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A METHOD OF APPROXIMATING PROPELLANT REQUIREMENTS 

OF LOW -THRUST TRAJECTORIES 

by C h a r l e s  L. Zo la  

Lewis Research Center  

SUMMARY 

The precise calculation of optimum trajectory solutions for low-acceleration flight 
in the inverse-square gravity field can be very complicated and time consuming, parti- 
cularly in the case of operating with constant thrust and jet velocity. An approximation 
method is presented that greatly reduces this computation effort. This method is based 
on the dynamic similarity between flight on an  optimum trajectory in the inverse-square 
field and rest- to-rest flight on a rectilinear path in gravity-free space. Consequently, 
the equivalent rectilinear path length L becomes a measure of the propulsive effort of 
trajectories similar to the characteristic velocity increment AV. Examples of the use 
and validity of the method are given for different types of interplanetary trajectory prob- 
lems. 

When applied to typical circular orbit transfer problems, the approximation method 
can predict AV with an e r ror  of 10 percent or less. It is shown that e r rors  in the 
method are most serious for flyby trajectories, becoming as large as 40 percent in 
terms of AV. However, typical specific impulse values for low-acceleration flight re- 
duce the AV er ror  by a factor of two or more when translated into error  in propellant 
consumption. The possibility of improving accuracy is discussed, and it is shown that 
a more general (and more complicated) type of rectilinear flight with nonzero velocities 
at the terminals may be required. 

INTRO D UCTlON 

Accurate trajectory calculations for vehicles with low thrust operating in an inverse- 
First, the 

Numerical integration 
The second major 

square gravitational field encounter one or both of two major complications. 
equations of motion cannot, in general, be solved in closed form. 
procedures must be used to calculate the path in a stepwise fashion. 



difficulty stems from the need to control the available thrust acceleration vector over 
long propulsion times in such a way that the vehicle accomplishes a transfer from one 
particular position and velocity state to another in a specified time. This transfer prob- 
lem is called the tfpoint-to-point?T problem in this report. 

Valid, but nonoptimum solutions of point- to-point problems have been made with 
arbitrary thrust vectoring policies. For example, the equations of motion presented in 
reference 1, for thrusting with an arbitrary steering policy, can be employed in the solu- 
tion of point-to-point problems, but still require numerical integration. In reference 2, 
both the numerical integration and point- to-point problem difficulties were simplified by 
closed form solutions made possible by arbitrarily selecting a trajectory path in space 
and finding an acceleration control history that would satisfy it. 

However, many authors (e. g., refs. 3 to 5) have analyzed trajectory problems by 
applying the calculus of variations or  other optimization theory and have shown that non- 
optimum thrust vectoring can result in excessive propellant requirements. Therefore, 
the inclusion of suitable optimization theory has become a highly preferred extension of 
low-thrust trajectory solution methods and has received much attention. 

policy for physical control of the magnitude and/or direction of the available thrust, sub- 
ject to specified constraints on the operation of the rocket. The result is a different 
problem formulation for each ttmodeff or  type of rocket operation. Each formulation 
then provides minimum propellant solutions of point- to-point trajectory problems. 

Appropriate constraints can be set  up to describe any one of the various modes of 
rocket operation that are of interest in the calculation of optimum trajectory solutions. 
One particular mode that is mentioned frequently in this report employs constant jet 
power with constant thrust and jet velocity and optimized coasting periods (ref. 5). 
brevity, in the remainder of this report this mode will be called "constant thrust" 
operation. 

The application of optimization theory improves rocket performance but often adds 
to the already present computation difficulties. The optimum point-to-point trajectory 
problem is a two-point boundary value problem, since certain problem variables have 
values specified at both ends of the trajectory but the complete and correct set  of bound- 
ary values is not known. 

Methods of solving two-point boundary value problems are involved and occasionally 
unsuccessful. Such problems a r e  often solved as iterated initial value problems. In 
this procedure the unknown problem variables are estimated at the initial point so that 
numerical integration of the path may proceed. To find the correct solution of the prob- 
lem, the unknown initial values a r e  methodically re- estimated, utilizing highly involved 
iteration schemes, until the specified end conditions a re  met. 

The main feature of the so-called "optimum" trajectory solution is a program or 

For 

In particular, the constant thrust mode presents one of the most unmanageable prob- 



lems in the calculation of optimum trajectories. Yet, this mode of operation is espe- 
cially interesting because the constant thrust type of ion engine has already been suc- 
cessfully operated and is representative of first generation ion-electric propulsion. 

trajectory solutions that avoids the computational difficulties mentioned previously. The 
approximate method given here is applicable to all modes of operation but is particularly 
aimed at reducing the burden of trajectory calculations for the constant thrust rocket 
vehicle. 

given along with examples of its application to Earth-Mars trajectory analysis. 
report extends that previous study by presenting a more general analysis and by giving 
examples of the approximation used for trajectories to other planets. The extent of the 
validity of the method will also be explored to indicate the magnitude and effect of errors.  
A generalized, dimensionless trajectory analysis procedure based on the approximate 
method is outlined in appendix C. 

The purpose of this report is to present a rapid approximation technique for optimum 

In a previous publication (ref. 6) a brief discussion of this approximation method was 
This 

ANALYSIS 

The principal idea in the method of this report is to assume that any given point-to- 
point trajectory problem in the inverse-square gravity field can be transformed into an 
equivalent, or  corollary, rest-to-rest rectilinear problem in field free space. 
equivalent rectilinear trajectory problem can then be easily solved to obtain propellant 
requirements for any type of rocket operation. Other authors have used simple recti- 
linear flight to exhibit the differences in rocket performance when the mode of rocket 
operation is changed (refs. 7 and 4). In this report, similar expressions a r e  also used; 
but, in addition, an approximation scheme for optimum trajectory solutions is derived by 
noting the dynamic similarity between rectilinear, gravity-free flight and optimum flight 
in the inverse-square gravity field. 

linear trajectory is primarily dependent on the transfer time T and the straight line 
length travelled L. (Symbols are defined in appendix A. ) The travel length of the equi- 
valent rectilinear problem can only be defined, however, by first obtaining an optimum 
solution of the actual, inverse-square field trajectory problem, using some mode of 
rocket operation. The actual solution can then be used to convert the trajectory problem 
into an equivalent straight line problem in field-free space. Further solutions of the 
original inverse-square field problem are not required. Instead, propellant require- 
ments brought about by any change in rocket operation a r e  obtained by solving its recti- 
linear counterpart. 

This 

For any type of rocket operation, the propulsive requirement of a rest-to-rest recti- 
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Therefore, one reference solution may be calculated using a mode of rocket opera- 
For example, It tion that is more convenient from the standpoint of computation effort. 

will be shown that the familiar high-thrust or ??impulsive" trajectory method can be used 
as a reference solution. Also discussed is the use of a low-thrust type of trajectory 
solution which appears to present a minimum of computation difficulties. This is the 
constant jet power, variable thrust method of references 3 and 4. 

To apply the approximate method of this report, analytic solutions of the rectilinear 
flight in gravity-free space must be made for various modes of rocket operation. 

A development of some of these analytical solutions will be made in this analysis. 
But first a preliminary discussion of the parameters and characteristics of inverse- 
square field, optimum trajectory solutions with constant thrust operation will be pre- 
sented. At the end of this analysis, similarities between the rectilinear problem model 
and actual trajectory solutions will be described. 

Constant Thrust Operation 

The constant thrust mode of rocket operation is characterized by alternate periods 
of propulsion (thrust on) and coasting (thrust off). During propulsion, it is specified that 
the thrust F and mass flow rate m a r e  constant. During coasting periods, F and m 

a r e  zero. In this report, the initial acceleration a. is often used, where 

F a =-- 
0 

O m  

and mo is the initial mass of the rocket vehicle. 
expelled mass v will be used in place of m, with the definition that 

Also, the effective jet velocity of the 

j 

F v. I - 
I 4  

Often, instead of v the specific impulse I will be used as an index of jet velocity 
j' 

with the definition that I is the ratio of F and the weight flow rate (in Earth-surface 
units) 

4 



Thus I and v. are simply related through g, the standard acceleration of gravity on 
the surface of the Earth. When definitions (1) and (2) a r e  used, the mass m and ac- 
celeration a at any point on the trajectory are functions of ao, vj, and the instantaneous 
value of accumulated propulsion time ta; that is, 

J 

ta m k-?) I - -  
m 

j 
V 0 

The accumulation of propulsion time may be interrupted by coasting periods (F = m = 0) 
during which ta does not increase. 

