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HIGH-POWER-LFVEL TEMPERCITURE CONTROLLER FOR SPACE FLIGHT APPLICATIONS 

by W i l l i a m  T .  Har r ig i l l ,  Jr., and L .  Jack Smith 

Lewis Research Center 

SUMMARY 

A so l id-s ta te  duty-cycle control ler  w a s  developed and t e s t ed  t h a t  i s  capa- 
b l e  of control l ing loads up t o  8 kilowatts and 1250O F. 
t o  within +loo F of t h e  design temperature while t h e  cont ro l le r  i s  operating 
under simulated space f l i g h t  conditions. The prototype model i s  capable of 
s tor ing  the  heat losses  involved i n  a short-duration (10-min) f l i g h t .  
tem operates from an 80-volt direct-current  supply with an eff ic iency of 98 per- 
cent.  The temperature sensor used i s  a resis tance thermometer. The design of 
t h e  system includes modular construction techniques, which make it readi ly  
adaptable t o  a vaziety of load and temperature requirements. 

The load can be held 

The sys- 

IYTIRODUCTION 

The design of automatic control lers  f o r  maintaining t e s t  conditions i n  
experiments i s  often complicated by the  var ie ty  of requirements imposed on the  
cont ro l le r .  For experiments t o  be carr ied out i n  space, these requirements w i l l  
become even more r e s t r i c t i v e .  The work described i n  this report  w a s  the  r e s u l t  
of requirements posed by an experiment t o  measure the  zero-gravity performance 
of bo i l e r s  and capaci ta tors  for  Rankine cycle space power systems. Chief 
fac tors  a f fec t ing  t h i s  design were temperature regulation, power leve l ,  power 
source (ba t te ry  packs), efficiency, and r e l i a b i l i t y .  

Temperature regulat ion t o  ?loo F at a bo i l e r  ou t l e t  temperature of 1250° F 
w a s  the desired goal f o r  t he  control ler .  Factors a f fec t ing  t h i s  regulation 
include changes i n  heating load, supply voltage changes due t o  ba t t e ry  d is -  
charge, temperature sensor d r i f t ,  and the  charac te r i s t ics  of both the  control ler  
and the  heaters t o  be controlled.  

The power l eve l s  of t h e  heaters ranged from about 8000 w a t t s  f o r  the  bo i l e r  
t o  1000 w a t t s  f o r  t he  smaller heaters.  Compromises between ba t t e ry  pack vo l t -  
age and bo i l e r  design l e d  t o  requirements fo r  c i r c u i t r y  capable of control l ing 
an average current of 100 amperes. The a v a i l a b i l i t y  of components f o r  these 
current l eve l s  and such fac tors  as eff ic iency and r e l i a b i l i t y  fur ther  compli- 
cated t h i s  design problem. 

Efficiency and r e l i a b i l i t y  considerations are, of course, inherent i n  any 



rocket-vehicle-borne experiment. Efficiency i s  of concern t o  minimize the  
weight of ba t t e ry  packs and also of any heat sinks required t o  absorb cont ro l le r  
losses  during t h e  space experiment. Reliable operation during launch and i n  
t h e  space environment cal led fo r  so l id-s ta te  c i r cu i t ry .  

High power leve ls ,  which a re  r e l a t i v e l y  new t o  space experiments, are  in-  
herent t o  Rankine cycle space power systems research. A s  such research con- 
t inues,  similar control  requirements a re  expected t o  a r i s e  fo r  space experiments 
fo r  which knowledge gained from this control ler  w i l l  be applicable.  

A type of cont ro l le r  wel l  sui ted to high-power, high-efficiency require- 
ments i s  t h e  duty-cycle control ler .  I n  this device t h e  average power i s  con- 
t r o l l e d  by varying the  r a t i o  of on time to off  time of a constant-voltage rec-  
tangular wave. The high eff ic iency of this system r e s u l t s  from the  f a c t  t h a t  
t h e  power control l ing portion of t he  system i s  a switch, which turns  power f u l l y  
on and then f u l l y  o f f .  However, since the  power i s  continuously controlled 
(averaged over 1 duty cycle), t h i s  type of cont ro l le r  has a proportional control 
charac te r i s t ic ,  f r e e  from dead band and temperature cycling inherent i n  on-off 
cont ro l le rs .  

Duty-cycle control  has been used extensively i n  temperature cont ro l le rs  
f o r  ground-based applications where al ternat ing-current  power i s  controlled.  
Such a system i s  described i n  reference 1. Another ground-based application 
of t h i s  technique i s  i n  motor speed control,  where continuous control and high 
efficiency are  desired.  Reference 2 describes such applications.  A space 
f l i g h t  application of duty-cycle control i s  described i n  reference 3. This i s  
a high-efficiency d i r ec t  current t o  d i r ec t  current converter with regulated 
output vo l t  age. 

