL,
doppler rate.

t_T (opt) _--- 5.87/WL. (6-22)
Normally, in a communications system, the contribution

The parameters in the Jaffee-Rectin example (6-12) pro- of VCO noise is not a factor of utmost concern. On the

duce almost the same transient behavior: other hand, minimizing VCO noise is of great importance

ET(JR) : 5.4/wL. (6-23) in designing frequency-generator "clean-up" loops. Too,
the doppler tracking capability of a loop is critical in the

3. The Effects of Doppler Rates in Second-Order Loops specification of many receivers. Some "hoice is thus avail-
able to the design engineer in picking an r to suit his

If we assume that there is a slow doppler rate Ao particular application.
(rad/sec -_)superimposed on a simple doppler shift, the

discussion in Chapter 4 indicates that the passive-filter 5. Case With VCO Noise Included
(5-13) second-order loop cannot be expected to maintain

: a small steady-state error. The ultimate phase motion Comparing (5-7), (5-10), and (5-26), one can see that
' due to this doppler rate, x2 = A,, in the notation of (3-17), VCO noise effects can be included in the optimizing

is linearly expanding in time, as analysis quite easily when S,,_,,,,(s) is a rational spectrum.
However, for the case we have considered, the VCO (in-

Ao Ao(r + 1)0-{t \ put) noise has z 1/f term, or more precisely in the s-plane,

_ss(dopprate)=-_--_t_ 4rw_ _71) " (6-24) N,./Kvco(-S")", and (5-23) and (6-2) are not valid
• when such a branch point appears in one of the spectra.

AWiener optimum L(s) certainly exists, but the resulting

On the other hand, when the perfect integrating filter loop filter mav not be a rational function of s. It is more
second-order loop (5-21) is used, there is a finite value of meaningful to limit the discussion here to optimization

i the steady-state error, viz., under the constraint that F(s) be rational.Aor_ A,,(r + 1)'-' (6-25) Howeve_ we easily recognize that the optimum loop
(_ss(dopl,rate)- AK - 4r w_,

_ for an initial frequency-step offset again must be of
There is naturally a great resemblance here, and at t = r_, second order, and that the loop filter must be of the same
(6-24) and (6-25)are equal, type as that given in (5-21). Then, too, we know that,

depending on values of the various parameters, the
In either of the two cases above, it is evident that, with optimum value of r lies between 2.282 and about 7. It

other things being equal, the value of r causing the least remains only to find specific values of r and wt,. -

37

"1966008034-052



JPL TECHNICAL REPORT NO. 32-819

We have computed separately all of the terms appear- The value of X, of course, is a parameter left unspeci-

ing in the total phase error :_ (except distortion due to fled. Previously (in 6-9), we related it to the loop natural
carrier modulation). Hence frequency 13(and through r, to the loop bandwidth, as

well), which then became the arbitrary parameter in the
I_. = X2_ + _z loop. We can also do this in the present case; inserting

X_rlr2f_z / ,FAK \ Nowt_ (6-9) into (6-27), we find

- 2AKr _ 1+ 3f_o_r-------7) + A------7-_ 1 /

•..z-N,,wL (1+__ + 4r .)
• + (r + 1)No_ + g(r)N,,, (6-26) -" A-' 1 + r 3 (1 + r):'4,'wL w_

+ (r+lN,,. + g(r) N,,, (6-28)
Applying the philosophy that f_o be set equal to ,rwL 4r WL W_

(SO that lock-in proceeds optimally once the offset fre-

quency enters the loop passband), we reduce this to With this particular evaluation of x, there is an optimum

Nowt, x_r._,(r+ 1):_ way to pick r and wL. However, we can note that none
_ - A _ + 16rZwL of the coefficients, as functions of r, varies drastically over

the range 2.282 to 7; this means that __ois not extremely_T

4rwL + No_ + g(r)wN,v sensitive to r. Such is not the case with wL, and the de-signer should, in all practicality, seek to determine that

(6-27) value of w_ which will minimize _.

REFERENCEFOR CHAPTER 6

I. Jaffee, R.M., and Rechtin,E., "Designand Performanceof Phase-LockedCircuits
Capableof Near-OptimumPerformanceOvera Wide Rangeof InputSignalsand
Noise Levels,"IRETransactionson Information Theory, Voh IT-l, pp. 66-76,
March 1955.

s8

1966008034-053



JPL TECHNICAL REPORT NO. 32-819

CHAPTER7

THE DESIGN OF SYNCHRONOUS-DETECTORAGC SYSTEMS

One of the fundamental circuits built into almost every predict performance analytically as a function of loop
receiver today is some sort of closed-loop regulating parameters within a certain measure of accuracy. The
system that automatically adjusts the receiver gain to treatment here essentially follows the work of Victor and
maintain a constant output level. The most common cir- Brockman, with sog_aeminor extensions.
cuit used in broadcast receivers is one in which the IF \

signal is rectified, filtered, and applied to the grids of n\_
variable-_ tubes in the IF amplifier. Such a circuit (often 7-A. The Synchro..._us.Amplitude-Detector
referred to as Automatic Volume Control, or AVC) is AGC Loop \
equally as sensitive to noise voltages in the IF passband The block diagram si\own in Fig. 7-1 shows the prin-
as it is to signal voltages, and, consequently, affords only cipal elements involved ib the design of an AGC System.
moderate stabilization of the signal amplitude. Briefly, the input 2v"A(t) _os [O)ot+ O(t)] + no(t) enters

a variable-gain amplifier _hose gain is a function of a

In phase-locked receivers, it is more usual to use a feedback control-voltage c_t). The output (amplitude-
stabilized), appearing as 2v,'\A cos [_t + o(t)] + hi(t),

synchronous amplitude detector followed by a very is passed to a phase-locked '_oop to derive a coherent

narrow-band filter to derive the feedback voltage. The reference, against which it is s_mchronously detected. At
output of this filter, chiefly due to the presence of signal this point, an external gain-refc,rence voltage eo is com-
and relatively insensitive to noise, can be used to control

pared with the detector output; \the resulting error volt-

the receiver gain very eff;ciently, age, filtered by Y(s), then control\the receiver gain in a
way that tends to null any differt\nces between eo and

Such a loop we shall distinguish from the AVC loop the detector output. \
mentioned above by the name Automatic Gain Control \
or AGC. There is a definite relation betwee_ AGC voltage c(t)

and the receiver gain (call it 1/A*_c(t)], or merely
In what is to follow, we shall present a linear feedback 1/A*(t)), for ff the receiver output is\held nearly con-

theory for the design of AGC loops. As a result, one may stant at an rms value of A, it follows _hat c(t) is also

\
\

P.ASE-LOCKEOo" \
LOOP \

\

Xo(t)=A(f)_/_COS(Uot+O(,))._| VARIABLE-GAINREcEIVER,- "[ SYNCHRONOUS _'--_., '_

+no(' ) / GAIN: ,/A'(t) Av/2 cos (.0 f "t'O(f)) DETECTOR
+nt(k) = x(f)

[ :'
clt) \*.

VOLTMETER _ AGC AMPLIFIER AGC LOOP FILTER _\
GAIN = KC _ y(S) \

\

Fig. 7-1. A synchronous-detectorAGC loop, usinga phase-locked loop to provide a coherent reference. \
(Theactual phase-lockedloop may be part of the gain-controlledreceiver.) \

\
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related to the rms incoming signai amplitude A(t). Thus, be the adjusted value of receiver attenuation at a particu-
c(t) can be monitored by a voltmeter as a calibrated lar opera,ring point if c(t) could be set equal to zero. The
measure of input signal strength, actual receiver attenuation K,,e 'corresponding to KR is1°

When double-frequency terms of the detector output K,,c = Ks+ 20 log (K=_-°_.
are omitted, the input to Y(s) is kCo/

ZAoc(t)= -eo + AKD cos _b(t) + Kom(t) Now de£ne the quantities a' /

A(t) . c s Kono(t) a(t) = 20 log A(t) (7-4)
= -eo + -A-_)(t)lto o _b(t) + A*(t) • ['eoA*(t)-I

= gO,ogL. j.
The constant Ko refers to the gain of the synchronous

detector, but otherwise the notation follows that previ- That is,a(t) and a*(t) are the signal strength and adjusted
ously used. receiver attenuation expressed in decibels. Since In x =

log x/log e,
Victor and Brockman recognized that if the AGC loop

isped°rmingwell,°nemayappr°ximate° c(t) =KeY(p) I (e_ge) [a(t)-a*(t)] _.--

--eo + A(t) Ko cos _k_ eo In [A(t) Ko cos 4' K°n°(t)7 ,

A*(t) L A*(t) eo + ]-_ log cos q,(t) + A-_(t) j '
FA*(t) eo'] + eo In cos _(t).

eo In A(t) - eo !n L" _ J = a*(t) - K,
(7-2) K, (7-5)

From this equation, we can draw the equivalent circuit
The errorhere is less than half the square of the left-hand shown in Fig. 7-2. Note, however, that the loop is linear in
quantity, the logarithms of input and response, rather than these

quantities themselves. The equivalent loop gain K^oc and
The next step in the analysis is that of choosing a func- AGC-Ioop transfer function C(s) are given by

tion for the variation of receiver gain with AGC voltage.
KaeoK¢

Mathematically, it is convenient to express the gain in a /CAGe-- 90 log elogarithmic Taylor series:
(7.6)

K,ooY(s)
K_ = 10[_'+Jr'*')+"'l/'_ C(e) = [1 + K,ocY(s)]K,_

• FeoA*(t)-I (7-3)

20,og --Ks+K,c(t).... Straighao ardly,,,It)and,,*It)arerehtedbythe ilinear operator equation i
|

A characteristic with only the first two terms is nearly a*(t) = KaC(p)
valid for many voltage-controlled-gain amplifiers, al-

certain degree. The quantity A*(t)eo/Ko is an adjusted l J
attenuation factor. By retaining only the first two terms

+ [1 - KAC (p)] K,. (7-7)
above, we assume the receiver has an adjusted attenuation
in decibels which varies linearly with control voltage (over _:
a limited range): there is an attenuation of Ks db in the "The valueof K,,_canbe set by a biasadded to c(t), if de_ed.

However, the equation for K,,, shows this is not necessary, as
absence of control, and an additional Ka db/v attenuation adfustment of ea will do the samething.

when c(t) is applied. It shou],:lbe stressed that Ks would *1Since the input signal power is related to A(t) by P = As/R,.,

where R,, is the input resistance of the receiver, a(t) dit_en from

'Here we me '_n z" to denote the natural logarithm of x, and the value of P in dbw by the term lO log R,,: 10 log P = a(t)

'*log z" to denote the base-ten logar/thra of z. - 10 log R,,.
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o(t) -A"R+ 20 ioge
eG Kon/(f) [ c(t)

e6Kc • Y($) : _'_METER

1
I

Fig. 7-2. Equivalent diagram of an AGC loop. Linearized analysis follows the
assumptionsthat AS(t) is exponentially related to c(t) and that a(t)_,a*(t).
The input is o(t) = 20 log A(t). Adjustedloop gain a*(t) -- 20 log I'A*(t) e,/K,]

The AGC voltage is thus related to the input signal level by The fluctuation of a*(t) depends not only on the input
signal-to-noise ratios in the phase-locked loop bandwidth

c(t) = C(p) [a(t) + ( 2Olog e) Ko n, (t) w,_and in the AGC loop bandwidth wc, but also upon th,:eo value of stabilized signal level at receiver output. The
mean value of a*(t) is less than that of a(t) by about 4.:t5 db"1

+ 20logcos _(t) - K_J. (7-8) at_ = = 1.

7-B. AGC Stability 7-C. Calibration Equation

The steady-state mean and variance of a*(t) due to input Equation (7-7) shows how attenuation varies with signal
noise are readily found: ff A(t) changes slowly with respect strength and noise. Moreover, a(t) is related to c(t) by (7-8).

: to the time constants in C(s), Thus, it is possible to relate the steady-state mean value
of a(t) (eall it a), to that of c(t), or merely c, and thus, to

;_ relate c to the average input signal x=s',rength a:
E [a*(t)] = KAC(O)E[a(t_] -KAC(0)(10 log e) _=

1

+ [1-KaC(O)]K, a = K. + -_c + (101age) _=

,7,, ,_+Olo,,,o,,o,+
_ vat [a*(t)] = L_ ) _'__-')e. (7-10)

+ 2(10 log e)=a* This calibration curve is well demonstrated in actual

practice, as attested to by the results shown in Fig. 7-8.
In this ealeulation, we have approximated In cos _, by The receiver whose eharacteristie is depicted is the S-hand

- ½_=, and we have assumed that _(t) is a Gaussian receiver at Pioneer Site, Goldstone Tra='Sng Station, Cali-
process. Both of these assumptions are somewhat in error, fornia.
but behavioral indications are sufficient for our purposes.

It should be noted that No is the spectral density o£ the The variance of this estimate of a for a particular
stabilized noise n,(t), and not the input noise no(t); for this measured value o£ c is the same as the variance of a*(t)IKA

reason, it is reierred in (7-8) to A s, the stabilized signal given in (7-9), because, as shown in (7-8), c(t) and a*(t)lK_
level, as NolA 2 (which is the same as NoJA'(t) at the re- have the same fluctuations due to noise.

",. ceiver input, however). As a fair approximation, A = eo/K, _
can be used in evaluating the variance of a*(t) above. "If10log lq_.is subtracted_romthe right-handside d (7-10), the
When KA_ is high, C(O) *- I/KA. c'a]/bratioacurverelatesc to signalpowerfuadbw.
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-,,o_ iiiiii_i_--_---- -- and in which we have designated A¢(t) and Ad(t) as the
stationary and nonstationary parts of ACt), respectively.

-,zo.... For convenience, a¢(t) can be taken to be a zero-mean
J_ _ process by lumping the mean value of aCt) into ad(t).

_-,.o .... The Wiener optimum filter isX
CAL,BRAr,ON.OW,NG Copt(s) = 1 r [ ] S=¢_(s) /

\\ TooEv,,rn • __. N r)ETEClDRPHASE pe
• REFERENCEAND NON--15C ....

A,R x���h�___LOGARITHMIC_,nCR (7-13)\ CHARACTERISTIC
LINEAR FIT AT _ I IHIGH SIGNAL

-11_ LEVELS ................... St(8) "-,_:E[ad(S)da(--8)]-b Sa¢=¢(8)-k (20logo)'(_ /
-I_

-r -= -_ -4 -_ -i -;
+ (10 log e)2S,=,=(s).AGCVOLTAGEc, ¥

Fig. 7-3. Measured AGC curve showing depaduro from For convenience, we have approximated eo/Ko = A in

linear behavior the equation above and set d_(s) = 27 [a4(t)].

