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I, INTRODUCTION

This paper is concerned with the computer implemen-—
tatien of both continuous and discrete gradient methods
for adjusiing the parameters of a dynamic system so as to
matchh a specified response function as closely as possi-
ble. While the basic theory of parameter optimization by
gradient descent has been known for some time, the lim-
itations and convergence properties of particular methods
of compuier implementation are not yet well understood.
This paper is intended to_be a contribution toward obtain=-
ing a better understanding of these problcms.

Continuous parameter optimizdffﬁn is an appealing
concept and a number of Yadaptive control" schemes have - - Ty
been based on it. The first part of this paper reviews ,
the formulation of a continuous steepest descent algorithm

" and discusses its difficulties. Computer results relating
to the nature of the gradient and the dependence of the ‘
path in parameter space on adjustment gain are given. |

The second part of the paper raviews briefly sev-
eral discrete gradient optimization technigues. An algo-!
rithm for automatic adjustment of “step size for greadient |
descent is presented. The stability and convergence prop=-
erties of first and second order iteration schemes are
compared and some new resultis are presented in the form
of a convergence theorgm. The application of discrete
parameter optimization methods to a nonlinear dynamic
system is-illustrated with an example.
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The final section of the paper presents a formula-
tion of a hybrid computational strategy for parameter
optimization which includes the best features of both the
analog and digital computer solutions.

2, CONTINUOUS PARAMETER OPTIMIZATION

We consider continuous dynamic systems described by

; = F(;, t; p) (1)
where ; is an n«vector representing the state of the
system and E is an m~vector representing the parameters
to be optimized, including initial conditions, The param-
eter optimization problem under consideration is that of
selecting p in such a way that the solution of Eq. (1)
approximates a given function, ygq(t), as closely as pos~-
sible, The particular criterion function to be used as
a basis for parameter adjustment in this paper is given-
by

T
gip) = J [y(t;p) - yd(t)]z dt (2)
[+]

Gradient methods of optimization are based upon
adjustment of parameters.utilizing the local gradient
vector. That is, a parameter change vector, Eb, is com~
puted according to the rule

bp = - K 78(3) (3)

where K is a positive delinite matrix and 7¢ is the
¢olumn vector

TB(5) =[—§%,—§%, 5%%] (&)

Following the i-th such calculation, the value of the
parameter vector is given by .

-(3 3 w{3} - {3+
p(1+l: - p(i: . Ap(‘r (s)
The convergence properties of several iteration schemes
of this type are discussced in Section 3 of this paper.
Consider now the case where continuous. parameter
adjustment is desired. It is clear that the criterion
function defined by Eq. {2) cannot be used directly since
it leads to an iterative adjustment algorithm. “Let us.
therefore deéefine an inastantaneous performance criterian
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£e S L [yles5(6)) - yq(e)]2 (6) «
Unfortunately, £ is a functional in p(t} rather than an
ordinary function. Consequently, the gradient vector,
7i(p), does not exist unless p(t) is a constant. But
this contradicts the original objective of the formula-
tion, namely, to adjust P continuously as a function of
time. Two different approaches to the resolution of this
dilemma have been taken. If the desired output isa vector
of derivatives, §d(t), with dimension equal to the order
of the system to be optimized, then Eq. (1) may be used

to derive a criterion function which is a simple function
aof 5 even when P varies with time. Specifically, if

- 2, - -
fe(p) = F (yd,t,p) (7}
then the gradient
- aF
'i- = —
fe(p) 2F S5 (8)

exists and may be used to find a minimizing value for p
by making use of the adjustment algorithm

b= -k 7f_(p) (9)
This method, sometimes called the "equation error method"
has been used by Graupe (1), Ornstein (2), and others in
connection with identification problems.

While the equation error method avoids the diffi-
culty associated with Eq. (0), computer implementation of
the method requires that desired wvalues for all of the
system state variables be availavle. An alternate fore-
mulation; based on the work of Whitaker {3) and Margolis
(é) does not require complete wpeciflcatigh oi the desir-
ed state, out leads only to an approximate gradient meth-
od. The degree of approximatior is related to the =ate
of change of adjustment of the parameters as compared to
the natural frecquencies of both the system and the input
process, The remainder of this paper is resiricted to
the latteﬁ Tfortmulation; i.e., to circumstances where ¥d
is & scalar function. While the basic technique to be
described for continuous parameter adjustment is not new,
the results pertaining to the dynamic properties of the
parameter adjustment process have not been previously
published.