The design of high-power sol id-s ta te  switching c i r c u i t s  operating from 

The 
direct-current supplies presents a problem. S i l icon  controlled r e c t i f i e r s  
(SCR) have recent ly  become available f o r  switching such high currents.  
control  c i r c u i t s  t o  ensure r e l i a b l e  turn-off of these elements when the  c i r -  
c u i t s  are  operating from direct-current power sources can become complex. 
i s  par t icu lar ly  t r u e  i f  e l e c t r i c a l  noise i s  l i k e l y  t o  be present i n  the  power 
supply. 
on the  vehicle are  operated. The solut ion t o  this noise problem i s  discussed 
i n  d e t a i l .  

T h i s  

Such troublesome noise a r i s e s  from switching t rans ien ts  as other loads 

The cont ro l le r  described herein represents a successful mating of t h i s  
well  known duty-cycle technique with a r e l i a b l e  high-power direct-current 
switching c i r c u i t  t o  produce an a l l - so l id-s ta te  cont ro l le r  t h a t  can be used i n  
f l i g h t  applications.  
t i o n a l  gain cha rac t e r i s t i c  and t h e  high eff ic iency of duty-cycle control  can 
be applied t o  flight-experiment control problems requir ing precise, continuous 
control of high power loads driven from direct-current  power sources. 
t he r  advantage of t h i s  par t icu lar  control ler  i s  i t s  ready adaptabi l i ty  t o  a 
var ie ty  of load charac te r i s t ics .  
temperature-to-duty-cycle converter capable of dr iving SCR switching c i r c u i t s  
matched t o  a var ie ty  of power l eve l s .  

The advantage gdned  from t h i s  work i s  t h a t  t h e  propor- 

A fur- 

This i s  achieved through the  use of a 

2 



The extent of t h i s  work has been l imited t o  t h e  design and t e s t i n g  of a 
prototype system capable of meeting the  requirements outlined fo r  the  heater.  
Testing of t h e  system has included demonstration of r e l i ab le  operation i n  t h e  
presence of simulated e l e c t r i c a l  noise on t h e  vehicle power supply. The e f f ec t s  
of var ia t ion  of c i r c u i t  temperature and power supply voltage were a l s o  measured. 
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SYMBOLS 

defined by eq. (3) i n  appendix 

slope of load charac te r i s t ic  curve 

steady-state t r ans fe r  function of sensor 

steady-state t r ans fe r  function of resistance-to-duty-cycle converter 

heater r e  s i  stance 

change i n  temperature from s e t  point 

design temperature ( s e t  point ) 

switching c i r c u i t  supply voltage 

design value of switching c i r c u i t  supply voltage 

average power delivered t o  load 

average power required by load 

design average power delivered t o  load 

peak power (power at 100 percent duty cycle) delivered by cont ro l le r  

design peak power 

defined by eq. ( 1 2 )  i n  appendix 

duty cycle 

design duty cycle 

angle between horizontal  axis  and load cha rac t e r i s t i c  curve ( f i g s .  8 
and 9 )  

angle between horizontal  axis and power delivered curve ( f i g s .  8 and 9 )  
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DESCRIPTION OF CO?XTROL SYSTEM 

Principle  of Operation 

Figure 1 shows a block diagram of the  temperature control system. A s -  shown 
i n  t h i s  diagram, t h e  System consis ts  of a sensor, an e l e c t r i c a l  bridge, a con- 
t r o l  c i r cu i t ,  and a switching c i r c u i t .  

The sensor i s  a resis tance thermometer which i s  connected as one a r m  of 
the  bridge. The bridge, t h e  control c i r cu i t ,  and the  switching c i r c u i t  ac t  as 
a resistance-to-duty-cycle converter. It should be noted t h a t  the  control 
c i r c u i t  i n  combination with a low-power switching c i r c u i t  .such as a multivibra- 
t o r  can be used as a resistance-to-duty-cycle converter fo r  special-purpose 
data handling. This combination w a s  successfully operated i n  t h i s  manner at 
clock frequencies up t o  3000 hertz without modification of t he  c i r c u i t .  The 
resistance-to-duty-cycle converter generates a square wave of voltage with a 
constant r epe t i t i on  r a t e  whose amplitude i s  e i t h e r  zero or power supply voltage 
and whose r a t i o  of on t o  off  time (duty cycle) i s  inversely proportional t o  a 
change i n  the  resis tance of t he  sensor about a preselected value. By varying 
the  duty cycle of this wave, t he  average power delivered t o  the  heater (and, 
i n  turn,  t h e  temperature of the  heater)  i s  controlled.  

