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ON THE DYNAMICS O F  CAPILLARIES AND THE EXISTENCE OF 

PLASMA FLOW IN THE PERICAPILLARY LYMPH  SPACE^ 

By John T. Howe and Yvonne S. Sheaffer  
Ames Research Center 

SUMMARY 

I n  1958, Sap i r s t e in  proposed t h a t  t h e  surplus  plasma associated with low 
organ hematocrits  r e s ides  i n  an ex te rna l  annulus about t h e  c a p i l l a r y  endothe- 
l i u m .  This hypothesis w a s  based on observations of such an annulus by 
Heimberger i n  1926 (although Heimberger supposed t h e  annulus t o  be  f i l l e d  with 
lymph). 
and G r i f f i t h s  (1956) and Ehring (1964). 
l a r y  endothelium i s  not  a real b a r r i e r  t o  macromolecules; instead,  t he  " t rue  
hematolymph b a r r i e r "  i s  a c t u a l l y  the  outer  w a l l  of t h e  Heimberger annulus. 
The present  paper descr ibes  t h e  r e s u l t s  of an ana lys i s  of t h i s  double-walled 
c a p i l l a r y  model from t h e  hydrodynamic po in t  of view. 

The p e r i c a p i l l a r y  space has s ince  been observed by Gibson, Bosley, 
Sap i r s t e in  suggested t h a t  t he  c a p i l -  

The hydrodynamic ana lys i s  shows t h a t  even without t he  annulus, one can 
account f o r  organ hematocrits  as low as 50 percent  of t h e  l a rge  blood vesse l  
hematocrits .  But t h e  corresponding pressure grad ien ts  f a l l  outs ide the  range 
of those c i t e d  i n  t h e  l i t e r a t u r e .  Moreover, without t h e  plasma annulus one 
cannot r e a d i l y  account f o r  those hematocrit r a t i o s  below 0.5 ( a c t u a l l y  as low 
as 0.35) t h a t  have been observed experimentally.  However, t h e  ana lys i s  shows 
t h a t  with t h e  annulus of plasma, hematocrit  r a t i o s  as low as 0.27 can be 
explained, and the  corresponding pressure grad ien ts  f a l l  within t h e  range 
c i t e d  i n  t h e  l i t e r a t u r e .  

Although t h e  annulus of plasma w a s  proposed by Sap i r s t e in  t o  explain t h e  
surplus of plasma i n  some organs, it ( su rp r i s ing ly )  allows a d e f i c i t  of plasma 
under some circumstances. The explanation l i e s  i n  the  dynamics. The ana lys i s  
shows t h a t  f o r  t h i s  condi t ion t h e  endothelium radius  i s  only s l i g h t l y  l a r g e r  
than t h a t  of t he  red  c e l l s .  
aga ins t  t he  low re s i s t ance  of t h e  annulus (and on t o  the  l a rge  vessels) a t  a 
g rea t e r  rate than it can d r ive  c e l l s  along ins ide  t h e  endothelium because of 
t he  snug f i t .  

Thus the  pressure  grad ien t  can dr ive  plasma 

I INTRODUCTION 

I n  1926, Heimberger ( r e f .  1) observed t h a t  intradermal  gas produced 
I 

e l e c t r o l y t i c a l l y  (by use of a f i n e  needle introduced through t h e  sk in )  forms 
a l a rge  gas bubble i n  t h e  surrounding t i s s u e .  But i f  t h e  needle i s  brought 
c lose  t o  a c a p i l l a r y  w a l l ,  t h e  p i c t u r e  changes suddenly t o  an enormous number 
of very smal lbubbles ,  which form a v e i l  a l l  around and along t h e  cap i l l a ry .  
From t h e  vei1,branches sometimes go t o  o ther  c a p i l l a r i e s  o r  end somewhere 
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with in  the t issue.  He noted t h a t  t h e  shape of t h e  c a p i l l a r y  i s  su rp r i s ing ly  
unaffected by the bubbles.  From th is  experiment, he suggested t h a t  a p e r i -  
c a p i l l a r y  lymph space exists a l l  along and a l l  around a c a p i l l a r y .  

Further anatomical evidence of a p e r i c a p i l l a r y  space has been obtained 
photomicrographically i n  t h e  human n a i l f o l d  i n  vivo by Bosley (ref.  2 )  and h i s  
assoc ia tes .  

The Heimberger concept of t h e  p e r i c a p i l l a r y  lymph space w a s  d r a s t i c a l l y  
modified by Sap i r s t e in  ( re f .  3) i n  1958 t o  account f o r  organ hematocrits  t h a t  1 
are much lower than t h e  l a rge  blood vessel hematocrits .  I n  t h e  rat, he found 
excess plasma i n  every organ and concluded t h a t  wherever a vascular  bed e x i s t s  
t he re  i s  excess plasma. Sap i r s t e in  argued t h a t  t h e  annular space around c a p i l -  
l a r ies  observed by Heimberger does not  contain lymph a t  a l l ,  bu t  r a the r ,  
plasma, and in fe r r ed  the  exis tence of such c a p i l l a r i e s  i n  o ther  organs. He 
pos tu la ted  t h a t  t he  o ld  c a p i l l a r y  endothelium is  confining f o r  red c e l l s  only, 
t h e  plasma outs ide t h e  endothelium being qu i t e  access ib le  t o  macromolecules. 
Thus he suggests t h a t  t h e  r e a l  b a r r i e r ,  across  which S t a r l i n g ' s  hypothesis i s  
made manifest ,  i s  a second membrane between the  p e r i c a p i l l a r y  lymph (which i s  
r e a l l y  plasma) and t h e  t r u e  lymphatic. 

The excess plasma i n  some organs has been observed and explained i n  a 
d i f f e r e n t  way by o thers .  Pappenheimer and Kinter ( r e f .  4) s tudied  the  hemato- 
c r i t  of t he  mammalian kidney and proposed a theory t o  account f o r  t h e  excess 
plasma i n  the  organ. It supposes t h a t  incoming plasma and c e l l s  a r e  progres-  
s i v e l y  separated by plasma skimming, and t h a t  c e l l - r i c h  blood passes  through 
a shor t  c i r c u l a t i o n  while t he  plasma passes through a long c i r c u l a t i o n  i n  the  
c a p i l l a r y  network. That i s ,  c e l l s  pass  through t h e  organ more rap id ly  than 
does plasma. The suggestion i s  t h a t  they both move a t  comparable v e l o c i t i e s ,  
bu t  over d i f f e r e n t  d i s tances .  