2.1 The Approximate Gradient Method.

The performance criterion Eq. (7) requires complete
knowledge of the desired state, Let us consider instead
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the criterion

)2 .

f = (e tq e + *0 + g (10)

e
c c1 cy p-1 cp-

where p <n , n is the order of the system, and

d{i—l) d(i-l) a (11}
= - L= - . 11
®ei T Yi T Yai T F(i-1 at(i-1)

When y.{t} is given as a scalar function, error deriv-
atives must be obtained by analog computer differentia=
tion. In many practical situations it is possible teo
choose all the q; = O , so that only the system output
{(or zero-state) is required. The gquantity e, represents
"sutput error'" and parameter optimization based on Eq.
{10)may be called the "output error method".
Let us choose
i =fe  ~qe )? (12)
< cy Co

Then, if the parameters are constant, the components of
the gradient are given by

c .
-51—)-; s 2(ecl.¢ q 852) SBT(BC]. + q ecz) {13)

1 s 1,2, eoem
Using the definition of ec) and e.p Zrom Eq. {11) ana
since Y5 is independent of the parameters, IEq. (137 can
ve written as

3f

c
api = 2(ec1 + g eC2

3
— + » &
) api (yl q yz), {14)
i = 1’2, ses M
where ¥ and Y, represent the system output and its

first derivative respectively. Let us denote the influ-
ence ceoeflficients by the letter u 8o that

Ay,
= SEi {15)

v, .,
13

The infiluence coefficients can be obtained by differen-
tiation of the system Eq. (1) with respect to the appro=~
iate parameters and solving the resulting differential
equation in ujj (the "sensitjvity equation")(5). Analog
computer circuits c¢an be used ‘for the simultaneous eval-
uation of the wujy and the yj .

Now,; if the parameters are adjusted, y; becomes a



COMPUTING METHQDS IN OPTIMIZATION PROBLEMS

functional and the ayi/apj do not exist in the ordinary
sense. Let us assume, however, that in a given solution
interval, the variation is sufficiently slow so that Pj
can be assumed constant. Then, a continuous gradient.
method is based on ~

afc(p)

b. = = k

i api (16_}

However, analeg computer circuits based on Eq. (16) arein
fact mechanizations of

ﬁi = - k gi(ec, Y, p) (173
- ]

where the vector & = fgl, Oy *v>» gn} is an approxima-

tion to 7}c which approaches 7f. as k — 0 . The

Uy j which enter into the calculation of the gi can be

considered subsidiary variables which equal ilhe desired

sensitivity coefficients when p = 0O .

An analog computer i1mplementation of the approximate
gradient method (the output error mothod) is shown in Fige.
1l for q = 0 in Eg. {12). This figure illustrates the
application of the method to an identification problem,

As long as the switch 8 1is open, the parameters are
constant and G e 5}0 . Consequently, the nature of the
gradient can be studied in the opan-loop case. Then,_the
switeh can be closed for examination ef the aatual param=
eter adjustment path.

2.2 The Nature of the Criterion Surface

Let
R 2 2
i = e , = (yl ydl) (18)
and define the parameter offsets épi by
i -t
§p, = P:o}‘ Pfl)r i= 1,2,°°'m (19}
- - 1

o L s
where pj ).reprefg?ts the assumed initial values of the
parameters and py the values which minimize I,
Than, if the loop is open, we can expand ¥fs &as follows:

m
de . 2
f"{c) [ 2] 14
fc(t) = [ec\p ) o+ }:-—-api p, * 0(6p™) {20)
i=1 '

If the o6p, are sufficiently ﬁmall,-secoﬁd and higher
order term& may be neglected and '
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Fig. 1. Schemutarc os Continuous Parameter
Optimization Method
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Fig. 2. Instantaneous Criterion Surface
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m
-{0) E: ]? .
fc(t) = [ec(p Y o+ u . Gpi {21)
im}
Consequently, contours of censtant fo{t} = C , at any
time tj , can be found from
3 3 (o)
2 =-\o
= + C9 e t.) {(22)
}_uli(tj} 6pi + C(p » by {
i=l

This equation represents two parailel lines in the mrl
dimensional space of the paramcters and criterion func-
tion. If only 2 parameters p; aneé ps arc present, it
is possible to obtain & simple geometrical interpretation
of this cquation as shown in Fryg. 2. It can be seen that
the instantancous c¢riterion function surface 1s a parabol=-
ic troughy where the initial and final parameter valucs
arec indicated. The contour lines in the p; - pp plane
are straight lines, while the intcrsection of the trough
with the f,. - p, planes results in the familiar quad-
ratic shape. It should be noted that Fig. 2 represents
an instantangous situation. As the wujj and e, change
with time, the trough moves in such a way that its min-
imum still crosscs the desired final point (6).