Characterist ics of Constant Thrus t  Trajectory 

Solutions in  a Gravity Field 

Different values of a. and v. can be used in the solution of a given trajectory 
3 

problem. Each applied combination of a. and v. would give r ise  to different values of 
J 

required total propulsion time and propellant consumption. When v. is made infinite, 
equations (4) and (5) show that mass and acceleration a r e  constant. 
case is called the constant acceleration mode (although coast periods with a = 0 may be 
present). 
eral  family of solutions with constant thrust rocket operation as cases where F and, 
therefore, a a re  infinite. 

J 
This infinite v 

j 

The "impulsive" type of trajectory solution may also be included in the gen- 

Typical characteristics of a fu l l  range of constant thrust solutions of a given trajec- 
tory 

AV 

problem in the inverse-square gravity field a r e  shown in sketch (a). This sketch is 
a plot of the equivalent total characteristic velocity hll increment or AV of constant thrust solutions as a. 
and v. (or I) a r e  given different values ranging all 
the way to infinity while the point- to-point trajectory 
problem is kept unchanged. The AV plotted in 

J 

I "j I 
I 1 I 

I I sketch (a) is derived by taking the integral of the ac- 

a0 celeration magnitude history used in each solution of 
(a) the given problem. For the constant thrust mode of 

03 

I 
a,,min a,,,min 
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operation, equation (5) may be integrated to give AV as a function of ao, v 
that is, 

and t - 
j ' P' 

where t is the total propulsion time used in the trajectory solution. For constant ac- 
celeration solutions (I = v. = a), a is constant and equation ( 6 )  reduces to 

P 
3 

AV = at 
P 

It should be noted that the AV for a. = a is the same AV commonly used in infinite 
thrust (impulsive) trajectory analysis as an indication of propellant consumption where 

The characteristics shown in sketch (a) apply, in general, to all optimum, constant 
thrust solutions of a trajectory problem in the inverse-square gravitational field. It 
will  be shown that solutions of rectilinear trajectory problems in gravity-free space ex- 
hibit the same behavior. 

(1) Total AV is bounded. The minimum value of AV occurs at the impulsive solu- 
tion (a = m) regardless of v. The upper bound on AV consists of solutions classified 
as "all propulsion". 
the lowest value of a, that may be used for each v The range of AV between these 
bounds applies to operation with finite values of a. on trajectories that have both pro- 
pulsion and coasting. 

(2) Both a. and v. have an effect on AV. When a. is fixed, AV ' increases with 
increasing v 
acceleration coasting case (v. = a). Along the all-propulsion boundary, AV deci eases 
ivith increasing v. minimizing at the all-propulsion constant acceleration case when 
v = a. When a. is greater than the a. of the all-propulsion constant acceleration 
case, trajectory solutions will have a coast phase regardless of the value of v 

calls for repeated optimum 
solutions of the same trajectory problem in order that the range of possible AV values 
be accurately determined. 
method of this report is capable of predicting the AV at any a, and v- provided that 

The most pertinent aspects a r e  the following: 

3' 
All-propulsion solutions have no coasting periods and represent 

j. 

J 
reaching an upper limit at either the all-propulsion value o r  the constant 

j' 
J 

J '  
j 

j '  
Thus, the presence of the two parameters, a. and v 

j, 

To avoid this extra computation effort, the approximate 

3 
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able for use as a reference in defining L of the equiva- 
,,-Low thrust 

,+,,pulsive lent rectilinear trajectory problem. 

Recti1 inear Problem Solutions 

The subsequent sections of this analysis will consist of developing solutions of the 
The two cases described here are for gravity-free, rest- to-rest rectilinear problem. 

the impulsive and constant thrust solutions of the rectilinear trajectory problem. Other 
solutions of the rest-to-rest rectilinear problem for the constant acceleration and power- 
limited variable thrust rocket operation modes a r e  given in appendix B. 

7 
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Impulsive solution. - Sketch (c) shows the velocity 
history of an impulsive solution of the rectilinear prob- 

V lem model. The first velocity increment AV1 changes 
the velocity from zero to vmaX, which is the value re- 

A V  "2 

0 t T quired to bring the vehicle to the distance L at time T. 
(C) The rocket proceeds at constant velocity until time T 

The distance covered or  characteristic length L is the area under the velocity 
when it is brought back to rest (zero velocity) instantly by applying a second increment 
AV2. 
curve. 

L = Vm,T = AV1 T 

The total required velocity increment AV is the sum of the two equal increments AVl 
and AV2. Therefore, L can be expressed as a function of total AV and T; that is, 

AV T 
L = A V I T = -  

2 (7) 

Equation (7) can be interpreted as showing that the total AV and transfer time of an 
impulsive trajectory solution infer a length of travel. 

Constant thrust solution. - Sketch (d) depicts a rest-  
to-rest rectilinear flight for a constant thrust rocket. 

a a o k l  0 This case is not as simple and straightforward as the im- 

increases during the initial propulsion phase (between 0 
v ,/i vmax 9 and tl) according to equation (5). The acceleration is 

zero during the coast phase (between t l  and t2). At t2 
the acceleration resumes at the same magnitude it had at 
t 

~ 

, 
1 I 4 pulsive thrust case. The magnitude of the acceleration 

L1 L2 L3 

0 tl t2 T 
t 

(d) final propulsion phase. This acceleration history gives 
The velocity builds up from zero to Vlyia 

continuing to increase as propellant is consumed in the 1 

r i se  to the accompanying velocity history. 
during the first propulsion phase, remains constant during the coast, then is brought 
back to zero during the final propulsion phase. 

From the velocity history in sketch (d), it is evident that the total length traveled L 
is the sum of the lengths covered in the initial propulsion phase, the coast, and the final 
propulsion phase; that is, 

L = L1 + L2 + L3 

8 



.. .. . 
I 

and 

L = at' V dt + t2 V dt + 
1 

In the initial propulsion phase, the velocity history is a function of the acceleration 
history. Thus, 

V J - :) dt = -v. In 

and, for t = tl the velocity has reached a value noted as V,,, the coast velocity, in 
sketch (d); that is, 

v = v,, = -v. J In 6 - 7) 
The length travelled in the first phase L1 is the integral of the velocity history from 
0 to t l  or 

L1 = f 1  V dt =[' -vj In (I - F ) d t  

0 

and 

(9) 

In the coast phase, the rocket covers the distance L2, which is simply the product 
of the coast velocity and the duration of coast; that is, 

9 
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and 

No mass is consumed in the coast phase; therefore, the acceleration magnitude at t2 is 
the same as at tl. In the third phase, the acceleration history is 

As seen in sketch (d), this acceleration is .directed opposite to that of the first phase to 
decrease the velocity and bring the vehicle to res t  at T. 

With the same approach used in developing equation (10) for  the first  phase and the 
added fact that the velocity change in the third phase is equal to the velocity increment 
in the first phase, it can be shown that the length increment of the third phase is related 
to the length increment of the first. The resultant equation for L3 is 

or using equation (10) results in 

2 L3 = aotl - L1 

The total length L can then be written as the sum of lengths L1, Lz, and L3 

L = aotl 2 - (t2 - t v. In (1 - y) 
1) 3 

A more useful form of equation (13) may be expressed in terms of the total time 
and the total propulsion time t P 
ment that must be provided by the rocket is 2Vm, because the rocket undergoes a 

of the transit. In sketch (d), the total velocity incre- 

10 



changeof V,, in the first phase and another change of Vm, in the third phase. 
From equation (6), for a rocket in the constant thrust mode 

P Therefore, V,, can be related to t 

But, from equation (9) 

v= = -v. J In - y) 
P Therefore, if equations (9) and (14) a re  combined, tl  is related to t 

which leads to 

Also, since t2 - tl is the coast time, it can be expressed as a function of T and t P 

Substitution of equations (15), (16), and (17) into the length relation (eq. (13)) results in 

11 



Equation (18) gives the length of travel for a constant thrust rocket, with coasting, on a 
straight line path in field-free space. The first term of equation (18) is the length 
covered in the propulsion phases. The second term is the length covered in the coast 
phase. It is simply a product of the coast time (T - t ) and the coast velocity 

[? In (l - ?]. If a, is allowed to pass to infinity, t P will become zero. In this 

limiting case, equation (18) reduces to the impulsive case (eq. (7)), illustrating that the 
impulsive case is simply a special form of constant thrust with coasting. In fact, im- 
pulsive thrust might be termed an "all-coasting** solution. 