The Pappenheimer-Kinter theory says t h a t  t h e  excess plasma i n  t h e  organ i s  
explainable only i n  terms of t he  aggregate of flows from a l l  t h e  vesse ls  of t he  
organ. But t he  theory su f fe r s  from the  f a c t  t h a t  plasma skimming a c t u a l l y  
occurs a t  random r a t h e r  than i n  the  systematic way required by the  model. On 
t h e  other  hand, t he  Sap i r s t e in  viewpoint ca r r i ed  t o  i t s  l i m i t  would be t h a t  
t he  excess plasma i n  t h e  organ i s  explainable i n  terms of t h e  flow i n  any 
s ing le  capi l la ry ;  t h e  c a p i l l a r i e s  i n  a bed have a common hematocrit  - t h a t  of 
t h e  organ. I n  t h e  f i r s t  theory,  plasma skimming plays a dominant r o l e .  I n  
t h e  second, i t s  e f f e c t  on organ hematocrit i s  s m a l l .  

I 

Goresky ( r e f .  5 )  i n  a recent  two-compartment model of t h e  microcirculat ion 
of t h e  l i v e r  uses an extravascular  space r ead i ly  access ib le  t o  plasma, but  not 
t o  c e l l s .  He assumes t h a t  t h e  extravascular  plasma i s  a t  res t .  We s h a l l  see 
as a consequence of t he  present  ana lys i s  t h a t  f o r  low hematocrit  r a t i o s  t h a t  
occur i n  the  l i v e r ,  t he  p e r i c a p i l l a r y  plasma may be almost a t  r e s t  - bu t  not 
qu i t e .  

I n  t h i s  paper, w e  s h a l l  examine the  Heimberger-Sapirstein model of t h e  
cap i l l a ry .  If we are t o  be l ieve  the  anatomical evidence, t he  f l u i d  annulus 
about t h e  endothelium e x i s t s ,  a t  l e a s t  near t he  sk in .  Since t h e  endothelium 
is  permeable t o  water, plasma has access t o  the  annulus. The question i s ,  t o  
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what extent? To the  ex ten t  t h a t  t he re  i s  an important a x i a l  flow of plasma i n  
t h e  annulus t h a t  i s  dr iven by the  same axial pressure gradient  as the  f l o w  of 
c e l l s  and plasma within the  endothelium? 
S a p i r s t e i n  viewpoint t o  i t s  l i m i t ,  what of t h e  heterogeneity of t he  c a p i l l a r y  
bed? Can the  c a p i l l a r i e s  have a common hematocrit and s t i l l  have d i f f e r e n t  
diameters, c e l l  spacings, and c e l l  ve loc i t i e s?  

And s ince  we w i l l  ca r ry  the  

W e  approach t h i s  problem from t h e  hydrodynamic poin t  of view. The hydro- 
dynamic ana lys i s  w i l l  lead t o  a predic t ion  of t he  r a d i i  of both t h e  endothelium 
and the  outer  " t rue hematolymph b a r r i e r "  of Sapi rs te in  as a funct ion of hemat- 
o c r i t s .  
u s e f u l  l i n e a r  re la t ionship  between c e l l  speed and pressure gradient .  

b 
It w i l l  y i e l d  v e l o c i t y  p r o f i l e s  across the  c a p i l l a r y  and w i l l  give a 

It w i l l  be shown t h a t  even without the  annulus, one can account f o r  organ 
hematocrits t h a t  a r e  as low as 50 percent of the  la rge  blood v e s s e l  hematocrits 
on the  b a s i s  of flow i n  a s ing le  cap i l l a ry .  
shor t  pa th  f o r  c e l l s  nor long pa th  f o r  plasma; but  without t he  plasma annulus, 
one cannot r e a d i l y  account f o r  those hematocrit r a t i o s  below 0.5 ( a c t u a l l y  as 
low as 0.35)  t h a t  have been observed experimentally. The ana lys i s  shows, how- 
ever,  t h a t  with the  annulus of plasma, hematocrit r a t i o s  as low as 0.27 can be 
explained. 

No l'mechanisms" a r e  needed, no 

Although the  annulus of plasma w a s  proposed by S a p i r s t e i n  t o  explain the  
surplus  of plasma found i n  some organs, it ( su rp r i s ing ly )  a l s o  allows a d e f i c i t  
of plasma under some conditions.  The simple explanation w i l l  be revealed by 
the  dynamics. Moreover, a c a p i l l a r y  having a hematocrit higher than t h a t  of 
t he  la rge  blood v e s s e l  (plasma d e f i c i t )  w i l l  be shown t o  have a s p e c i a l  char-  
a c t e r i s t i c  which qui te  possibly i s  observable experimentally. In  general ,  the  
ana lys i s  w i l l  show what experimental observables should be measured i n  a given 
organ t o  give a conclusive answer about the  exis tence of a flow of plasma i n  
the  lymph space. 

ANALYSIS 

!!The model of the  c a p i l l a r y  i s  shown on the  l e f t  i n  sketch ( a ) .  The radius  

I 

Continuous cell train 
along capillary axis 

I 

No cells: entire capillary 
filled with plasma 

Plasmo 

------ 
G a p i l l o  ryendothelium- 

/ / / / ~ / / / / / / / / / 1 1 / 7 / ~ ~  
True hematolymph barrier Expected velocity profile 

Capillary 

Sketch (a)  

3 



of erythrocytes i s  designated by 
endothelium i s  
p e r i c a p i l l a r y  plasma and t h e  t r u e  lymphatic i s  

Fl; t h e  (as ye t )  unknown radius  of t h e  
Fz; and t h e  (as y e t )  unknown rad ius  of t h e  t rue  b a r r i e r  between 

F3. 

The mathematical d e t a i l s  of the hydrodynamic analysis of t h e  blood flow 
through t h i s  c a p i l l a r y  model are presented i n  t h e  appendix, along with an 
evaluat ion of t h e  model. Briefly,  t h e  p r i n c i p l e s  of momentum and m a s s  con- 
serva t ion  as se t  f o r t h  i n  any standard work on hydrodynamics ( r e f .  6)  are 
employed. Solut ions of t he  momentum equation y i e l d  expressions f o r  t h e  veloc- 
i t y  p r o f i l e s  across  t h e  c a p i l l a r y  (shown schematically on t h e  r i g h t  i n  
sketch ( a ) ) .  These p r o f i l e s  are used i n  m a s s  conservation expressions wr i t t en  
i n  t e r m s  of t h e  l a rge  v e s s e l  hematocrit ,  hm, t h e  organ hematocrit ,  he, and the  
f r a c t i o n  of t h e  c e l l  t r a i n  t h a t  i s  a c t u a l l y  c e l l s ,  k. The r e s u l t  i s  a fou r th  
degree expression r e l a t i n g  these  quan t i t i e s  t o  r2 ( t h e  endothelium radius  
normalized with respec t  t o  c e l l  radius ,  r l ) .  
w i l l  be obtained by studying t h e  roots  of t h i s  r e l a t i v e l y  simple a lgebra ic  
exp re  s s ion , 