2+.3 The Gradient Vector '

Considerable insight into the nature of the adjust-
ment process is gained a1f the gradient iwith 5 open, of
course, is evaluated with a sinusoidal input. The gra-
dient is given by '

- = Y
fc = 2Lec Uiy T Gl c Yim ] (23)

-

LR Y

Consider, {for example, a desired response function
obtained from a second order By stem described by the
relation

= A B { =N "1
yd Gyd * dx yd\G; jdo V24 )
where |
A ~ G 15 _ LI B - r x 7
o= l-ag -ayd s Ba=laya )y ®=1 %]

and the coefficients a3, a,, ag, aj are constants. The
signal x{t} is the input to the process. It is desired
t6 optimize the parameters «; to @i of a model de-
scrived by, _ _ _

y = Ay « Bx , y{0) = Y, (25)
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where

9] A [§) O
As| g, —a;] : B = [0,3 o |

using the criterion functiion of Eq. {18). The locusg of
the gradient vector can be plotted using the computer in
the parameter plane defined by any two of the parameters.,
To further simplify the visualization of the results, let
Ydo = ;0 and Ag = A  so that the differences between

¥Yq and y are due entirely to differences between By
and B. To compute the gradient (as defined by Eq. (23)
the sensitivity coefficients wuj = dy/dx3 and wuy =
dy/day will be required. These coefficients are obtained
from computer solution of two subsidiary equations, de-
rived from differentiation of Eq. (25) with respect to oy
and «af respectively. The sensitivity equations for this
cCagse are

L A =

U, - AU, -+ &, X
3 3 3

u% = Au3 + Cg x - (26)

where
¢ @7 G 07
C. = J c, =
3 Ll o] I LO lJ

u ~ 0y~
=[] i
3 Lig b ugi
Substitution of the solution of Zg. (20} into Eq. (23)
yields the instantancous values of the gradient vector.
Typical rcesuits are shown in Fig. 3, where x(t} 13 a
sinusoid with a frequency of 1 rad/sec. Since the adjust-
ment loop is open. the parameters remain constant, bui the
sensilivity coef{icients and the matching error e, vary
with time, resulting.in the Lissajous-like contours inthe
figure. Since for sinuscidal inpuls and linear systems
voth y4 and y are sinusordal, ithe error ¢, is alsc
sinuscidal and becomes zero overy half-cycle. From an
examination of this figure, it is clear that if it is
attempted t¢ adjust parameters with a velocity propoxr-
tional to the gradient, the motion will be oscillatory
and may instantaneously point in an erroneous direction,

2.4 Paths of Parameter Adjustment

The dependence of the parameter adjustment path own
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the parameter Xk in Eq. (17) is indicated in Fig. 4 for
the example discussed previously. When k is very small,
the path closely approximates a gradient trajectory. When
k 1s large, the functions g¢g; arc not equal to the re-
spective coefficients of the gradient, but approach a
gradient path as the &p; = 6 . The "scallops" on the
trajectories are due to the osciliatory nature of the
approximate gradient vector. Values of k larger than
those indicated in this [igurce may cause instability in
the parameter optimization loops.

2.5 BStability of the Paramcter Adjustment Loops

General analytical results on stability are noil
available at the prescnt time., Stability in the small has
been demonstrated by Margolis (4} for first and second-
order systems with step 1nputs.w Experimenis using analog
computers show that it i1s generally possible to find a
value of k for which stability and convergence of two or
three parameters is possible. However, attempts te improve
convergence by increcasing k or attempts to adjust more
than three parameters simultanecusly generally result
either in instability or in lack of convergence (6).

-~At-the present time a general existence theorcm
insuring local stability of the parameter optimization
technique for sufficiently small gain is lacking. Such a
theorem wouid prove that a value of Lk c¢an be found in
any particular case such that, for specified classes of
inputs and initial conditions, both siability and conver=
gence can be assured.

