COMPUTING METHODS IN OPTIMIZATION PROBLEMS

GRADIENT METHODS FOR THE OPTIMIZATION OF DYNAMIC* SYSTEM PARAMETERS BY HYBRID COMPUTATION

Geotge A. Bekey and Robert B. McGhee

Electrical Engineering Department University of Southern California los Angeles, California
I. INTRODUCTION

This paper is concerned with the computer implementation of both continuous and discrete gradient methods for adjusting the parameters of a dynamic system so as to match a specified response function as closely as possible. While the basic theory of parameter optímization by gradient descent has been known for some tame, the limitations and convergence properties of particular methods of computer implementation are not yet weli understood. This paper is intended to be a contribution toward obtaining a better understanding of these problems.

Continuots parameter optimization is an appealing concept and a number of "adaptive control" schemes have been based on it. The first part of this paper reviews the formulation of a continuous steepest descent algorithm and discusses its difficulties. Computer results relating to the nature of the gradient and the dependence of the path in parameter space on adjustment gain are given.

The second part of the paper reviews briefly several discrete gradient optimization techniques. An algorithm for automatic adjustment of sitep size for gredient descent is presented. The stability and convergence properties of first and second order iteration schemes are compared and some new results are presented in the form of a convergence theorém. The application of discrete parameter optimization methods to a nonlinear dynamic system is illustrated with an example.

This research was supported in part at the University of Southern Califormia under U. S. Air Force Office of Scientific Research Grant No. AF-AFOSR-75-63 and in part at Space Technology Laboratories, Inc, under National Aeronautics and Space Administration Contract NAS\&-2582.
N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

COMPUTING METHODS IN OPTIMIZATION PROBLEMS

The final section of the paper presents a formulation of a hybrid computational strategy for parameter optimization which includes the best features of both the analog and digital computer solutions.

2. CONTINUOUS PARAMETER OPTIMIZATION

We consider continuous dynamic systems described by

$$
\begin{equation*}
\dot{\vec{y}}=F(\vec{y}, t ; \bar{p}) \tag{1}
\end{equation*}
$$

where \ddot{y} is_an n-vector representing the state of the system and \vec{p} is an m-vector representing the parameters to be optimized, including initial conditions. The parameter optimization problem under consideration is that of selecting \bar{p} in such a way that the solution of Eq. (1) approximates a given function, $y_{d}(t)$, as closely as possible. The particular criterion function to be used as a basis for parameter adjustment in this paper is givenby

$$
\begin{equation*}
\phi(\stackrel{\rightharpoonup}{p})=\int_{0}^{T}\left[y(t ; \bar{p})-y_{d}(t)\right]^{2} d t \tag{2}
\end{equation*}
$$

Gradient methods of optimization are based upon adjustment of parameters. utilizing the local gradient vector。 That is, a parameter change vector, Δ p, is computed according to the rule

$$
\begin{equation*}
\overline{\Delta p}=-K \overline{\partial \phi}(\vec{p}) \tag{3}
\end{equation*}
$$

where K is a positive definite matrix and $\overline{7} \phi$ is the column vector

$$
\begin{equation*}
\bar{\nabla} \phi(\bar{p})=\left[\frac{\partial \phi}{\partial p_{1}}, \frac{\partial \phi}{\partial p_{2}}, \cdots \frac{\partial \phi}{\partial p_{m}}\right]^{\prime} \tag{4}
\end{equation*}
$$

Following the i-th such calculation, the value of the parameter vector is given by

$$
\begin{equation*}
\bar{p}^{(i+1)}=\bar{p}^{-(i)}+\bar{\Delta}_{p}^{\{i\rangle} \tag{5}
\end{equation*}
$$

The convergence properties of several iteration schemes of this type are discussed in Section 3 of this paper.

Consider now the case where continuous. parameter adjustment is desired. It is clear that the criterion function defined by Eq. (2) cannot be used directly since it leads to an iterative adjustment algorithm. "Let us. therefore define an ingtantaneous performande criterion

COMPUTING METHODS IN OPTIMIZATION PROBLEMS

$$
\begin{equation*}
f=\frac{d \phi}{d t}=\left[y(t ; \vec{p}(t))-y_{d}(t)\right]^{2} \tag{6}
\end{equation*}
$$

Unfortunately, f is a functional in $\bar{\rho}(t)$ rather than an ordinary function. Consequently, the gradient vector, Tr (\bar{p}), does not exist unless $\vec{p}(t)$ is a constant. But this contradicts the original objective of the formulacion, namely, to adjust \bar{p} continuously as a function of time. Two different approaches to the resolution of this dilemma have been taken. If the desired output is a vector of derivatives, $\vec{y}_{d}(t)$, with dimension equal to the order of the system to be optimized, then Eq. (I) may be used to derive a criterion function which is a simple function of \bar{p} even when \vec{p} varies with time. Specifically, if

$$
\begin{equation*}
f_{e}(\bar{p})=F^{2}\left(\bar{y}_{d}, t ; \bar{p}\right) \tag{7}
\end{equation*}
$$

then the gradient

$$
\begin{equation*}
\nabla_{f}^{e}(\bar{p})=2 F \frac{\partial F}{\partial \tilde{p}} \tag{8}
\end{equation*}
$$

exists and may be used to find a minimizing value for \bar{p} by making use of the adjustment algorithm

$$
\begin{equation*}
\stackrel{\imath}{p}=-k \bar{\gamma}_{e}(\bar{p}) \tag{9}
\end{equation*}
$$

This method, sometimes called the "equation error method" has been used by Grape (1), Ornstein (2), and others in connection with identification problems.

