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A GENERALIZED CORRELATION OF VAPORIZATION TIMES OF DROPS IN FIIM BOILING ON A FLAT PIATE

by Kenneth J. Baumeister,® Thomas D. Hamill* and Glen J. Schoessow’

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio

ABSTRACT

A theoretical dimensionless correlation for the vaporization times of discrete liquid masses in the
Leidenfrost state is presented and verified experimentally with data in the literature. The correlation
is presented as a single curve relating a dimensionless vaporization time to a dimensionless initial
liquid volume. The correlation works well for the entire gamut of initiml liquid volumes from spherical
drops to large pancaked blobs for which experimental date exist.

AUSZUG

Eine theoretische dimensionslose Beziehung flr die Verdunstungszelten diskreter fliussiger Massen im
Leidenfrostzustand, die im Versuch mit Angaben im Schrifttum Uberpriift wurde, wird angegeben. Die
Beziehung zeigt s1ch als eine Einzelkurve des Verhaltnisses zwischen einer dimensionslosen Verdunstungszeit

und einem dimensionslosem fluss:.gem Anfangsvolumen,

Die Beziehung ist anwendbar auf dem ganzen Bereich

flissiger Anfangsvolumen, von spharischen Tropfen bis zu flachkugeligen Flecken, fir die experimentelle

Ergebnisse vorhanden sind.

AHHOTALMA

[lpuBOIUTCA ¥ TOLTBEPRIAETCA JIKCIEPUMEHTANBHEMHE INAHHEMU B JUTEPATypPe, TeOpPeTUUeCKAHd
6espasMepHad KOpPpPENANUA BpeMeH UCIAPEHHMA IHCKPETHHX XHAKHX Macc B cocroAsum Jeitnerdpocra.
Koppenanus npejgcrabBisdeTcA Kak eLWHaf KPUBafg CBA3HBALEAA 6e3pasMepHOe BPEMA HCIAPEHHA C
6espasMepHHM HauaJbHHM O6BeMOM XRMIKOCTH. KoppenAuwmsa cupasenausa nag Bcell raMmb HauaJdbHEX
061eMOB RUIKOCTH OT chEepPHUECKAX Kanedb L0 GOXBNMX NPUNIKNCHYTHX Kanedb LIS KOTOPHX HMMEnTCHA

OKCIepUMEeHTaJbHHEe LaHHHE.

INTRODUCTION

If a quantity of liquid is placed on a suffi-
ciently hot plate, the ligquid will evaporate in
the immediate vicinity of the plate at a rate
sufficient to support the liquid. This phenomenon
is referred to in the literature as either Ieiden-
frost boiling or film bolling. There are two
broad categories of general interest that experi-
mental work falls into (Fig. 1):

(1) A continuous or infinite amount of liguid

resting on the plate

(2) Discrete or finite amounts (drops) of

liquid.

The discrete range (Figs. 1(a) to (e)) has
many interesting problems associated with it that
are absent from the continuous range. Figure 1
shows a series of possible states that belong to
the discrete and the continuous ranges. The addi-
tional importent variables in the discrete range,
which are not associated with the continuous
range, are the volume of the liquid mass and the
drop shape; that is, the experimentalist working
in the discrete range has one additional independ-
ent variable, the volume of the liguid placed on
the plate. For very small volumes (Fig. 1(a)) the
shape of the drop is nearly spherical., With
larger volumes (Fig. 1(b)) the drop tends to flat-
ten out into a disk. The thickness of large
masses of liquid, called extended drops, tends
toward an asymptotic value (Fig. 1l(c)). For very

Lewis Research Center. National Aeronautics
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large volumes, bubble breskthrough starts occur-
ring (Figs. 1(d) and (e)).

Many of the problems associated with the dis-
crete boiling range are examined in [1 to 11].%* In
particular, Patel and Bell [7] show that bubble
breskthrough (Figs. 1(d) and (e)) is consistent
with the prediction of instability theory for sub-
merged surface film boiling. A numerical proce-
dure for calculating the vaporization times of
spherical drops (Fig. 1(a)) is presented in 8],
while a theoretical analysis of heat transfer to
large and extended drops (Figs. 1{b) and (c)) is
presented in [5] and [9]. Recently, Baumeister,
Hendricks and Hamill showed that metastable
Leidenfrost £ilm boiling (Figs. 1(a) to (c)) can
occur for plate temperatures as 1low as the satu-
ration temperature of the liquid [11].