The correct duty cycle i s  achieved i n  t h e  following manner. A t  a predeter- 
mined temperature ( s e t  point)  t he  resis tances  of t h e  bridge a re  selected such 
t h a t  the  bridge i s  balanced. The heater i s  switched off  at the beginning of 
each duty cycle, and t h e  bridge i s  e l e c t r i c a l l y  forced t o  an unbalanced condition 
by the  control c i r c u i t .  This condition i s  then changed by the  control c i r c u i t  
i n  a sequence of s teps  during the  remainder of t h e  cycle. A s  t he  bridge passes 
through balance, t he  bridge output s ignal  reverses po la r i ty  and causes power t o  
t h e  heater t o  be turned on fo r  the  r e s t  of t h e  cycle. If the  temperature of 
the  heater deviates from the  s e t  point, the  change i n  sensor res is tance causes 
t h e  bridge t o  pass through balance at a d i f fe ren t  s t ep  i n  t h e  cycle. 
resul tant  change i n  duty cycle adjusts  the  average power i n  a direct ion which 
tends t o  res tore  the  heater t o  i t s  design temperature. For this new condition, 
however, the  heater must s t a b i l i z e  at a temperature s l i g h t l y  d i f fe ren t  from 
the  s e t  point i n  order t o  es tab l i sh  the  new required duty cycle. The range of 
heater temperatures between the  temperature t h a t  would be established with a 
0-percent duty cycle and t h e  temperature fo r  a 100-percent duty cycle consti-  
t u t e s  t he  control range of the  system. If it becomes necessary t o  exceed the 
control range temporarily, as would be the  case f o r  a la rge  s tep  change i n  
heater load, t he  power t o  the  heater will remain f u l l y  on or off u n t i l  the  
temperature re turns  t o  the  control range. 

The 

Control Circui t  

The primary function of t he  control c i r c u i t  i s  t o  detect  when the bridge 
passes through balance and subsequently generate a power turn-on signal.  The 
control c i r c u i t  ( f i g .  2 )  and, consequently, t he  e n t i r e  control ler  are  driven 
by a free-running asymetrical multivibrator (clock) t h a t  generates 300- 
microsecond pulses at t h e  r a t e  of 160 per second. Sixteen of these pulses are  
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provided each duty cycle, and a bas ic  duty-cycle r a t e  of 10 her tz  i s  established 
( l i n e  1, f i g .  2 ) .  

These clock pulses serve three purposes. F i r s t ,  t h e  pulses a re  used t o  
power the  bridge c i r c u i t .  Second, the  clock dr ives  a binary counter which, 
together with a resis tance sequencer, changes the  balance of t h e  bridge. Third, 
t h e  clock pulse i s  used t o  gate the  output of t h e  control c i r c u i t .  

The main purpose f o r  pulsing t h e  bridge w a s  t o  permit t h e  use of a simple 
alternating-current coupled amplifier ( f i g .  2 )  at the  output of t h e  bridge 
ra ther  than a low-level chopper system or a complicated direct-current  ampli- 
f i e r .  This technique of pulsing bridge c i r c u i t s  has been used f o r  qu i te  some 
time. A s  pointed out i n  references 4 and 5, this scheme i s  normally used t o  
obtain la rge  output s ignals  w h i l e  d i ss ipa t ing  a minimum of power i n  the  bridge 
c i r c u i t .  T h i s ,  however, w a s  not t h e  primary reason f o r  i t s  use i n  t h i s  control 
system. 

Since the  bridge i s  energized only during the  300-microsecond clock pulse, 
the  output s igna l  w i l l  appear as a pulse t r a i n  as shown i n  the  second l i n e  of 
figure 2 .  When the  bridge i s  unbalanced a t  the  beginning of t h e  cycle, t h e  
output s igna l  i s  negative and becomes more posi t ive f o r  each of t he  succeeding 
1 6  s teps .  A turn-on s igna l  w i l l  be developed at the  input of t he  switching 
c i r c u i t  when the  bridge output becomes posi t ive.  The switching c i r c u i t  switches 
on ( l i n e  4, f i g .  2 )  because of t he  f irst  of these s ignals  and remains on u n t i l  
t he  end of t h e  cycle. The remaining information i n  f igure  2 w i l l  be discussed 
i n  t h e  descr ipt ion of t h e  gate.  