3. DISCRETE PARAMETER QOPTIMIZATION
3.1 Discrete Gradient Descent

The convergence problems encountered in continuous
parameter variation schemes may be largely circumvented
by making use of a discrete iterative adjustment algorithm
Whon this 15, done ft becomes possible to determine the
true gradient of & jgiven criterion function 'since param-
eter changes arc made only at discrete points in time.
For example, the criterron function given by-Eq. {(2) may
be differentiated 1¢ produce

. T o~ . j - -
() = | o y(esp) - yd(t‘)] Ty(t;p) dt (27)
[a]

Since p is a constant over the interval of integration,
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the partial derivatives of y appearing in this expres-
sion may be obtained by scoliving the paramcter influence
differential egquations associated with the assumed equa-
tion for vy .

The gradient vector computed from Eq. (27) may be
used for discrecte gradient descent employing Eg. (3). As
in the continuous case, the convergence of this parameter
adjustment procedure depends upon the values chosen for
the elements of K. However, since the gradient used
here is exact rather than approximate, discrete gradient
descent may always be stabilized by multiplying every
element of K by a sulfficicntly small scale factor. At
the present lime, an analogous statement cannot be made
for continucus parameter adjustmeni procedures utilizing
approximate gradients.

3.2 The Optimum Gradient Mecthod

Since the craterion function, § ., is bounded from
velow by the value zZero, it foliows that in any region
where @ is continuous there must exist at least one
value for & scalar scale factor k ., say k = k%, such
that whenever 7@} £ 0o ,

wmin

Toi1) =460 T=(a) v e =(i)
e >0 APV B3] U] e

The M"optimum gradient method" (7) utilizes k" in Eq.
(3) 1.e., the matrix K is computed anew at every cycle
of iteration as

K = k. I (29)

This choice for K mnot only‘fguarantees that the sequence
of values for ¢ <converges, bui also assures that the
steps taken in paramcter space are large encugh to make
the convergence reasonably rapid,

With the restriction ithat only a finite .number of
values for Kk may be consideréd, the search for k” may
be carried out automatically by a digital computer. ©One
method for accomplishang this can be basea upon an ini-
ti1al value for k computea from the' Newton~Raphson for-
mulia. If this gain value is called k® , then at the i-th
stage of iteration

(30)

and

/0
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(1)

—(_1_))
(31)

Starting with this gain, a binary scale factor search may

be conducted by determining an integer n 2> 0 which at
least locally minimizes the expression

g3 n) - gl o < TP) (32)

_BG (1))7¢(
TG TG

3.3 A Computational Algorithm for Scale Factor Adjustment

A proyram to implement scale factor adjustment using
the approximate optimum gradicat mcthod described above
has beecn written and tested (8). Fig. 5 1s a flow-chart
for this program ~. * This algorithm includes a guadratic
interpolation formula to permit more accurate determina-
tion of an optimum scale factor.

in order to make eificient use of the binary search
part of the algorithm 1llustrated by Fig. 5, it is impor-
tant that the search begin al a good value for n . Where-
as the full Newton-Raphson step (n=0) obtained from Eq.
{31) may produce good converygence in the carly phases of
iterative optimization, it has been found in numerical
experiments that ever la}ger valucs of n are necded in
the terminal stages unless @ attains the value zero at
iis minimum (ﬁ). This comes about hecause Newton-Raphson
iteration is based upon lincar extirapolation of @ to
zero, When 7§ approaches zero while ¢  remains pos-
itive, the compuied parameter change vector grows without
bound unless there is a cerresponding increase in the
value of n used in the binary scale factor of Eq. (32).
Computational experience indicates that this difficulty
may be resolved by beginning ceach scale factor search
with the wvalue fer n  which was found tc be optimum dur-
ing the previous search cycle (8).