While the equation error method avoids the difficulty associated with E_{q}. (6), computer implementation of the method requires chat desired values for all of the system state variables be available. An alternate formulation, based on the work of Why taker (3) and Margolis (4) does not require complete specification oi the desireed state, Dur leads only to an approximate gradient method. The degree of approximation is related to the rate of change of adjustment of the parameters as compared to the natural frequencies of both the system. and the input process. The remainder oi this paper is restricted to the latter formulation; i.en, to circumstances where yd is a scalar function While the basic technique to be described for continuous parameter adjustment is not new, the results pertaining to the dynamic properties of the parameter adjustment process have not been previously published.

2. 2 The Approximate Gradient Method.

The performance criterion Eq. (7) requires complete knowledge of the desired state. Let us consider instead

COMPUTING METHODS IN OPTIMIZATION PROBLEMS

the criterion

$$
\begin{equation*}
f_{c}=\left(e_{c_{1}}+q_{1} e_{c_{2}}+\cdots+q_{p-1} e_{c p}\right)^{2} \tag{10}
\end{equation*}
$$

where $p<n, n$ is the order of the system, arid

$$
\begin{equation*}
e_{c i}=y_{i}-y_{d i}=\frac{d^{(i-1)} y}{d t(i-1)}-\frac{d^{(i-1)} y d}{d t(i-1)} \tag{11}
\end{equation*}
$$

When $y_{d}(t)$ is given as a scalar function, error derivatives must be obtained by analog computer differentiacion. In many practical situations it is possible to choose all the $q_{i}=0$, so that only the system output (or zero-state) is required. The quantity ec represents "output error" and parameter optimization based on Eq. (10)may be called the "output error method".

Let us choose

$$
\begin{equation*}
\tilde{I}_{c}=\left(e_{c_{1}}+q_{c_{2}}^{-}\right)^{2} \tag{12}
\end{equation*}
$$

Then, if the parameters are constant, the components of the gradient are given by

$$
\begin{equation*}
\frac{\partial i_{c}}{\partial p_{i}}=2\left(e_{c_{1}}+q e_{c_{2}}\right) \frac{\partial}{\partial p_{i}}\left(e_{c_{1}}+q e_{c_{2}}\right) \tag{13}
\end{equation*}
$$

$$
i=1,2, \ldots m
$$

Using the definition of $e_{c l}$ and $e_{c 2}$ from Eq. (11) and since y_{d} is independent of the parameters, Eq. (13) can be written as

$$
\begin{array}{r}
\frac{\partial r_{c}}{\partial p_{i}}=2\left(e_{c_{1}}+q e_{c_{2}}\right) \frac{\partial}{\partial p_{i}}\left(y_{1}+q y_{2}\right) ; \tag{14}\\
i=1,2, \ldots m
\end{array}
$$

where y_{1} and y_{z} represent the system output and its first derivative respectively. Let us denote the influence coefficients by the letter u so that

$$
\begin{equation*}
u_{i j}=\frac{\partial y_{i}}{\partial p_{j}} \tag{15}
\end{equation*}
$$

The influence coefficients can be obtained by differentiation of the system Eq. (1) with respect to the approiate parameters and solving the resulting differential equation in $u_{i j}$ (the "sensitivity equation") (5). Analog computer circuits can be used for the simultaneous ovalration of the $u_{i j}$ and the y_{i}.

Now, if the parameters are adjusted, y_{i} becomes a

COMPUTING METHODS IN OPTIMIZATION PROBLEMS

functional and the $\partial y_{i} / \partial p_{j}$ do not exist in the ordinary sense. Let us assume, however, that in a given solution interval, the variation is sufficiently slow so that p_{j} can be assumed constant. Then, a continuous gradient.
method is based on

$$
\begin{equation*}
\dot{p}_{i}=-k \frac{\partial f_{c}(\bar{p})}{\partial p_{i}} \tag{16}
\end{equation*}
$$

However, analog computer circuits based on Eq. (26) are in fact mechanizations of

$$
\begin{equation*}
\dot{p}_{i}=-k g_{i}\left(\bar{e}_{c}, \bar{y}, \bar{p}\right) \tag{17}
\end{equation*}
$$

where the vector $\bar{G}=\left[9_{1}, 92, \ldots g_{n}\right]^{\prime}$ is an approximation to $T_{f_{c}}$ which approaches \vec{f}_{c} as $k \rightarrow 0$. The $u_{i j}$ whach enter into the calculation of the $G i$ can be considered subsidiary variables, which equal the desired sensitivity coefficients when $\frac{1}{p}=0$.