This paper presents a theoretical correla-
tion along with experimental confirmation that
allows an a priori prediction of the heat-transfer
area, heat-transfer coefficient, and vaporization
time for any fluid, wall temperature, and liquid
volunme.

METHOD OF ANALYSIS

The vaporization time of a discrete liquid
drop in Leidenfrost boiling on a flat plate can be
found by a direct integration of the interface
energy balance:

P St = br(VA(V)a (1)

The functional form of the heat~transfer coef-
ficient will be that presented in [5 and 9]. In

T™M X-52177
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these references, a cylindrical model is used to
predict the heat transfer. From [9]

1/4
K\ g 0y /
hy = 0.68|—em¥. (2)
ML

where the properties are evaluated at the film
temperature,

L = = geometry factor (3)

and

-3
x*=7\<1+27—09i£> (4)

The heat-transfer expression given by Equa-
tion (2) is an analytical expression for the heat-
transfer coefficient that would exist if no radia-
tion from the plate to the drop existed; however,
radiation is an important heat-transfer mechanism
to consider, especially for high plate tempera-
tures. Therefore, the total heat-transfer coeffi-
cient to be used in the integration of equation
(1) is given by

h
hp = = (5)

where f is the radiation correction factor. The
radiation correction factor f 1is presented in
the Appendix. For convenience and mathematical
simplicity, Equation (1) is integrated by using a
conductive heat-transfer coefficient rather than
the total heat-transfer coefficient. After Equa-
tion (1) is integrated, a mean value of the radie-
tive correction factor f 1is used to give the
correct vaporization time.

Equation (1) still cannot be integrated since
the heat-transfer area A and effective geometry
factor Le in the heat-transfer expression
(Eq. (2)) are unknowns. Thus, the problem of
determining these guantities is of paramount impor-
tance in computing the vaporization time. A de-
tailed method for computing the shape of the liguid
drop by solving the Laplace capillary equation (see
Fig. (2)) is presented in [4]:

L

T

+ ==

1
2

£ (6)

[

The Iaplace capillary equation relates the
surface tension forces and the pressure difference
acrogs the surface of a drop. From the drop shape,
the geometric paremeters A and Lo can be deter-
mined.
In summary, the vaporization time for & liquid
drop of volume V can be calculated by integration
of the interface energy balance given by Equation
(1). The procedural steps necessary to perform
this integration are as follows:
(1) Solve Equation (6) to determine the shape
of the liquid drop for & given liquid volume
V in terms of the basic fluid properties.

(2) Determine the heat-transfer area and L.

(3) Substitute the value of Lo into the heat-
transfer equation (Eq. (2)) thereby giving an
expression for the conductive heat-transfer
coefficient in terms of the basic fluid
properties and the drop volume V.

(4) Substitute the functional form of he and
A into Equation (1) and integrate for the

total vaporization time +t. which assumes
only a conductive and convective heat-
transfer mode to the drop.

(S) Apply a mean value of the radiation cor-
rection factor f (presented in the Appen-
dix) to the expression for the conductive
vaporization time to give the actual vapor-
ization time.

DROP SHAPE

A liquid drop not wetting its supporting sur-
face, as in Leidenfrost film boiling, has the gen-
eral shape depicted in Figure 2. The shape can be
found by solution of the Ieplace capillary equation
(Eq. (6)). Equation (6) was nondimensionalized and
transformed into a coupled pair of ordinary non-
linear differential equations, which relate the
radius of curvature and the pressure difference at
any point on the surface of the drop. The coupled
equations were solved by a numerical integration on
an IBM 7094 digital computer. The details of the
transformation and numerical integration of the
equation can be found in [4] along with an experi-
mental verification of the numerical results.

For a given drop volume, the maximum drop ra-
dius and an average drop thickness 1, defined by
the equation

L= (7)
2
max

were determined from the numerical solutions.