The bracket [ ]- is the right-half-plane image of [ ]%
7-D. DynamicBehavior of AGC Loops and [ ]p, refers to the physically realizable part of the

In calibrating the AGC loop, we assumed that ACt) was enclosed function.
more or less constant--or was at least changing very slowly
with respect to time constants in the loop. But this may not The i _tter can be computed as .Eft -_ [ ] (i.e., the
be a realistic assumption during the early postlaunch Laplace transform of the inverse Fourier transform of
phases of a spacecraft flight, or even later when the space- the quantity). An equivalent method for computing i ',-
craft is perhaps tumbling through space. In such cases, when the enclosed quantity is a rational function is oo-
one must investigate the transient behavior of the loop tained by expanding the function in a partial fraction
in more detail and, if one can predict what types of expansion, but retaining only those terms having left-
transients are to be expected, choose parameters to half-plane poles, poles at the origin, and poles at infinity.
optimize performance.

For simple transients, much can be learned about the
Fluctuations in signal amplitude can be of two types: form of C.pt(s) without resorting to solution of (7-13). For

first, there can be a nonstationary waxing and waning o_ example, if we are concerned with gain-tracking an input
the signal, such as is due to the effects of changes in range; of the form aCt) = a_t) = g,t.lnl, then by a reasoning
and second, there can be superimposed o_ the first a similar to that in Section 3-B, we find (neglecting the term "
stationary perturbation such as might occur as the space- due to ,-_ise)
craft antenna seeks to retain its bearing toward Earth, or
as a result of tumbling. X,p(O)t_4 for n _>1

[a,,(t)- a*(:)]..~ b
The modified Wiener fonnula _5-23) can be fitted to 0 for n < I.

this problem by expressing
(7-14)

ACt) = A_t)A_(O (7-11) i
a(t)= ado + a(t) WeassumedherethatY(dtakesthef=m

where w, have put Y(#) = _' q(0) =f-0, pC0).f. 0. (7-15)

a,(t) = 20 log A4(t) (7-12) Thin, for stable _C,C operation, Y(s) must have at least as i
a_(t) = 20 log A_(t) many poles at the origin as the degree of ad(t). I

I !
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As a particular case, when ad(t) = a, Y(s) may take the The AGC loop bandwidth in both cases is

form 1 + K^oc KAy,.
:o_.,-- _ . (7-19)

1 2rAoc _ 2r^oc

r(s) - 1 + ..o_ (7-10)
By making K^oc large enough, a signal-strength change of

. in which case there will be a constant gain-tracking a few db/sec can be tolerated for a short time.
transient error

A better Y(s) to follow art would, of course, be of
a the form Y(s) = 1/r,a_. s, in which case there would be

E [a_(t) - a*(t)]. = KA--"_" (7-17) a steady-state gain-tracking error

But if aa(t) = a,t, the loop filter (7-16) produces a steady- E [a(t) - a*(t)] - a,vAOe_ at (7-20)
state transient error that grows linearly in time: K^oc 2we "

A comparison of (7-18) and (7-2I)) immediately shows that

a----L-_t _,- a----2--_(_.L_. (7-18) when K^oc is large, the two At.,U loops perform a' )ut the
E [a_(t) - a*(t)] ,,_, KAoe 2we \ r^oc/ same for t < rAo_,.

REFERENCEFOR CHAPTER7
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CHAPTER8

THE DOUBLE-HETERODYNEPHASE-LOCKEDRECEIVER

Communications requirements for deep-space missions The heterodyne operation followed by linear gain does
require receiving systems whose capabilities at first sound not alter the signal power/noise-spectral-density ratio, as /
so extreme as to be unrealizable. The development of the we have discussed in Chapter 2. The first IF frequency is

• double-heterodyne receiver with phase-locked carrier
oJz _"

reference, however, has made coherent communications fl = _ =
the standard language of the systems engineer. Indeed, _o - Whl

except for a few minor refinements, parameter optimiza- (We assume o_,,> _hl as a practical matter, although our
tions, etc., there are few questions concerning the behavior analysis does not require it.) The signal is now hetero-
of these receivers that cannot be readily answered, dyned against a locally generated, free-running reference

of the form cos (_hz(t) - 01), so the output of the second
IF amplifier is

A doub]_-".,eterodyne receiver, briefly, is merely one in

which ther_ are two separate intermediate-frequency K,K,2 {2 _ A(t)cos [(o_ - ¢oh2)t-_-#- 0 + 01] @ _.2(t)}"
amplification stages. Such receivers can be designed to
operate at very low signal levels with a great measure of Again, the signal-power/noise-spectral-density ratio is
stability, precision, and reliability, preserved, now centered at the second IF frequency

(O2 t01 -- ¢0h2

= = 9,.,,.

(In general, f2 may take a negative sign when cob2> o_1.
8-A. Basic Configuration of the Receiver This is a purely mathematical distinction, and need cause

The receiver shown in Fig. 8-1 combines the advantages us no great concern here.)
of intermediate-frequency amplification to produce high
gains (and there are two such stages_ with those of the Each of the IF amplifiers has a known bandwidth, so
phase-locked loop: namely, coherent communications the overall IF bandwidth or predetection bandwidth WN
capability at low bandwidths and predictable stability, can be computed as in (2-43); however, the first IF nor-
It is not immediately obvious that the concatenation of mally has much wider bandwidth than does the second,
front-end mixing, subsequent IF stages, and ultimate so W_ is essentially the equivalent noise bandwidth W,
phase detection constitutes a phase-locked loop as we of the second IF filter H(s).
have seen it in previous chapters. There are practical
necessities, as well as subtle advantages, to the use of a As a matter of theory, either or both of the IF amplifiers
limiter prior to phase detection, and although we have can be gain-controlled by an AGC voltage, although it is
nowhere accounted for such a device in our previous practically necessary to control only one of them, say the
theory, there is little, if any, deleterious effect due to its first. Hence, in the terminology of Chapter 7, K.K_2
presence. = 1/A*(t), so the second IF output is, in our previous

notation,

The tracking portion of the receiver operates as follows: x(t) = 2_ A cos (_2t + 0 - _ + 0_) + n_ (t) .

The input function is 2v"A(t) cos [o,ot + 0(t)] + no(t), This voltage feeds a band-pass limiter whose saturation
where A{t) is a slowly varyi'ng rms signal amplitude and limits are ± I v. The limiter mean-square output is, of
no(t) is a wide-band noise with density Noo. The input is course, constant at a value l", of which 2(2/br) 2 lies in the
mixed with a multiplied-up version of the VCO output, frequency zone about f2. A signal component is present
so the first IF output process is whose mean-square value is, let us say, 2(2/a/_.)2; the

factor a 2 is then a signal-power suppression factor, with

K_ [2 v'A(t) cos(_t + 0 - _) + n_(t)]. 0 < a < 1. The remainder of the limiter output in the IF
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I FREE-RUNNING _ FREQUENCYI
MULTIPLIER

OSC,LL,TORI l -I *"

,GC [ ,GC,MPL,F,ER_. _ +(_
. AND FILTER, KCY;$) eG

"'__ -I M,XER IF M,XER_ F,LTER..,.,Fq,F F-_ L,M,TERCVZ"IoETECTORI

FREQUENCY/ (_ I J® I LooPIi-J MULTIPLIER _ _ J. VCO I,_ F LTER I

*" I I P-I I _'" I
e

@ .o(t, :,/'2' ,4(t) cos[wot+S(;)] +.olt, @ y (:):K. {a sin[(.o-_.,- (I +M,) _,_.) , �e-_

® .,,,.._ co,[.,,,+_,,,] +_,.._o,+o.]+_,,,}
@..,,,,:,,.,{_°o.[_.o-.,,_,._-_].o.,,,,} @.c,_.,.,.,.,,,

[_hl t KVC0F(p) ¥(t)]C) vz(t)~ ,_ co,(_,2,-e,) (_)v,(,)~ ,/_CO,L-_- + p

® .,,,:_. oo.[(.o-..,-..._,+,-_+_,]+.,,,, ®.,,,,~_.,.c,,,..,,+-,_,-_,_
@..,,,--¥ {_ooo.[Coo-.,,-....,_,,,-_ .q ®..oc,,,:-._. ,,_{.oo.[(.o-..,-_,*.,_..,),.,4

+.,,,,} .l,+.,_,,+,.]+.,,,}
c(t) : Kc YIp, zAGtit)

Fig. 8-1. Thedouble-heterodyne receiver,with equotion$for signolsot eochpoint

zone is noise; it has total power 2 (2/At) "_(1 - az). The Correspondingly, the detector output is
limiter output signal-to-noise ratio p_ is thus a function

of a only: y(t) : K_(a sin {[_o- _hl- (1 + M1)_hz]t +0--_

_ )o, = z- .,' (84) + (z + M,)Ol+ o,} + ,,(t) . (8-_)

We shall investigate the way a behaves as a [unction of The constant K_ includes the gain of the detector, the
its input signal and noise a little later; for the present, limits ___l, etc. When the loop is in lock, the multiplied-
let us express our answers in terms of a. up VCO output must have as its frequency

The limitez 3utput feeds a phase detector whose refer- _hl = _,, - (1 + M1) _h_. (8-3)
ence input is rationally related to the free-running oseil.
lator used to produce the second IF frequency; i.e., for The values of the IF frequencies are thus directly related
some (relatively) fixed 02, it may be taken as being of to [hz:

the form [1 = (1 + M1)fh.,
,_, sin (M_t - M1 0_ - 0_). (8-4)

f_ = M1 f_z
(and M_, like [1 and _, may take on a negative sign, if
desired), which may vary with any fluctuation f_ may have.
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The heterodyne signal coming into the first mixer from So when the receiver is tracking, 4, = 01 - _ + (1 + M1)01

the VCO through a frequency multiplier will then be + 0,, is small, and the AGC detector works precisely as
one of the form described in Chapter 7. Detection of phase modulation

(,ohlt + aMK,_Kvco F(p) by a second synchronous detector also follows the samet,(t)
= cos t behavior exactly. Doppler-frequency extraction can also

P be implemented in a similar way.

X [ sin (O- ' + (l + M1) Ol + O2)+ n(-_ta)] There are, however, some other minor differences be. /

+ MKvcon_(i)_ (8-5) tween the simple phase-locked loop and the double-
P)

heterodyne receiver, principally in the phase-detect_
outputs. It is necessary to distinguish between _ = _ - 0,

including the equivalent VCO input noise, n_(t). The the toop tracking-error, and the quantity 4' :: 0-
receiver estimate of the incoming phase function O(t) thus + (1 + M_)01 + 02, the loop detector-error. The latter of
satisfies the following relation: these is the only one that need concern us if care is taken,

_'= aKdKvcoM F(p) t sin [0 - # + (1 + M_) 01(t) + 02] as above, in proper information demodulation. In the• " "7 simple no-heterodyne loops of Chapters 4, 5, and 6, 4,
and c_ were the same, but they are not the same quantity

+ n(t)l + MKvc_____..on_(t), in the receiver above, la
Ct _

P

(8-6) Note that fluctuations in 4, occur (compare (8-7) with
(5-24), for example) as ff (1 + M_)0_ (t) were added to

If properly designed, the loop naturally adjusts itself, try- the input signal O(t). Of course, the input signal its,qf has
ing to zero the error; a linear analysis applies whenever been generated by an oscillator whose output frequency
the detector output error 4' = 0 - _ + (1 + M_)0_ + 0,, has been multiplied to carrier frequency by some factor
is small; in this case, the loop estimate is

M.,, and generally M._,>> 1 + M_. Assuming that the

= _KdKvcoMF(p) oscillators associated with O(t) and 01(t) are of equal
O(t) p + _KdKv_,oMF(p) quality, insofar as phase purity is concerned, we observe

F n(t) n,,(t) q that unwanted fluctuations due to (1 + M1)0t(t)are
>(LO(t) + _ + (1 + M_) 01(t) + 0o + aKdF(p----_l" masked by those of O(t), the latter being roughly

M::/(1 -t M_) times as large. Hence, the contribution of

(8-7) O_(t)to 4' can usually be neglected.

This response is the same form as that given in (5-2), The loop transfer function L(s) is exactly the same
except for the term (1 + M1)01 + 02, which contributes form as (5-3) with the parameter AK replaced by
to the loop noise, and which may also cause a varying

phase lag between 0 and 0_, even in the absence of input AK = aKaKvcoMF. (8-8)
noise. This term represents a heterodyne noise present in

the loop. (Here we have made explicit inclusion of F, the loop-
filter de gain, previously assumed to be unity, in the

The fact that _ does not follow 0 exactly (due to event that some loss is present. In this way, we may
(1 + M_)O_+ 0.,) need cause little concern so long as assume that F(s) takes the previously treated form.)
._ynchronot, ; detection of information processes, such as
doppler shift, phase modulation, etc., are also accom-

_'_Thereare waysof reducingthe differencebetween ¢ and e_; For
plished using the same reference frequencies o,h2 and example,o_A_can be derived as o_.,d+ o_, wherein a spectrally
M_oJh2combined in the same manner as above. For ex- verypure standard reference frequency, such as one derived from
ample, the AGC detector uses a 90-deg shifted version an atomic-resonantoscillator, is mixed with a local free-running

of M_oh..,to derive the stabilized amplitude of the signal; oscillator_; finalphase detection then uses to_.The effectof this,
hence the input to the AGC filter and amplifier is in our terminologyabove, is that Mt is set to -1, so that

differsfrom e_ only Ly O_plus the standard oscillatorphase, 0_.

-co+ AKolcos4'q n_vc(t) 1 However,#,is a constant,and the standardis very stable; henceA . formostpracticalpurposes,oando differby a constantphase lag,
tunableif desired.
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8-B. Effects of Band-Pass Limiting 20....... f--] -- ] _ _ - 1/r _
| uPPE_ASYMPTOTIt's:),O J I f I j'_l !I, -

jitter the value of A by several db even at a given con-
stant-input amplitude A(t). Without a limiter in the loop _.e
(A then replaces a in (8-8) above), the loop bandwidth
would jitter in the same manner as A. But with a limiter, _4- - --_

a is related directly to the predetection signal-to-noise ,2 .... i -_---_----_-_ _-_--N---_/I ! !!_Y/'I o.rs_ . p____(]1.__

ratio, generally a much more stable quantity. Further, a !

is usually much larger than A, so the loop gain need not ,0-----_ _ I I_Hbe so great to give a desired bandwidth, oo........ ' _ i_i - -Since the AGC alone is unable to maintain a constant L.0WERASYMPTOTE.0.7854
o.e : I _ I t I, i i I I /|11

receiver output level, limiting also tends to increase the o.o, o., ,.o ,o.o ,oo.o
effective dynamic range of the phaso detector, and hence, UMir_ _N_rS_ _
that of the entire receiver. These reasons make it almost

Fig.8-2. Davenport'sband-pass limiter zonal SNRcurve
necessary to have IF limiting in a quality receiver.