The bridge balance i s  changed i n  d iscre te  s teps  by the  resis tance 
sequencer ( f i g s .  2 and 3)  ra ther  than i n  a continuously var iable  manner. 
technique i s  reported i n  reference 6, where capacitance i s  t h e  e l e c t r i c a l  
quantity t o  be varied,  and i n  reference 7, where resis tance i s  varied.  The 
resis tance sequencer changes t h e  bridge balance i n  1 6  equal s teps  by varying 
the  e f fec t ive  resis tance of one arm of the  bridge. This i s  accomplished by 
connecting a known r e s i s t o r  i n  se r i e s  w i t h  a diode from t h e  output of each 
stage of a four-stage binary counter t o  the  junction of r e s i s t o r s  5 and 6 i n  
the  bridge c i r c u i t .  A s  t he  counter i s  t r iggered by each clock pulse t o  a new 
posit ion,  a d i f f e ren t  p a r a l l e l  combination of res is tances  w i l l  be switched 
across r e s i s t o r  5. T h i s  process provides a t o t a l  of 1 6  combinations of r e s i s t -  
ances. 
a binary (8, 4, 2,  1) manner, t h e  e f fec t ive  resis tance w i l l  be changed i n  
almost equal increments provided the  t o t a l  change i s  s m a l l  i n  comparison t o  
the  bridge resis tance R5. 

This 

When the  values of these resis tances  (R1, R2,  Rg, R4)  are  weighted i n  

The descr ipt ion of t h e  resis tance sequencer can be summarized by s t a t i n g  
t h a t  it ac t s  as a var iab le  r e s i s t o r  with a range equal t o  t h e  t o t a l  change i n  
t h e  combinations of R1, R2,  R3, R4, and and i s  stepped through i t s  range 
( i n  equal increments) once each duty cycle by the  clock. 
selected f o r  t he  prototype t o  assure a temperature detect ion of l e s s  than lo F. 

R5 
Sixteen s teps  were 

When the  var iab le  r e s i s t o r  and t h e  sensor are  connected i n  t h e  bridge, a 
change i n  sensor res i s tance  and, i n  turn,  a change i n  heater temperature are 
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detected at the  output of t he  bridge. 
place as discussed i n  the  sect ion Principles  of Operation. 
seen t h a t  t h e  control  range of t he  system i s  i n  e f f ec t  set by t h e  range of t he  
var iable  r e s i s t o r .  
i s  based on two conditions: f irst ,  t h a t  t he  temperature of t h e  bo i l e r  w i l l  
remain within t h e  required overal l  accuracy of control  (*loo F) f o r  a 100- 
percent change i n  duty cycle; and second, t ha t  readi ly  avai lable  res is tance 
can be used t o  implement t h e  resis tance sequencer. 

A correction i n  duty cycle then takes 
Thus, it can be 

The select ion of t he  control  range of t h e  prototype (+70 F) 

From figure 2, it can be seen t h a t  a gate i s  used between t h e  amplified 
bridge output and t h e  switching c i r c u i t .  
i na t e  the  e f f ec t s  of voldage t r ans i en t s  generated when the  bridge i s  energized. 
These t r ans i en t s  a re  caused by the  fast r i s e  and f a l l  of t he  clock pulse. To 
prevent these s ignals  from appearing at the  input of t he  switching c i r c u i t ,  
t he  gate i s  opened 200 microseconds a f t e r  t he  start of each clock pulse fo r  a 
period of 10 microseconds. In  t h i s  way a turn-on s ignal  w i l l  appear ( l i n e  3, 
f i g .  2 )  only during a t rans ien t - f ree  in t e rva l  of each clock pulse. 

The ac t iva t ing  s igna l  fo r  t h i s  gate ( l i n e  5, f i g .  2 )  i s  obtained by first 
delaying t h e  clock pulse with a monostable multivibrator and then reducing i t s  
e f fec t ive  width by a d i f f e ren t i a t ing  c i r c u i t .  

The purpose of t h i s  gate i s  t o  elim- 

Another function of t he  control c i r c u i t  i s  t o  provide a r e se t  s igna l  t o  
the switching c i r c u i t  at  the beginning of each cycle. 
by d i f f e ren t i a t ing  t h e  posi t ive going voltage t h a t  occurs at t h e  output of the  
last stage of t h e  binary counter every 16th clock pulse. 
t he  duty-cycle r a t e  of t he  prototype at 10 her tz .  The duty-cycle frequency of 
10 hertz w a s  se lected high enough t o  reduce the  thermal r ipp le  t o  a value below 
an acceptable l eve l .  

This i s  accomplished 

This pulse es tabl ishes  

Switching Circui t  

The function of t h e  switching c i r c u i t  i s  t o  convert t h e  previously de- 

This voltage i s  then applied t o  the  heater t o  complete 
scribed turn-on and turn-off s ignals  generated i n  t h e  control c i r c u i t  i n t o  a 
square wave of voltage.  
t he  last  s tep  i n  the  resistance-to-duty-cycle conversion. 
i s  a self-holding switch t h a t  connects the  direct-current  power supply t o  the  
heater when act ivated by the  turn-on s ignal  and remains closed u n t i l  opened by 
the  rese t  s ignal .  

