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ABSTRACT 

This report  extends previous investigations of 24-hour satellites by 
considering the long-term drift of such satellites with orbits having any 
inclination but small eccentricity in an earth gravity field through fourth 
order. 

It, is demonstrated that the drift regime for the inclined-orbit 
satellite is the same as for the equatorial satellite, modified only by an 
"inclination factor" distinct for each relevant gravity harmonic and in  
each case less than unity for non-zero inclinations. 

In particular, it is shown that for the circular orbit satellite 
through fourth- order earth gravity, only the longitude gravity harmonics 
J,,, J 3 1 ,  J33 ,  J,,, and J44 can have long-term (secular) effects on the 
orbit. Except for very high inclinations, the 24-hour drift regime, as 
influenced by presently determined earth gravity, is dominated by the 
effect of the J,, harmonic (that associated with the ellipticity of the 
earth's equator). 

For the longitude gravity harmonics, J J 1  and J 4 2 ,  certain "non- 
resonant" inclinations a r e  shown to exist. Twenty-four-hour satellites 
having orbits with these inclinations will experience negligible long- 
t e rm accelerated drift due to either J J 1  or J42. 
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THE DRIFT OF AN INCLINED-ORBIT 24-HOUR SATELLITE 
IN AN EARTH GRAVITY FIELD THROUGH FOURTH ORDER 

by 
C. A. Wagner 

Goddard Space Flight Center 

INTRODUCTION 

In recent years there have been many studies of the perturbations of a 24-hour satellite due 
to the high-order gravity field of the earth as well as the gravity fields of the sun and moon 
(References 1, 2, 3, 4,  5 and 6) .  Since the period of this satellite is almost the same as the earth's 
rotation period, its mean geographic position may be virtually unchanged for many months. It is 
evident that even very small  longitude mass inhomogeneities within the earth may be able to cause 
appreciable longitude drift of this satellite, which can respond in the same direction to these dis- 
tant mass concentrations over a long period of time. This phenomenon is often referred to as 
"resonance" in the literature. While use of this description can cause confusion if one visualizes 
the action only in geographic space, it is an accurate one for the action in inertial space and it will 
be retained. 

A virtually fixed station in the sky with almost every place on earth permanently visible from 
one of three such equatorial stations is an obvious advantage to worldwide communications and 
navigation. Previous studies of the equatorial 24-hour satellite (References 2 and 5) have shown 
that the long-term east-west station- keeping requirement for %is satellite is controlled by second- 
order earth-longitude gravity which is associated with earth- equatorial ellipticity. 

The first operational 24-hour communications satellite, Syncom 11, launched in July 1963, has 
an orbit with an inclination of about 33". The study in Reference 6 shows the drift regime of such 
a satellite in a second-order longitude-gravity field to be essentially unchanged from that of the 
equatorial satellite in the second-order field. Syncom 11 has now (Spring, 1965) drifted almost 
around the earth in over a year. Comparison of observations on its drift in this time with the 
gravity drift theory of Reference 6 has already revealed the ellipticity of the earth's equator to a 
greater precision than ever before (References 6 and 7).  The advantages of the use of freely drift- 
ing 24-hour satellites for geodetic purposes have thus already been dramatically demonstrated. 

This study is designed to provide a simple theoretical framework for the use of such satel- 
lites of any inclination for basic investigations of the complex gravity field of the earth to high 
order. 
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SUMMARY 0 F PREVIOUS INVEST IG AT10 N S 

In Reference 5 it was shown that in the vicinity of a momentarily stationary longitude A, the 
longitude-drift acceleration of a 24-hour, circular orbit, equatorial satellite in an earth gravity 
field to fourth order is given by 

-3(2n)Z 

w t  as 
Lo = . {Fzz sin2(Ao - A 2 , )  + F,, sin (Ao  -A , , )  + F,, sin3(Ao -A33) 