AV requirement and L. Similarily, equations (6) and (18) can be combined to give an 
expression for the AV requirement of the constant thrust mode of operation; that is, 

P 

Equation (7), for impulsive thrust, provides a simple relation between the impulsive 

and 

L 2a-L - 2v, 

aoT - v 
j \  

Equation (19) is, however, transcendental in terms of AV but can be solved by simple 
iterative methods. 

All-propulsibn case. - All-propulsion solutions a r e  another special case of constant 
thrust trajectories. 
solutions because, as pointed out in the discussion of sketch (a) (p. 5), the all-propulsion 
solution of a given trajectory with a given v has the lowest possible value of initial ac- 
celeration. This is an important consideration in constant thrust trajectories because it 
shows that some combinations of a, and v. cannot result in a real solution of a given 

J 
trajectory problem. Rectilinear trajectory solutions with constant thrust have this same 
characteristic. 

is set equal to T in equation (18), the result is a length equation for constant thrust, 
all-propulsion solutions of the rectilinear problem; that is, 

They are, nevertheless, of much significance in constant thrust 

j 

If tP 
In the case of all propulsion, propulsion time is equal to total transfer time. 

12 



If the length of travel, L, and the time of travel, T, are fixeL, equation ( D) serves to 
provide unique relations between the jet velocity and initial acceleration for all- 
propulsion solutions. For example, equation (20) can be solved for initial acceleration. 

4L -- 
T2 

a. - 

One useful interpretation of this equation is that, for a given L, T, and v. the mini- 
mum a, that may be used for the rectilinear trajectory can be immediately calculated 
for comparison with some other a. which may be desired. If the desired a. is less 
than the all-propulsion value, a solution is not possible. 

In appendix C, equations (18) and (20) are converted to dimensionless parameters 
involving acceleration, jet velocity, and AV. 
very useful in that they allow the plotting of generalized performance curves for constant 
thrust mode, rectilinear trajectory solutions. 

J ’  

The dimensionless relations prove to be 

Typical Charac ter is t i cs  of Recti1 inea r Tra jectory  So lu t ions  

Up to this point, equations have been developed that relate L of the rectilinear, 
rest-to-rest trajectory with ao, vj, tp, and T for the constant thrust rocket with o r  
without coasting. The typical characteristics of a constant thrust, rectilinear, gravity- 
free trajectory will now be described, using these equations, to point out the basic simi- 
larity between solutions of this simple problem and the optimum, constant thrust, 
inverse-square field solutions described in sketch (a). 

equations (18) and (20) can be used to prepare a AV chart, such as figure 1. In figure 1, 
AV is plotted against a. for a range in v 
equation (18) is used to evaluate the final mass fraction mf/mo, 

If a simple trajectory problem is stated consisting of a given length and travel time, 

For the coasting solutions in figure 1, 
j. 

a t  

0 J 

_ -  mf - I - -  O P  

V. m 
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for  the given L and T at various values of a, and v Then equation (6) is used to 
evaluate AV. The line of all-propulsion solutions in figure 1 is constructed with equa- 
tions (20) and (6). 

Although figure 1 os valid only for the stated gravity-free rectilinear problem, the 
characteristic behavior of the plotted curves is typical of actual inverse-square field 
constant thrust results outlined in the discussion of sketch (a). Along the all-propulsion 
boundary curve, AV varies with jet velocity, reaching a minimum at infinite jet velocity. 
The all-propulsion, infinite jet velocity point has the least AV and the highest a. of all 
the possible all-propulsion solutions of this problem. For the specified L ( l o l l  m) and 
T (10 sec), the impulsive or  infinite a. solutions has a AV of 2x10 meters per sec- 
ond, given by equation (7). This impulsive AV is the least possible AV and is not af- 
fected by v 

j. 

7 4 

as was also true in sketch (a). 
j 

RESULTS AND DISCUSSION 

The purpose of this section is to present data concerning the accuracy and use of the 
approximation method by applying the rectilinear problem model to actual optimum tra- 
jectory solutions. First, the equivalent length will be evaluated, over a range of values 
of a. for optimum, constant thrust mode solutions of several point-to-point trajectory 
problems. This is to check the validity of the assumption that L evaluated at any ac- 
celeration level will be nearly the same, as long as the trajectory problem is fixed. 
effect of using optimum variable thrust (ref. 4) solutions of each trajectory problem to 
evaluate L will also be discussed. 
value of L for a trajectory problem is found, the simple relations derived in the pre- 
ceding section may be applied to obtain values of AV or propellant consumption as a 
function of a. and v. that a r e  comparable to detailed optimum constant thrust solutions. 

The 

Finally, it will be shown that, once a representative 

J 

Equivalent Rest-to-Rest Length of Actual  Solut ions 

Figure 1, for the rectilinear problem with fixed L and T, suggests the possibility 
that a given point-to-point trajectory problem in the inverse-square field might be 
represented as a simple rest-to-rest rectilinear problem in field-free space. The 
equivalent length of any problem would, ideally, be unaffected by the mode of rocket 
operation. For example, all possible constant thrust solutions (all propulsion, partial 
coasting, or all coasting) of a given problem would indicate the same value of L. The 
validity of this presumption is examined in figures 2 to 6. 

point-to-point, trajectory problems. A range of values of a. is shown for each case, 
Figure 2 is based on optimum constant thrust solutions of three, Earth to Mars,  

14 



from the all-propulsion point (least ao) to the impulsive solution (ao = m). The helio- 
centric trajectory problems in figure 2 are ?'capture?? cases in that they begin in circu- 
lar orbit about the Sun at Earth's radius and end in circular orbit about the Sun at Mars? 
radius at the end of the stated transfer time T and elapsed heliocentric central angle 
cp. Thus these examples are point-to-point trajectory problems in that position and 
velocity are completely specified at each boundary. Each solution (at each ao) was con- 
verted into a rectilinear, rest-to-rest problem by using equation (18) and the known 
values of ao, vj, T, and t 
capture were developed in the same manner. Figures 2, 3, and 4 illustrate a small 
variation in the equivalent L of each trajectory problem as a. is varied. The curves 
have a characteristic increase in L as the all-propulsion point is approached. This in- 
creased L indicates that the actual AV is higher, relative to high a. solutions, than 
the rest-to-rest rectilinear model would predict. Figure 4, the Jupiter case, shows that 
L is also affected sone what by the specific impulse used in the reference solution. 

In figures 2, 3, and 4 the equivalent L is not constant for each problem, but the 
e r ror  due to using the rest-to-rest problem model would be small since the net change 
in L for all cases is only about 6 to 10 percent between the impulsive and all-propulsion 
extremes. For example, in the 200-day Mars  capture of figure 2, any one of the opti- 
mum solutions, over the range of possible a. could have been used to evaluate L for 
this trajectory problem with a maximum expected e r ror  of 10 percent. 
tween er ror  in L and error  in propellant consumption will be discussed in the section 
Effect of Er ror  in Equivalent Length. 

Figures 5 and 6 a r e  given to show that, apparently for ?rflybytP-type trajectories, a 
great deviation in L can occur. Figure 5, the M a r s  flyby, shows first a decrease, 
then an increase, in L as the all-propulsion point is approached from infinite ao. The 
value of L deviates as much as 12 percent in this case. The shape of the curve in fig- 
ure 5 simply reflects the difference between actual AV for these optimum solutions and 
the AV that would be predicted by the problem model if L were assumed constant 
through the range at any one of the values shown. 