I 

- 
Thus our r e s u l t s  and conclusions 

DISCUSSION O F  RESULTS 

Capi l lary Radii ,  Hematocrits, and Associated Quant i t ies  

Numerical so lu t ions  of equation (I) show t h a t  f o r  a given k/hc the re  a re  
typ ica l ly  th ree  kinds of roots  numbered 1, 2, and 3 i n  sketch ( b ) .  The f i r s t  

of t hese  has no p e r i c a p i l l a r y  plasma 
(r2 = r3).  The o ther  two roots ,  2 and 
3, do have p e r i c a p i l l a r y  plasma (r2 
less than r3) .  They form a p a i r  of 
roo ts  having a common value of 
W e  w i l l  r e f e r  t o  root  2 as ly ing  on the  
upper branch of t h e  root  having p e r i -  
c a p i l l a r y  plasma ( s o l i d  l i n e )  and root  3 
as ly ing  on t h e  lower branch of t he  root  
having p e r i c a p i l l a r y  plasma (dashed l i n e  
i n  sketch ( b ) ) .  I n  f igu re  1, we show a 
family of such roots  having p e r i c a p i l -  
l a r y  plasma (each root  character ized by 
a given k/hm). The overlay of l i g h t  

i s  

k/hm. 

r 2 i r 3  IN0 PERICAPILLARY PLASMA) 

b 

__/< ___---- 
klhCiw r l )  

4 

Sketch ( b )  l i n e s  of constant  hc/hm w i l l  be d i s -  
Now l e t  us examine roots  without and with p e r i c a p i l l a r y  cussed subsequently. 

p l a  sma s ep arat e l y  . 
Roots With No Plasma Outside t h e  Endothelium 

Unlike t h e  roots  having plasma outs ide t h e  endothelium, t h i s  root  ( t h e  
upper curve i n  f i g .  1) i s  not character ized by a s i n g l e  value of k/hm. 

4 



Instead,  t he re  i s  a d i f f e r e n t  value k/hm f o r  every po in t  along t h e  root .  By 
use of equations ( A l O ) ,  (Al2),  ( A 7 ) ,  ( A 8 ) ,  and ( A 5 )  t h e  r e l a t ionsh ip  between 
k/hc and k/hm f o r  t h i s  roo t  i s  r ead i ly  found t o  be 

(2 )  
k k - + 1 = 2 -  
h C  hm 

If t h e  l a rge  vessel hematocrit  i s  0.4, t he  maximum value t h a t  k/hc can 
have i s  4, and f i g u r e  1 shows that the maximum radius  of the endothelium i s  
twice the  c e l l  rad ius .  k/hc, it i s  c l e a r  t h a t  t h e  c a p i l l a r y  
hema-tocrit must not  exceed 0.25. This l i m i t  i s  not  subjec t  t o  t h e  approxima- 
t i o n s  made about bolus flow because it corresponds t o  
t r a i n )  f o r  which the  ana lys i s  should be s t r i c t l y  co r rec t .  A t  values of k/hc 
less than t h e  maximum, k w i l l  be  l e s s  than uni ty ,  and he w i l l  be  g rea t e r  
than 0.25 (with hm s t i l l  0 .4 )  as shown i n  f igu re  2. 

A t  t h i s  maximum 

k = 1 ( f u l l  c y l i n d r i c a l  

We may note i n  f i g u r e  2 t h a t  t he  maximum value of hJhm i s  uni ty .  By 
use of equation ( 2 )  r ewr i t t en  as 

and the  f a c t  t h a t  
hematocrit l a r g e r  than t h e  l a rge  blood vesse l  hematocrit  cannot be reconci led 
by use of a cap i l l a ry  t h a t  does not have an a c t i v e  flow of excess plasma ou t -  
s ide  the  endothelium. However, w e  s h a l l  see subsequently t h a t  a por t ion  of 
each root  having e x t r a  plasma outs ide  the  endothelium does allow t h e  c a p i l l a r y  
hematocrit t o  exceed t h a t  of t h e  l a rge  vesse ls .  

k/hc >_ 1, it i s  easy t o  see t h a t ,  general ly ,  a vascular  bed 

Roots With Plasma Outside the  Endothelium 

For a given k/hm, the re  are two branches of these  roo t s .  The upper 

k /k ,  
branch corresponds t o  l a rge  endothelium r a d i i  r e l a t i v e  t o  those of t h e  lower 
branch as can be seen i n  f igu re  1. 
between 2.5 and 1.25. These values cover a range of p r a c t i c a l  i n t e r e s t .  For 
example, i f  t h e  l a rge  v e s s e l  hematocrit  i s  0.4, k/hm = 2.5 means t h a t  k = 1, 
which corresponds t o  a f u l l  t r a i n  of c e l l s  moving along t h e  c a p i l l a r y  axis; 
and 
t h e  t r a i n  being missing and i t s  space f i l l e d  with plasma. 

Roots a r e  shown f o r  values of 

k/hm = 1.25 means t h a t  k = 1/2, which corresponds t o  every o ther  c e l l  i n  

For a given k/h,, f i gu re  1 shows a maximum allowable value of k/hc f o r  
these  roo t s .  The maxima are presented graphica l ly  i n  f i g u r e  3. These maxima 
relate  importantly t o  the  question of exis tence of t h e  annulus of plasma about 
t he  endothelium as follows. The maximum allowable value of k/hc a t  a given 
value of k/hm means that  t h e r e  i s  a minimum value of hc/hm, 

(4) - k/hm 

@min - (k/h C ) max 

which i s  shown graphica l ly  by t h e  lower curve i n  f igu re  4. 
r a t i o  
thelium i s  a single-valued func t ion  of as can be seen by rewr i t ing  

For comparison, t h e  
hc/hm f o r  a c a p i l l a r y  t h a t  has no annulus of plasma outs ide t h e  endo- 

h,/k 
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equation ( 2 )  t o  y i e l d  

which i s  shown by t h e  upper curve i n  f igu re  4. 
r e s u l t .  Without t h e  annulus of plasma outs ide t h e  endothelium, the lowest 
poss ib le  value of hJhm i s  0.5. If hm = 0.4 (a t y p i c a l  value f o r  humans), 
t h e  minimum poss ib l e  r a t i o  i s  r a i sed  t o  0.625. 
r a t i o  as low as 0.44 and 0.46 f o r  t he  l i v e r  and kidney of t h e  rat, and refer-  
ence 4 l i s t s  0.35 f o r  t h e  kidney of t h e  dog. The f igu re  shows t h a t  such low 
r a t i o s  ( ac tua l ly  as low as 0.27) can be reconci led on the  b a s i s  of a s ing le  
c a p i l l a r y  only i f  t h e  annulus of plasma e x i s t s  outs ide t h e  endothelium. It i s  
important t o  note t h a t  t h i s  r e s u l t  has not been s i g n i f i c a n t l y  influenced by t h e  
approximations of t h e  model analyzed. That i s ,  t h e  minimum hc/hm f o r  a given 
hm 
f i g .  2 ) .  
b e s t .  