+ F,, sin 2(A, -A,,) + F,, s in4(Ao -A,,) rad/(sid. day)' , (1) } 
where 

F44 = 7 s (R~,'%)4 J44 . J 4 2 0 ~ ~  

The constants a r e  defined as follows: we is the rotation rate of the earth (27r radians/sidereal 
day); as is the "synchronous" semi-major axis of the satellite; +E is the Gaussian constant of the 
earth; R, is the mean equatorial radius of the earth; J,, and A,, are earth gravity constants in the 
spherical harmonic expansion of gravity for a general mass distribution. The J,, (m # 0) for the 
earth are very small dimensionless constants, of the order of 
magnitude of longitude-dependent gravity forces. The A,, give the phase angle of the dependence. 
For a truly spherical earth, every J,, would be zero (Reference 8). The Fnm sinm(Ao-Am) terms 
in Equation 1 a r e  the earth-gravity longitude perturbation forces (on the equator) for the particular 
harmonic, nm. Equation 1 is a statement of the proportionality of these longitude driving forces and 
the resultant drift acceleration for the 24-hour equatorial satellite. It is not a self-evident statement 
because the coordinate system r ,  A ,  4 is not inertial but is rotating at the earth rate with respect 
to inertial space. 

or less. The J,, give the 
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In Reference 6 the orbit-averaged longitude drift of a 24-hour, inclined circular-orbit satel- 
lite in a second-order longitude-dependent earth field was found to satisfy the equation 

x = A,, sin2( A-A,,) , (3) 

where 

A,, = -7B2 (%,/a,) J,, (c0s22i -t '> rad/(sid. day)2 , (4) 

and the gravity constant A,, locates the longitude of the major axis of the hypothesized elliptical 
equator of the earth. Equations 1 and 3 are compatible since A,, is equal to 

3(B)2 F,, 

for i = 0, noting that 

defines the semi-major axis of the circular-orbit earth satellite with a period of exactly one day. 
The strict derivation of Equation 3 applied only to a 24-hour satellite in the vicinity of a stationary 
configuration whose ascending node (or mean daily geographic longitude) was located at A .  How- 
ever, even for the long period and wide longitude excursion of libratory drift which follows from 
the regime established by the "pendulum equation,'' Equation 3, the near- stationary conditions 
assumed in its derivation are not seriously violated (Reference 6). Thus, for the entire libratory 
regime, Equation 3 can be expected to hold sufficiently wel l  with A representing the daily geographic 
position of the ascending node. In fact, numerically integrated Syncom I1 trajectories in the 
presence of sun, moon and earth zonal gravity have shown that the drift regime established by the 
simple formula, Equation 3, with A interpreted as the daily position of the ascending node of the 
satellite, is a fully adequate representation of the actual long-term drift within the small "noise 
limits" of these higher order gravity perturbations (References 6 and 7). These trajectories have 
included some with eccentricities as high as 0.0012. Drift ra tes  have been as high as 0.8 degrees/ 
day, which is twice the maximum allowable for this 24-hour satellite in a libratory regime (Refer- 
ence 6). R. R. Allan* presumes that Equation 3 may fairly represent the 24-hour drift regime 
for eccentricities as high as 0.3 if A is taken as the mean longitude of ascending and decending 
nodes which, for perigees away from the equator, is a better measure of the mean daily geographic 
longitude than either nodal position alone. 

Private canmunicarioo. 
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At any rate, for a sufficiently wide specification of orbital elements to be practical, Equation 3 
has been shown to establish the correct second-order longitude drift regime with A interpreted as 
the mean daily geographic longitude of the satellite (or nodal longitude for the near-circular inclined- 
orbit satellite). In a second-order earth-longitude gravity field, Equation 1 is merely a special case 
of Equation3 for zero inclination, For the second-order case at least, the long t e rm trajectories in 
References 6 and 7 have shown it is proper to replace A, in Equation 1 by A,  the general longitude 
position of the 24-hour satellite in the drift. Thus for second-order gravity drift of an inclined 
24- hour satellite the relevant longitude acceleration regime is 

i; = -"( as F,, F(i),, sin 2 ( h - X , , )  rad/(sid. day)2 , (5 ) 

where 

F(i>22 is an "inclination factor" which may be applied to the zero inclination regime to get the 
proper acceleration regime for the inclined satellite. It is not at all obvious, even for a circular 
satellite orbit, that one can apply such a simple factor, independent of the longitude, to modify the 
equatorial regime. In Reference 6, Equation 6 was found to be a good approximation of the cor- 
rect  factor for i < 45". 