The limiter output zonal signal-to-noise ratio varies as approximation to this, which fits extremely well (see Fig.

a function of its input SNR in a known manner, derived 8-2) over the entire range of A2/Now,, is
by Davenport in 1958. However, Davenport's result is a

relation between the output signal strength and the total p,/p, 0.7854 + 0.4768p, (8-12)1 + 0.2884p,
noise in the output zone. Generally speaking, a limiter
tends to have a wider output .noise bandwidth than does The corresponding signal amplitude suppression factor is

its input, whereas L(s) is usually chosen to have a much 0.7854pu + 0.4768p_ "]'/"narrower response than either of these bandwidths. Neg- a = . (8-13)

lecting internal oscillator noises and assumi,_ that S,,(i_,) 1 + 1.024p, + 0.4768p j
is fairly constant over the response region of the loop

As the loop bandwidth wr is a function of loop gain,
(i.e., w,>> w_), one may derive a result similar to (5-8):

it is thereby a function of a. The bandwidth of a passive-

S,, (0) w_ integrator loop whose filter is that of (5-18) is related to
_2 - (8-9) the parameter r of (5-14). In the double-heterodyne re-(12

ceiver with IF limiting, this r is
2

The limiter output spectrum has some fiducial noise aKdKvcoMF % (8-14)bandwidth w_: r = 1"1

1 Ill.® ] 1 (1_a2) and therefore the loop fiducial bandwidth is approximately
wt - S.. (0) _ S. (j0,)do - S.. (O) ulGKveeMF ,: + 1"a (8-15)

(8-10) w_ = 21",_,

since, of course, the integral represents the total normal- At very high input SNR's, a approaches unity, a result
ized zonal noise power in accordance with the implicit that causes the loop bandwidth to approach asymptoti-
definition of n(t) in (8-2). Now as a result, tally the value

= (1 - a_'_ wr wr (8-11) WL(mu, = K_Kv_MF ,1 + 1", 1

r°w_° (8-18)
Davenport's result, which we mentioned earlier, is that _ ao (ro + 1) "

",,.! p_ _ 2p, when the predetection SNB, pu = AV(No w,),
is large, and pm,_(_./4) pu when p, is very small. The The phase variance ean be related to input signal and
actual formula for pt is very complicated. However, one noise parameters by introducing pu = A=/Now, Into
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(8-11). With this done (again assuming negligible oscil- "Q.... _] I I t ._
lator noise), the following expression for o2 results: i.e I 4- uoo_RASY,PVOrE.2.0_ //-! [

II i !7/li '''io' A= \w,p,/ __,., _ _. IA
Now_

-- A' IF'" (8-17) _ '" II 1 I lil _i_ APPR_O2X/MEATE' --

11 l I I II/ 0..,o._,. /

The factor F = w.p.lw,p, is the tim:for performance " II I I I_ I "
[actor. One might at first presume, on the basis of Daven- ,c i I I _ I I_ I ]_ •

port's result, that oi would be degraded by a factor of _-_t _ I

./4 (about 1 db)at very low predeteetion SNR's. But Q'- l ii="'711_" ,.o. / Ilimiting tends to spread bandwidth, making w_ > w,. o.e
This effect tends to compensate somewhat for the _r/4 o.oi o., i.o _o ioo.o
expected loss, and measurements indicate that, in truth, t.,U,rER,NPUrSNRp#

this is the case. Fig. 8-3. The rati.) of band-pass Iimiter output signal-
to-noisespectraldensityto that at input. The

As the predetection SNR becomes large, a different reciprocal of this curve gives the Iimlter
behavior results. There is a factor-of-2 improvement in performance factor1P.
o2 due merely to the Davenport phenomenon. But, in

this case, it is not difficult to show that there is no The expression in (8-18)is the reciprocal of the limiter
further improvement, because the llmiter's output noise performance factor, I'.
spectrum has the same shape as that at its point. This

makes wz asymptotically equal to w,. The final resulting value of o2for a loop containing an
IF limiter is therefore given by

has computed the factor that we would have denoted Now_ ro_
here by t_oipi/wupu). His result", shown it, Fig. 8-3, is °'_ = A'--"7-I - x '
well approximated by 0.862 + 0.690 N'_

_ 0.862 + 0.690p. Now_
w.ps 1+0.345pu (8-18) _ A-----T- (8-19)

This latter approximation is valid within _ db over the"Springett'sresult is basedon the assumptionthat the predetection
noise has an idea] band-passcharacteristic.The results for an usual operating range of signal levels (pu _ I). More
arbitraryunimoda]noise density, however,to engineering accu- accurate analyses should, of course, proceed under the
racy,are the same. more exact expression.
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CHAPTER9

BEHAVIOR OF PHASE-LOCKEDLOOPS (NONLINEAR ANALYSIS)

Most of the important characteristics of phase-locked curacy improves as the loop-degree increases and as the
devices can be predicted by the linear analysis presented loop filter becomes narrower-band.
in earlier chapters. But since the linear representation of

a loop is predicated on high SNR's in the loop passband, 9-A. The Spectral Equation
one can expect that, as this assumption begins to fail,
significant accuracy is lost. At this point, it becomes Since we are interested in the behavior of noisy loops,
apparent that another method of calculating loop per- the small contribution of oscillator noise can be omitted
formance is needed, from consideration. We focus our attention on the steady-

state stationary equivalent phase process 4,, discussed in

There have been many who have tried to perform a Section 4-B, and the process _. A slight rearrangement
rigorous, exact analysis of the noisy loop, but most of of the exact loop equation (4-4) gives
these have failed. Develet modified the linear model to p
a "quasi-linear" model, and Van Trees was able to approx- F(p) 4' + AK sin 4, = --P--F(p)8 - K n(t). (9-1)
imate the loop character by a Volterra-series expansion.
Both of these techniques are capable of extending loop When we replace _, by its stationary equivalent _, mul-
analysis past the range of linear theory, but they ulti- tiply (9-1) evaluated at t = tl by its evaluation at t = tz,
mately fail when the loop gets sufficiently noisy, and average the resulting product, there results an equa-

tion involving various correlation functions in ¢,, sin 4,, 0,

Tikhonov and Viterbi indepenJently were able to solve n(t), etc., whose double-sided Laplace transform gives
for the exact steady-state behavior of the first-order loop the analytic continuation of the power spectral density:
by Fokker-Planek techniques. The second-order loop has - s2 S,, (s)
been treated with some measure of success by Lindsey. F(s)F(-s)

This Chapter presents still another method, due to the + AK s S., ,,. .(s) F(-s) S., .t. -
author and applicable only to the calculation of output

__ $2

variances and spectra, subject only to rather general + A"K _S._.. ,l. ®(s)- F(s)F(-s)Soo (s)+ K'-S.. (s).assumptions. One assumption necessary to the analysis is
that the joint-probability function of the phase error can
be expressed as a diagonalized orthogonal expansion. Such A result of Bussgang extended by Barrett and Lampard
an assumption is known to be vahd for Caussian proc- to a wide class of stochastic processes reveals

esses, sine-wave processes, and the output process of a R., ,t. _(r) = ,1Ro.(r) (9-3)

, square-law device whose input is a narrow-band Gaus- where 7/is a functional of p(_), given by
sian process, and, in fact, it does not seem to be too

_ restrictive. The secon,l assumption is that the steady-state =ml f*®
' phase-error spectrum can be simply related to the spec- _ a" J_** (,I, - E4_)sin ,I, p(4,) dcI_. (9-4)

trum of the detected phase error. We have used a_ as ta_evariance of ¢,.

[ The analysis is not limited to Gaussian noise inputs or The condition on • needed to justify (9-3) is that its
to wide-band processes, although such assumptions gen- two-dimensional frequency function be expressible in the
erally make calculations easier. The Gaussian assumption, form
in fact, yields results that agree excellently well with
the known exact theoretical behavior of the first-order p[4_(t,), ¢b(tz)] = p[_(t_)] p[cI,(t_)] _ a.f. [¢,(t_)] f.[¢,(t,.)]n=0

loop over the entire useful range of signal and noise (9-5)

values, in terms of polynomials f.(¢,) orthonormal with respect to
the kernel p(¢_). When such an expansion is valid,

The advantages of this method are that it is simple in
concept, and easy to perf,Jrm and, further, that its ac- S..._..(s) = S., ,t..(-s) = ,1S_(s). (9-6)
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Even if (9-5) is not valid, the only modification needed in the theory is that '7 in
(9-6) must be replaced by _(s).

Next, when ,I, is passed through the nonlinearity, sin q,, there is a distortion
of the zonal spectrum from S.. into S,_. # ,l..(s). Hence we define a function
.¢(s) 3'(- s), which relates the way this occurs:

s,,.. ,,n. (S) (9-7) /V(S)_(-S)-- S.. (S)

Substituting these latter relations into the spectral equation, we obtain an expres-
sion for the spectrum of ,b, namely

-s_S. (s)+ K_F(s)F(-s) S.. (s)
S..(s) = _s _ + _IAK [sF (-s) - sF (s)] + A"Kz r(s) F(-s) r(s) r(-s) (9-S)

from which the variance of q) can be computed:

1 [+t®
a2 = -_j_j® S..(s) ds. (9-9)

Generally (9-9) will be transcendental, since both 7/and -/(s) are nontrivial func-
tions of a_.

If -/(s) -/(- s) is reasonably well-behaved, and if F(s) is a very narrow-band

device, then I_(/,_)F(/.)I __ _(0)] F(/_,)12. Similarly, under the same condition,
S..(j,_) I F(i_,)12_ No I F(I_)I _, where No = S..(0). These relations, then, are
particularly applicable when F(s) is a filter with a high cutoff rate. In fact, as
long as the noise n(t) is wider-band _5 than F(s), the system performance is essen-
ti..lly the same as if the noise were white, and the approximate So. in this case
,s given by

--s=S. (s) + K2NoF (s) F (- s) . (9-10)
S,4,(s) = --s" + _IAK[sF (-s) - sF (s)] + A'_K"_,2F(s) F(-s)

This method of analysis is thus called a linear spectral approximation.

As usual, there are two terms that contribute to the phase error: one due to
the input signal component, and one due to noise. The term we wish to explore
more fully here is that due to noise:

K"-N,,F(s)F(-s) (9-11)s..(s) = -s + _AK[sF(-s) - sF(s)] + (AK_)'F(s)F(-s)"

Concerning the spectral approximations, one further point can be made: In the
linear and quasi-linear models of the loop, 6 is approximated by a linear function
of _, so in turn, S,t.. ,_..(s) and S. ,t..(s) are proportional to S**(s). Hence, the
method above yields the linear results when the value for _/and -/(s) are replaced
by the common value given them by either the linear or the quasi-linear model.
However, while including the linear cases, the linear spectral approximation is

a more general concept, because T/and _ are not necessarily equal. It is thus
more apt to provide results closer to the exact behavior of the loop.

"It mustbe remembered,however,thatn(t) is the resultof multiplyingn, (t} by cos (,tt+#),

i andhencewill be somewhatwider-handthann, (t).

L "
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9-B. Calculation of _/ For the density in (9-12), the value of -7can be readily
computed:

The calculation of '1 as the constant relating So. to
So ,_ • involves first knowing p(o), and second, knowing '1= e-_2/2" (9-14)
that p[q,(t_), o(t2)] has the diagonal form of (9-6).

9-C. Calculation of _/2
At very low noise levels, assuming a Gaussian channel,

the density for PC(k)certainly approaches a Gaussian For loops in which F(s) is very narrow, 7(s)r(- _) can
density, as does p(o), and all analysis methods give corn- be replaced by its value at s = 0, viz., _2 = -/_(0). In the
patible results; at high noise levels the density on 4)(mud case that F(s) has a very wide bandwidth, we can still
2w), viz., p(_), approaches a uniform density of 1/27 on use (9-11). but a better approximation to _(s)r(- s), in
the interval (- _, ,r). In what follows, we denote 4) this case, is the ratio of the total power in s/n _ to that in
(reed P._)merely by _. 6, rather than 7=, the ratio of powers around zero fre-

quency. This total power value, r_, is

As an approximation to this behavior, for definiteness, P,._.• ,_._(0)
we may assume that ,I,is Gaussian, with variance a2; such _'_p- /t**(0) (9-15)
an assumption satisfies beth limiting conditions on the
density of #,, which is then given by Since we have assumed that • is a Gaussian process,

Price's theorem can be used to compute the autocorrela-

a (2-,r)v' exp [-(_ + 2m_)V2a _] ; tion function of sin O:

= / for < a,,, *b') = e-_' sinh R.(_-). (9-16)P(#,)
! The relation above is certainl:, valid when a_ is small,

0; for[_ [ > =. (9-19.) because we are sure, in this case, that ,I, is nearly Gaus-
sian. For larger a_, (9-18) is only approximate. But insofar

The variance _,_of the _-process is related to the variance
as the Gaussian assumption _s justified,

a_by straightforward evaluation. The _esult is graphically

presented in Fig. 9-1 along with the approximate formula e-'_ fo" sinh R•(_) de

"_( [ 3a_ 11 _"- fo" (9-17)¢_"= "3- i t -- exp - _ (1 + 0.13a') . (9-13) R,(,) dr

%4 I I

i ,,_/ -_o'(,-,'.*s,'hI
",,,_. ,

i. //

i'
,4

|o I
0 1 4 li l I0 I| 14 I_ II

VARIANCEOFGAUSSIANPROCESS,• |

Fig.9-1. Relationshipbetween the variance of �(mud2f) and that of a Gaesslan stationary process•
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for a loop with a narrow-bandF(s), and 9-D. Behavior of the Firs;.Order Loop

The spectrum of ¢ for a fir_,'_rder loop is approxi-
,/Ip = a-_ e-_ sinh a_ (9.18) mately _

S.. = N_K2 (9-20)
for a loop with a wide-band F(s). -s2 + (AKTtp_7_

for we merely insert F(s) = I into (9-11). 'Ve use _,tpto

The former quantity, _,2,cannot be evaluated directly, approximate y(s), because F(s) is wide-band.\!ntegration /
' since R.(_) is not known until ,/_ is, and vice versa. How- of (9.24) yields the estimate _,

ever, if loop noise is not c_mpletely overpowering, y_ is NoK No (A_,_
probably not as sensitive to the shape of R,(_._ as it a_ = _2A-/tp= A2_,I_ 2 / . _q-21)_
is to the value of a_. As a verification of this conjecture,
the several different forms of R.(_) shown in Fig. 0-2 This equation compares in form with (5-8), except the,

produce values of "t that are in very close agreement the bandwidth of the loop has apparently changed to a _,

over the range of interest. The upper curve is equivalent new equivalent value because A reduced to A_tp: _,
to _t,. The values of _ are probably very well approxi-
mated by that in the middle: wLc,q) = _2 (9-22)

I_l I. Linear Loop= 2 a-_e-_=l_sinh = a -2(1 - e-'_). (9.19) Under the usual linear assumption, _tp = I, so w,.(.q_
reduces to w,., the linear loop bandwidth, and, of course,
the usual answer (5-8) remits.