The switching c i r c u i t  

Because of the  la rge  current handling a b i l i t y  required by t h i s  operation 
(200 A f o r  t he  prototype), a c i r c u i t  u t i l i z i n g  an SCR as the  primary switching 
element i s  idea l ly  sui ted.  
purpose i s  shown i n  f igure  4 and i s  f u l l y  described i n  reference 1. I n  t h i s  
c i r cu i t ,  voltage i s  applied t o  the  load by f i r i n g  SCR 1. 
i s  charged through r e s i s t o r  A during the  time t h a t  voltage i s  applied t o  the  
load. 
SCR 1 and tu rn  it off when SCR 2 i s  f i r e d  by a r e se t  s igna l .  This same tech- 
ique i s  used t o  tu rn  off SCR 2 when SCR 1 i s  again t r iggered on. 

An SCR switching c i r c u i t  commonly used f o r  t h i s  

The shunt condenser 

The voltage developed across the  condenser i s  then used t o  back b i a s  

This 
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conventional c i r c u i t ,  su i tab le  for  most applications,  has two charac te r i s t ics  
which make it undesirable i n  i t s  present form fo r  t h i s  application. F i r s t ,  t he  
eff ic iency of t he  c i r c u i t  i s  reduced by d iss ipa t ing  power i n  r e s i s t o r  A during 
t h e  off time of t he  cycle (when SCR 2 i s  conducting). If the value of r e s i s t -  
ance A, RA, i s  made large,  t h i s  loss w i l l  be minimized, bu t  an upper l i m i t  is  
placed on i t s  value by the  time constant RAC. 
enough t o  allow the  condenser t o  co l l ec t  suf f ic ien t  charge t o  supply SCR 1 w i t h  
a back b i a s  voltage.  This power loss  i s  incompatible with the  high eff ic iency 
requirement fo r  t h i s  cont ro l le r .  

Resistance A must be chosen s m a l l  

The second undesirable charac te r i s t ic  of t h i s  conventional c i r c u i t  i s  tha t ,  
i f  SCR's 1 and 2 are simultaneously tr iggered on by a noise pulse when the con- 
denser has insuf f ic ien t  back b i a s  voltage t o  turn  one or the  other of f ,  both 
SCR's w i l l  remain on. This causes power supply voltage t o  be permanently 
switched t o  the  heater.  

A modified c i r c u i t  which eliminates these problems i s  shown i n  f igure 5 
along wTth a sequence diagram of one cycle of operation. 

The operation of this c i r c u i t  i s  s i m i l a r  t o  t h a t  of t he  conventional c i r -  
c u i t .  Pr ior  t o  the  start of t he  cycle the condition of t he  c i r c u i t  i s  as shown 
i n  the  diagram. 
t r a n s i s t o r  i s  conducting because of t he  b i a s  voltage supplied from the  control 
c i r c u i t  ( l i n e  2, f i g .  5 ) ,  the  condenser i s  charged with the  polar i ty  shown i n  
the  c i r c u i t  diagram and l i n e  3, and SCR's 2 and 3 are not conducting. 

The voltage across the  heater i s  VB ( l i n e  1, f i g .  5 ) ,  t he  

A t  t h e  start of the  cycle SCR's 2 and 3 are  switched on by the  r e se t  s ignal  
and a back b i a s  voltage cu ts  SCR 1 off and thus disconnects t he  supply voltage 
from the  heater .  A t  t h e  same time, the  b i a s  voltage i s  removed from the  base 
of t he  t r ans i s to r  which opens the  conducting path through r e s i s t o r  A. SCR 2 
w i l l  remain i n  t h e  conducting s t a t e  u n t i l  t he  condenser reduces i t s  current 
below the  minimum required holding current by charging t o  the  opposite po lar i ty  
of voltage. Although SCR 3 w i l l  continue t o  conduct through r e s i s t o r  B and 
the  heater r e s i s t o r ,  l e s s  than 1 percent of the  supply voltage w i l l  be developed 
across the heater from t h i s  source. 

The next sequence of events takes  place at the  beginning of the  t h i r d  s tep  
i n  the  cycle. Here t h e  t r ans i s to r  i s  made t o  conduct by supplying base voltage 
( l i n e  2 ,  f i g .  5)  from the  binary decoder ( f i g .  2 ) .  
capacitator i s  placed i n  se r i e s  w i t h  r e s i s to r s  A and B, and since r e s i s t o r  A i s  
smaller i n  value (15 ohms) than r e s i s t o r  B (50 ohms), a negative voltage i s  
placed a t  the  anode of SCR 3 ( l i n e  4 ) .  
and allows the  capaci ta tor  t o  recharge t o  i t s  or ig ina l  po lar i ty  (as shown i n  the 
c i r c u i t  diagram) during the  remainder of the cycle. Line 1 of the  sequence 
diagram shows SCR 1 f i r i n g  some time during the  remainder of the  cycle. If 
SCR 1 i s  turned on during the  f i rs t  two s teps  of t he  cycle, SCR's 2 and 3 w i l l  
be immediately shut off and the  r e s t  of t h e  cycle w i l l  follow the  same procedure 
as described previously. 