In the first section of the present report it is shown that for the inclined circular orbit of the 
24-hour satellite, the second-order factor, which is exact for all inclinations, is 

It is also shown there, rigorously, that for third and fourth-order as well as second-order longi- 
tude gravity, such exact inclination factors exist to modify the higher order equatorial regimes of 
Equation 1. 

The modification (on an orbit-averaging basis) gives the complete orbit-averaged drift re- 
gime of the inclined-orbit satellite (to the fourth order) as 

4 n  
127, 

= - g )-I [.,, F(i)n,,, sin m(A - A,,,,)] rad/(sid. day)2 , 
s 

n = 2  m = l  
For n-meven 
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where 

gs w,2as .E/.: 

Equation 8 (without the inclination factors) w a s  first proposed as a good approximation for the 
second order drift regime of the equatorial 24-hour satellite by Frick and Garber (Reference 2), 
and for the higher order regimes by R. R. Allan (Reference 4). Earlier than Allan, in Reference 5, 
the author limited his investigation of equatorial 24-hour drift in a fourth-order field to the vicinity 
of the initial longitude placement of the satellite and derived Equation 1 which is seen to be a special 
case of Equation 8. 

DERIVATION OF THE LONG-TERM ORBIT-AVERAGED DRIFT OF A 24-HOUR, NEARLY 
CIRCULAR, INCLINED-ORBIT SATELLITE IN A FOURTH-ORDER EARTH GRAVITY FIELD 

In Reference 6 the technique of orbit averaging the disturbing force along the track of a24-hour 
satellite to obtain the relevant long-term (secular) drift motion was proposed for the inclined-orbit 
satellite. While the energy-changing disturbing force on the equatorial satellite due to  the gravity 
of the earth is constant over an orbit, it is, in  general, quite a complicated function of the instantane- 
ous orbit position of the satellite i f  the orbit plane has the slightest inclination. It can be antici- 
pated, then, that for the inclined-orbit case the exact drift equations of motion for the 24-hour satel- 
lite wi l l  contain many small, time-varying "functions" of daily period, introducing non-linearities 
which will  be difficult to deal with. Since it is desired at the start to arrive at a theory of long- 
t e rm (i.e., greater than one day) drift motion, it is natural (since the magnitudes of the short period 
t e rms  are small) t o  seek a perturbation technique which, in a first approximation, smooths out these 
short period effects. The orbit-averaged perturbation force technique chosen in Reference 6 seemed 
a natural one to complement the idea used there of dealing directly with the daily perturbation of the 
two-body energy of the satellite. Computation of the mean daily effect for second-order longitude 
gravity was not too difficult. As a first approximation to the exact drift motion, numerical integra- 
tions over many months proved the long-term theory derived in th i s  manner to  be an excellent ap- 
proximation of reality, even in the presence of a more complicated gravity field with much stronger 
effects of daily period. Nevertheless, the technique of direct orbit averaging of perturbation forces 
has its drawbacks. The chief one is computational. It leads immediately to  definite integrals (over 
2 ~ )  involving the anomaly 6 of the satellite and the inclination i .  (The eccentricity is not involved 
since only the first-order perturbation of a circular orbit is sought.) These a r e  cumbersome t o  r e -  
duce t o  simple closed forms. Nevertheless, it is easy to  show which integrals, no matter how com- 
plicated, will orbit average to  zero and which will yield non-zero, secular, long-term effects. The 
cumbersome integrals yielding non-zero mean daily effects can, at worst, be left as they a r e  and 
numerically integrated for any inclination to  yield the proper "inclination factor" corresponding to  
that secular effect. It will be found that in every harmonic case (through fourth-order) the inclina- 
tion integral can be directly reduced to yield a factor equivalent to one computed for this harmonic 
by an entirely different method* (Reference 9). Though no necessary equivalence condition has been 
found between the two theories fo r  the development of first-order secular terms of the earth's grav- 
ity disturbing function, it is presumed on the basis of the exact agreement of these through fourth- 
order that such inclination factors will be equivalent in the two theories to all orders of earth gravity. 