The numerical results are shown as a dashed
curve in Figure 3. The dimensionless groups shown
in Figure 3 are defined as follows:

v
v —ﬁ-(agcf - (8)

P8

1*

e (9)

e

From the universal curve, the average drop
thickness and maximum radius can be determined pro-
vided the surface tension and density of the liquid
are known. For purposes of calculation, this curve
is broken into three asymptotic ranges.

Extended Drop Domsin

The extended drop domein is defined as the
domain in which the thickness of the drop is in-
dependent of drop volume. TFor extended liquid
drops the universal curve (Fig. 3) approaches a
slope of 3, which agrees with the physical observa-
tions that the thickness of the drop approaches a
constant asymptotic value. From Figure 3 the ex-
tended drop region is defined for the domsin of V*
where

v* > 155 (10)

The average drop thickness in this domain is given
by

og, 1/2
1= 1.85(P——) (11)
18
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This equation is independent of the volume of the
drop and provides a method for computing the asymp-
totic drop thickness.

In addition, according to step 2 in the sec-
tion METHOD OF ANALYSIS, the heat-transfer area for
large cylindrically shaped extended drops can be
defined as

A= (12)

)<

Therefore, when Equation (11) is substituted into
Equation (12), the heat-transfer area of an extended
liquid drop is

-1/2

g
A= o.54v(-—°) (13)
Y

Large Drop Domain

The large drop domain is defined as the domain
where the drop is disk-like in shape and where the
thickness varies as a function of its volume, as
compared with the extended drop whose thickness
remains constant. The large drop region exists in
the volume range where

0.8 < V¥ <185 (14)

as can be seen in Figure 3. The average drop
thickness in this region is

1= o.e(ﬁ)l/4 v/ (15)

P8

In the same mamner as in the extended mass
region, the heat-transfer area in this region is
also defined by Equation (12). Substituting Equa-
tion (15) into Equation (12) gives for the heat-
transfer area

A= 1.25(&>-l/4 /8 (16)

P8

This equation is applicable for drops intermediate
in size, between small spherical drops and extended
drops of constant thickness.

Small Drop Domain

When small guantities of liquid are in film
boiling on a hot plate, their shape is nearly
spherical. Thus, the average drop thickness de-
fined by Equation (7) goes to a limiting value for
small spherical drops:

v 4
1=K= =gr (17)

But for a sphere

r (18)

5 ( %\)1/3

Therefore, dividing Equation (17) by Equation (18)
gives for small drops

l*

ot
ooy 0.83 (19)

As can be seen in Pigure 3, the universal
curve approaches this asymptotic value of 0.83.
From Figure 3, the small drop domain is taken to
exist in that region where

< 0.8 (20)

Thus, in this region the drop thickness is given by
1 = 0.83 V1/3 (21)

The heat-transfer coefficient (Eq. (2)) de-
rived in (9] was based on the assumption that a
uniform gap existed beneath the drop; however, this
is clearly not the case when a small drop is rest-
ing on the surface. Consequently, the effective
heat-~transfer area is expected to be greater than
the projected area of the sphere but less than the
surface area of the lower half of the sphere; that
is,

arf < A < 2nr2 (22)

Therefore, as an engineering approximation,
the effective heat-transfer area of the sphere was
taken as the average of the projected and surface
areas; that is,

2

nr- + anz

A= 3

= 1.5 nr? (23)

The effect of the preceding approximation was
tested against the experimental data of Gottfried
[2] and is reported in a later section entitled
UNIVERSAL VAPCRIZATION TIME FROFIIE.

For a sphere,

r = (%)1/3 (24)

Substituting Equation (24) into Equation (23) gives
55 /3 2/
A= 1L.5{=% v (25)
as the effective heat-transfer area of a sphere.