3«4 Constrainred Minimization

While application of the optimum gradient method ie
parametoer optimization sroblems docs indeed lead to a
converyent sequence in ¥ , 1t cannot be assumed that the
seguence in p alsoc converges. This difficulty can be

-~

The numbers on the various blocks of this figure
refer to_FORTRAN statement numbers., In this_diagram, the

symbol ¢ rather than 5 has been used to represent a
panameter vector-

//
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avoided by specifying a bounded set from which P must be
chosen., The Y“gradient projection™ method devised by J.B.
Rosen can be applisd to closed convex constraint scts to
obtain constrained minima Ly gradient searching (Etig)'

A very much simpler proccdure hkas been developed® to permit
the use of the algorithm given in this paper in. conjunc-
tion with independently constrained parameters (8); i.e.
with constraints of the form

<b
4 TP S Py (33)
Application of such constraints often produces better con=—
vergence even in optimization problems not naturally con=-
strained (8},

3.5 Second Order Methods

The convergence of iterative minimization proce-
dures c<an be sharpened markedly in certain circumstances
by making use of second derivative information. In par-
ticular, "Newton's" method, given by

- () 7% 3 e gy,
Ap a Lap ap IR (34)

possesses gquadratic convergence properties at a regular
minimum of @ (11).

The matrix of second partials in Eq. (3%4) can be
obtained by differentiating each row of Eq. (27) with the

j k

n

F(r oo Do o

= 2(8 - D) (363
whare rT ‘
$ = . Ty 7y dt 137)
‘JO

elt;p) = y(t;p) - yd(t) (38)

rT 5%y ]
Dol ey |de (39)

u LBp pk

The matrix & amounts to a regression matrix since it
links the linear dependence of the response funciion,
y{(t;p), to the invegral sgquared error function, ¢ .

L3
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To avoid the computational difficulties associated
with the determination of second derivatives, it has somec~
times been suggested that Newton iteration be modified to
include only the S matrix in Eq. (36) (12). If this is
dene, the basic iteration equation becomes

£p= - = s TH(5) (40)

This scheme has been called "Gauss-=Newton" iteration (il).
Depending upon the magnitude of P relative to S , it

may not converge. More precisely, it is shown in the
appendix to this paper that 1f ¢ possesses a regular
minimum at D = pg , then 1f 5, and Dy depote the val-

ues for S5 and D at p, , a region of convergence for
Gauss-Newton iteration ¢xists about 50 if and only if
all of the eigenvalues of the matrix

~13
=5 D {&1)
z <
are less than on¢ in absolute value,
The residual error, ¢ , existing at & minimizing
value for p , p o= Po + DPPCars as a, mujriplicative fac-

tor in the expresslion for D , Conscquentily, the eigen-
values of Q@ will tend to be small when ihis error is
swall and large when it 15 large. VWhen ygq{t) represents
a function which can be matched exactly by & solution of
the assumed system equation, Eq. (1), then at P = By , @
ig identically zere and all of the cigenvalues of @ are
likewise equal to zero. Gauss-Newton iteration reduces

to Newton iteration in this circumstance and quadratic
convergence is obtained utilizing only the first deriv-
ative information contained n S

3.6 An Example of Discrete Paramcter Optimization

. The quadratic convergence preodicted for Gaussdewton
rteration has been observed in numersical experiments (8).
These experiments involved optimization of the ifour dimen-
sional paramezer vector associated with the nonlinear dif-
ferential equatioan

czy v cli + 51ny = O

yi0} = ¢ y{o} = ¢ (42)

37 4
The duesired response, yd(t) , was obtained f(rom numer-_
tcal solution of this equation with a given value for <.
An incorrect value was then taken as a starting point and
the computer was permitted to adjust this value itera-

/5
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tively using both the optimum gradient and Gauss-Neowton
methods. Tables 1 and 2 summarize the results of this
experiment. Table 2 shows that quadratic convergénce is
- 1ndeed obtainable through Gauss-Newton iteration even
though only first derivative information is used,
4, HYBRID COMPUTER IMPLEMENTATION
4.1 Division of the Computation Load Between Analog and
Digital Machines

In principle, any of the methods which have been
described could bo implemented on cither a digital com-
puter or an iterative analoyg computer. VWhen rcalistic
gquipment laimitations are taken inte account however, con~
tinucus parameter adjustment is most naturally carriedout
by analog computation while iterative adjustment scems to
be best surted to a digital compurer. Boilh of these
choices suffer from certain drawbacks, however. As has
been noted, the stability of a continuous parameter ad-
Justment algorithm 1s very difficult to ascertain a prio=-
ri. Generally, manual intervention is required teo achieve
a loop gain producing reasonably rapid convergence with-
out instability. ©On the other hand, when a completely
digital solution to dynamic sysicem parameier optimization
problcems is attempted, it 1s quite likely that an exces-
sive amount of computer timec will be required since dig-
ital machines are not naturally suited teo high speed
iterative solution of differential equations. For most
optimirzation algorithms, the best f{ecatures of both types
of machines seem to be nceded.