Figure 6, for the solar probe flyby trajectory to 0. 1 astronomical unit, is the worst 
example given here of the applicability of the problem model to actual trajectory solu- 
tions. In this case, the equivalent L varies as much as 42 percent. Such deviations in 
L are an indication that the rest-to-rest, rectilinear problem model may be insufficient 
in accurately predicting propulsive requirement of a wide range of trajectory problem 
types in the inverse-square gravity field. Underlying reasons for such poor corres- 
pondence between actual flights and the simple rest-to-rest problem model are discussed 
in a later section tltled Extended Problem Model. 

Figure 3 for a Venus capture and figure 4 for a Jupiter 
P' 

The relation be- 
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Effect of Error in Equivalent Length 

In the previous section the equivalent lengths of actual solutions of various trajectory 
problems were calculated and plotted to illustrate that L is not truly invariant when a, 
is varied. 
probe. The solar probe L varies about 40 percent between the impulsive and all- 
propulsion solutions. It is obvious in these two flyby examples that the approximate 
scheme given herein would have extreme inaccuracy. Nevertheless, the solar probe 
case (fig. 6) will be used to illustrate the effect of e r rors  in L upon propellant require- 
ments. 

At any a. in the constant thrust mode, an e r ror  in L produces about the same 
er ror  in AV. For example, from equation (7) for the impulsive case where AV = 2L/T, 
a percentage change in L causes the same percentage change in AV. In figure 6 it can 
be seen that a typical low-acceleration value of L is 10l1 meters. If this value of L 
is assumed for the constant thrust cases, the difference between it and the actual L 
values at each a. on figure 6 indicates the e r ror  in AV. In figure 7, the final mass 
fraction of the actual constant thrust solutions a r e  compared with the approximate re- 
sults based on L = 1 . 0 ~ 1 0 "  meters. 
lated using an I = 10 000 seconds; however, another curve at I = 4000 seconds is given 
to show the growth in e r r o r  as I is decreased. It can be seen in figure 7 that, even at 
I = 4000 seconds, the mass fraction e r rors  are not as large as the expected AV errors.  
This error  reduction is due to the fact that mass fraction is a function of the ratio 
AV/Ig. Thus, 

The worst example of highly variable L were the M a r s  flyby and the solar 

The actual constant thrust solutions were calcu- 

The er ror  in final mass fraction dr / r  is a function of the error  in AV but is modified 
by the product AV/Ig 

d r  -AVdAV 
r Ig AV 

- 

Even when I is as low as 4000 in the solar probe case, the term AVbg is about 
0. 5. The result is that the percentage e r ror  in r is only half the e r ror  in AV. This 
e r ror  reduction is due to high values of I and is not a property of the approximation 
scheme. However, the approximate data in figure 7 gives a proper qualitative view of 
final mass ratio and minimum a,, which can be attributed to the approximation method. 
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It must nevertheless be acknowledged that the approximate solution is rather crude for 
this application. 

Sources of Equivalent Length for Trajectory Problems 

To improve the utility of the rest-to-rest problem model, L should be evaluated for 
each trajectory problem from a low-thrust type of solution that is close to the area of 
interest in terms of mode of rocket operation and acceleration level. But, as mentioned 
earilier, optimum low-thrust solutions a r e  generally fraught with calculation difficulties. 

The infinite-thrust o r  impulsive solution is currently the only available means of 
solving, with real speed and flexibility, point- to-point trajectory problems in the inverse- 
square gravity field. Unfortunately the equivalent L of impulsive solutions is apt to 
differ greatly from L evaluated at the low-thrust end of the acceleration scale. How- 
ever, for very approximate but rapid estimates of low- thrust propellant requirements, 
L can be evaluated from the AV of impulsive transfers. 

problems. 
thrust methods. Either method, however, requires numerical integration techniques 
and, therefore, a large investment in calculation time. 

The all-propulsion case is the most simple constant thrust solution possible in the 
low-acceleration range, due to the elimination of coast phases in the numerical integra- 
tion of the trajectory. Examples of L for constant thrust all propulsion were noted in 
figures 2 to 6. 

The power-limited variable thrust, optimum solution method is described in refer- 
ences 3 and 4. This mode of rocket operation appears to be a great departure from the 
constant thrust mode. Acceleration and jet velocity are left free to vary along the opti- 
mum trajectory, constrained only by the requirement that the vehicle be power-limited, 
meaning that the product of thrust and jet velocity be constant. In this one respect, the 
constant thrust mode is also power-limited, since the product of thrust (constant) and jet 
velocity (constant) is also constant. Experience has shown that the variable thrust ap- 
proach presents a somewhat simpler computation problem than the constant thrust all- 
propulsion method and provides values of equivalent length that compare favorably with 
Constant thrust. 

For the purpose of comparison with the constant thrust data given in figures 2 to 6, 
table I is given. In the variable thrust mode of rocket operation, propulsive requirement 
is given by J, the integral over the flight time of the square of the acceleration; that is, 

Two low-thrust types of optimum trajectory solution appear to minimize computation 
These a r e  the constant thrust all-propulsion and the power-limited variable 
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A value of J can be found for  each of the trajectories and used to evaluate an I,, which 
is in agreement with the low acceleration end of the curves. 
and L for rectilinear rest-to-rest variable thrust trajectories is developed in appen- 
dix B. 

Figure 8 is given to illustrate an overall comparison between L evaluated from 

The relation between J 

constant thrust all-propulsion, variable thrust, and impulsive trajectory solutions for 
Mars  and Jupiter capture cases. Only the optimum heliocentric travel angle solution is 
recorded at each travel time for each mode of operation. Since the travel angle at which 
the propulsion requirement (J or  AV) minimizes depends on the mode of rocket opera- 
tion, figure 8 does not compare identical point-to-point transfer problems. 

greatest at the Hohmann (minimum energy) travel times - 260 days for Mars  and 
1000 days for Jupiter. 
about 100 degrees in the Jupiter example. In both cases, impulsive data is not shown 
beyond the Hohmann time since the requirements for optimum impulsive transfers in 
this region are involved and beyond the scope of this report. 

Differences in optimum travel angle at each time are much smaller when variable 
thrust and constant thrust results a re  compared. For the Mars  capture the angular dif- 
ference is insignificant throughout the range shown. In the Jupiter case, the difference 
is more noticeable, growing steadily with T to about 30 degrees (out of 300 degrees) at 
1000 days. 

For the impulsive thrust results L is evaluated from equation (7) and AV. The 
variable thrust results show L evaluated from J and equation (B8) at each travel time. 
The third curve on each figure shows L evaluated from optimum constant thrust all- 
propulsion solutions using equation (20). 

the constant thrust all-propulsion value of L at each travel time as a base, an e r ror  
criterion $ may be defined 

The difference between the impulsive and constant thrust optimum travel angle is 

The angular difference is only about 10 degrees for Mars  but is 

Figure 9 is given to aid in the comparison of the data shown in figure 8(a). By using 

Lctm 

where Lctm is the constant thrust value of L and L' is the value of L obtained from 
some other mode of operation. It can be seen in figure 9 that the variable thrust data 
provides the most consistent representative value of L throughout the range. However, 
the impulsive thrust data may be deemed quite acceptable for many trajectory analysis 
applications, taking into consideration the relatively high speed at which impulsive solu- 
tions may be obtained. 
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As an aid to the reader in further comparisons or  performance calculations, equiva- 
lent length curves a r e  given in appendix D for other interplanetary capture trajectories. 
The data in this appendix a r e  derived from actual optimum solutions employing the con- 
stant thrust all-propulsion mode of operation. As in figure 8, the data in appendix D is 
limited to the optimum heliocentric travel angle at each transfer time. 

Examples 

Thus far, the approximate method has been discussed from the standpoint of com- 
parisons of equivalent L and the effect of e r ror  in L. The aim of the following sections 
is to present more specific examples of the use of the approximation in generating AV 
and propellant requirement. 

in figure 10. In figure lO(a), the impulsive solution is used as a reference and in fig- 
ure 10(b), the variable thrust solution is used. 

from Earth to Mars. With specific impulse fixed at 6000 seconds, one curve on each 
figure shows AV against a. for optimum constant thrust solutions with coasting. 
coasting solution curve joins with another, more horizontal, curve consisting of all- 
propulsion solutions along which specific impulse varies from 1000 seconds to infinity. 
The equivalent AV of the actual solutions, evaluated with equation (6) using the jet 
velocity and exact propellant fractions, is shown for a wide range of a, from less  than 

A comparison of approximate AV with exact trajectory calculation results is given 

In figure 10 the trajectory problem in question is a heliocentric capture trajectory 

The 

meters per second squared to infinity. 
The approximate curves shown here faithfully follow the characteristics of the exact 

solutions. All the approximate values of AV shown a r e  calculated using equations (18), 
(6), and one reference value of L obtained from the impulsive solution of the problem 
(in fig. lO(a)) o r  the variable thrust solution (in fig. 10(b)). 