To see how well th_ spectral approximation method
works, lc_ us calibrate it by a few examples.

Qua.linear Loop

When the constant gain A in the linear loop is replaced
,o by the equivalent statistical gain A_ _/_ derived by

Develet, i.e., when .__ = e-_, the result is
NoK _, /,. (9-2:3)a_O.S --"

NoK/2A _ 1/9.. For NoK/RA < 1/2, there is an equiva-
os lent bandwidth

__"_---._----_" AK e,,, /," (9-24)

If we use the analysis presented above with y_, as
o._ __ given in (9-18), the phase variance of the equivalent sta-

tionary process 4, is related to the linear-loop prediction by

(sinha') = (9.25)gA'
o 0.4 o.s ,, ,s zo

oz Here there is a solution a' for every value of NJ_,.

Fig. 9-_. Variation of the parameter _ as a function of
41. lteductl_ Modulo

•,be Gauss,an vadance a', for various formsof Rssh.I.

Note that, for a' _ I, there is not a significant "[_e resdindicationof systemperfo_, as we have
dependenceon th_ form of R_ It). ag_d, is given not by the 1:_umnetera' (the variance of

B2
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• ), but by _, the variance of _ (mad _.). These are filter function inserted into the spectral equation (9.11)
related as shown in Fig. 9-:. Each of the various per- producesthe density
formanceapproximations,reduced mad _, is compared
with the actual loop behavior (Fokker-Planck method) S®.(_)=
in Fig. 9-3; notice the closeness with which the spectral K2No(1 - _'_s_)
method predicts the actual behavior.We have also indi- ¢_s' - s2 [1 + 2AK,_(r= - ri) + (AKy _'2)2] + (AK_,)=

cated that _he spectral approximation method should (9.26)
yield results that improve as the fi!ter F(s) becomes

higher-orderand narrower in bandwidth. Thus, the first- _lhe density (0-P6) is quite different from what one ob-
order system should be the one predicted with least tains from a simple linear model of the loop. Still, we
fidelity- but, as shown in Fig. 9-3, even this proves to catf_me the same types of ideas to express the output
be very good. phase variance. For one thing, S..(jo,) has a fidueial

bandwidth
The conclusion to be reached at this point, then, is

that the linear spectral approximationmethod provides 1 f'=S_ (/,_)a very accurate means of predicting loop phase devia- wL,,q)= g=,S_(0) .--- , do,. (9-'27)
tions (mad P.m.)over the entireuseful range of input signal
and noise values. In addition, we have shown that the Note that this is computed in the same way as w_.,except

_ that we must use S..(/=) as given in (9-26) rather than
_,\ linear analysisis valid whenever A'/NowL > 10.

._ [L(/o,);=,as one would do ff the linear model were in
", effect. In these terms

_\,9-E. Calculation of the Behavior of the
Now,._,q)\

, Second-Order Loop a" = (A,/)=
(9-28)

_,e now show the performm_ceof a phase-locked loop
whos_.,\loopfilteris the passive h:tegratorof (5-13). This A_ain, it is e,ddent that there are two effects in the

, seoond-orderloop that deviate a' from the value it would
\ take in a linear analysis: w,.(.q)must be used rather than

40 _ ",, I
r--QUASI-LINEAR W/,,and A is reduced to Ay.

' The value of w,,(,,_ can be found by integrating(0-_r/):

'1 1so "_ (1 + r-/)
LINEAR SPECTRAL tDL(,q) --"

,/- [APPROXIMATION 9"r,(1 + ,,Ir,,y) 1 4- -r,/= (1 + _.,Ir,xy)' .J

\x I 1 + r_
_" _-ACTUAL " 2( _) ""

2.©- \/ BEHAVIOR 9_¢= 1 +

] The approximation follows the natural assumption
i rrly ) 1"=.

i ,o, X LINEAR A *damping factor" can be defined almostin the same
API:_OXIMATION, way as it is for the linear loops, a way that reduces to

i ': the linear ea.,,efor high input signal-to-noise ratios. Weo _ have already derived S_,; it is of the form
0 I 0 20 _ &O 4.0

1-o.P
HOWL/'42" NOK/?A Se4_(8) = e -- bs: "_" C

- Fill.9-3. Comparisonof linear,quasi-livear,and linear-
spectralapproximatemeth',dswiththeactual The rootsof the denominatorgovernthe *dampingbe-

behaviorof thetint.orderIo_p havior"of _(t). If theserootsare r,, r=, -r,, -r,, then
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we can define, for the left-half-plane factor s2+ (r, + r=)s 3. Linear Spectral Analysis

+ r,r2, an equivalent damping coefficient In a still more general analysis, we set '1= e-*'/2 and

= a -s (1 - e-_s). The loop behavior is then approxi-
(r, + rs) (9-31) mated very closely by.

NoW_ _ (1 - e-*')s w_

We relate r,r2 and (rl + r,,) to the parameters of S_(s) by A s a2 w_(,,)
noting

wL(.q) 1 + r(l - e-')/a _

_ F 2a_ (1 - e-*' -- a'e -*'/s)] v,
(r, rs)s = (AKr y wL (1 + r) L 1 + r(l -- e-*')' J\rl /

(9-32) (9-35)

(ra+rs) s- 2r_r2= ri -_[I+ 2AK,t(rs-r,)j_ (AKvr,)s]., ___q_- (1 -- ae-*')v' [ 1 + 2a2 (1-r(le-a'-aSe-'_/s)]v'- e")'

Hence, the equivalent output damping factor of the loop is Again, the same type of behavior results: wn(_) and _
are less than thpir linearly predicted value, while as is

r( 1 + r,/rr_) z + 2(_- _)(1 - rs/rl)] w greater. Although the quantities in (9-35) are generally
= 2 L _2 J transcendental in o2,nevertheless Newton's rule is easily

applied by a digital computer for solutions. Figure 9-4
relates various parameters above to corresponding values

-_--[1 + 2(_r.f2 '/)] v" (9-33) of _-, basedon aconstant valueof r (viz., r = 2). Figure9-5 then shows how _2 compares with the value pre-

1. Linear Analysis

It is easy to see when ,/= _ --- 1 (the linear analysi, wt(,q) o
parameters) that (9-28), (9-29), and (9-33) reduce to (5-8), to _, L..-
(5-18), and (5-20), respectively. \-k.. ---- t I/-L,NEARr.yoRY

"NONLINEAR THEORY

2. Quasi.linear Analysis _ \\ I
The quasi-linear analysis replaces A everywhere by _ "_

t_ 0.1
Ae-, _ .2(i.e., _ = _ = e'a2/2). Thus the behavior predicted uz
in this case is given as __

ne

,., \Now_,(eq) __
a_'e-a'-- A" °z

tiJ

-r< 0.01 X

1 + r e-_'/2 (9-34) a.
WL(eq) _ 9.r2

r_ "_ X
_.q_ --_e-_'/" .

0.001
o s _o _s zo zs 3o ss

SIGNAL STRENGTH, db ABOVE A_ • NOWLo
1;'romthis it is important to note that while bandwidths

and damping are less than the value predicted by the Fig. 9-4. Comparison of linear and nonlinear theories
linear model, the overall value of a* is larger than its for second-order,constantlinear bandwidth loop, i.e.,
linearly predicted value, the value of r is kept constantat ro ffi 2.

tl4
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dieted by a linear analysis as a function of signal power Figure 9-6 illustrates the way wt,_q_, wt,, _ (_q_. and

for a fixed No; since r varies with input signal level, we vary; parameters here are the same as those in Fig. 9-5.

have arbitrarily _6 chosen a value ro = 2 at A_o=3No/2¢.,.

4. Conclusions About the Second-Order Loop"Reasonsfor this choice are given in Chapter 10.

The behavior depicted in Figs. 9-4, 9-5, and 9-6 indi-

_ _[ _ I.... _ cates that a linear theory can be expected to yield satis-

factory accuracy whenever AZ/NowL > 10. Beyond this

LO__f-=--f -____- _-_--_-- _- -- ------ point, the linear spectral approximation probably agrees.... _- -_ with actual results, if we may extrapolate the results

-SPECTRAL__ I _ ___ obtained for the first-order k op, for 0 2 < 1.5 rad 2. This

APPROXIMATION figure lies beyond the useful ange of most receivers.

N ° I
b

bd 0,1

w I

_o.o
z

j_

<[ O.Ol /

w,/W,o-__, c,,)/_'o

to _ _._._p..
% _ "_-C(eq)

o.ool _'_
o s io _ 2o z5 3o 3_

SIGNAL LEVEL, db ABOVE ,42o =NOWLo

Fig. 9-5. Comparison of phase-noise variances by linear
and linear-spectral approximations. The noise density o._o 5 _o _s zo z_ 30 3s

is fixed, and the signal level is varied. The value of r SIGNALLEVEL,dbABOVEA_ =NOWLo
is taken as ro = 2 at a reference signal level of A_
= 3N./2r2 = NoWL0. Note that the ul_..:.,,ateroll-off Fig. 9-6. Variation in bandwidth and damping param-
is 5db/decade, rather thc., 10 db/decade, as in eters as a function of signal strength. The value of r at

Fig. 9-4. Note also that even the linear approxi- a reference signal level A_ = 3NJ2T., = NowLo
marion produces some curvature of o2 near A_. was taken as r. = 2.
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CHAPTER 10

DESIGNING A DOUBLE-HETERODYNETRACKING LOOP

So far in this work, we have concerned ourselves, for way no longer tolerable, when the receiver no longer
the most part, in predicting the performance of a receiver produced meaningful data. The trouble with such defini-
when its parameters were specified. Exceptions to this tions tied to performance is that they tend to be sub-
dealt only with ways of choosing some of the receiver jective -- what is tolerable in one case is not in another.
parameters, given the others. We may now pick a set
of parameters, and, through the formulas that have been The word "threshold," as we shall use it here, is a
presented, predict quite accurately how the loop will precisely defined quantity, which can be subjectively
operate. Once the receiver is built, it perform_ just so. interpreted as desired. Some give it the namo "design-

point threshold" and, in some cases, it has been called the

What we require for design, however, is an effective "absolute receiver threshold." The concatenation of modi-
method for picking a nominal set of values that produces tiers does not seem to be necessary at all, and we shall
a desirable tracking function over a reasonable variation use the word "threshold" in only one sense.
of the input signal power.

Specifically, the loop threshold is defined as that input

As long as the operation of the loop is to remain within sigual power A_ given by
the linear-analysis region, the task is much simplified,

because there have been analyses put forth for extracting Ag = No(to + 1)
an optimum result from the linear loop. Nonlinear op- 2r_ (1 + r--L-2_
timization in most cases is difficult, if not analytically \ rot1/

impossible. = Now% . (10-1)

It is customary to optimize, insofar as possible, receiver Here, wL is the value of linear-loop fiducial bandwidth
0

performance at the "worst-case" parameter values; in this at threshold, i.e., computed by (5-18) using the threshold
way one is sure that, while perhaps not operating optimally value of r, to. One must not be mistakenly led to believe
at any other set of values, the loop will do the best that that the loop is operating linearly; wL is merely the

it possibly can in those cases that require it most. This bandwidth a loop would have if Ao were to lie in a linear-
procedure is purely an arbitrary one, in that it is apt to
change in accordance with the philosophy of the design analysis region. In actuality, Ao is a signal level at which
engineer, and with the particular mission for which the the linear theory does not apply, for, in fact, (rz > 1.

receiver is intended. In the notation that is to follow, all quantities sub-

What design rules are given here will be somewhat scripted by "0" refer to the value of that particular
abstract, but perfectly general, so that the designer may parameter at threshold.
issue his own philosophy in choosing values.

I O-B. Tracking Loop Performance of the

• IO-A. Definition of Receiver Threshold Double-Heterodyne Receiver
Once the values of the receiver's physical parameters

The words "receiver threshold" conjure up a different
image to each engineer: to one, it is that shaky, ill- KdKveoMF, rl, r2, and Wu have been determined, per-
defined signal level at which the receiver transits from formance proceeds as specified by the formulas _7 in
operability to nonoperability; to another, it is some point Chapter 8. But with a fixed receiver, the loop bandwidth
at which the receiver operates with the least acceptable changes as a function of signal or noise level. Rather than
reliability; to still another, it may mean the signal level
at which the receiver exits from its linear range. There "AlthoughWH is a measuredphysical quantity, it may not be

equal to w. if the loop is not operatingat the frequency pro-
",-4 are no absolutes when it comes to defining such a point; ducing H(t_,)' .... Caremustoften he taken to assurethat H(s)

in ¢ ;h of the cases above, the engineer meant that the is properly tuned for maxi,aum response at the loop operating

system hit "threshold" when its performance was in some frequency.
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calculate each receiver characteristic separately, it is These steps lead to a set of equations which characterize

easier to evaluate the performance in terms of a reference the double-heterodyne receiver:
signal level and to relate the remainder of the loop be-

havior to this point. One convenient reference point is the ( W_o mt (10-6a)
threshold signal level. Specifically, we define the ratio p. = m \--_. /

_H 0

A, [ o.7s54p,+ 0.4788p_1_
m = --Aoz (10-2) a = L 1 +1__ q: _lJ (10-6b) /

as the loop performance margin. In terms of this m. 1 + 0.345p,
P -- 0.862 + 0,690p,, (10-6e)

A _ (A'_(W_o_=
P" - N_,w,, - \ Ao / \ w. / mp. o . (10-3)

aI_KvcoMF(O) rz, a (_o ) 'As a result, all of the 1,. p characteristics are expressible r = rl - ao ro = r_B 2 = r2z Bo

in terms of m, WLo,w., and r2/rl (and this latter quantity (10-6(t)
is not needed if rl >>r2). Thus a design consists really of

specifying these three (or four) quantities.