Here we have an i n t e r e s t i n g  

S a p i r s t e i n  l i s t s  values of t h a t  

occurs when k = 1 (which i s  e a s i l y  deduced from f i g .  4, and i s  seen i n  
This corresponds t o  a f u l l  t r a i n  of c e l l s ,  which i s  our model a t  i t s  

We t u r n  a t t e n t i o n  now t o  t h e  problem of vascular  hematocrits  l a r g e r  than 
those of la rge  blood vesse ls  ( d e f i c i t  of plasma i n  organ) .  It i s  easy t o  see 
i n  f igu re  1 t h a t  any root  f o r  which 
hc/hm = 1 a t  t h e  bottom of the  f igu re .  k/hm < 2.5, t h e  root  corresponds 
t o  a c a p i l l a r y  whose endothelium radius  i s ,  a t  t h e m o s t ,  5 percent  l a r g e r  than 
the  c e l l  rad ius .  The radius  of t he  t r u e  hematolymph b a r r i e r  i s ,  a t  t h e  most, 
60 percent  l a r g e r  than the  c e l l  rad ius .  A mechanism for t h e  d e f i c i t  of plasma 
i n  t h e  organ r e l a t i v e  t o  the  l a rge  blood vesse ls  i s  a t  once apparent from t h e  
dynamics. That i s ,  t h e  pressure gradient  w i l l  d r ive  plasma along t h e  wide 
annulus between endothelium and t r u e  b a r r i e r  a t  a higher  ve loc i ty  than it can 
dr ive  c e l l s  along ins ide  the  endothelium because t h e  c lose  clearance between 
t h e  c e l l  and t h e  endothelium o f fe r s  s o  much f l u i d  r e s i s t ance .  Thus t h e  r e l a -  
t i v e  excess of plasma i n  the  l a rge  blood vesse l  can be supplied by plasma t h a t  
moves more rap id ly  through t h e  space outs ide t h e  endothelium than t h e  c e l l s  
move along ins ide  t h e  endothelium, which w i l l  subsequently be shown quant i ta -  
t ive ly  (e .g .  , i n  t h e  p r o f i l e  
reconci l ing such hematocrits  by use of a s ing le  c a p i l l a r y  having a double w a l l .  

hc/hm_> 1 must l i e  below t h e  l i n e  
For 

k/hc = 2 i n  f i g .  7 (a )  ) . That i s  t h e  means f o r  

Heterogeneity of t h e  Capi l la ry  Bed 

A comparison of t h e  two c a p i l l a r y  models on t h e  b a s i s  of a c a p i l l a r y  bed 
leads t o  an i n t e r e s t i n g  r e s u l t .  If the re  i s  no annulus of plasma, r2 = 1-3 

and equations ( A l 2 )  and (3 )  y i e l d  

Thus, f o r  a given hJhm the re  i s  one value of r2 and, from equation ( 5 ) ,  
t he re  i s  one value of k/hm. If hm i s  f ixed,  t he re  i s  one value of k. This 
means t h a t  i f  w e  are t o  reconci le  a c a p i l l a r y  bed hematocrit  he t o  a l a rge  
blood vesse lhematoc r i t  hm on the  b a s i s  of flow i n  a s ing le  cap i l l a ry ,  a l l  
t he  c a p i l l a r i e s  i n  t h e  bed must have the  same diameter and t h e  same c e l l  
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spacing, provided the re  i s  no annulus of plasma about t he  endothelium. 
experiments show t h a t  t he  s i z e s  and c e l l  spacings d i f f e r  among neighboring 
c a p i l l a r i e s  ( r e f .  7 ) .  

But 

However, a c a p i l l a r y  bed with an annulus of plasma about t he  endothelium 
has no such r e s t r i c t i o n ,  as i l l u s t r a t e d  by the  family of l i g h t  l i n e s  i n  f i g -  
ure  1. 
hm as f ixed,  then h, i s  constant a l l  along the  l i n e .  The abscissa  shows, 
however, t h a t  k/hc va r i e s  along a l i g h t  l i n e  and thus k va r i e s ,  and, of 
course, both 1-2 and r3 vary; t h a t  i s ,  we can reconci le  a c a p i l l a r y  bed hemat- 
o c r i t  h, t o  a l a rge  blood v e s s e l  hematocrit hm on t h e  bas i s  of t h e  flow i n  
a s ing le  cap i l l a ry ,  and the  c a p i l l a r i e s  i n  the  bed can be d i f f e r e n t  s i zes  and 
c a r r y  d i f f e r e n t  flows with d i f f e r e n t  c e l l  spacings. All such c a p i l l a r i e s  have 
t h e  same hematocrit he.  
t h a t  i s  needed t o  make t h i s  poss ib le .  

Each l i n e  i s  t h e  locus of po in ts  which have a f ixed  hc/hm; i f  we view 

b 

The annulus of plasma about t he  endothelium is  a l l  

To t h i s  po in t ,  we have not needed t o  consider pressure gradients  or c e l l  
speed quan t i t a t ive ly .  Indeed, t he  r e s u l t s  a r e  independent of spec i f i c  values 
of these  quan t i t i e s .  

Cel l  Speed and Pressure Gradient 

We may compare our t h e o r e t i c a l  r e s u l t s  with ex i s t ing  experimental r e s u l t s  
t o  assess  how reasonable the  p e r i c a p i l l a r y  plasma model i s .  Idea l ly ,  we 
should have simultaneous experimental measurements of c e l l  speed and spacing, 
pressure drop from one end of t h e  c a p i l l a r y  t o  the  other ,  l a rge  blood vesse l  
hematocrit,  and t h e  hematocrit  of t he  vascular  bed2 so  t h a t  we can compare 
item by item. However, simultaneous measurements a r e  ava i lab le  only f o r  the  
two hematocrits .  Although c a p i l l a r y  pressure drops or pressure gradients  a r e  
mentioned i n  the  l i t e r a t u r e  ( r e f s .  10-20), they a r e  not associated with any 
k/hc. 
t i c k  marks along the  ord ina te  of f igu re  5.3  
t h e  pressure drops i n  dogs w a s  c i t e d  ( r e f s .  1 2  and 13)  as 0 . 5  and 0 . 4  “/see 
( t h e  former being derived from observations on c a p i l l a r i e s  i n  regions showing 
a b r i s k  blood f low),  bu t  w a s  not mentioned elsewhere. 
t h a t  t he  average r a t e  of flow i n  the  systemic c a p i l l a r i e s  of t he  human body a t  
r e s t  i s  fa r  below the  0.5 “/see ( r e f .  1 2 ) .  
sented a graph f o r  pressure drop i n  human skin c a p i l l a r i e s  (p .  163) and l i s t e d  

Thus we simply represent  t he  values obtained from the  references as 
The c e l l  ve loc i ty  associated with 

However, Bard noted 

Best and Taylor ( r e f .  11) p r e -  

I, a c e l l  speed of 0.5 “/see f o r  r e s t ing  dogs (p.  176). 