For figure lO(a), an accurate impulsive solution of the M a r s  capture trajectory is 
calculated in the inverse-square gravity field and found to require a total AV of 10 961 
meters per second. 
field-free rectilinear model that corresponds to the given AV and transit time T of 
140 days. Therefore, 

Then, equation (7) is used to evaluate an equivalent length L in the 

L = - T AV = 0 . 6 6 2 9 2 ~ 1 0 ~ ~  m 
2 

The inverse-square field Mars  capture problem is thereby transformed into an equi- 
valent rectilinear rest-to-rest problem consisting of a 140-day tmnsit time and a distance 
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to be travelled of 0. 66292X1Ol1 meters. For each desired a. and v. equation (18) is 
solved for the required propulsion time to satisfy L and T. Then, equation (6) is used 
to evaluate the AV from each value of the quantity (1 - a t /v.). 

J 

OP J 
A slightly different procedure is used to describe the all-propulsion portion of the 

curve. For all-propulsion solutions, the propulsion time must equal the transit time, 
140 days. The parameters a. and v- are no longer completely independent but are 
tied together by the stipulation that t = T and that L and T are defined. For each 
value of v., equation (21) is used to calculate the necessary value of a. for an all- 
propulsion solution. Thus, 

J 
P 

J 

Then, as before, equation (6) yields a value of AV for each value of the quantity 
(1 - aoT/vj). 

The procedure for calculating the approximate data in figure 10(b) is identical to the 
method given for figure lO(a). 
evaluation of the equivalent length L. 

thrust method described in references 3 and 4. 
ture trajectory, the variable thrust propulsive requirement J is obtained from precalcu- 
lated data 

The only exception occurs in the first step, which is the 

In figure 10(b), the reference solution of the trajectory problem is the variable 
For the 140-day 103-degree Mars  cap- 

2 3  J = 33. 11 m /sec 

where 
T 

J = J  a 2 d t  

The equivalent length of a variable thrust rectilinear flight can then be evaluated for the 
140-day trip time by using equation (B8) 

L = = 0. 6988X1Ol1 m 

It is noted that the L obtained from the varible thrust reference case is higher than 
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the impulsive reference value. 
curate than the approximate data in figure lO(a) except at high values of ao. 

formance will be made, in figure 11, for constant thrust solutions of a Mars  capture 
trajectory problem over a wide range of a. and v 

In figure 11, the final mass ratio mf/mo is shown as a function of initial accelera- 
tion a. along lines of constant specific impulse I. The tyexact" data in the figure are 
obtained by repeated, numerically integrated, constant thrust mode optimum solutions of 
the Earth to Mars  transfer at various combinations of I and ao. Circular, coplanar 
heliocentric orbits are specified at each end of the trajectory, and net heliocentric trans- 
fer time and elapsed central angle a r e  fixed. Hence, figure 11 is a family of constant 
thrust solutions of a given point-to-point trajectory problem in the inverse-square gravity 
field. 

variation of mf/mo is a reflection of the increasing AV discussed in sketch (a) and 
other figures. The lowest value of mf/mo for each I corresponds to all-propulsion 
solutions which, taken together, comprise the boundary curve labeled "all propulsion". 

The dashed curves in figure 11 a r e  approximate data obtained by using the method 
of this report. However, instead of manipulating the constant thrust rectilinear equa- 
tions (eqs. (18) and (19)), the data in figure 11 a r e  taken directly from the nondimensional 
curves given in appendix C. The curves in appendix C are precalculated, generalized 
solutions of constant thrust rectilinear rest- to-rest flight. Their use greatly simplifies 
hand calculations. Here again, only one 
reference solution of the given problem is required to evaluate a value of L, which is 
then assumed to hold constant for all values of a. and I. 
was a power-limited variable thrust calculus of variations solution which, for the given 
problem, resulted in 

The approximate data in figure 10(b) appears more ac- 

For the final part of this section, a comparison of actual and predicted mass per- 

j. 

Final mass ratio decreases with decreasing a. along each line of constant I. This 

The necessary steps a r e  outlined in appendix C. 

The reference case used here 

-,-I- 

J =JL a2 dt = 6.03 m 3 2  /sec 

Equation (B8) is used to find the reference value of L for this trajectory problem based 
upon the given value of J 

3 
L = 4% = 6 . 2 7 ~ 1 0 ~ ~  m 

Since the approximate 
invariant, it is clear that, 

data of figure 11 a r e  based on the assumption that L is 
on the high-acceleration end of the figure, the value of L is 
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higher than need be, giving r ise  to poorer mass performance than the actual constant 
thrust solutions. 

L is not large enough. 
predicted by the approximate method and the relative shift of the approximate all- 
propulsion boundary to lower values of ao. These observations are further demonstra- 
tions of the fact that the actual equivalent L of variational, constant thrust solutions 
varies with both a. and the jet velocity. 

reference value of L. 
given point-to-point trajectory problem results in 

On the other hand, at the low-acceleration end of the scale, the reference value of 
This is illustrated by the better than actual mass performance 

Alternatively, another complete comparison plot could be generated for any other 
For example, a very high thrust (impulsive) solution of the same 

AVtot = 5910 m/sec - 

I€ equation (7) is used, this impulsive solution gives rise to a different reference value 
of L: 

which differs from the variable thrust value by about 7 percent. 

fect agreement with the mf/mo of the actual data. But, the e r rors  in mf/mo at the 
all-propulsion end of the curves would be further magnified. 

At very high a,, the lower value of L from the impulsive solution would be in per- 

Extended Problem Model 

The primary aim of this report has been to analyze and apply a simple, rectilinear, 
rest-to-rest problem model to actual trajectory solutions. It has been found that in some 

curate approximation. The purpose of this section is to provide more background ma- 
terial on the nature of this problem by looking at the characteristic velocity profiles of 
actual trajectory solutions. 

When the equivalent, field-free rectilinear velocity of actual constant thrust trajec- 
tory solutions in the inverse-square field a r e  plotted with time, the result is often simi- 
lar to sketch (e) (thrust is assumed to reverse at the end of the coast phase). The shape 
of the sketch indicates a departure from the rest-to-rest velocity profile. 

areas this approach fails to correspond with actual flights to a degree sufficient fo- L ac- 
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The equivalent velocity given in equation (6) 

is evaluated at each instant of time along the flight as t P 
of time spent in each propulsion period or coast period is taken from the optimum solu- 
tion in the inverse-square field. In other words the rocket is operated on the straight- 
line path in field-free space using the same sequence of events given by the optimum so- 
lution of the inverse-square field trajectory problem. 

Figure 12 is given to present more detail concerning the situation presented in 
sketch (e). 

increases. The actual amount 

Figure 12(a) is for the Jupiter capture heliocentric trajectory problem dis- 
cussed in figure 4. The impulsive solution (ao = w) is shown 
to consist of two velocity changes that a r e  not equal in magni- 
tude. The rectilinear velocity after the second AV (at 
t = 400 days) has been arbitrarily chosen as zero for a refer- 

The two other velocity histories in figure 12(a) are given 
v 0 b t T ence. 

(e) 
to show the effect of using low accelerations. Even in the low- 

acceleration cases, the difference between AV of each propulsion phase in close agree- 
ment with the difference present in the impulsive solution. 
covered (area under the velocity curves) is almost the same for all ao. Clearly, this 
example shows that the actual optimum trajectory is similar in form to the rest-to-rest 
rectilinear problem model since the difference between the values of AV for each pro- 
pulsion phase is small when compared to the total AV. Earlier, in figure 4, it was shown 
that the rest-to-rest values of L for this problem did not vary greatly with ao. 