An analog computer implementation of the approximate gradient method (the output error mothod) is shown in Fige 1 for $q=0$ in Eq. (12). This figure illustrates the application of the method to an identification problem. As long as the switch S is open, the parameters are constant and $\bar{G}=\overline{J f}_{c}$. Consequently, the nature of the gradient can be studied in the open-loop case. Then, the awiteh can be closed for examination of tha actual paramo eter adjustment path.
2.2 The Nature of the Criterion Surface

Let

$$
\begin{equation*}
\hat{i}_{c}=e_{c l}^{2}=\left(y_{1}-y_{d 1}\right)^{2} \tag{18}
\end{equation*}
$$

and define the parameter offsets $\delta_{p_{i}}$ by

$$
\begin{equation*}
b p_{i}=p_{i}^{(0)}-p_{i}^{(i)}, i=1,2,000 \mathrm{~m} \tag{19}
\end{equation*}
$$

where $p_{i}^{(o)}$ represents the assumed initial values of the parameters and p_{i} the values whicn minimize foc Then, if the loop is open, we car expand f_{c} as follows:

$$
\begin{equation*}
f_{c}(t)=\left[e^{\left(v^{(0)}\right)}+\sum_{i=1}^{m} \frac{\partial e_{i}}{\partial p_{i}} \delta p_{i}+0\left(\delta p^{2}\right)\right]^{2} \tag{20}
\end{equation*}
$$

If the δp_{i} are sufficiently smalls second and higher order terms may be neglected and

COMPUTING METHODS IN OPTIMIZATION PROBLEMS

Fig. 2. Instantaneous Criterion Surface

$$
\begin{equation*}
f_{c}(t)=\left[e_{c}\left(p^{(o)}\right)+\sum_{i=1}^{m} u_{1 i} \delta p_{i}\right]^{2} \tag{21}
\end{equation*}
$$

Consequently, contours of constant $f_{c}(t)=C$, at any time t_{j}, can be found from

$$
\begin{equation*}
\sum_{i=1}^{m} u_{i i}\left(t_{j}\right) \delta p_{i}= \pm c^{\frac{1}{2}}-e_{c}\left(p^{-(o)}, t_{j}\right) \tag{22}
\end{equation*}
$$

This equation represents two parailei lanes in the $m+1$ dimensional space of the paramelers and criterion function. If only 2 pasameters p_{i} and p_{2} arc present, it is possible to obtain a simple geometrical interpretation of this equation is shown in Fik. 2. It can be seen that the instantancous criterion function surface $1 s$ a parabolic trough, where the initial and final parameter values are indicated. The contour lines in the $p_{1}-p_{2}$ plane are stralght lines, while the intersection of the trough with the $f_{c}-p_{i}$ bianes results in the ramiliar quadratic shape. It should be noted that $F i g$. 2 represents an instantancous situation. As the $u_{1 j}$ and e_{c} change with time, the trough moves in such a way that its minimum still crosses the desired final point (6).

2.3 The Gradient Vector

Considerable insagnt into the nature of the adjustment process is gained af the gradient iwith S open, of course; is evaluated with a sinusoidal input. The gradient is given by

$$
\begin{equation*}
\left.\overline{T i}_{c}=2 \dot{\hat{T}_{c}} \dot{u}_{11}, \varepsilon_{c} \dot{u}_{i 2}, \cdots e_{c} u_{1 m}\right]^{\prime} \tag{23}
\end{equation*}
$$

Consider, for example, a desired response functior obtained from a second order system described by the relation

$$
\begin{equation*}
\bar{y}_{d}=A_{d} \bar{y}_{d}+\bar{g}_{d} \bar{x}_{d o} \quad \bar{y}_{d i} i 0 ;=\bar{y}_{d o} \tag{k}
\end{equation*}
$$

where

$$
A_{d}=\left[\begin{array}{cc}
0 & 1
\end{array}\right], \bar{B}_{d}=\left[\begin{array}{ll}
0 & 0 \\
-a_{2} & -a_{1}
\end{array}\right], \quad \vec{x}=\left[\begin{array}{c}
x \\
a_{j} \\
a_{4}
\end{array}\right] ;
$$

and the coefficients \bar{a}_{1} : a_{2}, a_{3}, a_{4} are constants, The signal $x(t)$ is the input to the process. It is desired to optimize the parameters α_{1} to α_{4}, of a model deocribed by.

$$
\begin{equation*}
\dot{\bar{y}}=A \bar{y}+B x \quad, \quad \bar{y}(0)=\bar{y}_{0} \tag{25}
\end{equation*}
$$

where

$$
A=\left[\begin{array}{cc}
u & 1 \\
-\alpha_{2} & -\alpha_{1}
\end{array}\right], \quad B=\left[\begin{array}{cc}
0 & 0 \\
\alpha_{3} & \alpha l_{1}
\end{array}\right]
$$