When t h i s  happens, the 

This negative voltage forces SCR 3 off 

The major features  of t h i s  modification are  the  following: 

(1) The inser t ion  of a t r ans i s to r  eliminates the  unnecessary d iss ipa t ion  
of power i n  r e s i s t o r  A t h a t  w a s  present i n  the  conventional c i r c u i t  ( f i g .  4 )  by 



never allowing SCR 2 t o  conduct current d i r e c t l y  through r e s i s t o r  A. 
s m a l l  power l o s s  involved i n  charging the  capaci ta tor  i s  l e f t .  The r e s u l t  i s  an 
increase i n  c i r c u i t  efficiency. An estimate shows t h a t  f o r  t he  prototype model 
operating at  i t s  design load (8000 W) t he  conventional c i r c u i t  should operate 
with an eff ic iency of 80 t o  90 percent while t h e  modified c i r c u i t  operates with 
an eff ic iency of 98 percent. 

Only t h e  

( 2 )  The poss ib i l i t y  of a complete c i r c u i t  f a i l u r e  i s  also removed by the 
addi t ion of t he  t r ans i s to r .  
a time when there  i s  insuf f ic ien t  back biasing voltage across the  capacitator,  
both of these S C R ' s  cannot remain on since the t r a n s i s t o r  w i l l  open the conduct- 
ing path through r e s i s t o r  A each cycle. This allows the  capacitator t o  charge 
through SCR's 2 and 3 and the  heater resistance,  shut of f ,  and resume normal 
operation. 

capacitator the  majority of the  cycle (14/16) i n  which t o  recharge. 
conventional c i r c u i t  t h i s  recharge time could be as short  as 1/16 cycle. 
t h i s  increased charging time allowed, the charging current can be reduced t o  
within the  range of allowable col lector  currents  found i n  commercial s i l i con  
t r ans i s to r s .  

If the  SCR's are switched on from a noise pulse a t  

(3) SCR 3 and r e s i s t o r  B are  added t o  the  c i r c u i t  i n  order t o  give the  
In  the  

With 

SYSTEN PERFORMANCE EVALUATION 

A s e r i e s  of t e s t s  w a s  conducted t o  check the  performance of t he  control 
system while it w a s  operating under simulated e l e c t r i c a l  and thermal space 
f l i g h t  conditions. These t e s t s  and the  equipment used t o  conduct these t e s t s  
a r e  described i n  the  following discussion. 

Equipment 

A simulated load w a s  fabricated by winding s t a in l e s s  s t e e l  tubing i n t o  a 
hel ix .  The hel ix  acted as an e l e c t r i c a l  heating co i l ,  and power w a s  supplied 
by connecting the  ends of the  hel ix  d i r ec t ly  t o  the  output of t he  switching 
c i r c u i t .  
A res is tance thermometer w a s  mounted on the  surface of t he  tube. 

This power w a s  diss ipated as heat loss t o  t he  surrounding atmosphere. 

Load temperature w a s  measured by a thermocouple mounted on the  tube. 
Probable e r ror  i n  the  load temperature w a s  estimated as 20.7 percent fo r  abso- 
l u t e  values and 20.2 percent (+2.5O F) f o r  changes i n  temperature. 

Power w a s  supplied t o  t h e  switching c i r c u i t  from a supply capable of 
del iver ing over 200 amperes at 100 vo l t s  with 1 4  percent r ipp le .  . A  regulated 
low-voltage supply maintained the  control c i r c u i t  at i t s  design voltage of 
5.5 vo l t s .  

1 
2 

For short-duration (10-min) t e s t s  a 3--pound aluminum block w a s  used as 
a heat sink fo r  SCR 1, and r e s i s t o r s  A and B had suf f ic ien t  m a s s  t o  absorb 
t h e i r  power d iss ipa t ion  without excessive temperature r i s e .  
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Steady-State Transfer Function T e s t  

Three steady-state t r ans fe r  functions which a re  used t o  calculate  t h e  
e f f ec t  tha t  a change i n  both load and switching-circuit supply voltage has on 
t h e  load temperature were experimentally ver i f ied .  These terms are  given i n  
t h e  appendix along with the  equations used i n  these calculat ions.  