A combination of digaital decision ana branching
capavilitievs and analog soilution speed 1s available in a
hybrid computer. With a hyurid computer pessessing &
sufficiently flexible control structure, analog computer
potentiometers and initial conditions san be adjusted
automatically under precgram control so that tne analog
machine effectively provides high speed subroutines to the
digital computer whenever differential equation solution
18 required. Conversely, by monitoring the results of
continuous paramezer adjusiment via analog te digital
converters, the digital machine can assure stability in
otherwise uncertain circumstances. Finally, an appro-
priate mixture of disccete and continuocus parameter
optimization algorithms ¢an be uscd on the samo problem -
under overall digital control. One might, for example,
utilize discrete methods in large error conditions and
continuous methods foxr "fine tuning” of parametars.

/5
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Table 1. Parameter Optimization by thﬁ Optimum Gradient

Method
Iteration c c c c ﬁ
Number 1 2 3 4
0 . 5100 1.01C 1.570 .01000  1.853x107°
-l
1 . 5053 1,005 1.567 00589 4.662x107 1
i}
2 .5027 1.003 1.566 L00391 1.185x10 ¢
3 .5012 1.002 1.565 .00295  3.109x10°
True
Values  .5000 1.000 1.569 . 0000 0

Table 2. Parameter UOptimization by Gauss-Newton
Iteration

Itera-
tion c ] ¢ c
Number

0 .510600000 1.010000C 1.570000Q00 ,QLlQ0G0000 19853x10"3
ve

(]

L30013945  .96966252 1,56900C0% .00007233 4.428%10
2  .50000021 1.0000002 1.5660004 ,00000068 1.086x10-13

True
Yalueg

. 50000000 1.0000000 1.5690000 ,0000000 O
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4.2 An Algorithm for Parameter Optimization by Hybrid
Computation

Figure 6 provides an example of an overall algorithm
suitable for implementation on a hybrid computer. The
REGRES subroutine appearing on this figure determines
@{(Z) and 9#(c) as well as the regression matrix, S ,
by analeog solution of the assumed system equation and the
associated parameter influence equations. The Gauss-
Newton parameter change vector, designateg B ¢ i8 then
evaluated by digital inversion of the S matrix followed
by matrix multiplicetion as in Eq. (40). GRASER is the
Fortran Symwbolit name attached to the scale factor adjust=
ment routine illustrated by Fig. 3. The numerous evalua-
tions of " ¢ required in the execution of the GRASER sub-
routine are also intended to be accomplished by analog
means. However, all of the decisions appearing at branch
points of both Figs. 5 and 6 are realized by a digital
program.

Both the Gauss-Newton and optimum gradieant iteration
techniques are incorporated into this algorithm. As Fige
6 shows, the routine favors the Gauss-Newton parameter
change vector, 8 , and switches to the optimum gradient
method during & given iteration cycle only when the Gausse~
Newton vector fails to satisf{y certain criteria. The
algorithm provides for independent constraints on the
values of each parameter; the recgion R refers to the
n~dimensional box defined by these constraints.,

Since ithe parameter adjustment procedures used here
are all iterative, some means for stopping the iteration
must be provided. ¥Fig. 6 incorporates five different
stopping rules operating in parallel. The d and _dg
criteria refer to the percentage change in ﬁg and c¢in
twe sBuccessive iterations. When either of these variables
falls below & value specified in advance, computation
ceases.

4.3 Experimentel Rasults

The algorithm proposed was tested using the system
described by Bq. {(42). The desired response function,
yd(t} y was ootained by numerical solution of this equa-
tion with a specified parametrer vector, Since a hybrid
computer was not available, digital subroutines were used
to simulato the necessary analog computations.

Table 3 summarizes the results of this experiment.
The column labeied "n'" denotes the exponert of the op-
timum binary scale factor found by gradient gearching
(Eq. (32))}s The entry G~N in this table indicates that
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ENTER SUBROUTINE

CALL REGRES SUBROUTINE
COMPUTE ¢(5), Uy, anD F

I

l_coupurs [T2 ano [Fa)? _]

YES

15 [Vo|Twug,pq05

15T N R
23

- va

I o 3T i

IEAd ,
Tei+4T

SOLUTION STASLE
AT €2

YES
wol ..
CALL GHPREX SUBROUTINE
PROJECT GRADEMT
o4l AHD COMPUTE
¥ CONSTRAINED AZ
[Tk

VERITY OF R?