using the criterion function of Eq_{q}. (18). The locus of the gradient vector can be plotted using the computer in the parameter plane defined by any two of the parameters. To further simplify the visualization of the results, let $y_{d o}=y_{o}$ and $A_{d}=A$ so that the differences between y_{d} and y are due entirely to differences between B_{d} and B. To compute the gradient (as defined by Eq. (23) the sensitivity coefficients $u_{3}=\partial y / \partial \alpha_{3}$ and $u_{4}=$ $\partial y / \partial \alpha_{4}$ will be required. These coefficients are obtained from computer solution of two subsidiary equations, derived from differentiation of Eq . (25) with respect to α_{3} and $\alpha 4$ respectively. The sensitivity equations for this case are

$$
\begin{align*}
& \stackrel{u}{u}_{3}=A \bar{u}_{3}+C_{3} \bar{x} \\
& \stackrel{\circ}{u}_{u_{2}}=A \bar{u}_{3}+C_{4} \bar{x} \tag{26}
\end{align*}
$$

where

$$
\begin{array}{ll}
c_{3}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] & c_{4}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \\
\bar{u}_{3}=\left[\begin{array}{l}
u_{3} \\
\dot{u}_{3}
\end{array}\right] & \bar{u}_{4}=\left[\begin{array}{l}
u_{4} \\
\dot{u}_{4}
\end{array}\right]
\end{array}
$$

Substitution of the solution of iq. (26) into Eq. (23) yields the instantaneous value's oi the gradient vector. Typical results are shown in Fig. 3, where $x(t)$ is a sinusoid with a frequency of i rad/sec. Since the adjustmont lop is per. the parameters remain constant, but the sensitivity coerifcients and the matching error e_{c} vary with rime, cosulting=1n the tissajous-like contours in the figure Since for sinusoidal mauls ard linear systems both yd and y are sinusoidal, the error ec is also sinusoidal and becomes zero every half-cycle. From an examination of this figure, ir is clear that if it is attempted tc adjust parameters with a velocity proportional to the gradient, the motion will be oscillatory and may instantaneously posit in an erroneous direction.

```
2.4 Paths of Parameter Adjustment
The dependence of the parameter adjustment path os
```

COMPUTING METHODS IN OPTIMIZATION PROBLEMS

Fig. 3. Open Loop Gradient Loci in the α_{3}, α_{4} Plane

Fig. 4. Descent Trajectories in α_{3}, α_{4} Plane-Sinusoidal Excitation

COMPUTING METHODS IN OPTIMIZATION PROBLEMS

the parameter k in Eq. (17) is indicated in Fig 4 for. the example discussed previously. When k is very small, the path closely approximates a gradient trajectory. When k is large, the functions g_{i} are not equal to the respective coefficients of the gradient, but approach a gradient path as the $\delta p_{i} \rightarrow 0$. The "scallops" on the trajectories are due to tho oscillatory nature of the approximate gradient vector. Values of k larger than those indicated in this figure may cause instability in the parameter optimization loops.

2.5 Stability of the Parameter Adjustment Loops

General analytical results or stability are not available at the present time. Stability in the small has been demonstrated by Margolis (\underline{l}_{x}) for first and secondorder systems with step inputs. Experiments using analog computers show that it is generally possible to find a value of k for which stability and convergence of two or three parameters is possible. How over, attempts to improve convergence by increasing k or attempts to adjust more than three parameters simultaneously generally result either $1 n$ instability or in lack of convergence (G).
. At the present time a general existence theorem insuring local stability of the parameter optimization technique for sufficiently small gain is lacking. Such a theorem would prove that a value of k can be found in any particular case such that, for specified classes of inputs and initial conditions, both stability and convertgene can be assured.

3. DISCRETE PARAMETER OPTIMIZATION

3.1 Discrete Gradient Descent

The convergence problems encountered in continuous parimerer variation schemes may be largely circumvented by making use of e discrete iterative adjustment algorithm When this as. done $-t$ becomes possible to determine the true gradient of a jiver criterion function since paramo eter changes are made only at discrete points in time. For example, the criterion function given by.Eq. (2) may be differentiated to produce

$$
\begin{equation*}
\overrightarrow{F_{\phi}}(\vec{p})=\int_{0}^{T} 2\left[y(t ; \vec{p})-y_{d}(t)\right] \vec{T}_{y}(t ; \vec{p}) d t \tag{27}
\end{equation*}
$$

Since \vec{p} is a constant over the interval of integration,
the partial derivatives of y appearing an this expresssion may be obtained by solving the parameter influence differential equations associated with the assumed equaltionfor y.

The gradient vector computed from $E q$. (27) may be used for discrete gradient descent employing Eq. (3). As in the continuous case, the convergence of this parameter adjustment procedure depends upon the values chosen for the elements of K. However, since the gradient used here is exact rather than approximate, discrete gradient descent may always be stabilized by multiplying every element of K by a sufficiently small scale factor. At the present time, an analogous statement cannot bo made for continuous parameter adjustment procedures utilizing approximate gradients.