2Such measurements a r e  not unreasonable. For example, c e l l  speed and 
t spacing should be  r e a d i l y  measurable from motion p i c t u r e s  (such as those 

obtained by Nicol l  and Webb ( r e f .  8 ) )  of c e l l s  moving through c a p i l l a r i e s  i n  
a b a t ’ s  wing or i n  a webbed foo t .  Pressure drop could possibly be measured a t  
t h e  same time by a technique such as Landis ( r e f .  9) used on the  sk in  of the  
hand, and f i n a l l y ,  l a rge  blood v e s s e l  and vascular  bed hematocrits could be 
obtained from t h e  specimen. 

pressure gradients  by assoc ia t ing  the  pressure drops with c a p i l l a r i e s  0 .4  mm 
long (100 c e l l  r a d i i  long approximately). 

3Where pressure drops a r e  c i t e d  i n  the  l i t e r a t u r e ,  we have calculated 
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The t h e o r e t i c a l  pressure gradients  corresponding t o  t h e  various roots  of 

(A similar p l o t  f o r  another c e l l  speed could be obtained sim- 
r2 are p l o t t e d  as heavy, s o l i d  o r  broken l i n e s  i n  f igu re  5 f o r  a c e l l  speed 
of 0.4 "/see. 
p l y  by s h i f t i n g  the  ord ina te  sca le ,  because the  pressure  gradient  is  simply 
propor t iona l  t o  c e l l  speed (eq.  (A5).) It i s  seen t h a t  t h e  lowest pressure 
gradient  f o r  a given k/hc 
c a p i l l a r y  plasma. 
(defined by sketch ( b )  and f i g .  1) has a lower pressure gradient  than the  
lower branch. Loci of constant hJhm have been over la id  ( l i g h t  l i n e s )  i n  
f igu re  5. 

i s  associated with the  roo t  which has no p e r i -  
For each root  having p e r i c a p i l l a r y  plasma, t he  upper branch 

t 

A comparison of t h e  pressure gradients  c i t e d  i n  t h e  l i t e r a t u r e  with t h a t  
corresponding t o  the  root  f o r  no p e r i c a p i l l a r y  plasma leads t o  the  following 
argument. 
than 4x104 dynes/cm3 ( t h e  lowest c i t e d ) ,  t he  r a t i o  f o r  t he  c a p i l l a r y  
without t he  annulus of plasma about t he  endothelium i s  between 1.5 and 1 
according t o  the  f i g u r e .  ( 2 )  The corresponding range of hc/hm from equa- 
t i o n  (3) i s  0.833 t o  l. 
83 percent of t he  l a rge  blood v e s s e l  hematocrit,  we must have an annulus of 
plasma about t he  endothelium i n  order t o  reconci le  t h e  hematocrits on t h e  
bas i s  of flow i n  a s ing le  cap i l l a ry .  ( 4 )  If c e l l  speed i s  indeed much l e s s  
than 0.4 "/see ( r e f .  12), organ hematocrits must be e s s e n t i a l l y  t h e  same as 
la rge  blood v e s s e l  hematocrits  unless there  i s  a plasma annulus outs ide the  
endothelium. 

(1) For a c e l l  speed of 0.4 "/see and a pressure gradient  not l e s s  
k/h, 

(3) If the  organ hematocrit  i s  t o  be l e s s  than 

On the  o ther  hand, i f  we allow t h e  annulus of flowing plasma, t he  minimum 
pressure gradient  c i t e d  i n  the  l i t e r a t u r e  (4x104 dynes/cm3) can be achieved by 
a range of c e l l  spacings and.hematocrits .  
allows many r a t i o s  of which a r e  much lower than the  0.833 mentioned 
above. For example, if  k/hm i s  1.875, we see t h a t  k/hc i s  3.5 f o r  t h a t  
p ressure  gradient ,  f o r  which the  r a t i o  
number i n  the  l i g h t  of S a p i r s t e i n ' s  data .  This r a t i o  i s  s t i l l  not the  mini- 
mum allowed a t  t h a t  pressure gradient .  
case i s  about 0.5.) 

More importantly, t he  annulus 
hc/hm 

hc/hm 

(We est imate  t h a t  the  minimum f o r  t h i s  

i s  0.536, a very agreeable 

Thus the  comparison of t he  t h e o r e t i c a l  r e s u l t  with ex i s t ing  pressure da ta  
favors the  exis tence of t he  annulus of plasma outs ide t h e  endothelium. 

The comparison between the  s ing le  -walled c a p i l l a r y  and double -walled I 

c a p i l l a r y  can be r e s t a t e d  more general ly .  
t i e s  
two, bu t  the  c a p i l l a r y  having an ex t r a  sleeve of plasma can have any number of 
combinations of t he  o ther  two. If, i n  addi t ion,  e i t h e r  uc o r  dE/dF is  
specif ied,  t he  s leeve less  c a p i l l a r y  has no choice of t he  o ther  one, bu t  t he  
c a p i l l a r y  having the  e x t r a  sleeve of plasma can have a range of values of t he  
o ther .  Thus, c a p i l l a r i e s  having an annulus of plasma outs ide the  endothelium 
can accommodate blood flows over a much wider range of conditions than can 
s leeve less  c a p i l l a r i e s .  This argues i n  favor  of the  exis tence of plasma i n  
the  p e r i c a p i l l a r y  lymph space. 

That i s ,  given one of t h e  quant i -  
r2, k/hc, and k/hm, t h e  s leeve less  c a p i l l a r y  has no choice of t he  o ther  v> 

- 
5 
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Blood Velocity P r o f i l e s  

The v e l o c i t y  p r o f i l e s  across  the  cap i l l a ry ,  normalized with respect  t o  
c e l l  ve loc i ty ,  a r e  shown i n  f igu res  6, 7, and 8 corresponding t o  the  th ree  
roots ,  r2, of equation (1) shown i n  f igu re  1. 
having no p e r i c a p i l l a r y  plasma (r2 = r3) are shown i n  f igu re  6. 

Velocity p r o f i l e s  f o r  t he  root  

The v e l o c i t y  p r o f i l e s  corresponding t o  the  lower branch of the  roots  i n  
f igu re  1 having p e r i c a p i l l a r y  plasma a r e  shown i n  f igu re  7(a)  f o r  
and i n  f igu re  7 ( b )  f o r  k/hm = 1.25. 
t he  heavy l i n e  i n  f igu re  7(a) .  

k/h, = 2.5 
A t y p i c a l  o v e r a l l  p r o f i l e  i s  shown by 

The p r o f i l e  f o r  
it corresponds t o  a c a p i l l a r y  hematocrit g r e a t e r  than  t h a t  f o r  t he  la rge  blood 
v e s s e l  (by a f a c t o r  1 .25 ) .  
i n  t h e  annulus outs ide t h e  endothelium and i s  almost twice t h e  c e l l  ve loc i ty .  
For 
times t h a t  of t he  c e l l  speed. In  such a cap i l l a ry ,  t he  d i f fe rence  between the  
t r a n s i t  times of labeled plasma and labeled c e l l s  would qui te  l i k e l y  be 
observable experimentally . 