'Kaula, W. M., private communication. 
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Proceeding on the basis of the orbit-averaging theory established by Equation 10 in Refer- 
ence 6, the long-term longitudinal drift acceleration of a 24-hour, inclined, nearly circular-orbit 
satellite is given by 

.. -1,-&zF 
), =- rad/(sid. day)' , 

hj,' 

where 

(9) 

F, is the tangential o r  along-track perturbation force acting on the satellite at an angle B from its 
ascending node. Similarly, the orbit-averaged rate of change of the semi-major axis of the satel- 
lite orbit, coupled with Equation 9, is given by Equation 11 in Reference 6 as 

NORTH 

471 a: F 
length u n i t d s i d .  day a - -  

PE 
. -  

PROJECTION OF 
ORBIT PLANE OF 
SYNCOM II ON 
CELESTIAL SPHERE 

F$$:r 

/' ..* GREAT CIRCLE 

 DIRECTION' OF THE EQUATOR 
MAJOR A X I S  OF THE EARTH'S EQUATOR 

Figure 1 shows the position of the 24-hour 
satellite with respect to the earth and the cel- 
estial sphere. F,, F+ and FA, earth-gravity 
perturbing forces in the radial, latitude, and 
longitude directions, are assumed to be acting 
on the satellite at S (see Appendix A). A s  long 
as the orbit is nearly circular, F, will  make a 
negligible contribution to F,. The tangential 
perturbing force will then be close to the cir-  
cumferential perturbing force and we can write 

F, Fd cos a + FA s i n a  , (12) 

where F4 and FA a r e  the latitude and longitude 
components of the gravity force on the satellite 

Figure 1-Position of a 24-hour satellite with a near- 
circular orbit with respect to the earth and the celestial 
sDhere. 

and a is the angle between a meridian plane and 
the orbit plane when the satellite is B distant from its ascending node. Writing out Equation 12 in 
its full fourth-order-gravity form will involve the sum of contributions to F, from every earth 
harmonic (zonal and tesseral)  up to and including J44 (see Appendix A). 

We will now show that the zonal terms of this ser ies  (terms in Jz0, J30 and J ~ ~ )  give zero 
orbit-averaged effects; i.e., F(zona1) = 0. 

6 
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The only force component of zonal gravity capable of having an energy-changing effect on the 
satellite is the latitude one, if  the orbit is circular. 

Orbit-Averaged Ef fec t  of J,, 

From Appendix A, the relevant t e r m  is 

But from the spherical trigonometry of the orbit on the celestial sphere (Figure l ) ,  the following 
relations must hold: 

1 s i n 4  = s i n i s i n e  , 

- t& 
- tan8 

Substitution of Equations 14 and 13 into Equation 12 gives 

where Kzo is a constant over the circular orbit assumed. But the integral of Equation 15 over an 
orbit (0 I e 5 B J )  is zero, o r  

Thus, as long as the orbit remains circular, the J z o  t e r m  will produce no change in the energy of 
the satellite over periods of time which are multiples of one day. It must be noted at this point that 
this first-order (zero eccentricity) result for J z o  may not be sufficient in all cases to guarantee 
negligible long-term energy contributions compared to  those of longitude gravity for actual orbits 
of small eccentricity. While the effects of small eccentricity can generally be ignored as second- 
order in the theory of the tesseral perturbations, they will be about 1000 times larger in the theory 
to the same order for J z o  due to the relatively large oblateness of the earth compared to the 
other mass anomalies (see DISCUSSION). 
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Orbit-Averaged E f f e c t  o f  J 3 0  

From Appendix A the relevant term is 

where k,, is a constant for the circular-orbit satellite. As in Equation 15, we now get 

= k,, sin i cos B (5 sinZ i sinZ 6 - 1) . 

Since JOzvcos B dB = 0, the orbit-averaged tangential force from Equation 18 is 

~ 5k,, sin’ i lZT F T , 3 0  = 271 sin’ B c o s  Bd8  = 0 , 

since sinZ 8 COS 8 is an odd function with respect to 8 = 71/2 and 3d2. 