3.2 The Optimum Gradient Method

Since the criterion function, \varnothing : is bounded from below by the value zero, it follows that in any region where \varnothing is continuous there must exist ar least one value for a scalar scale factor k; say $k=k *$, such that whenever $|7 \phi| \neq 0$,

$$
\begin{equation*}
\min _{k>0} \phi\left[\bar{p}^{-(i)}-k \overline{F \phi}^{(i)}\right]=\phi\left[\bar{p}^{(i)}-k_{i}^{*} \overline{\gamma \phi}\left(\bar{p}^{(i)}\right)\right] \tag{28}
\end{equation*}
$$

The "optimum gradient method" (7) utilizes k * in Eq. (3) ie., the matrix if is computed anew at every cycle of iteration as

$$
\begin{equation*}
K_{2}=K_{i} I \tag{29}
\end{equation*}
$$

This choice for K not oniy'guarantecs that the sequence of values for \emptyset converges; but also assures that the steps taken in parameter space are large enough to make the convergence reasonably rapid.

With the restriction that only a finite number o: values for k may be considered, the search for k * may be carried out automatically by a digital computer. One method for accomplishing this can be based upon an infthat value for k compute from the'Nowton-Raphson formula. If this gain value is called k°, then at the $i-t h$ stage of iteration

$$
\begin{equation*}
k_{i}^{i}=\frac{\phi\left(p^{-(i)}\right)}{\left|7 \phi\left(p^{(i)}\right)\right|^{2}} \tag{30}
\end{equation*}
$$

and

COMPUTING METHODS IN OPTIMIZATION PROBLEMS

Starting with this gain, a binary scale factor search may be conducted by determining an integer $n \geq 0$ which at least locally minimizes the expression

$$
\begin{equation*}
\phi\left(\bar{p}^{-(i)}, n\right)=\varnothing\left(\bar{p}^{-(i)}-2^{-n} k_{i}^{o} \gamma \phi\right) \tag{32}
\end{equation*}
$$

3.3 A Computational Algorithm for Scale Factor Adjustment

A program to implement scale factor adjustment using the approximate optimum gradient method described above has been written and tested (8). Fig. 5 is a flow-chart for this program *. This algorithm includes a quadratic interpolation formula to permit more accurate determinadion of an optimum scale factor.

In order to make efficient use of the binary search part of the algorithm illustrated by Fig. 5, it is impertank that the search begin at a good value for n. Whereas the full Newton-Raphson step ($n=0$) obtained from Eq. (31) may produce good convergence in the carly phases of iterative optimization, it has been found in numerical experiments that ever larger values of n are needed in the terminal stages unless \emptyset attains the value zero at its minimum (3). This comes about because Newton-Raphson iteration is Based upon linear extrapolation of \varnothing to zero. When $\bar{\phi} \phi$ approaches zero while ϕ remains positive, the computed parameter change vector grows without bound unless there is a corresponding increase in the value of n used in the binary scale factor of Eq . (32). Computational experience indicates that this difficulty may be resolved by beginning each scale factor search with the value for n which was found to be optimum during the previous search cycle (8).
3.4 Constrained Minimization
bile application of the optimum gradient method to parameter optimization problems does indeed lead to a convergent sequence in \nRightarrow, it cannot be assumed that the sequence in p also converges. This difficulty can be

The numbers on the various blocks of this figure refer to FORTRAN statement numbers. In this. diagram, the symbol \vec{c} rather than \vec{p} has been used to represent a parameter vector.

Fig. 5. An Aigorithm for Determining the Optimum Scale Factor for Gradient Descent
avoided by specifying a bounded set from which \vec{p} must be chosen. The "gradient projection" method devised by J.B. Rosen can be applied to closed convex constraint sets to obtain constrained minima by gradient scarching (2,10). A very much simpler procedure has been developed to permit the use of the algorithm given in this paper in conjunction with independently constrained parameters (8); i.e. with constraints of the fora

$$
\begin{equation*}
a_{k} \leq p_{k} \leq b_{k} \tag{33}
\end{equation*}
$$

Application of such constraints ofter produces better convergence even ir optimization problems not naturally constrained (B).
3.5 Second Order Methods

The convergence of iterative minimization procedures can be sharpened markedly in certain circumstances by making use of second derivative information. In particular, "Newton's" method, given by

$$
\begin{equation*}
\hat{S p}_{\mathrm{p}}^{(i)}=\left[\frac{\lambda^{2} \varphi}{\partial p_{i} \partial p_{j}}\right]^{-1} \bar{\gamma}\left(\bar{p}^{(i)}\right) \tag{34}
\end{equation*}
$$

possesses quadratic convergence properties at a regular minimum of \oint (11).

The matrix of second partials in Eq. (34) can be obtained by differentating each row of Eq. (27) with the result

$$
\left.\left.\begin{array}{rl}
{\left[\frac{\partial^{2} \phi}{\partial p_{j}} \frac{\partial p_{k}}{}\right]} & =\int_{0}^{T} 2\left(\overline{J y}_{y} \overline{7 y}_{y}^{\prime}+e\left[\frac{\partial^{2} y}{\partial p_{j}} \partial p_{k}\right.\right.
\end{array}\right]\right) d t
$$

where

$$
\begin{align*}
S & =\sum_{j_{0}}^{T} J_{y} \bar{J}_{y}^{\prime} d t \tag{37}\\
\otimes(t ; \bar{p}) & =y(t ; \bar{p})-y_{d}(t) \tag{38}\\
D & =\vdots_{o}^{T} a\left[\frac{\partial^{2} y}{\partial p_{j}} \overline{\partial p_{k}}\right] d x \tag{39}
\end{align*}
$$

The matrix S amounts to a regression matrix since it links the linear dependence of the response functions $y(t ; \bar{p})$, to the incegral squared error function, \varnothing.