k/hc = 2 i n  t h a t  f i gu re  i s  of s p e c i a l  i n t e r e s t  i n  t h a t  

The m a x i ”  plasma v e l o c i t y  f o r  t h a t  case occurs 

he/% = 1 .5 ,  t he  corresponding maximum plasma speed would be about 3.5 

The ve loc i ty  p r o f i l e s  with p e r i c a p i l l a r y  plasma, corresponding t o  the  
upper branch of the  roots  i n  f igu re  1, a r e  shown i n  f igu re  8(a)  f o r  
and i n  f igure  8 ( b )  f o r  k/hm = 1.25. For k/hm = 2.5,  t he  maximum k/hc i s  
6.92 ( f i g .  l), so t h e  p r o f i l e  for 
t a i n s  t o  the  lower root  as wel l  and could have appeared i n  f igu re  7 ( a ) .  
i l a r l y ,  f o r  
appl icable  t o  f igu re  7 ( b )  as wel l .  
branch roots  i s  t h a t  t he  p e r i c a p i l l a r y  plasma moves very slowly. There i s  a 
marked cont ras t  i n  p e r i c a p i l l a r y  plasma v e l o c i t i e s  between the  upper and lower 
roots  f o r  a giyen 
the  upper root  ( f i g .  8 ( a ) )  shows a maximum v e l o c i t y  i n  the  p e r i c a p i l l a r y  
plasma of only 1 percent  of t he  c e l l  speed, while t h a t  of t he  lower root  (not  
a c t u a l l y  shown i n  f i g .  7 ( a ) )  i s  120 percent of t h e  c e l l  speed. This suggests 
t h a t  a f t e r  labeled plasma en te r s  the  capi l la ry , the  length of time required f o r  
t he  concentratlon of labeled plasma leaving t h e  c a p i l l a r y  t o  become constant 
w i l l  be governed by the  p e r i c a p i l l a r y  plasma speed. The time may be of t he  
order of 100 times c e l l  t r a n s i t  time and thus may be observable experimentally. 

k/hm = 2.5 

k/hc = 6.92 i n  f igu re  8(a) a c t u a l l y  p e r -  
Sim- 

k/hm = 1.25, t h e  p r o f i l e  f o r  k/hc = 2.16 i n  f igu re  8 ( b )  i s  
The i n t e r e s t i n g  f ea tu re  of t he  upper 

k/hm and k/h,. In  p a r t i c u l a r ,  f o r  k/hm = 2.5 and k/hc = 5,  

CONCLUSIONS 

The r e s u l t s  of t h i s  approximate ana lys i s  of t h e  dynamics of the  c a p i l l a r y  
and plasma-f i l led p e r i c a p i l l a r y  lymph annulus suggest a number of q u a l i t a t i v e  
proper t ies  and lead t o  a number of q u a n t i t a t i v e  conclusions about c a p i l l a r i e s ,  
which may be s t a t e d  b r i e f l y  as follows. 

For a given pressure gradient ,  t he  c e l l  v e l o c i t y  of a t r a i n  of c e l l s  
moving along the  ax i s  of a c a p i l l a r y  i s  l e s s  than t h e  maximum parabol ic  veloc- 
i t y  (Po i seu i l l e  flow) t h a t  plasma alone passing through the  c a p i l l a r y  would 
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have. Thus f o r  a t r a i n  of c e l l s  passing through t h e  c a p i l l a r y  such that  t h e  
c e l l s  are not  bu t t ed  aga ins t  one another end t o  end b u t  are instead separated 
by a cyl inder  of plasma, t he re  i s  a defec t  i n  c e l l  speed, o r  more importantly, 
a defec t  i n  m a s s  flux, r e l a t i v e  t o  t h a t  of Po i seu i l l e  flow of plasma. This 
defec t  i s  l i k e l y  t o  be the cause of bolus flow, a doughnut-shaped vortex i n  
t h e  plasma between c e l l s .  

The ana lys i s  p r e d i c t s  a l i n e a r  r e l a t ionsh ip  between t h e  pressure  grad ien t  
and volume r a t e  of flow of whole blood i n  t h e  c a p i l l a r y .  This t h e o r e t i c a l  
r e s u l t  i s  i n  agreement with r e s u l t s  of previous experiments on t h e  flow of 
whole blood i n  g l a s s  tubes of c a p i l l a r y  diameter. d 

We have explored t h e  po in t  of view tha t  t h e  organ hematocrit can be 
reconciled with t h e  l a rge  blood vessel hematocrit  on t h e  b a s i s  of flow i n  any 
s ing le  cap i l l a ry ;  t h a t  is ,  t h e  organ hematocrit  i s  e s s e n t i a l l y  t h e  same as the  
c a p i l l a r y  hematocrit .  Although r a t i o s  of organ hematocrit  t o  l a rge  blood ves- 
s e l  hematocrit of less than 1 have been explained by plasma t r ave l ing  a long 
pa th  and c e l l s  t r ave l ing  a shor t  pa th  through an organ, w e  have shown t h a t  
r a t i o s  between 0.5 and 1 (but  not  g rea t e r  than 1) can be  accounted f o r  even i f  
plasma and c e l l s  t r a v e l  t h e  same dis tance  through a common c a p i l l a r y  without 
an annulus of flowing plasma outs ide the  endothelium. But only those c a p i l -  
l a r y  pressure grad ien ts  f o r  r a t i o s  of hematocrits  above 0.83 agree with those 
c i t e d  i n  t h e  l i t e r a t u r e .  Moreover, without t he  plasma annulus one cannot 
r ead i ly  account f o r  those r a t i o s  of hematocrits  below 0.5 ( ac tua l ly  as low as 
0.35)  t h a t  have been observed experimentally.  However, t he  ana lys i s  shows 
t h a t  with t h e  annulus of plasma, r a t i o s  as low as 0.27 can be explained. The 
pressure gradients  f o r  r a t i o s  of hematocrits  above 0.5 f a l l  within t h e  range 
c i t e d  i n  t h e  l i t e r a t u r e .  

br 

Although the  annulus of plasma w a s  proposed by Sap i r s t e in  t o  explain t h e  
surplus of plasma found i n  a l l  organs except t h e  spleen, it ( su rp r i s ing ly )  
could a l s o  explain a d e f i c i t  of plasma under some condi t ions.  That is ,  t h e  
annulus a l s o  allows high r a t i o s  of hematocrits .  The explanation l i e s  i n  the  
dynamics. The ana lys i s  shows f o r  t h i s  condi t ion t h a t  t he  endothelium radius  
i s  only s l i g h t l y  l a r g e r  than t h a t  of t h e  red c e l l s .  Thus the  pressure  g rad i -  
en t  can dr ive  plasma aga ins t  t h e  low re s i s t ance  of t h e  annulus (and on t o  t h e  
la rge  vesse ls )  a t  a g rea t e r  r a t e  than it can dr ive  c e l l s  along in s ide  t h e  
endothelium because of t h e  snug f i t .  Because of t he  ve loc i ty  difference,  
labeled plasma should. be observed t o  pass  through t h e  c a p i l l a r y  more rap id ly  
than the  labeled c e l l s .  