The second part of the figure 12(b) is for the flyby trajectory problem to Mars .  This 
case is an example of a wide discrepancy between the actual velocity profile of optimum 
trajectory solutions and the simple rest- to-rest rectilinear problem model. As indicated 
in figure 5, these dissimilarities can introduce significant error  into the approximate 
scheme. 

For this particular flyby problem, a point-to-point trajectory problem is specified 
such that the rocket encounters Mars '  orbit after a given elapsed time and heliocentric 
central angle. Velocity and path angle are specified at both the initial and final points. 
The initial velocity and path angle correspond to circular orbit about the Sun at 1 A. U. , 
but at Mars  encounter the velocity and path angle are fixed at those values obtained from 
the impulsive flyby solution. (The same velocity and path angle were used as boundary 
conditions regardless of other acceleration levels used to allow the trajectory problem to 
be interpreted as a point-to-point problem. ) The impulsive flyby trajectory solution in 

The rectilinear distance 
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the inverse-square field requires a AV at the start of the transfer but has no AV 
applied upon arrival at the planet encounter. 
trajectory had an encounter velocity of 23 234 meters per second at an angle of 16.7 
degrees relative to Mars '  orbit path at encounter. 
termed a "limited flyby" because slightly different, but more optimum, values of termi- 
nal velocity and path angle could be found for each a. in the inverse-square field prob- 
lem. 

In this flyby case, the initial value of characteristic velocity is arbitrarily taken to 
be zero. The optimal policy for the impulsive solution of this particular flyby problem 
is, as shown in the figure, to delay the application of the AV for about 35 days. The 
vehicle then coasts approximately 150 days, crossing Mars' orbit at the stated value of 
path angle and velocity on the 185th day. When the optimal solution is made with the 
low a, of 1 . 4 ~ 1 0 - ~  meter per second squared, an initial delay period is still present in 
the solution (in this case, about 16 days) followed by a propulsion period of about 34 days. 
During this propulsion period, a AV only slightly greater than the impulsive value is 
applied. At the end of the transfer, a small propulsion period of about 4 days occurs 
just before arrival at the desired boundary conditions. 
(0. ~ x I O - ~  m/sec ) shows no initial delay period. The propulsion phase starts at t = 0 
and continues on to a AV significantly higher than the impulsive AV. A terminal pro- 
pulsion period is present again during which the equivalent rectilinear velocity is re- 
duced to a value in close agreement with the other solutions. 
example, the actual area under the velocity curves is nearly the same for all values of 

sistent quantity. However, as can be seen, the velocity profiles indicate a significant 
departure from the simple rest-to-rest rectilinear problem model. 
rest-to-rest value of L varies as was shown in figure 5. 

linear flight, with nonzero and unequal values of velocity at the boundaries, would be a 
better problem model for optimum trajectory solutions in the inverse-square gravity 
field. The use of this extended problem model has been briefly studied and appears to 
provide a markedly improved approximation method. However, it is not reported hcrein 
because it introduces much more complexity than the rest-to-rest problem mode and 
the necessary detailed studies are not yet complete. 

increased accuracy, making it undesirable in an approximation scheme. On the other 
hand, the rest-to-rest problem model is simple to analyze and use. 
rest-to-rest rectilinear model has been applied to cases such as the M a r s  flyby to dem- 
onstrate the e r ror  that may be introduced in approximating such trajectories with the 
over-simplified problem model. 

For this example, the impulsive solution 

This example would be more aptly 

The other low a. case 
2 

Again, as in the Jupiter 

and the difference between velocity increments in the propulsion phases is a con- 

Therefore, the 

The facts presented in figure 12 strongly suggest that a more general type of recti- 

It is possible that the added complexity of the general model could outweigh the 

Therefore, the 
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CONCLUSIONS 

It has been shown that the approximate evaluation of propulsive requirement for 
actual constant thrust trajectories can benefit greatly by the use of L, the equivalent 
straight-line distance traveled in gravity-free space. Length L is used in an analogous 
manner to the familiar AV of high-thrust trajectory analysis. In most cases, it pro- 
vides a more consistent figure of merit among optimum trajectory solutions employing 
high- and low-thrust modes of rocket operation. 

(6 to 10 percent) for a given trajectory problem, depending upon problem type and/or the 
accelerationlevel used. In some cases, the degree of variance of L may be great 
enough to cause too much inaccuracy in the evaluated propulsive requirement, but this 
depends upon the needs of the investigator. When the characteristic velocity profile of 
the actual flight trajectory departs radically from the rest-to-rest rectilinear model, as 
in the case of the flyby probes, the e r rors  can be large. Due to the effect of I, typical 
low-thrust solutions show er rors  in mf/mo that a re  lower than e r rors  in L by a factor 
of two or more. 

The approximate results can be improved in comparison with numerically integrated 

As interpreted by the methods of this report, equivalent L does vary slightly 

results if  the equivalent length of a trajectory problem is evaluated from the propulsive 
requirement of a low-thrust type of solution rather than an impulsive solution. In other 
words, if  L is evaluated with one of the more easily calculated low-thrust methods such 
as variable thrust, or  constant thrust, all-propulsion, it can give more accurate propul- 
sive requirements for any other low-thrust solutions of the same problem. This entails 
much more calculation time than the impulsive thrust reference case approach. However, 
this alternative is still more economical than repeated numerical integration solutions of 
the same trajectory problem for each change in thrust level o r  jet velocity in the constant 
thrust mode of rocket operation, since only one exact, integrated reference case is 
needed for each trajectory problem. 

At this writing, it is not certain that the rest-to-rest rectilinear trajectory provides 
the best problem model to use as a source of correlating equations for actual rocket 
flight. Although the present model is very simple to understand and apply, a more com- 
plicated problem model could introduce better correspondence with actual solutions and 
therby improve accuracy. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, January 31, 1966. 
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APPENDIX A 

SYMBOLS 

a 

F 

g 

I 

J 

L 

m 

m 

P 

r 

T 

t 

ta 

tP 
V 

AV 

2 acceleration, m/sec 

thrust, N 

standard gravity, 9.80665 m/sec 

specific impulse, sec 

2 

2 2 3  a dt, m /sec 

length, m 

mass, kg 

magnitude of mass flow rate, 
kg/sec 

power, W 

final to initial mass ratio, mf/mo 

transfer time, sec 

time, sec 

accumulated propulsion time, sec 

total propulsion time, sec 

velocity, m/sec 

characteristic velocity increment, 

= 

m/s ec 

jet velocity, m/sec 

magnitude of weight flow rate 

dimensionless initial accelera- 
2 

j 
W 

P 

V 

tion, L/a,T 

Y dimensionless j et velocity , 
L/V~T 

6 dimensionless velocity inc re- 
ment, TAV/2L 

7 dimensionless propulsion time, 

heliocentric travel angle, deg 9 

Subscripts: 

f final 

max maximum . 

min minimum 

0 initial 

P propellant 

tot total 
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APPENDIX B 

RECTILINEAR REST-TO-REST SOLUTIONS 

Con stant  Accelerat ion 

Flight with constant acceleration is simply a special case of constant thrust. In this 
case, jet power is ignored, thrust is assumed constant, and the mass flow rate is as- 
sumed zero. A rest-to-rest rectilinear flight with constant acceleration is shown in 
sketch (f). 

la' 

Since the accelerationis constant, dV/dt is the same in 
in each propulsion phase, except for a change in algebraic 
sign. If t is the total propulsion time, then each pro- P 
pulsion phase time is t /2 and the velocity at the coast P 
phase is at /2. By simple addition of areas in the veloc- 
ity history, the length may be expressed as a function of 

I__L_ 
I 

P 

0 T a, tp, and T 

V 

( f )  

.. 
The characteristic velocity increment AV for this case is given by the integral of the 
acceleration magnitude. For constant acceleration, 

t 
A V = i p  la/ d t = a t  P 

For a given L, T, and t a is defined; therefore, AV 
P' 

4L 
AV = at = ____ 

p 2 T -  tp 

The all-propulsion case for constant acceleration derives 
and (B2) by simple substitution of T for t Hence, for 
celeration, 