HEAT-TRANSFER COEFFICIENTS

Extended Drop Domain

Substituting the value of 1 for large drops
(Bq. (11)) into Equations (2) and (3) gives

3% :I-/4
h —154_7\_‘3’:%& (26)
c - = ATV

for the domain defined by Equation (10). Surpris-
ingly, the heat-transfer coefficient predicted in
this case is independent of gravity. Physically,
therefore, the gap thickness under an extended
liquid drop is independent of the gravitational
environment. In a larger gravitational field,
however, the drop thickness will be thinner and
the heat-transfer area larger, thereby giving rise
to shorter vaporization times in large gravita-
tional fields.
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Note that the preceding observation does not
apply to the near zero-gravity case, since the drop
would not obtain an equilibrium position above the
plate because of the reactive force of the gener-
ated vapor.

Large Drop Domain

Substituting the value of 1 for large drops
and Equation (15) into Equations (2) and (3) gives

1/4
k57\*gl/zp%/z‘p‘ral/zgg/z /
5 (27)

h. = 1.075
arpve!

for the domain defined by Equation (14).

Small Drop Domain

Substituting the value of 1 for small drops,
Equation (21), into Equations (2) and (3) gives

1/4
3.%
~ L A0 N 80,0,

h, = 1. W (28)

for the domain defined by Equation (20). Note that
the heat-transfer coefficient in the small drop
domain is independent of surface tension because of
the fact that all drops if small enough are spheres
independent of the surface temsion. The geometry
factor L, appearing in the heat-transfer coeffi-
cient is also independent of surface tension for
spherical drops.

VAPORIZATION TIMES

Small Drops

The total vaporization time of a liquid drop
can be found by a direct integration of Equation
(1). Substituting Equations (25) and (28) into
Equation (1), integrating, and solving for the
vaporization times give

1/4
( pi’m\‘l \ / 512
te = L2l—m——s ki (29}

& eh Pyt

for the conductive vaporization time.

Thus, according to the definition given to the
radiation correction factor of Equation (Al) in the
Appendix, the actuasl total vaporization time is
given by

1/4
3N /

t = 12—t — y5/12 (30)
SK*QVAT

Rewriting the Equation (30) in terms of V* defined
by Equation (8) gives

i/4

p%/zu)\l;c,s/zgg/z /

t =1.21 ﬁ—-——
k3g7 27\*0\,&[‘3

fv*S/lZ (31)

If a dimensionless total vaporization time £
is defined as

t* = A 77 (32)

p:ZL/ZM‘;os/zgg/z

£ -——7—‘_
k3g7 27\*DVAT3

the dimensionless total vaporization time for the
small drop region is given by the equation

* %5/12

t =1.21V (33)

for the domain defined by Equation (20).

Large Drops

Substituting Equations (16) and {27) into
Equation (1), evaluating the lower integration
limits with Equations (14) and (33), applying
the radiative correction factor, and introducing
the nondimensional variables defined by Equa-
tions (8) and (32) give

t* = 2.25 VY3 - 097 (34)

for the domain defined by Equation (14).

Extended Drops

Substituting Equations (13) and (26) into
Equation (1), evaluating the lower integration
limits with Equations (10) and (34), applying the
radiation correction factor, and introducing the
dimensionless variables defined by Equations (8)
and (32) give

t* = .52 V4 _ s (35)

for the domain defined by Equation (10).

Real Time Plots

Figures 4 and 5 present a comparison of the
theoretical and experimental total vaporization
times for benzene in terms of real time and volume,
as calculated from the equations presented in the
previous sections.

Theory and experiment are in good esgreement
for small drops (Fig. 4), for large and extended
drops (Fig. 5), and even for drops with bubble
breakthrough (10-ml drop).

UNIVERSAL VAPORIZATION TIME PROFILE

A plot of t* as a function of V* over the
complete range of independent variable V¥ is
shown in Figure 6. Some of the data in [1,2,4,
and 6] have been plotted in terms of the dimension-
less variables. The universal relation correlates
quite well the available vaporization data over the
entire gamut of liquid volumes.

Note that no experimental data found in the
literature fall in the small drop range defined by
V* < 0.8; however, Gottfried's experimental data
came very close to falling in this range.

Even though none of the initial liquid volumes
reported in the literature fall into the small drop
regime (V¥ < 0.8) much of Gottfried's data is on
the borderline of this limit (1.5 < V¥ < 5.5).
Calculations show that for the smallest V*
reported by Gottfried, the drop spends roughly
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75 percent of its life in the small drop domain.
The computed vaporization times for Gottfried's
date are, therefore, very dependent on the value of
the heat-transfer coefficient and area computed for
the small drop domain. The verification of the
heat-transfer area approximation (Eq. (23)) is
based on the agreement of calculated data with
Gottfried's data, as shown in Figure 4.