.'{ I--3a' ]},rz = -_- 1 -- expL _s (1+ 0.13a')However, it is often necessary to compute the perform-
ance of a receiver when wu, KaKvcoMF, rz, and rl are
given--quantities that can be measured. Most of the _. as (10-6e)
formulas we have given are in terms of r's, wL's, etc. How

does one proceed with the set of parameters above? We _ = (1 - e-*z )/a s (10-6f)
merely need to find ro, and the rest then follow. When

10WLo< w., u_ is very well approximated by _rWLo/4W.; • (10-6g)
from this, a slight manipulation of (8-14) produces the _ = e-_"/2
desired result:

r /.\-1

.(KdKvcoMF)Zr_ l+r l+r /1+ L_)r°l

U = 81",2w. 2r_
\ r,,/

= (U -- '/'2/1" , 4Uro . 2 .) 11+ [1+ (U_.2/rl),] _} (10-6h)

,,[ _;::
_-_- 1 + 1 + (i04) wL(,,) = 2_'s 1 + 1 + 2(3' --,/)(1 ,2 1)q ,z_

JWe can also express U in terms of to,

(10-60
2

U = ro(ro+ ,2/_',) ro (10-5)
ro+l _ ro +-----i""

'( "4 '(--')=_ 1+ rv'=_ l+nrsfl s r2#

IO-C. Nonlinear Behavior of the
r_ _ (10-6j)Double-Heterodyne Receiver '_ -2 = 2

The formulas in preceding chapters can be made to

apply to loops with predetection bandpass limiters by "2 \ _){ [ rr'(1 + r,/_v_)' j)']t

1 { r, .2(.f- .q)(1- ,s/,'l) v,making a few minor alterations, and we have seen how ¢,q= 1 + _, 1 + I.

these changes come about in Chapter 8: first, AK is re-
placed by aKaKveoMF, as in (8-8); and second, the ex-
pression (9-28) must be multiplied by the limiter 1
performance factor F = wup./wzp_, shown in Fig. 8-3. _ 2 (rY)v' _ ¢ "t_ (10-6k)

58
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/3_q= _ : _ _v_ (10-61) The subscript "1" on U, _,,_, etc., refers to evaluation at
a2 : 1. Under the usual assumption _ar,,r_• r2, the approxi-1"2

mate value for m_ is

a2 NowL,_,,F 1 (.l/'L{eq)..L_ (10-6m) [" r°U2 I )1 + I1 +-
-- -- = -_ 4(ro + 1)-i v'l:.

Az_,2 m \ wL,, -/-'/ m_ L2r_(r0+ 1) I F_ r_ J ,

(10-s)

2wL _ ( a y"_ 2wL,, (10-6n)
13_ r_" 1 _-_',,/ r,, + 1 " The value of a"-is within 0.5% of unity when a2 = 1;

hence to the accuracy we need, the values of m_ and r,

The use of v as given in (10-6f) requires r_ )) r2; otherwise, above give cr_"= 1. The curves in Fig. 10-1 show how mt

-/tpof (9-18) should be substituted in its place. Notice that varies as a function of r. and r2/rl. As %./rtnears unity, it is
the only quantities needed to specify everything in (10-6) necessary to replace v by et_ (see 9-18). Thc values given

are the margin m, the predetection SNR P,o = w"o/w", r., in the Figure result b_" ,ssuming that _ in (10-3) takes
and r_./r_, the value

- r_)(1-e-')+(r=)The performance observed here is very much the same _,_= ( 1 -_, _ e-'_
as that exhibited in loops without limiters, except that the

value of KaKvcoMF required is drastically less than the ' rz'" /r2 \

value of K required when there is no limiter in the loop. = 0.6321 1 - _) + 0.60653 _ )_ .
This, of course, is due to the fact that while Ao is very small ' (10-9)
(the threshold rms signal level) ao is many orders of magni-
tude greater, approximately equal to the predetection SNR.

I ] i ',, ! --f
° '

IO-D. The Signal Level Producing 0.2= 1 _

0 3.6 ---- - _ J.

Since it is doubtful that one would ever expect a loop x 5(n 5.5 .Q

to operate usefully with a value of _2 greater than unity, _. =_ i/-o. I -+
tile specific value of ao2is more a point of academic interest _ _ _ iCj--o.olb.I 3.4 / I_ i zthan anything else. Furthermore, if we may judge from > _ - _-
the first-order loop result, the threshold value of phase ,_ / --_ <

noise predicted by the linear spectral theory would s 3.2 _I o :E
z _" _.oprobably not be a very accurate one, for the theory

begins to fail somewhere near this point. _ :/
_E 3.0 4.8

I I0 I00 I000

Holding the rest of the loop parameters constant, we to, obs
can solve for the value of margin (call it m_) that produces

a_= a_ = 1. This is a more meaningful quantity, and Fig.10-1. Variation in margin producing_ ----1 as a
certainly much more accurately calculable by the methods function of thresholddesign parameter,
in Chapter 9. It follows from (10-6) that when a_= 1, the ro = _oKdKvcoMF_/r_

value of A_/Ao = m_ satisfies the equation

A_2= l",(ro + r,/r,)(AJAo + l/to,/,)

2(),, - ,il)(1 -- r,/,,)(A,/Ao)-I v"Ao w(ro + 1)(A,/Ao + _',/ro7,,,) 1 + V_ro(A,/Ao + ,,/v,ror,)' J

rx = a-'Lre_'_A_
ao A"-_to. (10-7)
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| O-E. Choice of Receiver Parameters the doppler tracking capability, the state of the art in VCO

Choosing values of No, wLo, to,/GKveoMF, and w, speei- design, the spectral purity of the received carrier, the

ties a typical receiver design. Values for rl, r2, pu o, ao, and expected incoming A2/No, and the amount of phase jitter
P, follow directly from (10-1) and the first four parts of that can be tolerated at that operating level. In addition,

rl should be chosen (Section 6-C3) so that the phase error

(10-6). The value of r2/r_ is a measure of how well the due to the expected doppler rate is increasing slowlyimperfect integrating loop filter performs in the loop; with

r2/rl = 1, for example, the loop filter is merely F(s) = 1, enough that only infrequent retunings of the VCO are

and all the results in (10-6) reduce to the first-o.'der loop required. /

equations. On the other hand, the results in (10-6) are
Once ro and Puo (and perhaps r2/rl) are given, the re-approximately the same for all values of r2/rt less than

about r,,/lO. There is some flexibility in choosing loop gain ceiver performance in terms of margin can be found from

parameters because Ka, Kvco, M, and F appear as a single (10-6); a typical plot of (rvs m is given in Fig. 10-2, wherein

factor in the theory, linear approximations are compared with actual behavior;
Fig. 10-3 shows how bandwidth and damping factor

However, the only things an engineer needs to know change as a function of margin. With assumed values of

in order to know how well any receiver will perform are No and wLo, threshold is specified (10-1), so the curves are

m, ro, P"o, and perhaps r2/r_. This latter set of quantities easily referenced to the actual incoming signal power.
depends on several things: ro sets the loop damping factor,
to be chosen in accordance with the discussion in Section

6-C4; the value of pu 0 depends on WLo and wu; wLo is I
determined by considering the desired acquisition ease, ASYMPTOTE

24 cp_s_-_

wL, cps-__ /,_

,oo I I ,o /
LIMITER COMPENSATION _ wL (eq), cpl

e "_"_,_ _ _j-LINEAR THEORY,

" _ LIMITERCOMPENSATION[ /_" _ -_-

LINEARTHEORYNO /// J" IoL- LIMITERCOMPENSATI(INJ "_% j .._a. _; 1.0

n, tO'2 ro ,2.0

WLo/WH • I0"3 w/.o • 1.0

_ • i0-3 WLO/W_• I0-3

, 1 _21_1" io's
o 5 _o ts 2o 2_ 3o _

o.i I I
MARGIN m, db 0 5 I0 15 20 25 30 35

Fig. 10-2. Comparison of linear and nonlinear approxi- MARGINm, db

mations to loop rms phase error, as a function Fig. 10-3. Variation of loop bandwidths and damping
of loop margin factors, as a function of loop margin
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PARTII

SUMMARY OF PHASE-LOCKEDLOOP DESIGN CONCEPTS

In this second part, the important definitions, concepts, and formulas are col-
lected chapter by chapter. The notation used in these formulas is listed in the
Appendix with names, units, and text references. Many of the formulas here are
only approximations of more accurate ones in Part I.

Since not all of the subdivisions in Part I are referred to in Part II, there are
some discontinuities both in the headings and in the figure and equation numbers
of Part II.
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CHAPTER1

INTRODUCTIONAND HISTORYOF THE PHASE-LOCKEDLOOP

The first serious application of the phase-lock principle was as a synchropizing
device for television in the late 1940's. Since then it has evolved as the heart of the

/
most sensitive, versatile, and flexible receiver in existence today. There are many

b

approximate analyses for predicting the behavior of the loop (Fig. II-l-1); some

of these are set forth in the ensuing chapters.

INPUT SIGNAL FERROR SIGNAL

2'/zA..,'.(,,,t+e) /

')_:_P __I LOOP L J

-- "7 FILTER, F(S) I I

RECOVERED I_ J VCO
PHASE \
PROCESS

2'/2co,(,,,t �_)---_

Fig. I1-1-1. Basicconfigurationof a simplephase-locked
loop.The mixeroutput, filtered by F(s),is used to

controlthe frequencyof the voltage-
controlledoscillator(VCO).
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CHAPTER2

FUNDAMENTALCONCEPTS

2-A. Statistics Cross-spectral density Sn(j_,): similarly defined as the

Process: a time function, x(t). Fourier transform of R_(r).

Mean value of x(t):
Deterministic process: a process x(t) for which x(t) is

specified at every value of t. t,(t) = E Ix(t)]

= t' (if x(t) is stationary). (2-10)
Stochastic (or random) process: a set, or ensemble, of time

functions {x(t)), any particular member of which is Variance of x(t):
observed according to some probability law.

.:(t) = E [x(t) -_,(t)],

Stationary process: a stochastic process whose statistical = E [x2(t)] - t,2(t). (2-11)
behavior does not depend on its time origin.

2-B. Unear Filtering
Ergodtc process: a stochastic process wherein time aver- m

ages produce the same results as statistical averages. Unit impulse response of filter H (Fig. II-2-1): The output
h(t) of H when the input is 8(t), the unit-weight Dirae

Time-autocorrelation of the function x(t): given a function impulse function (see Fig. I1._2).

x(t) Linear filter: any filter whose input x(t) and output y(t) are
related by

1 f_ x(t)x(t+,)dt. (2-8)T..-_ eo f ¼�0!y(t) = ]_ x(t_)h(t- tt)dtt.

(2-14)

Statistical autocorrelation of a stochastic process {x(t)):

R..(t,,t,) = E [x(t,)x(t,)] (_4) _(,) [ y(t_
H

= /_,(t, - t:) (ff x(t) is stationary) (2-5)

= _,,(t, - ts) (ff x(t)is ergodic). (2-6) Fig. 11-2-1. Filteringdevi_:e

Cross.correlation Rn(tt-t2): obtained by replacing x(t=)

by y(t..) above. , (t ) ,_ 8 (t }
Spectral density of a function x(t): t

_'(_) = L" _'(") e-"r d,. (2-7)

h(t)fj,(?)Spectral demtty of a stationaryprocess {x(t)): _ ,

S,,ff.)
J... R,,(_) e-_r dr. (2-8) Fill. 11-2-2. Responseof filter to a unit-impulse function

6_
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When x(t), y(t), and h(t) have Laplace transforms X(s), '_
Y(s), and H(s), respectively, linearity reduces to (o) s(/_)

r(s)= x(8)H(s). (2-15)

When x(t) is a stationary process, _

S.(tw) = IH(tw)l_S.(/w) . (2-17) _ _ f /
b

2-C. Noise Bandwidth

White noise: a random process n(t) such that (b) 6(/w)

R..(T) = No 8(T) (volts=) (2-20) ../ \

S..(J_) = No for all - oo < w < + o0 (volts_/cps).

(2-21) f

E#ecttve noise bandwidth of a linear _lter H(s): -_
Fig. 11-2-5. Double- and single-sided spectra

__lf ÷,�À��œ�ws= 2B.= 2,,J_..IH(t')Pd_

IH(j,)I... (,_s). (_._) 2-D. Sinusoidal Filter Inputs
If £_"P sin(wet + e) + n(t) is put into H(s), where n(t) is

white with spectra! density No, the output SNR of H(s) is
Note that Ws is the two-sided bandw_4th and Bs ,s the

• tngle-sided bandwidth of H(s) in cps (_ee Figs. H-2-3, ps = P IH(twe)lS P (2-35)
II-2-4, and II-2-5). The output noise power with a white _" " [H(/w)[_. - _ "
noise input is

N = NeWs [H(jw)l 2_,, (volts'). (£-25) 2-E. fiductal Bandwidth

Fiducial bandw/dth- equivalent (2-sided) bandwidth re-

i s(yw) ferred to a s;_,,ilk* frequency We,such as the carrier
above, rather than tluxtwproducing ]H(/w)l_,_,

_LP"
I"(/-)1_-o. lU(tw)l,.. 2,j., IH(tw)Pd"

j__ /-'_ _s='_" : 'vs lU('-4l'- I'(,-.)l' (cp,).. L (_7)r

-'_ ½_'N _- o .._ ½wH _D-- It is th_s fiducial bandwidth that is needed lu most d

Fig. 11-2-3. |qulvalent noise bnndwldth phase-locked loop theory, rather than the equivalent
noise bandwidth W,.

2-F. Band-Pros Mixers

$ (/w) Heterodyning (Fig. 1I-2-6) does not affect dgna]-to-noise
ratios so long as theheterodyning frequency and the

__--_-_ _ carrier frequency are independent. Howev_, when the
- two are the same, the output signal-to-noise ratio p isf

p

Fig. 1[-2-4. Double-sidedfrequency,response P = -No"_o E(cm_h) (2.,59.)
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Fig. 11-2-6. The simple product-mixer

where P = inpat -;gnal power (watts), No = £-slded input S,_,,(I,0) = 2kT1q (volts'/cl)s) (2-62)
noise density (watts/cps), wo is the fiducia] bandwidth of where k is Boltzmann's constant and T is the resistor

the detector (cps), and ¢ is the phase angle between the temperature in degrees Kelvin. This is Nyqulst's Law.
carrier and the detecting sinnsoid. The term E(cos _ _) is

Maximum noise power obtalnab|e from such a source
the coherence lector of the detector. Image noise must be in a bandwidth W_ is
eliminated by post-heterodyne filtering (Fig. II-2-7).

N = _ Ws = _'TBs (watts). (2-83)

2-H. ;_OiSe (Compare this with (2-25), for a fil_er with } .ndwidth

Johnson (or thermal) noise: noise due to thexma] agitation Ws and gain [H(/_,)['_..)
of electrons in a _:esistor. There is a noise voltage v.(t) in He.ce for a white thermal noise the matched-load noise
series (see Fig. II-2-8) with each such l'esistance R, with voltage appearing across the load resistance R has uni-

form spectral density No = _kTR voltsf/cps.