Orbit-Averaged Ef fec t  o f  J40  

From Appendix A the relevant t e rm is 

A s  before, 

- k,, sinZ + C O S  B k,, sin’  i sin 28 
- (7sinZb-3) = 2 ~ ~ (7 sin’ i sin’ 0 - 3) 

But sincefvsin 28 dB = 0 , 

~ 

F T , 4 0  = & ~ 0 ‘ ~ F T , 4 0  = 471 sin2 8 sin 2BdB = 0 , 
7 k,, sin4 i JOzv 

because sinZ 8 sin 28 is an odd function with respect to B = n. 

8 
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It is conjectured that similar zero results can be expected to hold for all higher zonal gravity 
forces due to their latitude symmetry. The longitude harmonics of the gravity field of the earth 
will now be treated in a similar manner. 

Orbit-Averaged Ef fec t  of J22 

Since geographic longitude dependence is involved in all the longitude effects, it will be neces- 
sary to develop certain trigonometric relationships involving the longitude excursion in the '?figure 
8" 24-hour ground track (see Figure 3, Reference 6), as a function of nodal argument 8. 

In Reference 6 (see also Figure l), it is shown that the excursion AA from the ascending 
equator crossing (at A, geographical longitude) in the "figure 8" track is given by: 

(22) AX = AL - met = tan-1 (cos  i t a n s )  - e . 

Thus from Equation 22 the following identities can be seen to hold: 

cosAA = cosBcos [ t an - l  ( c o s i  t a n 8 ) ] +  s i n B s i n [ t a n - l ( c o s i t a n B ) ]  

s i n  A A  = cos 0 s i n  [tan-1 (cos i t a n  B ) ]  - s i n  B cos [tan-l (cos  i t a n  e ) ]  

- s i n  28(cos i - 1 )  , - COS Bcos i t a n 6  - s i n e  - 
(1 t cos2 i tan2 e)1/2 

- , (24) 
2 (I - s in2  e s in2  i ) 1 / 2  

s in '  2e( 1 - cos i)2 . 
- i (1 - s in2  e s in2  i) I 

cos 2AA = 1 - 2 s in2Ah  = 

[I - s in2  e ( i  -cos i)] [sin 2e(cos i - I ) ]  
sin2AA = 2 s i n M c o s A X  = 

1 - sin2 0 s in2  i 
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cos 3 M  = c o s ( 2 M  +Ah) = cos 2Ah c o s A A  - s i n  2AA sinAh 

s i n 2  2 q 1 -  cos i ) 2  - s in2  8( 1 - cos i )  
2 (1 - sin2 6 sin2 i) 1 - sin2 s in2  i 112 1 

= {l -  

s i n  2o(cos i - 1) s i n  2 q c o s  i - 1 )  7 ] [I- s in2  s in2  .] [2 (1 - s in2  s in2  i)'/q (27) - 1 - s i n 2 € ' ( 1 - c o s i )  [ 
s i n  3 M  = s i n  (2AA + M) = s i n  2AA cos Ah + cos 2Ah sinAA. 

- [I - s i n 2  ~ ( 1  -cos i)] [s in  ~ B ( C O S  i - I ) ]  [I - s i n 2  ~ ( 1  - c o s  i)] 

(I - sin2 B s in2  i) (I - s in2  8 sin2 i)1/2 
- 

cos i s i n 2 B ( c o s i - 1  
+ cos i + 1 1 - s i n 2  8 s i n 2  [ 

[I - s in2  e( i  - cos i ) ] '  [s in  2 ~ ( c o s  i - 1)]2 

[I - sin2 B sin2 i] 2 
= 1 - 2  --. ;(28) 

s i n  4 A A  = s i n  2(2Ah) = 2 s i n  2Ah cos 2AA 

Continuing with the evaluation of the along-track force due to the longitude and latitude contributions 
from J z 2  (see Appendix A), we have 