P' 

could be written as 

(B2) 

directly from equations (Bl) 
all-propulsion, constant ac- 

2 
L=- a T  

4 033) 
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and 

AV = aT  

2 Or, for a given L and T, since a = 4L/T , 

4L 
AV = - 

T 

Variable Thrust 

It is also possible to develop equations involving the characteristic length L for the 
mode of rocket operation often known as "variable thrust". In this case, the jet power 
of the rocket is assumed constant but the acceleration level is left free to follow the best 
course of action to minimize propulsive effort for a given trajectory problem. For a 
rectilinear flight in field-free space, the optimal acceleration history is a linear varia- 
tion with time (ref. 4). In the case where initial and final velocities are stipulated as 
zero, such as shown in sketch (g), the magnitude of the initial and final accelerations a r e  

equal. The acceleration decreases linearly from its initial 
value to zero at time T/2. The acceleration would then be re- 
versed and made to increase in magnitude until the final time 
T. The acceleration historv for this case is given bv 

/ai 
0 

I 

a = a. (1 - $) 
where a. is the initial value, T is the total time, and t is any time between 0 and T. 
Integration of equation (B5) over the trip time results in the following equation for 
length L: 

2 
L = -  aOT 

6 

The usual figure of merit for propulsive effort in variable thrust trajectory analysis 
is J where 
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For any constant power electric rocket, whether constant thrust or variable thrust, 
the mass fraction can be shown to be a function of J and the specific power rating of the 
rocket P/mo 

9 -  1 

mo 1+- 

mO 

- -  
J 

2- P 

In variable thrust analysis, the utility of J is enhanced by the fact that J is an 
invariant of each trajectory solution, regardless of the P/mo used. In the constant 
thrust case, however, J is not as useful because it varies with the choice of a. and v 
in solving a particular trajectory problem. 

it is seen that for the rectilinear rest-to-rest problem J depends upon the initial ac- 
celeration a. and travel time T. Then 

j 

If the square of the acceleration in equation (B5) is integrated over the flight time, 

From equation (B6), length is a function of the a. and time of travel. If equation (B7) 
is substituted into equation (B6), length is shown to depend upon J and travel time: 
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APPENDIX C 

GENERALIZED CONSTANT THRUST ROCKET PERFORMANCE 

The equations developed in the main body of this report for the rectilinear flight of a 
constant thrust rocket may be generalized in terms of dimensionless parameters. This 
procedure makes possible the presentation of generalized performance charts for the 
constant thrust rocket, in terms of its operating parameters, which apply to any com- 
bination of travel length and travel time. 

Constant Thrust With Coasting 

Repetition of equation (18) shows how L, vj, tp, ao, and T a r e  interrelated 

Now let acceleration, jet velocity, and propulsion time be represented by the dimension- 
less  parameters j3, y, and r,  respectively. Then, 

L 
v. T 

3 
y = -  Y > O  

t 
P 
T 

o < r < 1  r = -  

Sumtitution of j3, y ,  and r in the length equation in place of a,, v 
the cancellation of L and T, and equation (18) becomes 

and t results in 
j’ P 
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It is noted here that the more familiar dimensionless quantities, propellant fraction 
and f ina l  mass fraction, can also be expressed in terms of P ,  y, and r; that is, 

and 

m P - 1 - - - = 1 - E  
P 

mf -- 
0 mO 

m 

The following expression for  the equivalent AV of a constant thrust rocket is re- 
called: 

A V =  -v. In 2 
mo 

This AV is now made dimensionless by dividing it by 2L/T, the AV of a rectilinear 
rest-to-rest impulsive thrust solution. At the same time, mf/mo is replaced by its 
equivalent, (1  - AT/@), so that 

T 

From equation (C3) final mass fraction can be expressed in terms of 6 and y in the 
following form: 

The propulsion time fraction r may be obtained from equation (C4) 

Y 
(C5) 
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If equations (C3), (C4), and (C5) are substituted into equation (C2), the result is a form 
that allows direct calculation of P from a choice of y and 6. First, 

Then, rearranging terms results in 

Choosing a y and 6 for a dimensionless rectilinear flight is analogous to choosing 
v and AV in the usual case. The dimensionless initial acceleration P can then be 
calculated from y and 6. Subsequent calculations of other pertinent performance data 
can also be made, such as 

j 

mf -2y6 = e  - 
0 

m 

and 

Figure 13 is a chart of solutions of equation (C6). In figure 13, dimensionless AV 
is plotted against dimensionless a. along lines of constant, dimensionless v.. 

J 
shown in figure 13 is the boundary of all-propulsion solutions, along which both y and 
P a r e  interdependent. 

Also 

Al l  Propulsion 

In all-propulsion cases for the constant thrust rocket T is unity. For T = 1, equa- 
tion (C2) further simplifies to 
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and 

(all propulsion) 
P 

Equation (C6) can be solved for either P or y; thus, 

2 2  
( l +  7) * (all propulsion) 

4 4  
P =  

y = 2  lh- 1 (all propulsion) 

Since the minimum value of y is zero, it can be seen in equation (C8) that the mini- 
2 mum all-propulsion value of /3 is 1/4. Recalling that /3 = L/aoT , it can be seen that 

the maximum a. for all-propulsion cases occurs when /3 is minimum and is 

(all propulsion and y = 0)  L - 4 L  ---- 
8T2 T 2  

- 

This maximum a. occurs only for y = 0, corresponding to infinite jet velocity. 

now rewritten for 7 = 1 so that 
For all-propulsion cases, equation (C3), the expression for dimensionless AV, is 

1 
6 = - - ln  (1 - i) 

2Y 

Substituting for 8 in terms of y from equation (C8) means that 6 can be expressed in 
terms of y 

(all propulsion) 

Also, for T = 1, the final mass fraction becomes 

~ "f = I - -  Y 
mO P 

(all propulsion) 
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Or, in terms of y only, 

2 
(all propulsion) 

0 
m 

The next figure, figure 14, is a generalized performance chart in which final mass 
fraction is plotted as a function of P along lines of constant y. As in figure 13 the 
independent variables of figure 14 are the initial acceleration parameter P and the jet 
velocity parameter y. However, at each P and y pair, the 6 of figure 13 has been 
converted into a value of mf/mo with the expression mf/mo = e-2yb. 

Figure 14 then depicts the variation of final mass fraction with initial acceleration 
along lines of constant jet velocity. It can be directly converted into a data curve for any 
constant thrust trajectory problem once the equivalent length L and travel time T are 
defined. This procedure was used in the generation of the approximate data curves in 
figure 11. 

from the all-coasting impulsive case (P = 0) to the all-propulsion no-coasting case de- 
fined by the all-propulsion boundary curve. The propulsion time fraction T varies be- 
tween 0 and l along each y curve. In many constant thrust trajectory problems, T may 
be a more important parameter than P, since thrustor operating life may be more 
severely constrained than initial thrust to mass ratio of the electric vehicle. It is for 
this reason that figure 15 is presented. 

lines of constant 6. The data is directly derived from figure 14 using the relation 

The range of the initial acceleration parameter P,  shown in figures 13 and 14, spans 

In the final generalized chart given here (fig. 15) mf/mo is plotted against T along 

Figure 15 shows the steady decrease in final mass fraction between the impulsive (T = 0) 
and all-propulsion (T = 1) extremes of constant thrust operation. 

An example of one use of these curves is given as figure 11. In this case, the data 
for mf/mo against a. along lines of constant I is taken directly from figure 14. The 
dimensionless data in figure 14 is transformed into dimensioned data for figure 11 by 
simply applying the appropriate scale factors. These factors are functions of the trans- 
fer time T and the equivalent L of the trajectory in question. At each point in fig- 
ure 11 
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1 L  a =- -  
@ T 2  

and 

Hence, the approximate data curves shown in figure 11 are simply a dimensioned ver- 
sion of figure 14. 