S, v (y_) o o

I

In(t

C v(f)( ) Sw(/')uZtTR S/i(Jw)a21tr¢

to'¢ ro ro+¢ o ---o

Fill. IIJ)-7. Ch_sinll filter Imndwidlhs h) avoid the image Fill. 11-2-1. Thevenln and Nort(m equivalent ¢ircuitl of
noise problem noisy resisters

6B
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CHAPTER3

FORMULATIONOF THE LOOP EQUATION AND
BEHAVIORIN THE ABSENCEOF NOISE

3-A. The Basic Integro-Differential Equation 4,,, = si--1 = sin-1
The basic equation relating to the device in Fig. II-3-1

is 1
2 (see) (2-37)

t,_q_ WL cos 4'.. In
#(_) = _(t) + AK F(p) sin _(t) (8-9)

P
where l'_mazis the maximurr value of ao, tile initial loop

where A = rms signal amplitude, volts frequency offset in rad/s_ "or which the loop ultimately
K = total open-loop gain, sec -1volt -_ locks, t.cq is the maximum time in seconds required to

O(t)= input phase function, rad achieve lock within 8Jookradians, and WL is the 2-sided
loop bandwidth in cps.

_(t) = phase-error function, tad

p = d/dt, the Heaviside operator.
3-D. Acquiring Lock in the Second-Order Loop

with Passive Loop Filter

3-B. Tracking When the Loop Error Is Small With a loop filter of the form
If 141< =/6, then sin 6(t) _ if(t), so

1+
O(t) _ p + AKF(p) ¢b(t). (3-10) F(s) -- 1 + rxs

P

Considering O(t) = d(t) radians, i.e., a doppler-shift func- where r,, r., are in seconds, for d(t) ---Oo+ fZot, there
tion only, the steady-state phase-error is results

s'D(s) (3-12) " = sin-1(_K) = sin-1 (to "22_ (rad)._b-= _m° s+AgF(s) \ r,1 / (3-80)

where D(s) = .C[d(t)]. If d(t) - _t"/nl, and if F(s) has
Ipoles at the origin, as F(s) = q(s)/s_p(s), then for n _>l + 1 But for lock-in to occur for all initial conditions of the

VCO,

_p(0) ts-l-z
¢b"_ AKq(O) (n--l--1)l ast--.oo. (8-16)

f_o< 2 r 1+ _4w_,

For n < l + 1. _,, = 0, so pedect doppler tracking ulti-
mately remits. When n = l + 1, there is a constant steady- (rad/sec). (3-33)
.state error

The time to reach frequency lock (not phase lock) is
_ X,p(0) (rad). (3-17)

_k. Arq(O'-_

(r + 1)3(a') 't,,,,_q _ 8r' w_ _ (see) (3-34)

3-C. Acquiring Lock in the First-Order Loop

A phase-planediagram of Erst-order(F(s) = 1) lo_k-in where r = AK r_/rl and wL is the loop fiduehl band-
width (seeChapter 5). We assumer_l >>_'2.Typical plotsis given in Fig. I1-3-2. Lock-in proceeds as
of lock-in behavior are illustrated in Figs. II-3-3 and

rim., (racl/sec) = AK = 2WL (cps) (3-23) II-3-4.

66
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X(t)=A V/'2sin(wOf+8(t___ y(t)=AKIKm sm @(t) LOOPF(s)FILTER]__z(t)

_(,):'¢,_ o-(_o'+_c,)) vc_}_ v=
e

Fig. 11-3-1. The basic phase-locked loop

$zo _ _ -,%

_n-l}Ir-Sin_/ X _"n'rr+Sin_//_ / X

I
Fig, 11-3-2, First-order loop pull-ln behavior
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Fig. 11-3-3. Lock-in behavior of a second-order loop with imperfect
integrator, F(s) = (1 + 1-_s)/(14- _'ls), for C_o/AK = 0.4 and

AK_/T1 = 2. The upper bound of Eq. (3-33) is
t_/AK <_0.693.
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T

•2°

-_r -_/2 0 _,/_ "

Fig. 11-3-4. Lock-in behavior of a second-order loop with imperfect
integrator, F(s) = (1 -I- T..s)/(1 + _-ls), for lldAK = 0.9 and AK_/_I

= 2. The upper bound of Eq. (3-33) is IldAK <_ 0.693. Note that
lock-in occurs only when the trajectory happens to pass through

the "slot." Otherwise, the trajectory enters the periodic
frequency lag region shown.
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-Tr 0 if/2 Tr

Fig. 11-3-5. Phase-plane trajectory of a second-order
loop with perfect integrator to a doppler-rate

input Ao for AK _/,'1 --" 2, and Ao - AK/2_
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3-F.Locking theSecond-OrderLoop IA_I< k(r)_
with PerfectIntegrator (3-43)

sgn[.(0)] = - sgu(Ao)
With a loop filter of the form

1 + r.,s When r = 2, the value k(r) in (3-43) is about 0.5; for
F(s) - (3-41) other values of r, factors are given in Fig. II-3-6.

where ,'1 and r., are in seconds, the doppler polynomial When the VCO is swept for lock-in with f_° _ 0 and

cl(t) = 80 + _,,t + 1/2Aot _ produces a constant steady- Ao = 0, the equations above restrict the VCO input

state error given by sweep e by

(_) (Ao (r + 1/: N Kv,,o de I4,- = sin-1 = sin-1 k _W_ ] (3-42) _- < k(r)B" (3-44)

where B is the loop natural frequency (see 5-20). To guar-

antee lock-in for r = 2, it is necessary to have (see Fig. These relations are approximately true for the passive

II-3-5) loop of Section 3-D when rl >>r.,.

0.61

(o)

0.4

o / x"_ 0.2

0

1.0 f
(b)

0.8 _
J

_ 0.6 j

o /0.4 I
ACTUAL-_ .f

0.2

_- APPROXIMATE A0/_ 2
0.177 In • + 0.387

o II I
0.1 0.2 0.4 0.6 1.0 2.0 4.0 6.0 10.0

Fig. 11-3-6. Normalized doppler rates Ao/B 2 and Ao/w 2 for which lock is
guaranteed in the absence of noise, as a function of the loop

parameter v -- AK_'_/T1. Note that for a fixed bandwidth w_,,
the optimum value of r is about two (C= 0.707).
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CHAPTER4

BEHAVIOROF PHASE-LOCKEDLOOPS WITH STOCHASTICINPUTS

With input and VCO noises n(t), nv(t), the basic equa- and equivalent mathematical models are shown in Figs.
tion is 11-4-1 and 11-4-2.

!
Owing to noise, the loop skips cycles at a certain rate,

_(t) = AKF(p) sin [O(t) - _(t)] + KF(p.._..._)n(t) executing a nonstationary random walk between lock-in
P P points. The actual phase-error variances are thus non-

stationary, growing without bound as time goes on. When

+ Kvco n,(t) (4-4) phase angles are reduced modulo 2,r, however, the re-
p suiting steady-state phase error process is stationary.

INPUT
n(t)

INPUT [ _+
O(t) _/ ) _(t)._\ 2- A sin ( )

R
8(t:

e+ nv(t)

Fig. 11-4-1. Exactmathematical equivalent of the phase-
locked loop. Sourcesof external, as well as

internal, noisesare shown;VCO tuning
voltage • is also indicated.

n(t)

i

a

KF($)

--;--
I

Fig. 11-4-2. Equivalentexact mathematical model of phase-locked loop,
with explicit reductionof _ (rood 2_rl.TheVCO has been replaced

by Kvo0/s(tuningbias and VCO noiseomitted).
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CHAPTER5

THE LINEARIZEDANALYSISOF PHASE-LOCKEDSYSTEMS

5-A. Behavior of a Linear Loop There are two effects in #(t): doppler d(t) and modula-
tion _k(t).As a result, theze are three kinds of phase errors

When _b(t)is very small, we can approximate sin 4,_. in the loop; the mean-square phase-error _2 is of the form
In such a case there is a linear equation relating the input

phase function #(t) to the loop estimate _(t), _2 = _2(t) + _2 + o2 (rad 2) (5-6)

8(t) -- P -_ _ff-(p) 0(t) + (5-2) where _(t) is transient (or doppler) distortion due to d(t),82 is modulation distortion, and a2 is phase noise:

omitting VCO noise. An equivalent circuit appears in _2 = 1 f+** 12
Fig. II-5-1. Hence we can define a loop transfer function _j_** I 1 - L(j_,) S¢¢(j,,) d_ (rad 2)

(5-7)

NoWL
L(s) - AKF(s) o2= (rad2)

s + AKF(s) A2 "
(5-3)

sL(s) Total transient distortion (2r is defined by the integral
F(s) = AK [1 -- L(s)]

and L(s) has some fiducial bandwidth wL (see (2-37)). ,_, = tL2 (t)dt (rad-sec)2 (5-9)

°"-' F
i _ ,-,A'.f(.)

f

! VCO EQUIVALENT _ +
I Kv¢'---'_° _ + 'II1_--" TUNING BIAS #+
| • b_

J
_'_ VC0 NOISE nv(f)

Fig. 11-5.1.The Iinearlzed model of the phase-lockedloop
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and the total phase-error _2r is defined as R,

- t; °"-H"¢' = X'-',_ + 82 + a_ (rad') . (5"22) 2 f(s) : i+rl $

WHERE r2 :R2C

Here X' ;s a Lagrange multiplier, in units of seconds -2, T r I : (Rj+e z) c
which can be evaluated in terms of loop bandwidth, o _ o

Fig.11-5-2. Passive-integratorloop filter [
b

$-B. Calculation of Loop aandwidths

1. First-Order Loop The maximum gain of the loop occurs at _,,,x

If F(s) = 1, 1
O,m,:= -- [(1 + 2r) '/"- 1] v"

AK r2
w_ = W,. = T (cps) (5-11)

=/_[ (l+2r)'/'r -1"1_ (rad/sec)

2wL (5-15)L(s) = s + 2wL "
--*0 (as r--->_)

2. Second-Order Loop, Passive Integrator _ B (as r --->0).

With a loop filter of the form (Fig. II-5-2),
The maximum value of L 2of loop power gain is

] + rz S r2

F(s) - 1 + ,, s L' = [L(/.,)[' ==- 2(1 + 2r)v' + _ - 2r - 2
(5-13) (5-18)

1 +_'25
L(s)=

X+,z(l+._r_)s+(r:/r) s , These effects are shown in Fig. II-5_.

30__ UNO"OA_'EO-,.O0__ OVE_OA";'fi:)LO0_ -_
where r is the loop parameter ratio, ] J ' /

z._t • wLwlrswL,I t _-- ---_

AKr_ i |
r = (5-14) I

1"1 2.0 .... _1

We shall assume rr, >>_.. in the formulas that follow. ,.5 i _---
The loop fiducial bandwidth is r II

1.0

r+l

w,.= 9.,z (cps). (5-18)
0.5

The loop has a damping coefflcient _; and natm'al fre- o r
quency fl given by o I z _ 4 s s r s s m

r _

=_- (5-20) Fig. 11-5-3. Variation of maximum loop response U,noisebandwidth W,, flducial bandwidth w,., and fre-
quencyat maximumloop response,for second-order

_r_' phase-lockedloop,as a functionof the parameter
fl = r +---"]"wL (rad/see). (5-20) r = AlCr_/,,
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3. Second-Order Loop, Perfect Integrator where N,,,. is the white-noise-spectrum portion of
Kvcon,.(t), and N,, is the coefficient of the 1/f noise cam-

With a loop filter of the form ponent of Kvcon,.(t):

1 + r::s K_.,.o S,,,._(/o,) = N,,_ + 2_rN,_/t ,,,' (rad_/sec" cps).
F(s) - (5-21)

,, s (5-25)

The function g(r) is given in Fig. 1I-5-4, but to good
the values of WL, ¢, /3, o,....... and L 2 are the same as those accuracy we can use g(r) = 1.55 for 8 < r < 10.
given in Section 5-B3 when re/r: _0 in such a way that

r in (5-14) remains fixed. Optimum values of r and w_. that minimize a -_can be
found: a= is fairly insensitive to r, :rod any value in the
range :3< r < 10 is acceptable; WL can be found as

5-C. Optimization of Loop Parameters the solution to

/ A=No_\ / A_N,_ \
-- --I 1at

-,.:The-__-.X2weiner optimizatiOnisachieved°fbythechoosingt°talphase error w_, 0.286 _, N,, ] .-3.1 ,,- .._ / ---0.
(5-2:)_

N '_/a
L,,o,(s) = 1

[s(.,)]+ (5-z3) ,.oi _--r T , r.....7-......,- --_-
Loop I

S(s) x'-'E [D(s)D(-s)] + S+<_(s)+ No�A:. _,/_t,I, '

5-D. Effects of VCO Noise \\,._ ] I _-.,.,.u.,._ /"-_.-] J _//

as well as to VCO noise, is I
1.0 I1 10

_. N.WL ( r + l _ N.,. N,. """'I /l"
= A--'-_' + \ 4r / wt, + g(r) _ (raft-') Fig. !l-5-4. Factorsgoverning relative contributions of

(5-27) VCO noise to outputphase noise
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CHAPTER 6

OPTIMIZED DE£1GN OF TRACKING FILTERS (LINEAR ANALYSIS)

6-A. Tracking Loop Design This L,.,(s) can be realized with F(s) = (1 + f_.s)/r,s by
setting

Tt;c o1,,,,.er L,.t(s) that minimizes ,¢2 when the doppler

' polyl,,omial d(t) has a Laplace transform D(s) given by .= = ,-1.(2 + w:_:311_]'_,/_ fLt3r(r_- 2)] '_

D(s) = 0,, + tl,, A,, = p(s) (6-1) AK 3n_
T T + _s:' + "'" s-'-z'_ ___. - (r - 2)

r, _r-' O,,is random.

(the degree of Q(at) is less than N) is given by the Wiener r = 2 + 3Q'--_',formula
r+l

s v WL= 2rr fL[3r(r--2)]'"
Lo.,(s) = 1 -

E(-I)'Vs"v+(_)E[Q(s)Q(-s)]I+ " (6-14)

(6-2) When 0. = 0 above (not random), the value of/_ given
in (6-12) remains unchanged, but the loop parameters
are somewhat different:

6-B. Optimum Filter for Random Phase Offset

When d(t) = 0o, where O,, is a uniforndy distributed 2 '_
random phase offset, we find r... fl

AK

Lo,,t (at) -- (3N,,),_' -XA,r (6-6) rt when O,,= 0.
at+ r= 2 (so¢=0.707)

3B
xAr wL - 2(2),._

W,, = wL - 2(3No)V, (cps). (6-7)

1. Choice of lParameten

6-C. Optimum Filter for Frequency and If we design the loop optimally to lock onto an fl.
Random Phase Offset appearing at the bandwidth edge (i.e., a, = _,bL), the

proper values of r and _ for 0o random are
When d(t)= #o+ riot in which 0o is uniformly dis-

w tributed over (-,r, ,r), it follows that r = 2.o.82
I (6-19)

¢ = 0.755.