The equation which i s  used t o  calculate  t h e  e f f ec t  of a load change i s  
given i n  the  appendix as 

AT= 
G - %  

The steady-state iralues of K1, K2, and KL were measured as 0.426 ohm 
From per OF, -0.169A duty cycle per ohm, and 18 w a t t s  per 9, respectively.  

the .va lues  of K1 and K2, G w a s  calculated t o  be -1152 w a t t s  per OF. When 
the  values of G and KL are  used i n  the  preceding equation, it i s  found.t'hat 
a var ia t ion  of + 0 . 7 O  F will occur for  a *lo-percent change i n  load fo r  the  
design values of RH = 0.4 ohm, VB = 80 vol t s ,  and WO = 8000 w a t t s .  

0 

Switching-Circuit Evaluation Test 

The equation showing the  e f f ec t  of a switching-circuit supply voltage 
change i s  given i n  the  appendix as 

Figure 6 shows the  curve obtained from this equation along with the  curve 
obtained experimentally by operating t h e  control system at  design conditions 
and varying only the  switching-circuit  supply voltage. 

A s  shown i n  f igure  6, i f  t he  system remains within i t s  control  range, t he  
load w i l l  vary from lo t o  -7O F about the  s e t  point fo r  a voltage var ia t ion  
of 5 t o  -25 v o l t s  about VB . 
value where a 100-percent duty cycle i s  established (approximately 55 V )  , l a rge  
var ia t ions  w i l l  r e s u l t  from s m a l l  changes i n  voltage, since t h e  temperature 
can no longer be corrected by a change i n  duty cycle. 

However, i f  t he  supply voltage i s  reduced t o  a 
0 

Control-Circuit Environmental Test 

The control  c i r c u i t  w a s  evaluated by control l ing t h e  load temperature with 
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t he  complete system but exposing only the  control c i r c u i t  t o  environmental tes t  
conditions. The temperature of t he  control c i r c u i t  w a s  var ied i n  s teps  from 
-20° t o  170° F. 
voltage w a s  varied *lo percent about i t s  design point.  
conditions the  temperature of t h e  load w a s  measured. 
0.3 millimeter of mercury throughout the  tes t .  
show t h a t  a l l  of t he  load-temperature var ia t ions  remained within the  probable 
e r ror  band of t h e  thermocouple measuring system. 

A t  each of these temperatures t h e  cont ro l -c i rcu i t  supply 
For each of these 

The ambient pressure w a s  
The data p lo t ted  i n  f igure  7 

Simulated Fl ight  T e s t  

The simulated f l i g h t  t e s t  demonstrated t h a t  t h e  cont ro l le r  could success- 
f u l l y  maintain s e t  point temperature under simulated pressure and temperature 
f l i g h t  conditions. 
pressure of 0.3 millimeter of mercury and a temperature of 90° F f o r  a period 
of 1 4  minutes. 
able  amount. The SCR 1 heat sink and r e s i s t o r s  A and B proved t o  be adequate 
f o r  the  prototype. The stud temperature of SCR 1 remained below i t s  maximum 
operating value of 250° F. 

The e n t i r e  system (excluding the  load)  w a s  operated a t  a 

During this time the  load temperature did not vary by a measur- 

The r e s i s t o r s  reached a temperature of 390' F. 

Noise Test 

The noise t e s t  experimentally confirmed t h a t  t he  previously described 
modified switching c i r c u i t  w i l l  not be disabled when f a l s e l y  t r iggered by an 
electr ical .  noise pulse. An analysis  of t he  c i r c u i t  shows t h a t  a temporary 
in te r rupt ion  i n  normal operation can occur when SCR's 2 and 3 a re  misfired 
a f t e r  t he  first two s teps  of t h e  cycle or when the  load SCR (SCR 1) i s  mis- 
f i r ed .  To prove t h a t  t he  switching c i r c u i t  would recover when SCR's 2 and 3 
were misfired, external  t r i gge r  s ignals  were applied t o  these ScR's. 
f i r e d  separately and then simultaneously. 
recovery between f i r i n g s ,  t he  s ignals  were synchronized with the  clock i n  the  
control system and applied every four th  cycle. 
obvious condition where SCR 1 i s  inadvertently t r iggered 'on.  

Both were 
In  order t o  allow ample time fo r  

No t e s t s  were made fo r  the  

The output voltage of t he  switching c i r c u i t  and the  external  t r i gge r  
s ignal  were observed on a dual beam oscilloscope. 
t h e  c i r c u i t  resumes normal operation within 1 cycle after a malfunction occurs. 

These waveforms showed t h a t  

Efficiency Test 

Power measurements were taken of the  system while it operated at i t s  
design load of 8000 w a t t s  i n  order t o  determine an overa l l  system eff ic iency.  
The average power diss ipated i n  SCR 1 and r e s i s t o r s  A and B w a s  163 w a t t s .  
Power d iss ipa t ion  i n  all other components w a s  negl igible .  
98 percent (excluding in t e rna l  voltage supply losses)  w a s  calculated from 
these measurements. 