Two empirical correlations derived from dimen-
sional analysis for the vaporization times of small
drops are discussed in [2 and 8]. In one corre-
lation Fick's law diffusion coefficient appears;
however, the diffusional dependency predicts an
infinite evaporation time for experiments conducted
in a saturated vapor atmosphere where there is no
diffusion [12, p. 376 and 4, p. 8). This is con-
trary to fact. The other empirical correlstion
predicts trends in agreement with the present cor-
relation (Eq. (29)), although the functional de-
pendency of the parameters is different.

DISCUSSION OF RESULTS AND CONCIUDING REMARKS

The generalized correlation (Fig. 6) for pre-
diction of vaporization times of discrete liquid
masses presented in this peper is in good agreement
with experimental data. Moreover, the validity of
the correlation with respect to the volume of the
discrete liquid drops placed on the hot surface
applies over the whole spectrum of discrete states
observed experimentally (Figs. 1(a) to (e)).

Bubble breakthrough as shown in Figures 1(d)
and (e) seems to have a relatively minor effect on
heat transfer. On the average, a blob of liquid in
the extended drop region with bubble breskthrough
appears to be equivalent to a flat disk. In all
probability, bubble breakthrough does not alter the
heat-transfer area. The presence of holes merely
increases the perimeter of the bubbly liquid mess
while the area remains constant. If the gap thick-
ness beneath the drop remains fairly constant, the
heat-transfer coefficient will not be altered very
much. The net result appears to be that the total
flux of heat input to the bubbly drop is nearly
equal to that calculated by assuming no bubble
breskthrough. This is not the case for a confined
liquid (Fig. 1(f)) since bubble domes decrease the
effective heat-transfer area.

The vertical scatter of the data points shown
in Pigure 6 appears to result from the experimental
uncertainties in the measured volume, vaporization
time, and surface temperature. Most important, the
surface temperature is reported as a constant value
even though the actual plate temperature varies be-
cause the drop cools the plate [6, p. 33]. There-
fore, the experimental spread in the actual data
(see Figs. 4 and 5) will be, of course, mirrored in
the correlation shown in Figure 6.

The temperature functionality in the universal
vaporization time relations adequately correlated
the data as seen by the real time plots (Figs. 4
and 5); consequently, inverting the correlation
(i.e., computing surface temperatures from observed
evaporation times) should give fairly accurate
results.

The good agreement with theory tends to sub-
stantiate the use of heat-transfer areas obtained
by solving the Ieplace capillary eguation for an
isothermal drop.

5

NOMENCIATURE

A area, cm?
C specific heat of vapor at constant pres-
sure, cal/(g)(oK)

f radiation correction factor

g acceleration of gravity, cm/sec

98 conversion factor,
L g)(cm)/(dyne){sec?)

h heat-transfer coefficient,
cal/(sec)(em? )(OK)

h, calculated conductive heat-transfer coef-

_ ficient, cal/(sec)(em?)(°K)

he average value of he during drop lifetime,
cal/(sec)(cm?)(°K)

hé actual conductive heat-transfer coeffi-
cient, cal/(sec)(cm?)(°K)

h, radiative heat-transfer coefficient,
cal/(sec){cm? )(OK)

hp total heat-transfer coefficient,
cal/(sec)(em? )(°K)

k thermal conductivity of vapor,
cal/(sec)(em)(°K)

Le equivalent geometry factor (see Eq. (3)),
cm

1 average calculated drop thickness (see
Eq. (7)), cm

1% dimensionless drop thickness (see Eq. (9))