" _"+ a-'_._ +_'
Lop, (s) = (6-13) Hence the loop configuration is described by

,,#, \_.s"+ _a"+ _-_-ff;) s + a_- ,, = LS4_/w,_
AK tv[ (6-20)

where the loop natural frequency B is g:ven by r, 1.180
1 + 1.643/wLs

[ A_n.,__. L.,, (s)= I + (LS4,,alw,.)s+ (l.m/w_)e •
# = \ N,_/. (6-12) (6-2_)
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A,, A,,(r4 1)=(t) (rad)The resulting transient error is 4,,s _._,,,j,r,,,_ "* _ t = 4r tt'_. _ '
_r_(r - 1) (6.0.7),_2 - (e-23)

~r ,opt,- On,,[3r(r - 2):']'s These values are minimized,It',"a fixed w_ and s-,,by
= 0.537/wL for r = 2.282 and fl,, -- ewe,. choosing r -- 1. Parameters must be chosen to maintain

less than about 80 de 8 error .:a the loop, and the loop

3, The Effects of Doppler Rates in Second-Order Loops must bc periodically rctuned. Representative types of
transient behavior are illustr:_ted in Fig. II-6-1.

If there is a small doppler-rate term Ao(rad/sec "_)in d(t),

the loop with F(s) -- (1 + r:s)/rts has a steady-state error 4. Comments on the Choice of r in Second-Order

Tracking Loops
A,,r, A,, (r + 1): (rad).

_s" _"_':'r_'"_-- AK = 4r w_. An r between 6 and 10 minimizes the effects of VCO
(6-28) noise, whereas a wdue of 2.0-82(or 2 if 0,, = 0) minimi_'e_.

the total phase error in tracking a frequency offset, and,
When the imperfect-integrator loop filter F(s) ---(1 + r2s)/ further, r = 1 provides the best doppler-rate tracking
(1 + r_s) is used, there is a steady-state growth in phase capability. However, loop performance is generally rather
error insensitive to changing values of r.
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(a} FIRST-ORDERLOOP,PHASESTEP ! (b) IDEAL INTEGRATORSECOND-ORDER

I LOOP,FREQUENCYSTEP

_1 i j L/ I I I I
I/

(C) FIRST-ORDERLOOP,FREQUENCYSTEP (d) PASSIVEINTEGRATORSECOND-ORDER
LOOPI FREQUENCYSTEP

Q>_ SLOPE:_/'O
80 _2o _o

i
V I l I I

(e) FIRST-ORDERLOOP,DOPPLER-RATEINPUT (d) PASSIVEINTEGRATORSECOND-ORDER
LOOP,DOPPLER-RATEINPUT

, ,. A .,,,' _ L,~___o+_,V 1 I I J

f.--._ f

Fig. 11-6-1. Response of first- and second-order loops to various inputs
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CHAPTER7

DF_SIGNOF SYNCHRONOUSDETECTORAGC SYSTE/_tS

7-A. Synchronous Detector AGC Loop 7-C. Calibration Equation

With the AGC device in Fig. 1I-7-1, the AGC voltage The steady-state mean value of AGC voltage c is re-
c(t) is given by lated to the input signal strength a by

c(t)=

(eK.____'a_)( 1 )
r ] a= K,,c + 20 log + _ c + (10 log e)_ -°(201oge_ Kon,(t) + 20 log cos 6(t) -- K,z

C(p) ,_a(t) + \ ea / "_ (db-volts z) (7-10)(7-8)

where Thus, given c, one can infer a value of a. A typical cali-

a(t) = 20 log A(t) (db-volts'-') bration is given in Fig. 11-7-8. The AGC voltage fluctu-
ates with noise; its st_.ady-state variance is approximately

K._oc

C(p)= K,[I+ Ktc,cY(s)] var [c] = ['(201oge)2(_
L \ "= /

Kaec.Kc
KAoc -- 20 log c

wc]+ 2(10loge)_' _ c2(0).
and Y(s) is the AGC loop filter. The other quantifies are (7-9)
given in the Appendix with units. To convert a to db-
watts, subtract 10 log R,, from a, with Ri, in ohms. An
equivalent circuit is shown in Fig. II-7-2. where o_ is the phase noise variance (5-7).

[_ P.ASE-LOCKED_co, (-o'*_ci_)

LOOP

RECEIVER_ _ SYNCHRONOUS

+nO(t)/ OAIN=I/A'(')I A/'2 c°"(_°t+8(t)i+n/(,)= .(,) DETECTOR

c(t)

VOLTMETER_, , AGCGAIN:/,/(,AMPLIFIER_ AGC LOOPyI$IFILTER

%,,,

Fig. 11-7-1. A synchronous-detectorAGC loop, usinga phase-lockedloop to providea coherentreference.
(Theactual phase-lockedloop may be part of the gain-controlled receiver.)
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o(t ) -K R + 20 tog• Kon/ ( t)

+20 Iogcos@--------_ ) _ -_Olog'_-'e" Y(S) ,, _METER

Fig. 11-7-2. Equivalent diagram of an AGC loop. Linearized analysis follows
the nssumptions that A*(t) is exponentially related to c(t) and that

a(t)_a*(t). The input is a(t) = 20 log Air). Adjusted
loop gain a*(t) = 20 log [A*(t) e_/Kj)].

--I10-120

,,Q
"10

-I 30
>

" -DFPARTUREFROMLINEAR_

_ -,40 j_. X_j CALI,;RATION.OWlNG

TODEVIATIONOFDETECTORPHASE

-IsG LOGARITHMICAMPLIRER-_. KR+I¢,4C \ _ REFERENCEANDNON-=: _ CHARACTERISTIC< LINEARFITAT
u HIGHSIGNAL T-i_0- LEVELS

-I'L'O
-' -6 -s -4 -3 -2 -i o

AGCVOLTAGEc. v

Fig. 11-7-3. Measured AGC curve showing departure
from linear behavior
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CHAPTER 8

THE DOUBLE-HETERODYNEPHASE-LOCKED RECEIVER

8-A. Basic Configuration of the Receiver This is the same form that governs the behavior of a
" simple loop when we set

A block diagram is shown in Fig. 11-8-1; the input and

output phases are related by AK = aKdKveoM F (sec-')
(8-8)

6= O--_+(1 +M1)Ol +#.., (rad).

The term F is the dc gain of F(s), viz., F(0).

_= aK_KvcoM F(p) _ sin [O- O-b (1 + M1)Ol + 02]\

8-B. Effects of Band-Pass Limiting

+ n(__ t + MKvco nv(t). (8-6) The parameter a above is the signal suppression factorp derived by Davenport (Fig. 11-8-2). In addition to this,

FREE-RUNNING _ FREQUENCY
OSC LLATOR MULTIPLIERxM I

AND FILTER, KcFls) J_ eO

I r v 1_

I IMULTIPLIER _ VCO FILTER
x M F(;)

#

@.o,,,:.r_,,,,co.[oo,+_,,,]..o,,, @,,,,:,.{..,.[(.o-.,.(,,-,_.,.), �_-_
@.,,,.., oo.[_,.,,._,,,] ,(,,-),,, ,,],. ,,,}
@..,,,,:,.,{_.o.[_.o-_..,),,,,-_].,,.,,,,} @.(,): ,,,, ,,,,
@..(,,-a o0.(.,,,-o,) @.,,,,-_ co.[_. ,v_o,,,,, ,,,,]

'" {_. o0.[(.o.,,-..),,e-_+e,] @.,oo,,,:-....o{.oo,[(.o--.,-c,.-,)-.), .e-_x.tit): 7

+.. (,)} + (, +.,)e, + o,] +. (,)}

_.. @ c(t) = Kc Y(#) ZAGc (t)

Fig. 11-8-1. The double-heterodyne receiver, with equations for signals at each point
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........... ._ - ,sY7,uALE'" - "- --T-I_-_,,,,'
, ! ,_ -d APPROXI ATE,

" ....... T_U--TT_ T o.,_,,+o.,,?,,_ _ ,., .... t tl/
0.862+0069081 - !

i 11/ ..... ,+o._%
IC ....... 1.0 ......

Oa _-..-- _ I_ 0.8-- '

; -LOWER ASYMPTOTE-O.862 I I

o.%.oi I o., I J I I lit I ,, ,o.i i.o io.o iooo o.o_ o.i i.o _oo ioo.o
LIMITER INPUT SNR PH LIMITER INPUT SNR PH

Fig. 11-8-2. Davenport'sbond-pass limiter zonal SNR Fig. 11-8-3. The ratio of band-pass limiter output signal-
curve to-noise spectraldensity to that at input. The

reciprocalof thiscurve gives the limiter

the ratio A-'/No at the lirniter input comes out of the limiter performancefactor P
as A-'/N,,I', where 1" is a factor shown in Fig. I1-8-3.
With the loop filter F(s) -- F" (1 + r.,s)/(1 + rls), we 1 + 0.345/},,p = (848)
thus have (linear theoretic approximation): 0.862 + 0.690p,

a2 NowLp_ P ( a ) (rad:)- A _ m(1 + ro) 1 + _ao ro' A o = NowLo (watts) (10-1)

(8-19)

(_Ym = (10-2)

aKaKvcoM Fr'."_, a
r = = _ ro (8-14)

71 _o

(_:,_)p,, = m - . (10-8)
Uj

ao, ro. (cps) ( 0.78540, + 0.47_0 _, )_ (8-18)

1 + r

wL - 2r.., = WLo 1 + ro (8-15) a = 1 + 1.0240, + 0.47680

r_' (a)'" w(KaKvcoM F)'r_ _ ro_ (10-5)¢ - _ - a-T (:o (5-2o) u = 8dw. ro+ 1

-_r ,y'] (,o,)No = TkT (watts/cps) (2-65) ro = _1 + [ 1 + --27 "
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CHAPTER9

BEHAVIOROF PHASE-LOCKEDLOOPS (NONLINEAR ANALYSIS)

9-A. The Spectral Equation where '4'L_ is the loop equivalent bandwidth,

The pba._e-noise spectrum can be approximated by
w_(,q) = S**(O) S**(1o,)d,o (cps).

s..(s) = (9-27)
K_NoF(s)F(-s)

-s 2+,IAK [sF(-s) -- sF(s)] + (AKT) 2F(s)F(-s)
9-D. Behavior of First-Order Loop

(rad2/cps) (9-ll) For F(s) = 1, a better value of T than (9-19) is (see
Fig. 11-9-2)

_7= e-_2/2 (9-14)

= ( sinh a2)'/" (9-18)1 - e-'_ "/'" \ 'r-Se''--7"
- (9-19)

for cr2 < 1. The phase-noise variance is thus a transcend-
ental equation in _r:, whose results are given in Fig. 1I-9-3,

when _'< 1 (rad-_). Then (9-11) can be integrated to

give o'2: N,,K NoWL (9-25)
e-_"/'' (sinh _-)_ - 2A - A:

NowL(_q, (rad=) (9-28)a2 - A 2_,2 At cr_-= 1, the value of N,. WL/A" is 0.857.

4.o y
UASI-LINEAR
APPROXI MATION

0.8 _ __ 30

_____ .--__ LINEAR SPECTRAL

APPROXI MATIOI I

0.6 _,

>" _ __ oJ BEHAV,OR

o., ,.°

I LINEAR

APPROXl MATION

0
o o, o8 ,z ,6 zo o

o_ o ,o _o _o ,o
,Vo,,_/__•_Vo_/_A

Fig.11-9-2. Variation of the parameter 7 as a function of
"_" the Gausslanvariance a=,for various formsof Ree{r). Fig. 11-9-3. Comparisonof linear, quasi-linear, and

Note that, for a_ < 1, there is not a significant linear-spectralapproximate methodswith the
dependenceon the form of Rtdr). actual behaviorof the first-order loop
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,o S" w'(")/w'°

/

. \-2-f ,,,

_ NONLINEAR THEORY

_o O.I LINEAR THEORY _/ X

w
U
Z

W
ffl

-
0
Z

<
Z

GO!

X

X '"

o Io ,s 20 2s 30 3s

SIGNAL STRENGTH, clb ABOVE ,402 : NoWl. 0

Fig. 11-9-4. Comparison of linear and nonlinear theories for second-order, constant linear bandwidth loop, i.e.,
the value of r is kept constant at ro = 2.
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_<
n..

o
z

bJ
(n

.I-
o.

0.oi

o.001
o _ ,o ,5 20 2_ 30 _s

SIGNAL LEVEL, db ABOVE A(_ = NOWLo

Fig. 11-9-5. Comparison of phase-noise variances by linear and linear-spectral approximations. The noise density
is fixed, and the signal level is varied. The value of r is taken as ro --- 2 at a reference signal level of

_.. Ao2 = 3Nd2_-2 = NowLo. Nora that the ultimate roll-off is 5db/decade, rather than 10db/decade,
as in Fig. 9-4. Note also that even the linear approximation produces some curvature of oj near A_.
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9-E. Calculation of Behavior of the 1
Second-Order Loop

With the usual passive-integrator filter second-order
I00 /

loop, J _-

wLceq_ _ 1 + r7 - J

' wL (1 + r, [1 + 2(3,- _7,]V'rr.. (9-29, ,o __'__7_ __'- _-_(eq, '

_"-'-= ,_[1+ 2i,- _;,]" <9-33/rv_ -t

OI
6 5 ,o ,5 zo z5 30 35

These, with (9-28) above, specify the loop behavior. SIGNAL LEVEL, db ABOVE .4 2 = NOWLo

Fig.11-9-6.Variation in bandwidth and damping param-
etersas a functionof signal strength.Thevalue of •

Figures 11-9-4, II-9-5, and II-9-6 indicate the true loop at a reference signal level Ao== 3No/2r= =
behavior compared with that predicted by linear theory. NowLo was taken as ro - 2.
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CHAPTER10

DESIGNING A DOUBLE-HETERODYNETRACKING LOOP

, IO-A. Definition of Receiver Threshold _ = (1 - e-")/o _ (10-Sf)

Threshold is defined as a signal level A o such that 18
= e-""/a: (10-6g)

A2o= Nowt.,_- No(ro + 1) (volts2) (10-1)

2r2 I1+ a 1

-- rq I

1 + r a., (cps) (10-Sh)(assuming rot, >>r_). The loop is not acting linearly at w,, - 2r._ - WL. 1 + r.

this signal level; nevertheless w_.o is the bandwidth a
linear loop would have at A = A,,. 1 +

WL(eq) _---

IO-B. Tracking Loop Performance of the

Double-Heterodyne Receiver = to, o 1 + ('-_o '_r,,, (cps) (10-6i)
The ratio (A/Ao)'-' is the receiver margin: l_ro

m = (A/Ao)=. (10-9.) \'_ '_ _'" r '_'
- -'--) ¢°= - I (10-Sj)With measured parameters W,,,KdKvcoMF. rz, and r. the _ r'/'2 k(,zoa _a-, j 2"

value of ro can be calculated (when lOw% < w.) as

_ ¢o (10-6k)

-ro= 1+ 1+ (a \

1e' - k a,, • / (rad')
U = _'(KdKvc°MF)Z r'3, (10-4) A2"r2- 1 +ro

8r_ w. (10-Sin)

_ ro 2wj. _ ' I ' '/"2WL" (10-Sn)
- ro+---'-'T /_- r+l _'_'o ) r,,+l

The only modifications to the linear theory in Chapter 8 3.8

that need concern us for ,r" < 1 are that A is replaced by
AI,, r by ry, and w,. by WL_._). The resulting equations d p/-1 '_.,

that specify loop behavior are d_ 3_ ,-o'.5 i
m -5.6
w p !