An eff ic iency of 
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CONCLUDING REMARKS 

The preceding sect ions of t h i s  report  describe a temperature control ler  
designed t o  meet a s e t  of requirements which include not only accurate control 
of la rge  power l eve l s  but  r e l i a b l e  operation i n  a space f l i g h t  vehicle.  The 
design i s  based on duty-cycle control which combines high eff ic iency with 
proportional control cha rac t e r i s t i c s .  Implementation of the  system includes 
a special  high-power switching c i r c u i t  f r e e  from f a i l u r e  due t o  e l e c t r i c a l  
noise. 

The evaluation of t he  prototype cont ro l le r  can be summarized as follows: 

(1) The total. deviation i n  temperature of an 8000-watt l oad  i s  held t o  
within 5O F w h i l e  t h e  control  c i r c u i t  i s  exposed t o  an ambient temperature 
change from -20° t o  170° F and the  control-circui t  supply voltage i s  xaried 
t10 percent. 

( 2 )  A var ia t ion  of 5 t o  -25 v o l t s  i n  the  switching-circuit  voltage causes 
a 1' t o  -7' F change i n  load temperatures. 

(3) The system controls  t o  within +0 .7O F of the  s e t  point temperature fo r  
thermal load changes of 5 0  percent. 

( 4 )  Simulated e l e c t r i c a l  noise t rans ien ts  do not appreciably a f fec t  t he  
performance of t h e  system. 

This bas ic  model can be applied t o  temperature problems which require  
operation from a direct-current  supply with high eff ic iency under a wide 
var ia t ion  of ambient temperature. Because of i t s  modular construction, t h e  
system i s  eas i ly  t a i lo red  t o  meet a var ie ty  of temperature control requirements 
without redesign. For example, a new s e t  point temperature can be selected by 
changing the  bridge resis tances .  The control range can be modified by changing 
the  resis tances  i n  the  res i s tance  sequencer. A wide range of loads can be 
accommodated by adjust ing the  switching-circuit  supply voltage and making minor 
component changes. 

Lewis Research Center, 
N a t  i onal Aeronautic s and Space Admini s t  rat ion, 

Cleveland, Ohio, November 3, 1965. 
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APPENDM - STEADY-STATE TRANSFER FUNCTIONS 

The steady-state transfer functions of t h e  system are  defined by the  
following equations: 

When 

Since 

'B = 'Bo 

m K l  = - 
AT 

4 
aR ' K 2  = 

= FLKilWpo 

Figure 8 shows a p lo t  of the  power delivered against  load temperature super- 
imposed on a port ion of t h e  charac te r i s t ic  curve of t h e  load. 
delivered t o  the  load must be equal t o  t h e  power required by the  load, t he  
in te rsec t ion  of these two curves gives the  s tab le  operating point of t he  control 
system. 
OWo 

Since the  power 

The following equation, showing the  r e l a t ion  between a load change 
and a change i n  load temperature, i s  derived from f igure  8: 

where G = tangent 0 .  

AWL = AWo I- ATKL 

where KL = tangent @. Since 

AWL = OwD 

G AT = AWo I- ATKL 

OW0 m =  G - KL 
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Figure 9 i s  similar t o  f igure  8 except t h a t  t he  peak power i s  var ied while t he  
load i s  held constant. The following equation, describing t h e  r e l a t ion  between 
a change i n  load temperature and a change i n  switching-circuit  voltage, i s  
derived from figure 9: 

nwx = - 

Since 

nwx = Awp -( wo + AWD) 
wP 

or 

AWx = AWj-j - G AT 

Se t t ing  equation (14)  equal t o  (15) r e s u l t s  i n  

Since 

1 - -  AwP 
wP 

Solving for AT y ie lds  

AwP - 
wo w, 
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Since 

and 

If 

WO 

wPO 
- -  - vo 

wp - - wpo + nwp 

2 2 
'B - 'Bo 

AWP = 
RH 

v = VB + AV, 
0 

B 

2 
AWP = 2vBo + 

RH 

vg0 
wpo = 

AWp and W i n t o  equation ( 2 3 )  gives PO Subst i tut ing the  values of 

14 
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Figure 1. - Block diagram of temperature controller. 



sequencer 

4 Switching- 
c i r c u i t  

- 
output  

I 
I 
I 

I I 
I Control c i r c u i t  

5 Gate- 
a c t i v a t i n g  

1 cycle  -I 
3 4  5 6  7 0  9 10 11 12 13 14 15 16 S t e p  1 6  1 2 

Clock 

Bridge 
output  n 

U U U U Y Y 
CI n n n n  

3 Gate 
output  

Figure 2. - Temperature c o n t r o l l e r  block diagram and time sequence diagram. 
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Figure 4. - Conventional switching circuit. 
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