As an example of another use of these charts, consider the heliocentric flight of a 
600-day capture probe to Jupiter. If the optimum travel angle case is used, the length 
can be read from figure 8(b) as 5. 4X1Ol1 meters. If ion thrustors with a jet velocity of 
80 000 meters per second and an allowable propulsion time of 10 000 hours are assumed, 
the required a. and mf/mo of the trajectory can be found in figures 14 and 15. First 
the value of y is calculated with T = 600 days so that 

= 0. 13 
5.4X10 l1 - L y = - -  

VjT ( 8 ~ 1 0 ~ ) ( 6 0 0 ) ( 8 6  400) 

Then the propulsion time fraction is calculated, based on the allowable 10 000 hours 

= 0. 695 lo4 7 = -  P = 
t 

T (24)(600) 

In figure 15 these values of y and T indicate that mf/mo = 0.67. 

initial acceleration can then be calculated by the following equation: 
In figure 14, y = 0 . 1 3  and mf/rno = 0.67  occur when P = 0.275. The required 

2 a =-=- = 0 . 7 3 ~ 1 0 - ~  m/sec 
"0 @T2 

0 
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APPENDIX D 

EQUIVALENT LENGTH OF SOME SELECTED TRAJECTORY PROBLEMS 

As mentioned in the main body, the purpose of this appendix is to present more 
equivalent length data for other interplanetary trajectories. The data curves shown here 
as figure 16 are based on numerically integrated, calculus of variations, interplanetary 
capture trajectories. 

The specific impulse values used for each integrated solution are indicated on the res- 
pective curves. The value of I was set  high to avoid severe mass changes. 

Circular, coplanar heliocentric orbits a r e  assumed for the Earth and other planets. 
Each trajectory begins with the vehicle in a circular orbit about the Sun at Earth's 
radius and ends with the vehicle again in circular orbit about the Sun at the target planet 
radius. The data given are somewhat limited in that only the optimum (minimum AV) 
heliocentric travel angle is used at each travel time. At  each travel time, for  each 
target planet, other heliocentric travel angles would be possible, although the propellant 
requirements would be greater and, hence, the equivalent length would be increased. 
Each trajectory solution was calculated to find the propellant fraction m /mo and 
initial acceleration a. required for the heliocentric, all-propulsion transit. Equa- 
tion (20) was then used to evaluate the equivalent transit length L at each transit time T 
in the following manner: 

The particular mode of rocket operation used here is constant thrust, all propulsion. 

P 

(for all propulsion) 

where v. = I x 9.80665. 
J 
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TABLE I. - EQUIVALENT LENGTH GIVEN BY VARI- 

ABLE THRUST TRAJECTORY SOLUTIONS 

Case I Transfer I J = $a2 dt, 
time, 
days 

Mars capture 100 
140 
200 
I 

2 3  m /sec 

99.4 
33. 1 
9. 59 

Mars flyby I 185 I 2.65 

Venus capture I 140 I 6.92 

Jupiter capture I 400 I 85.3 

3 . 1  AUsolar probe 1 182. 5 I 34.33 

5 

4 

3 

2 
10-3 

Equivalent 
length, 

L =  @Zi 
m 

7. 31X1010 
6. 99 
6.42 

3.OXlO~O 

3.20x1010 

5. 42X1Ol1 

1.06X1 01' 

1 I I 1 I l l ! l  
Coasti "on 

Jet velocity,- 

mlsec - 
v j  

10-2 

boundary 

03 
"G- 

- 10-1 
Init ial acceleration, ao, m/secZ 

Figure 1. - Effect of in i t ia l  acceleration and jet velocity on characteristic 
velocity increment for rect i l inear rest-to-rest trajectory problem. 
Length, l d l  meters; transfer time, lo7 seconds; constant t h rus t  
mode of operation. 
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In i t ia l  acceleration, a,,, m/secZ 

Figure 2. - Effect of in i t ia l  acceleration o n  equivalent length for Earth- 
Mars capture trajectories at various transfer times and travel angles. 
Constant t h rus t  mode; specific impulse, KKtO seconds. 

10-4 10-3 
Init ial acceleration, a@ m/sec2 

Figure 3. - Effect of in i t ia l  acceleration on equivalent length for Earth- 
Venus capture trajectory. Transfer time, 140 days; heliocentric travel 
angle, 68.5 degrees; constant t h rus t  mode; specific impulse, 6000 
seconds. 

10 w 00 
Init ial acceleration, a@ m/sec2 

Figure 4. - Effect of in i t ia l  acceleration and specific impulse on equiva- 
lent length for Earth-Jupiter capture trajectory. Transfer time, 400 
days; hel iocentr ic travel angle, 140 degrees; constant t h r u s t  mode. 
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Ini t ial  acceleration, ao, m/secL 

Figure 5. - Effect of in i t ia l  acceleration on  equivalent length for Earth-Mars flyby 
trajectory. Transfer time, 185 days; heliocentric travel angle, 154.5 degrees; 
constant t h rus t  mode; specific impulse, 8000 seconds. 

c 
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3 
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2 
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Init ial  acceleration, ao, m/sec2 

Figure 6. - Effect of in i t ia l  acceleration on  equivalent length for solar 
probe flyby to 0.1 A U. Transfer time, 182.5 days; heliocentric travel 
angle, 265 degrees; constant t h rus t  mode; specific impulse, 10 000 
seconds. 
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Figure 7. - Comparison of actual and approxi- 
mate f inal  to in i t ia l  mass ratio for solar 
probe to 0.1 A. U. Transfer time, 182.5 days; 
heliocentric travel angle, 265 degrees. 

IIT 

I L J  

. . .  
= 6ooo S e d  

I I I I  
-Variable t h r u s t  

(ref. 4) 

180 
Heliocentric travel time, T, 

T I 

lays 
3 4  380 

(a) Mars capture trajectories. 

Figure 8. - Comparison of equivalent length from various sources based on actual propulsive 
requirement of trajectories wi th optimum travel angle at each travel time. 
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(bl Jupiter capture trajectories. 

Figure 8. - Concluded. 

60 100 140 180 220 260 300 
Transfer time, T, days 

Figure 9. - Error comparison of equivalent lengths evaluated for Mars 
capture trajectories with optimum travel angle. Equivalent length of 
constant t h rus t  all-propulsion solution used as reference. 
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(a) Impulsive reference solution. 

1 

coasting ( I  = sec) 

w 4 10x10-3- 

in i t ia l  acceleration, aw n . . d  

(b) Variable th rus t  reference solution. 

Figure 10. - Comparison of exact and approximate characteristic velocity increment 
for Earth-Mars capture trajectory. Transfer time, 140 days; hel iocentr ic travel 
angle, 103 degrees. 
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Figure 11. - Comparison of actual and approximate f inal  to in i t ia l  mass 
ratio for Earth-Mars capture trajectory. Transfer time, 2% days; 
heliocentric travel angle, 166 degrees. Constant t h r u s t  power-limited 
mode. 

I I I In i t ia l  acceleration; I I I 

Time, t, days 

(a) For Jupiter capture trajectory. Transfer (b) For Mars flyby trajectory. Transfer time, 
time, 400 days; heliocentric travel angle, 140 
degrees; specific impulse, 100 OOO seconds. 

gravity field. 

185 days; heliocentric travel angle, 155 
degrees; specific impulse, 8ooo seconds. 

Figure 12. - History of characteristic velocity for optimum, constant t h r u s t  trajectory solutions in 
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Figure 13. - Total velocity increment as funct ion of in i t ia l  acceleration and jet velocity (dimensionless ratios) for rect i l inear rest-to- 
rest trajectories. Constant t h rus t  mode. 
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Figure 14. - Final to initial mass ratio as function of initial acceleration and jet velocity (dimensionless ratios) for rectilinear rest-to-rest trajectories. Constant thrust mode. 
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Dimensionless propulsion time, T = tp/T 

Figure 15. - Final to initial mass ratio as function of propulsion time and jet velocity (dimensionless ratios) for recti- 
linear rest-to-rest trajectories. Constant thrust mode. 
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(a) Earth-Mercury capture trajectory. Specific impulse, 10 OOO seconds. 
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(b) Earth-Venus capture trajectory. Specific impulse, 10 000 seconds. 

Figure 16. - Equivalent length curves for various interplanetary capture trajec- 
tories. Constant t h rus t  all-propulsion mode. 
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E (c) Earth-Saturn capture trajectory. Specific impulse, 100 000 seconds. 
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(d) Earth-Uranus capture trajectory. Specific impulse, 100 000 seconds. 

Figure 16. - Continued. 

49 



/’ 

i 

0 

- 
1- 

(e) Earth-Neptune capture trajectory. Specific impulse, 100 000 seconds. 
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(f) Earth-Pluto capture trajectory. Specific impulse, 100 000 seconds. 

Figure 16. - Concluded. 
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