[}

¥ 36
< lL fee ko e ]
¥ 20

, CALL GRASER SUBRGUTINE
| COMPUTE OPTIMUM STEP
| | DELAY SCALE FacTOR

de OR de
CRITERIOM SATISFIED?

Y

SOLUTION STABLE?

y @

\( £XIT SUBROUTINE }

Fig. 6. A Hybrid Computer Parameter
Optimization Algorithm



COMPUTING METHODS IN OPTIMIZATION PROBLEMS

Table 3, Sequence of Parameter Estimation Produced by the
Hybrid Computer Algorithm
Iteraw
tion c c c ¢ g n
Nunmber 1 2 3 &
o 1.0006 2,000¢ =.0000 1.,0000 360.5 -
1 1.5000 1.8176 2.5322 0.5201 34,12 (o}
‘2 1.5000 1.6091 1.6341 -0.2000 1.662 0
3 1.0907 1.4829 i.0006 -0.2000 0.690 o)
4 0.8018 1.s5123 1.3731 -0.1l412 Q.366 0
5 0.7581 1.4656 1.3567 -0, 2000 0.270 1
& 0.5460 1,2693 1.3978 =0.2000 0.109 o)
7 0.5494 0.9792  1.6642 -0.1255 8.48x10"0 ooy
8 0.500C 11,0005 1,5619 «0,0111 2.Q9x10-4 G-N
9 0.5001 1.0000 1.5693 =0, 0001 1.?8x10"8 G-N
io 0.5000 1.0000 1.5690 0.0000 3.16x10_1& G-N
True 0.5000 1.0000 1.5690 $.0000 o} -
Yalue |
Upper 1.5000 2.3000 3,500 145000 - -
Limit
Lowey G.000G 0.0000 1.0000 -0.2000 - -
Limit
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difficult to determine. Global stability of optimizing
algorithms can be obtained by making use of digital come-
puter supervision and control. Since analog computers
are naturally suited to the high speed iteratijve solution
of differential equations, hybrid analog=-digital computa~
tion seems to offer considerable promise as a practical
means for system optimization,

APPENDIX
——

Necessary and Sufficieat Conditions for the Existence of
a Region of Convergence for Gauss-Newton Iteration

Theorem:

Letg 50 represent a point in parameter space at
which g(p) “attains minimum value and let S, and D,
denote the values of the matrices S ang D at thisg
point. Assume that there exists an €-neighborhood about
Pg Such that g(p), 7@(5), y(t;p), and 7}(t;5) all
bossess uniformly convergent Taylor series. Suppose fur-
ther that the matrix S is noh—singular everywhere in the
same nejighborhood, Then, providgg that So + D, is a
positive definite matrix, w?e? Ap(i) is computed by the
Gauss~Newton formula and P 1 is chosen so that

]5(1) - Eof < €, v+ 0 < e, < e {(43)

there axists ar eo such that

lim -{i) -
iwg P = P, (44)

i¥ and only if ali of the eigenvalues of the matrix
Q = Sgl Do  are less than one in absolute value,
Proof:
-{i) =(1i)

Let §p denote the difference between p and
the desired minimizing value for ?; i.e0

ot LGl Po (45)
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Then from Eq. (35)

D) = B(3) + 65 (s ) 65 + 0(ep®)  (u6)
and therefore

7(p) = 2(s, + D) 6 + o(6p2) (47)

Substituting this exprassion into the Gauss-NewtonIbrmula'
Eq. {40), produces the result

S L syt (s +p_) 651 (48)
However, under the assumptions regarding y(t;p) and
ylt;p)
' s as v ootsp)) (49)
80 Eq. (48) reduces to
d;fi) a {= 1 = s;l D, + R.) 65(1) (50)

where R; 1is a remainder matrix which tends te Zaro as
bp approaches zero. Now since

) 6;(1*1) H 65(1) N db(i) (51)
Eq. (50) yields the recurgion relation
~({i+l) - ~(4i}
§p m (- 5,7 D ¢ R} $p (52)

By choosing €9 Bufficiently small, the remainder matrix,
R, may be made ag 5Ta}1 88 desired in comparison to Q.
Therefore, for l&ﬁ i < €5 4 6p converges to zero if
‘and only if all or the eigenvalues of Q are less thar
one in absoiute value.
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