I n  general ,  it w a s  shown t h a t  t h e  exis tence of a flow of plasma i n  an 
annulus about t h e  endothelium i s  advantageous i n  broadening the  range of flow 
conditions t h a t  can be accommodated by a s ing le  c a p i l l a r y .  

With reference t o  spec i f i c  organs, t he  ana lys i s  shows t h a t  t h e  r a t i o  (as 
c i t e d  i n  the  l i t e r a t u r e )  of organ hematocrit  t o  l a rge  blood vesse l  hematocrit 
f o r  t he  hea r t ,  lungs, b ra in ,  gut,  and carcass  can be  explained on a s ing le  
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c a p i l l a r y  b a s i s  with or without t h e  p e r i c a p i l l a r y  plasma. But t h e  r a t i o  for 
l i v e r  and kidney can be explained on a s ing le  c a p i l l a r y  b a s i s  only with t h e  
p e r i c a p i l l a r y  plasma 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett F ie ld ,  Ca l i f . ,  Apr i l  26, 1966 
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APPENDIX A 

HYDRODYNAMIC ANALYSIS 

SYMBOLS 

dynamic hematocrit  of c a p i l l a r y  o r  organ 

bulk hematocrit ( i n  general) ,  o r  ( i f  average c e l l  speed equals average 

0 

blood speed i n  la rge  ves se l )  dynamic hematocrit of la rge  blood v e s s e l  
? 

f r a c t i o n  of c e l l s  p resent  i n  a t r a i n  of c e l l s  

pressure 

m a s s  r a t e  of flow i n  annulus between r a d i i  

dimensionless radius;  F/Fl 

radius  

radius of c e l l  as it moves through endothelium (0 .4  p) 

radius of endothelium 

radius  of t r u e  hematolymph b a r r i e r  

ve loc i ty  p a r a l l e l  t o  c a p i l l a r y  axis 

ve loc i ty  of c e l l s  

dis tance from c a p i l l a r y  entrance measured along c a p i l l a r y  ax i s  

v i s c o s i t y  c o e f f i c i e n t  of plasma (1.9 cp. a t  23.5' C )  

m a s s  dens i ty  

- r j  and r k  

CAPILLARY MODEL 

The model of t h e  c a p i l l a r y  t h a t  we s tudied w a s  shown i n  sketch ( a ) .  

Spec i f ica l ly ,  our model i s  t h a t  of a continuous t r a i n  of c e l l s  moving 
along the  ax i s  of a coaxia l  cap i l l a ry .  When c e l l s  i n  t h e  t r a i n  a r e  missing, 
we  simply assume t h a t  t h e i r  space i s  f i l l e d  with plasma which moves along with 
t h e  t r a i n  without changing the  ve loc i ty .  Some of t he  advantages and disad-  
vantages of t h i s  model a r e  discussed subsequently. 
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MOMENTUM EQUATION 

The ordinary d i f f e r e n t i a l  equation expressing t h e  conservation of momentum 
f o r  a s m a l l .  f l u i d  element of plasma flowing s t e a d i l y  p a r a l l e l  t o  t h e  c a p i l l a r y  
a x i s  X i s  

6 

Consideration of a balance of forces  on a c y l i n d r i c a l  t r a i n  of c e l l s  
moving a t  uniform v e l o c i t y  Ec leads  t o  t h e  r e l a t i o n  

a 

U s e  of t h i s  expression and t h e  no-s l ip  boundary condi t ion a t  each w a l l  i n  t h e  
in t eg ra t ion  of equation (Al) leads t o  t h e  ve loc i ty  p r o f i l e  i n  each region. 
Thus t h e  ve loc i ty  p r o f i l e  f o r  t h e  plasma between t h e  c e l l s  and t h e  endothelium 
(Fl < - -  F < F2) i s  

% (r22 - F) (A3 I - u =  - -  4p dE 

while t h a t  between t h e  endothelium and t h e  t r u e  b a r r i e r  (r2 < - -  r < Fz) is  

Note t h a t  u =  uc a t  F =  F1 and equation (A3) y ie lds  a use fu l  l i n e a r  
r e l a t ionsh ip  between c e l l  speed and pressure grad ien t  

m MASS FLOW 

- 
R In an annulus between any two r a d i i ,  r j  and Fk, t he  rate of m a s s  flow 

along t h e  c a p i l l a r y  i s  



Thus the mass-flow rate i n  the c e l l  region (0 <_ r 5 r l )  i s  

The mass-flow rate of t h e  plasma between c e l l s  and endothelium obtained by use 
of equations ( A 3 )  and (A6)  i s  

h 

while t h a t  between endothelium and t r u e  b a r r i e r  obtained by equations (Ab) and 
(A6)  i s  lb 

The hematocrit  of the la rge  blood vesse ls  feeding or fed  by c a p i l l a r i e s  
l i k e  t h i s  one i s  

where k i s  the  f r a c t i o n  of t he  c e l l  t r a i n  cy l inder  t h a t  i s  a c t u a l l y  c e l l s .  
That i s ,  i f  k = 1, t h e  c e l l s  i n  t h e  t r a i n  are but ted  aga ins t  one another; i f  
k = 2 / 3 ,  t he  c e l l  t r a i n  i s  two-thirds c e l l s  and one-third plasma. 

Subs t i tu t ing  equations ( A 7 ) ,  ( A s ) ,  and ( A 9 )  i n t o  ( A 1 0 )  leads t o  

when w e  have noted t h a t  t he  cap i l l a ry  hematocrit i s  

h 
. ~ .  . ~ . . ._ . .- ~ ~ ~ . . -  ~ .- .- - .- . ~ . . .- . _- .~ . . -  ~ ~ . ~. . .  

'If equation ( A 5 )  i s  subs t i t u t ed  i n t o  equation ( A 7 )  and t h e  r e s u l t  added 
t o  equation ( A 8 ) ,  an expression is  obtained f o r  t h e  m a s s  ( o r  volume) rate of 
flow of whole blood within t h e  endothelium as a l i n e a r  funct ion of pressure  
gradient .  This l i n e a r i t y  w a s  one of t he  conclusions drawn from experiments 
( re f .  21) on whole blood flowing i n  g l a s s  tubes of c a p i l l a r y  diameter. 
l i n e a r  r e l a t i o n  between flow and pressure  grad ien t  a l s o  p r e v a i l s  f o r  t h e  
c a p i l l a r y  having an annulus of plasma about t h e  endothelium as can be  seen by 
adding equation (A9)  t o  the above. 