COMPUTING METHOOS IN OPTIMIZATION PROBLEMS

To avoid the computational difficulties associated with the determination of second derivatives, it hassometimes been suggested that Newton iteration be modified to include only the S matrix in Eq. (36) (12). If this is done, the basic iteration equation becomes

$$
\begin{equation*}
\overline{\Delta_{p}}=-\frac{1}{2} S^{-1} \overline{T \phi}(\bar{p}) \tag{40}
\end{equation*}
$$

This scheme has been called "Gauss-Newton" iteration (13). Depending upon the magnitude of D relative to S, it may not converge. More precisely, it is shown in the appendix to this paper that if \varnothing possesses a regular minimum at $\overrightarrow{\mathrm{p}}=\tilde{\mathrm{p}}_{\mathrm{C}}$, then $2 \overline{\mathrm{I}} \mathrm{S}_{\mathrm{C}}$ and D_{O} denote the valuesfor S and D at \bar{P}_{o}, a region of convergence for Gauss-Newton iteration exists about \bar{p}_{0} if and only if all of the eigenvalues of the matrix

$$
\begin{equation*}
Q=s_{c}^{-i} D_{c} \tag{41}
\end{equation*}
$$

are less than one in absolute value.
The residual error, e, existang ar a manamixing value for $\vec{p}, \vec{p}=\bar{p}_{o}$, appears as a multuplicative factor in the expression for D. Consequently, the eigenvalues of Q will tend to be small when thas error is small and large when it ts large. \because inen $y_{d}(t)$ represents a function whach can be matched exactly by a solution of the assumed system equation, Eq. (i), then at $\bar{p}=\bar{p}_{0}$, e is dentically zero and all of the eigenvalues of Q are likewise equal to zero. Gauss-Nowton iteration reduces to Newton iteration in this circumstance and quadratic convergence is obtained utilizing only the first derivative information contained in S

3.6 An Example of Discrete Parameter Optimization

The quadratic sonvergence predicted for Gaussivewton ateration has been observed in nunerical experïments (3). These experimentg invoived optimization ot the four dimensional paramecer vector associated with tho nonlinear differentaal equation

$$
\begin{align*}
& \varepsilon_{2} \dot{y}+c_{1} \dot{y}+\sin y=0 \\
& y(0)=c_{3}+\dot{y}(0)=e_{4} \tag{42}
\end{align*}
$$

The dusired response, $y_{d}(t)$, was obtained from numerical solution of this equation with a given value for \vec{c}. An incorrect value was then taken as a starting point and the computer was permitted to adjust this value itera-

COMPUTING METHODS IN OPTIMIZATION PROBLEMS

tively using both the optimum gradient and Gauss-Newton methods. Tables 1 and 2 summarize the results of this experiment. Table 2 shows that quadratic convergence is - Inceed obtainable through Gauss-Newton iteration even though only first derivative information is used.
t. HYBRID COMPUTER IMPLEMENTATION
4.l Division of the Computation Load Between Analog and Digital Machines

In principle, any of the methods which have veer described could bo implemented on cither a digital computer or an iterative analog computer. When realistic qquipment limitations are taken into account however, con~ timuous parameter adjustment is most naturally carriedout by analog computation while iterative adjustment scems to be best suited to a digital computer. Both of these choices suffer from certain drawbacks, however. As has been noted, the stablility of a continuous parameter adjustment algorithm is very difficult to ascertain a priori. Generally, manual intervention is required to achieve a loop gain producing reasonably rapad convergence without instability. On the other hand, when a completely digltal solution to dynanic system pirameter optimization problems is attempted, it $i s$ quite likely that an excessive amount of computer time will be required since digital machines are not naturally suited to high speed iterative solution of differentlal equations. For most optimization algorithms, the best features of both types of machines seem to be nceded.
A combination of digital decision ano branching capaoilities and analog solution specd is available in a hybria computer. With a hyuria computer posisessing a sufficicntly floxible control structure, analog computer potentiometers and initicl conditions san be adjusiod automatically under program control so that tho analog machine effectavely provides high specd subroutines to the digital computer whenever differential equation solution is required. Conversely, by monitoring the results of continuous paramezer adjustment via analog to digital converters, the digitai machine can assure stability in otherwise uncertain circumstances. Finally, an appropriate mixture of discrete and continuous parameter optamization algorithms can be used on the samo problem. under overall digital control. One might, for exumple, utilize discrete methods in large error conditions and continuous methods for "fine tuning" of parameters.