-p, = m _.-- /,-0.01 I_

[ 0'7854p'+O'4768p_ ] '/" (10-6b) . I .:.<a = 1 + 1.024p,, + 0.47flSp_ ' - _"_"_ I
IE 3.1 _ ...... ----+---------- -- --

I i*°1+ o._sp. (1_6c)., S/
P = 0.862 + 0.690p, s.o , 4.s

I 10 100 1000

, .o.,.
"" Fig.11-10-1. Variation in margin producingo_ ----"1 as a

"SinceN. = kTR/2 (volts'/cps),thethresholdsignalpowerIs functionof thresholddesign parameter,
P. = A2o/B: kTwL/2 : kTb,, (watts). ro = aoKaKvcoMFr_/rt
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IO-D. The Signal Level Producing 0 .2 - I ltence the _= = 1 margin is about 5 db at r. = 2. (This
result is shown in Fig. II-10-1.)

The signal level A z, producing o2 = 1, corresponds to
a margin m, approximately equal to

IO-E. Choice of Receiver Parameters

m, = 2r,(ro + 1) 1 + 1 + 4(to + 12_ Choosing values of No, wLo,Ka, Kvco, MF, and w,• ' F_ roz specifies a typical receiver design. However, the only
parameters required to Flot performance are m, 7,,, P,'o /

• and perhaps r..,/r, tr.,/r, is _o[ nccd_d if r, >>r=). Such
8.13 (for r,, = 2). (10-8) plots are given in Figs II-10-2 and II-10-3.

I00

'__ /._-_- NONLINEAR THEORY.

LIMITER COMP ENSATION

J ....

"o

¢* LINEAR THEORY, NO
O
_. LIMITER COMPENSATION
e,
tu

<1
'T"
Q.

0
0
.,J

VO: 2

" wLo/wM : IO-$

lr|/r| : I0 "3

I

0 S I0 iS 20 _6 _lO 3S

MARGIN m, clb

Fig. 11-10-2. Comparisonof linear and nonlinearapproximations to loop rmsphase error, as a function
of loop margin
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ASYMPTOTE 24 opt

..... f

7
I0 ...... _

WLleq), cp$

I

i r 0 = 2.0
| =
I wL 0 1.0

"0/w": ,0 "3

1 ,,/,, = 10-'

i "

OJ i

0 S tO tS 20 25 30 3S

MARGIN m, db

Fig. 11-10-3. Variation of loop bandwtdths and damping factors, os a function of loop margin
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ePPENDIX

Nomenclature

Those symbols used throughout the text are listed here, along with assigned
names, proper units, and the equation number that either defines the quantity,
gives its first use, or else refers to its approximate point of first introduction.
Quantities labeled "abs" are dimensionless. /

b

a either mean value of a(t) below, or square d(t) doppler phase function on input signal, rad,

root of a2 below. (3-11).

a_ coefficients in expansion of p(ffl, 4)2),(9-5). dl(t) time-varying part of doppler phase function

a2 valiance of _(t), in rad", (9-4). on input signal, rad, (5-9).

a(t) input rms signal A(t) expressed in db-volts-', D(s) doppler phase function in s-domain, D(s) =

(7-4). .C[d(t)],(s-12).

ad(t) that part of a(t) due to deterministic and non- e VCO tuning bias, volts, (3-5).

stationary changes in signal, in db-volts z, eo AGC gain-adjustbias, volts, (7-1).

(7-11). E( ) statistical expectation operator (2-1).

av,(t) :ha" part of a(t) due to stationary random f frequency variable, cps. 19

signal fluctuations, in db, (7-11). fl first IF frequency, cps, (8-1). 19

_'d(s) the Laplace transform of ad(t), (7-13). fz second IF frequency, cps, (8-1).19

a*(t) adjusted receiver attenuation A *(t) expressed fhl first-mixer heterodyne frequency, M times

in db-volts2,(7-4). VCO output frequency, cps, (8-1). _9

A rms signal amplitude into loop, volts, (3-1). f_z second-mixer heterodyne frequency, from in-

ACt) rms signal amplitude into receiver at time t, ternal oscillator, cps, (8-1). 19

in volts, (7-1). F (finite) de gain of loop filter, abs, (8-8).

A*(t) receiver attenuation factor at time t, abs, (7-1). F(s) linear loop-filter transfer function, (8-7).

Aa(t) nonstationary part of A(t), in rms volts, (7-12). ff Fourier transformation operator.

A¢(t) stationary gain fluctuation part of A(t), abs, g conductance of diode, or transconductance of

(7-12). triode, mhos, (2-66).

A1 receiver rms signal level producing _ = 1 g(r) VCO noise term coefficients, abs, (5-28),

rad, volts, (10-7). G conductance, mbos, Fig. 2-9.

bu fiducial (one-sided) bandwidth of the linear G,,(i_) single.sided spectral density of x(t), voltsZ/

transfer function H(s), cps, (2-.'37). eps, (2-26).

Bu equivalent noise (olle-sided) bandwidth of h Planck's constant, 6.625 × 10-u joule-see,

the linear transfer function H(s), cps, (2-27). (2-58).

! c, c(t) AGC control signal, volts, (7-8). h(t) un;t-impulse response of linear filter H, volts,

_ (7 capacitance, farads. (2-14).

C(s) AGC closed-loop transfer function, (7-6). _'Maytakeon a negativevalue.

!
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H a filter operator, Section 2-B. n(t) simple loop baseband noise waveform, volts,

H(s) linear filter transfer function, .L'[h(t)], (2-26). (4-3).

i(t) current, amperes, (2-54). N,.(t) equivalent VCO noise referred to VCO input,

lr V_-'s_,the imaginary unit. volts, (5-9_,4).
N noise power out of linear filter, volts _',(2-23).

k Boltzmann's const:mt, 1.38 × 10-2_joule/°K,

(2-58). No noise (two-sided) spectral density, volts2/cps,

k(r) maximum normalized lock-on doppler rate, (2-20).

abs, (3-43). Noo receiver input noise (two-sided) spectral den-

K KI K,,Kvco, equivalent simple-loop gain, volts-asec -1, sity of no(t), volts.'/cps, Section 8-A.

(3-8). N �noise(one-sided) spectral density, volts.'/cps,

Ka rms VCO signal output, volts, (3-2). (2-27).

K_ receiver AGC attenuation, db/volt, (7-3). No,. VCO adjusted input white-noise density,

K^ac AGC-loop equivalent loop gain, abs, (7-6). (rad/sec)'-'/cps, (5-25).

Ke AGC amplifier gain, abs, (7-6). Nap VCO adjusted input 1/[ noise density,

/G phase detector gain, volts/rad, (8-2). (rad/sec):_/cps, (5-25).

Ko AGC detector gain, (volts peak out)/(volts p Heaviside operator, d/dt, (3-6).

rms in), (7-3). p(A) probability density on A, abs, (2-1).

K, first IF gain, abs, (8-1). p(s) denominator of F(s), (3-15).

K_.' second IF gain, abs, (8-1). P input signal power, A z, volts 2, (2-29).

K,, mixer gain (simple loop), volts -1, (3-4). Pv power in y(t), volts 2,(2-19).

K_ adjusted receiver attenuation with no AGC, q(s) numerator of F(s), (3-15).

db, (7-3). Qo resonance quality factor, _oL/R, abs, (2-57).

Kvco VCO gain constant, rad/sec-volt, (8-5). Q(s) numerator polynomial of D(s), (6-1).
Kr,o actual receiver attenuation with no AGC, db,

r second-order loop-parameter ratio AKr_/rl,

(7-3). abs, (5-14).

I limiter rms output level, volts, (8-2). R_ resistance, ohms, Fig. 2-9.
L inductance, henries, Fig. 2-9.

R_y(tl, t_) statistical cross-correlation between x(tl) and

L 2 maximum value of IL(ico)12,abs, (5-4). y(&), volts _, (2-4).

L(s) linear loop phase-transfer function, (5-3). R_(r) statistical autocorrelation of stationary proc-

Laplace transformation operator, ess x(t), volts z, (2-5).

m receiver marginabovethreshold, abs, (10-2). ..q_(r) time autocorrelation of the function x(t),

M VCO output frequency multiplication factor, volts", (2-6).

abs, (8-1). s complex frequency variable, rad/sec.

M_ internal oscillator frequency multiplication S output signal power of linear filter, volts _,

ratio, (f_/fh..,)-1, abs, (8-4). It must be a ra- (2-33).

tional number, and may be negative. S,c(joJ) two-sided spectral density of stationary proc-

._. no(t) receiver input noise waveforw, volts, Sec- ess x(t); _[R_(T)], volts_/cps, (2-8).

tion 8-A. _([w) two-sided spectral density of function x(t);

n,(t) loop input noise waveform, volts, (4-1). _ [ _Rz_(r)], volts_/cps, (2-9).

!
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Sis ) spectral density of total phase-error, rad°/cps, "/tp sinusoidal-error function total-power transfer

(5-23). ratio, abs, (9-15).

S'(s) spectral density of total AGC error, (db- 82 modulation distortion, rad2, (5-6).

volts_)Veps, (7-13). 8_ock first-order loop "in-lock" constant, rad, (3-27).

t time, see. 8r(t) rectangular unit-pulse function, volts, (2-13).

tl, to specifc instants of time, see. 8(t) Dirac delta function, lim ST(t)as t--_ _, (2-13). /
. &cq first-order loop phase-acquisition time, see,

(8-27) _r total transient distortion, rad2, (5-9).

ttr_ ,cq second-order loop frequency-aequisition time, _¢ loop tracking error, rad, (8-7).

see, (3-84). ¢ linear loop damping factor, abs, (5-20).

T, TN equivalent noise temperature of receiver, °K, ¢(_q) nonlinear loop eqaivalent damping factor,

(2-58). abs, (9-83).

Te cathode temperature of diode or triode, °K, ,j Bussgang coefficient, abs, (9-8).

(2-66). 0i phase angle, rad.

U receiver measured-parameterratio, abs,(10-4). O, 0 (0), initial value of loop phase offset, rad,

v(t) VCO output, volts, (3-2). 3-13).

w, two-sided fiducial bandwidth of linear filter #(t) or 0 input signal phase function, rad, (3-1).

H(s), eps, i2-87). _it) or _ loop estimate of O(t),rad, (3-2).

wL two-sided fiducial linear loop bandwidth of x2 Lagrange multiplier, sec-_, (5-22).

phase transfer function L(s), eps, (5-8). _ d_'_(0 +), the nth doppler moment, rad/

wLc,,_ equivalent two-sided fidueial bandwidth of sec_, (3-15).

loop output spectrum, cps,(9-29). IL mean of a stationary random variable, volts,

W, two-sided noise bandwidth of a linear filter (2-12).

H(s), eps, (2-24). tL(t) mean of a nonstationary random variable,

Wr two-sided noise bandwidth of a linear loop ,, volts, (2-10).

whose phase transfer function is L(s), eps, = 3.14169...

(5-4).
,, Pv signal-to-noise ratio of y(t), abs, (2-85).

x(t) arbitrary time function.
,r2 variance of stationary random variable x, (x

X(s) Laplace transform of x(t), .E[x(t)]. _ units) 2,(2-12).

y(t) time function. 02 (t) variance of nonstationary random process x(t)
a_

Y(s) AGC loop-filter response, (7-5). at time t, (x units) 2,(2-11).

z(t) time function, o0 variance of loop phase-noise, rad 2, (5-7).

Z(/o,) complex impedance function, ohms. o2 variance of loop phase-noise due to noise inVCO

a signaI voltage suppression factor, abs, (8-1). VCO, rad 2,(5-26).

ao value of a at threshold, (10-6). ¢ t_ - tz, time difference, variable of/L,(r), see,

// second-order loop natural frequency (2-4).

(AK/rl) v', rad/sec, (6-12). rx second-order loop denominator time constant

_(s) sinusoidal-error spectral ratio function, abs, oi F(s), see, (3-28).

(9-7). _'2 second-order loop numerator time constant of

•_ _,(0). F(s), see, (8-28).
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#(t) -- ff two-heterodyne loop detector error (same as o,hz second mixer heterodyne frequency, from

c, for simple loop), rad, ($-8), (8-6). internal c_scillator, rad/sec, (8-1).1"

_ss steady-state loop detector phase error, rad, 1" limiter performance factor, wzpz/wupu, abs,

(3-12). (8-17).

_o initial value of loop detection phase error, tad, A0 initial value of doppler phase-rate, rad/see "°,

(3-32) (3-13).

ev stationary equivalent phase-error process, _2 mean-square phase error, _-ad2, (5-6).
rad, Section 4-B.

.¢o total mean-square phase error, rad 2, (5-22).
o, angular frequency variable, rad/sec. "-r

o,0 VCO short-circuit output frequency, rad/sec, qJ(t) modulation phase function, rad, (3-11).

(3-1). t-z= fl(t) _(t), loop frequency error, rad/sec, (3-20).

o'max frequency at which IL(i_,)l is maximum for fl0 initial value of loop frequency offset rad/sec,
second-order loops, rad/sec, (5-15). (3-12).

oa first IF frequency, rad/sec, (8-1). 1' f_m= maximum value of f_ for which loop locks in

w2 second IF frequency, rad/sec, (8-1)/:' absence of noise, rad/sec, (8-28).

tohx first mixer heterodyne frequency, M times

VCO output frequency, rad/sec, (8-1)/_' "May take on a ttegativevaittc.

93
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