A 
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where the  normalized r a d i i  r2 and r3 a r e  
- I  

J 

Equation ( A l l )  i s  t h e  b a s i c  re la t ionship  employed i n  t h e  t e x t  (eq.  (1)). I f  
we regard k/hc and k/h as known, we a t  once know r2 from equation (All) 
and 1-3 from equation TA12) (independent of any knowledge of pressure g r a d i -  
en t  and c e l l  speed).  Thus, i f  r2 i s  smaller than r3, p e r i c a p i l l a r y  plasma 
i s  necessary i n  order t o  s a t i s f y  mass and momentum conservation. 

EVALUATION OF FLOW MODEL 

If the  c e l l s  i n  sketch (a )  a r e  but ted  aga ins t  one another forming a 
continuous c y l i n d r i c a l  t r a i n  moving along t h e  ax i s  with ve loc i ty  Ec, t he  
v e l o c i t y  p r o f i l e  across  the  c a p i l l a r y  would be as shown q u a l i t a t i v e l y  by the  
s o l i d  curves on the  r i g h t  of the  sketch. Thus the  ve loc i ty  of t he  plasma i n  
the  annulus between the  c e l l  t r a i n  and the  endothelium var ies  from 
cent t o  the  c e l l  t o  zero a t  t h e  endothelium, and the  plasma v e l o c i t y  i n  the  
annulus between the  endothelium and the  t r u e  hematolymph b a r r i e r  va r i e s  
parabol ica l ly  and logari thmical ly  between zero on each membrane. 

Ec ad ja-  

On the  o ther  hand, i f  t he re  were only plasma and no c e l l s  i n  the  c a p i l -  
l a ry ,  t he  ve loc i ty  p r o f i l e  within the  endothelium plasma would be t h e  
P o i s e u i l l e  parabola shown q u a l i t a t i v e l y  by the  dashed l i n e  on the  r i g h t  of t he  
sketch, which f o r  a given pressure gradient  coincides with the  p r o f i l e  between 
the  endothelium and the  c e l l  w a l l  ( f u l l  t r a i n ) . 2  

The a c t u a l  c e l l  p a t t e r n  w i l l  t y p i c a l l y  be between the  two extremes above; 
t h a t  i s ,  the  c e l l s  i n  t h e  t r a i n  do not form a continuous cyl inder  - some of 
the  c e l l s  i n  the  cyl inder  a r e  missing and plasma occupies the  space between 
c e l l s .  The v e l o c i t y  p r o f i l e  across  a c e l l  i n  t h e  c a p i l l a r y  may s t i l l  be rep-  
resented by the  s o l i d  curve on the  r i g h t  of the  sketch, and the  v e l o c i t y  pro-  
f i l e  across  the  plasma where c e l l s  a r e  missing would tend toward (but  not 
a t t a i n )  the  parabola shown i n  the  sketch. Since the  m a s s  f l u x  along the  ax i s  
i s  l a r g e r  f o r  the parabola than it i s  f o r  the  f l a t t e n e d  c e l l  p r o f i l e ,  a l o c a l  
adjustment i n  t h e  flow must be made. The adjustment may be accomplished by 
the  doughnut-shaped vortex observed ( r e f .  22) between boluses flowing through 

‘This r e s u l t  t h a t  t he  presence of a core of c e l l s  does not  d i s tu rb  the  
streamlines of t he  surrounding f l u i d  i s  a consequence of t h e  force  balance 
( e s .  (A2)) .  



impermeable tubes.  Indeed, t h i s  m a s s  f l u x  defec t  i s  l i k e l y  the  cause of t h e  
vortex.  
leakage of plasma through the  endothelium. 

The double-walled c a p i l l a r y  may permit adjustment by l o c a l  r a d i a l  

Prothero and Burton (ref. 21) observed experimentally t h a t  a t  l a rge  
Reynolds numbers t h e  viscous res i s tance  of bolus flow i n  impermeable tubes w a s  
as much as t e n  times t h a t  of P o i s e u i l l e  flow; However, a t  s m a l l  Reynolds num- 
bers  ( s t i l l  500 times t h a t  which obtains i n  the  c a p i l l a r y ) ,  the bolus flow 
res i s tance  w a s  only 30 percent  g r e a t e r  than t h a t  of P o i s e u i l l e  flow. 
pose t h a t  t he  s i m i l a r i t y  between the  bolus flow of c e l l s  and the  f u l l  t r a i n  i s  
as good as, and poss ib ly  b e t t e r  than, t h a t  between bolus flow and P o i s e u i l l e  
flow. For these  reasons, and because of t he  enormous s impl i f ica t ion  they 
a f ford ,  we neglect  any d e t a i l s  of t he  adjustment and, insofar  as momentum 
considerations a r e  concerned, assume t h a t  t he  c e l l s  a r e  arranged i n  a 
continuous c y l i n d r i c a l  t r a i n .  

W e  sup- 

However, i n  our m a s s  conservation considerat ions (as they r e l a t e  t o  
hematocrit)  we account, i n  an approximate way, f o r  the  f a c t  t h a t  c e l l s  i n  t h e  
t r a i n  need not be b u t t e d  together ;  some f r a c t i o n  (1 - k)  of t he  c e l l s  of a 
f u l l  t r a i n  may be missing. I n  t h i s  regard, we need not be  too  concerned t h a t  
t he  ve loc i ty  p r o f i l e s  across  the  c a p i l l a r y  between c e l l s ,  obtained from solu- 
t i o n s  of the  momentum equation f o r  a f u l l  t r a i n ,  a r e  not s t r i c t l y  cor rec t  i n  
d e t a i l  f o r  the  fragmented t r a i n .  The reason i s  t h a t  we s t i l l  require  the  
a x i a l  mass f lux  ( t h e  in tegra ted  v e l o c i t y  p r o f i l e )  t o  be the  same f o r  a cross 
sec t ion  of t h e  c a p i l l a r y  between c e l l s  as it i s  for one through the  c e l l .  

Final ly ,  t he  r e s u l t s  have some fea tures  which redeem the  model; t h a t  is ,  
some of our conclusions about t h e  exis tence of t h e  e x t r a  flow of plasma out -  
s ide  the  endothelium a r e  deduced from what the  c a p i l l a r y  can accomplish under 
the  most favorable condition, t h e  favorable condition being a f u l l  t r a i n  of 
c e l l s .  

31t i s  poss ib le  t h a t  t h i s  i s  p a r t  of the  means by which the  plasma 
annulus i s  f i l l e d  outs ide the  endothelium. Thus, as the  mixture of c e l l s  and 
plasma enter ing a c a p i l l a r y  ad jus t s  t o  a s ing le  f i l e  of c e l l s  along the  ax is ,  
a simultaneous adjustment i n  the  axial m a s s  defec t  between plasma and c e l l s  i s  
accomplished by plasma leaking through the  endothelium i n t o  the  lymph annulus. 
During t h a t  adjustment, c e l l s  would move c l o s e r  together  ax ia l ly ,  making a 
more complete t r a i n  of c e l l s  along t h e  axis. 
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6 8 IO 



1.0 

.8 

.6 

.4 

" I  2 3 4 
k/h, 
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the endothelium (large blood vessel hematocrit = 0.4). 
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