COMPUTING METHODS IN OPTIMIZATION PROBLEMS

Table 1. Parameter Optimization by the Optimum Gradient Method

Iteration Numberc_{1}	c_{2}	c_{3}	$c_{4_{k}}$	\varnothing	
0	.5100	1.010	1.570	.01000	1.853×10^{-3}
1	.5053	1.005	1.567	.00539	4.662×10^{-14}
2	.5027	1.003	1.566	.00391	$1.185 \times 10^{-4_{4}}$
3	.5012	1.002	1.565	.00295	3.109×10^{-5}

Table 2. Parameter Opismazation by Gauss-Newton Iteration

Itera-

timon	c_{1}	c_{2}	c_{3}	c_{4}	\varnothing

True
Values
.500000001 .00000001 .5690000 .00000000

COMPUTING METHODS IN OPTIMIZATION PROBLEMS

4.2 An Algorithm for Parameter Optimization by Hybrid Computation

Figure 6 provides an example of an overall algorithm suitable for implementation on a hybrid computer. The REGRES subroutine appearing on this figure determines $\phi(\bar{c})$ and $\bar{\phi}(\bar{c})$ as well as the regression matrix, S, by analog solution of the assumed system equation and the associated parameter influence equations. The GaussNewton parameter change vector, designated $\bar{\beta}$, is then evaluated by digital inversion of the S matrix followed by matrix multiplication as in Eq. (40). GRASER is the Fortran Symbolic name attached to the scale factor adjustment routine illustrated by Fig. 5. The numerous evaluations of \varnothing required in the execution of the GRASER subroutine are also intended to be accomplished by analog means. However, all of the decisions appearing at branch points of both Figs. 5 and 6 are realized by a digital program.

Both the Gauss-Newton and optimum gradient iteration techniques are incorporated into this algorithm. As Fig. 6 shows, the routine favors the Galiss-Newton parameter change vectors $\bar{\theta}$, and switches to the optimum gradient method during a giver iteration cycle only when the Gauss ~ Newton vector fails to satisfy certain criteria. The algorithm provides for independent constraints on the values of each parameter; the region R refers to the n-dimensional box defined by these constraints.

Since the parameter adjustment procedures used here are all iterative, some means for stopping the iteration must be provided. Fag. 6 incorporates five different stopping rules operating in parallel. The d_{\varnothing} and d_{c} criteria refer to the percentage change in σ and \vec{c} in two successive iterations. When either of these variables falls below a value specified in advance: computation ceases.

4.3 Experimented Results

The algorithm proposed was tested using the system described by Eq. (t_{2}). The desired response function, $y_{d}(t)$, was sotained by numerical solution of thisequaw cion with a specified parameter vector. Since a hybrid computer was not available, digital subroutines were used to simulate the necessary analog computations.

Table 3 summarizes the results of this experiment. The column labeied " n " denotes the exponent of the optimum binary scale factor found by gradient searching (Eq. (32)). The entry G-N in this table indicates that

COMPUTING METHODS IN OPTIMIZATION PROBLEMS

Fig. 6. A Hybrid Computer Parameter

COMPUTING METHODS IN OPTIMIZATION PROBLEMS

Table 3. Sequence of Parameter Estimation Produced by the
Hybrid Computer Algorithm

True Value	0.5000	1.0000	1.5690	0.0000	0

Lower					
Limit	0.0000	0.0000	1.0000	-0.2000	

Gauss-Newton iteration rather than gradient searching was
used at that step.

5. CONCLUSIONS

Continuous parameter optimization algorithms are conceptually simple but their convergence properties are difficult to determine. Global stability of optimizing algorithms can be obtained by making use of digital compouter supervision and control. Since analog computers are naturally suited to the high speed iterative solution of differential equations, hybrid analog-digital computeLion seems to offer considerable promise as a practical means for system optimization.

APPENDIX

Necessary and Sufficient Conditions for the Existence of a Region of Convergence for Gauss-Newton Iteration
Theorem:
which $\phi(\vec{p}) \bar{p}_{o}$ represent a point in parameter space at denote the values of the matrices S and let S_{o} and D_{0} point. Assume that there exists an and D at this
 possess uniformly convergent \quad and $J_{y}(t ; \bar{p})$ all then that the matrix gerent Taylor aeries. Suppose fursame neighborhood. Then is non-singular everywhere in the positive definite matrix, provided that $S_{0}+D_{o}$ is a

$$
\begin{equation*}
\left|\bar{p}^{(1)}-\bar{p}_{0}\right|<\epsilon_{0}, 0<\epsilon_{0}<\epsilon \tag{43}
\end{equation*}
$$

there exists an ε_{0} such that

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \quad p^{(i)}=P_{0} \tag{44}
\end{equation*}
$$

if and only if ali of the eigenvalues of the matrix $Q=S_{o}^{-1} D_{o}$ are less than one in absolute value.
Proofs
Let $8 \bar{p}^{-(i)}$ denote the difference between $p^{(i)}$ and the desired minimizing value for terence between $\stackrel{\circ}{p}(i)$

$$
\begin{align*}
& \text { value for } \bar{p} ; i . e_{0} \tag{45}\\
& \delta \bar{p}(i)-\bar{p}(i)_{0}
\end{align*}
$$