P static pressure, dyne:s/cm2

AP pressure difference across surface,
dynes/cm2

r radius, cm

Tmax maximum radius of drop, cm

ry,rp radil of curvature of drop surface, cm

T temperature, °K

AT Ty - Tg, K

t total vaporization time of drop, sec

t* dimensionless total vaporization time of
drop (see Eq. (32))

te total vaporization time of drop considering

conduction (see Eq. (29))

drop volume, cu cm

initial volume of 1liquid placed on hot
plate, cu cm

dimensionless drop volume (see Eq. (8))

distance from plate, cm

gap thickness beneath drop, cm

liquid emissivity

<<
[e]

heat of vaporization, cal/g
modified heat of vaporization (see
Bq. {4)), cal/g
absolute viscosity of vapor, poise
density, g/cm5
surface tension, dynes/cm
Boltzmann constant, 4.876x10-8
k cal/(m2)(hr)(oK4)

>;>"Nmo»N<i

alaTT¥E

Subscripts:

liquid

evaluated at saturation conditions
vapor

wall

€4t
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APPENDIX - EFFECT OF RADIATIVE TRANSPORT ON VAPORIZATION TIMES

The conductive total vaporization time t.
given by Equation (29) has been calculated by
assuming that all the heat is transported by con~
duction and convection in the thin vapor film. Ra-
diative transport has been neglected entirely.
When radiation becomes appreciable at about 450° C,
the theoretical vaporization times will be high.

For wall temperatures up to about 550° C the
following correction factor to to 1is suggested:
let t equal the vaporization time when radia-
tion is present. Then, let f ©be defined by the
equation

t = T, (A1)
where f is a factor less than 1 that accounts for
radiation.

The factor f is also equal to the mean value
of the ratio of the heat-transfer coefficient ob-
tained by neglecting radiation to the coefficient
obtained by retaining the radiation term. By ex-
tension of the analysis in [9, p. 13, Eq. (45)] the
following equation can be shown to be valid in this
temperature range:

f_ii=, 1 : (a2)
b by 5
1+3 C_AT
= 7 %
hcl+'z—o- x

vhere hy, 1s the radiation heat-transfer coeffi-
cient. For the flat disk geometry

h, z%‘%__';gl (83)

The emissivity of the liquid in the tempera-
ture range being considered can be taken con-
veniently as equal to one if data are lacking. The
transmissivity of liquid layers greater than a few
millimeters in depth is effectively zero, and the
reflectivity of liquids for wavelengths in the
infrared is quite small [13, p. 371]. Hence, the
emissivity is very nearly one.

The plate emissivity does not enter the radi-
ation equation because the ratio of the drop to
plate area is effectively zero [2, p. 14]. The
bottom surface ot the drop "sees" the entire plate;
hence, the view factor based on the undersurface
of the drop is unity, which leads to_Equation (A3).

The heat-transfer coefficient h, should be
evaluated at half the initial liquid volume under
consideration because heat-transfer coefficient
he 1is a weak function of volume, and hence this
procedure will give a reasonable estimate of the
effect of radlation over the total life of the
drop.

Equation (A2) also points out that the heat-
transfer coefficients are not simply additive.

For small wall temperatures the equation linear-
izes to

- 0.75 hyp
hp = b, + NS (a4)
7R
1+35 7%

Note that h, 1is not the actual convection
coefficient that exists physically. It is a
quantity calculated with the assumption that radi-

ation is not present. When radiation is present,

%l # b or (85)

z=8

-k

because of the nonlinear interaction of radiation
and convection-conduction heat transport. Some
quantity h(': exists that does satisfy the equa-
tion

2

= = he AT (a6)

2=

and if this quantity were known, then
'
hp = h, + h, (A7)

However, since he 1s given by a simple formule,
a functional relation of the form

hp = £(hy,h,) (a8)

is more desirable. This is precisely the content
of Equaetion (A4), which should not be misconstrued
as a violation of the additivity of coefficients
for parellel heat-transfer mechanisms.
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Figure 1. - Film-boiling states of liquid masses.
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Figure 2. - Schematic of nonwetting liquid drop on flat surface.
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Figure 3. - Universal average drop thick-
ness curve.
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Figure 4 - Droplet vaporization time against temperature difference for benzene.
Initial drop volume, V,, = 0.0116 ¢m3 (data from Gottfried 2]
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Figure 5. - Liquid vaporization time against temperature difference for benzene
(data from Patel and Bell (6 and 7).
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