COMPUTING METHODS IN OPTIMIZATION PROBLEMS

Then from Eq. (35)

$$
\begin{equation*}
\phi(\overline{\mathrm{p}})=\phi\left(\overline{\mathrm{p}}_{0}\right)+\delta \bar{p}^{\prime}\left(s_{0}+D_{0}\right) \delta \bar{p}+o\left(\delta p^{3}\right) \tag{46}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\bar{\eta}(\overline{\mathrm{p}})=2\left(S_{0}+\mathrm{D}_{0}\right) \delta \bar{p}+O\left(\delta p^{2}\right) \tag{47}
\end{equation*}
$$

Substituting this expression into the Gauss-Nowton formula, Eq. (40), produces the result

$$
\begin{equation*}
\Delta_{p}^{(i)}=-S\left(p^{-(i)}\right)^{-1}\left(S_{0}+D_{0}\right) \delta p^{-(i)} \tag{48}
\end{equation*}
$$

However, under the assumptions regarding $y(t ; \bar{p})$ and
$F_{y}(t ; \bar{p})$,

$$
\begin{equation*}
S\left(\bar{p}^{(i)}\right)=S_{0}+O\left(\delta \bar{p}^{(i)}\right) \tag{49}
\end{equation*}
$$

so Eq. (48) reduces to

$$
\begin{equation*}
\bar{\Delta}^{(i)}=\left(-I-S_{0}^{-1} D_{0}+R_{i}\right) \delta p^{-(i)} \tag{50}
\end{equation*}
$$

where R_{i} is a remainder matrix which tends to zero as $\delta \stackrel{\rightharpoonup}{p}$ approaches zero. Nor since

$$
\begin{equation*}
\delta \bar{p}^{-(i+1)}=\delta \bar{p}^{-(i)}+\overline{\Delta p}^{(i)} \tag{51}
\end{equation*}
$$

Eq. (50) yields the recursion relation

$$
\begin{equation*}
\left.\delta_{p}^{-(i+1)}=\left\{-S_{0}^{-i} D_{0}+R_{i}\right\} \delta p^{-\{i}\right\} \tag{52}
\end{equation*}
$$

By choosing ε_{0} sufficiently small, the remaindermatrix, Therefore, for $|\delta \overline{\mathrm{p}}(1)|<\varepsilon_{o}, \delta \bar{p}$ converges to zero if and only if all of the eigenvalues of Q are less that one in absolute value.

REFERENCES

1. Grape, K. K。, "Analog Solution of Same Functional Analysis Problems", AIEE Transactions, January 1961. 2. Potts, T. F., Ornstein, G. N., and Clymer, A. B., "The Automatic Determination of Human and Other System Parameters", Proceedings of the Western Joint Computer
Conference, May 1961, pp. $645-660$. -inference, May 1961 , pp. 645-660.
2. Whitaker, H. P., Yamron, J., and Kezer, H., Design of Model Reference Adaptive Control Systems for Aircraft, MiT

COMPUTING METHODS IN OPTIMIZATION PROBLEMS

4. Margolis, M., On the Theory of Process Adaptive Control Systems, the Loarning Vodol Approach, Report No. 6032, University of Californaa, Department of Enganecring, Los Angeles, California, (Nay 1960).
5. Moissinger, H. F., "The Use of Parameter Influence Coefficients in Computer Anialysis of Dynamic Systems", $\frac{\text { Procecdungs of tho Westein Joint Computer Conference, 1960, }}{\text { pp. } 181-192 \text { (May 1960). }}$
6. Dekey, G. A., and Meissinger, H. ir., and kose, R. E., "Study of Model Matchiny Tochniques for the Determanation of Parameters in lluman Pilot Models", Reports No. 8426-6002-RU-000, 8426-6003-12U-000, atac 3426-600t-RU-000, Space Technology Laboratories, Reciondo Beach, Calif. (1963).
7. Bromberg, N. S., "Maximatation and Mlnimization of Complicated Multi-Varkable Funcions", ATLE Transactions, Vol. 53, Part 1, pp. 725-730, (January 19(32).
8. McGhee, R. B., Identilication o! Nonlincar Dynamic Systems by Reqression Mnalyshs Mothods, Ph.D. dissertation University or Southern Califorma, Los Angeles, California (June 1963).
9. Rusen, d. B., 'The Gradzent Projection Method ior NonLinoar Programmang, Part i, Linear Constraints", J. Soc. $\frac{\text { Induit. Appl. Math. Vol. 3, No. i, }}{1900 \text {). }}$. $181-217$ (March
iO. Rosen, J. 13., "The Gradirnt Projection Method ior Nonlinoar Prouramming, Part Ir, Nonlinear Constraints", J. Soc. Indust. Nppi. Math, Vol. 9, No. 4, pp. 514-532, (December 1961).
10. Chernofi, H. and Crocicett, J. E., "Gradient Methocis of Maximization", Pacific journal oi Mathematzcs, Vol. 5 ,
pp. 33-50 (1955).
11. Willıams, E. J., Eegression, dialysis, Johr Viley and Sons, Inc., New York, N, Yo, (1959).
12. Hartley, H. O., "The Moaified Gauss-Nevton. Methodfor the Fitting of Nonlinear Reyrussion Functions by Least Squares" "Technomerrics, Voi. 3, No. 2, "pp. 269-280 (May