Ff,22 = s i n a  + F6,22 cos a 

= k2 {sin 2 (A - A, 2) [s in  a cos 41 + cos 2 (A - A22)  [cos a s i n  4 cos 41 

10 



where 

PE 
k;z = 6 J z z  - (%/a,)' (a2 

When the orbit geometry relations (from Figure 1): 

A = A, t A A ,  

cos i - -  
s i n a  - cos+ ' 

t a n 4  
cos a = a 3 

and 

s i n 4  = s i n i s i n 8  

are introduced into this form, the tangential force on the 24-hour satellite due to J~~ is 

s i n  20 s i n Z  i s i n  
F,,,, = kZ2{sin 2(A0 - A Z z )  2 

s i n  20 s i n 2  i cos 
+ cos 2 (A, - A Z 2 )  i s i n  2AA + ~ 2 

When the longitude excursion relations, Equations 25 and 26, a r e  used, Equation 30 becomes 

F T . 2 2  = k2z 
s i n 2  2 8 ( 1 - c 0 s i ) ~  
2 (I - s ih2  e s in2  i) 

cos i 
i i n 2 ( A o - A z 2 ) { l  - - 1 

F - s i n Z e ( l - c o s i )  L 1 - sin2 e s in2 i I> sin2 i - -  [sin2 2qcOs i - 1 )] 

[sin 2qcOs i - I)] 
1 - s in2  B sin2 i + cos 2 (A, - A Z 2 )  i [l - s i n Z  e( 1 - cos i)] - 

sin2 i s i n  28 
2 

s in2 2e( 1 - cos i.1' [1- 2 (1 - s in2  6 sin2 i 
t 

11 



When the factor of cos 2(A0 - A 2 2 )  in Equation 31 is examined, it is noted that it is an odd function 
with respect to 8 = 7r. Therefore, the orbit-averaged (0 '0 5 m) contribution of the COS 2(A0 - d22) t e rm 
in the forcing function is zero. It is this result, which will be found to be valid for all the higher 
order tesserals,  which enables one to write the relevant long-term drift  equations for  the inclined- 
orbit 24-hour satellite as a simple (inclination-factored) modification of the equations for the 
equatorial satellite. 

Thus, only the factor of s i n  2(A0 - A 2 2 )  in Equation 31 need be considered, o r  

where 

i l 2 c o s  i + s i n ' i ( c o s  . i -  I ) +  sin '  i s i n '  B(1 - c o s  i > 2  - ~ ~~ 

2(1 - s in2  B s in2  i) 
F(B, i)22 = cos i - s i n 2  28 

cos i >  [cos i ( 1 -  cos i )  - s in2  i t s in2  i s in2  e ( i  - cos  i ) ]  

2 (I - sin2 B s in2  i )  
= cos i - s in2  2 8 f 1  - 

c o s i - c o s 2 i - s i n 2 i + s i n 2 i s i n 2 B ( 1 - c o s i )  .~ 

2 (1 - s in2  i s i n 2  i) 
= c o s i  - s in2  2 @ ( 1 - c o s i )  

Thus, the orbit-averagedalong-track perturbation force due to J Z 2  is (from Equations 31a and 

32) 

277 
s i n 2  28 

= E,, s i n  2(A0 -A,,)] $ I [cos i + ( 1  - c o s  i ) 2  
0 

(1 - c o s  i I 2  
4 1 = k,, s in2(Ao - A 2 ' )  cos i f  c 

s i n  2 (Ao - A, 2) 
= k 2 2  4 - [4 cos i + 1 - 2 cos i -t cos2 i] 

s i n  2 (Ao - A 2 2 )  
= k22 4 .. [I + 2 cos i t cos2 i] 

s i n  2(A0 - A,') 
= k22 4 ( I t c o s  i ) ,  . 

12 
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It is seen that the orbit-averaged, energy-changing perturbation force on an inclined-orbit 24-hour 
satellite due to J 2 2  is just F( i ) 2 2  t imes that on the equatorial satellite (Equations 1 and 2, or  A-4) 
at the same mean longitude A,, where (from Equation 33) 

Orbit-Averaged Effect of 131 

The tangential force on the 24-hour inclined-orbit satellite at 6' from its ascending node, due 
to J,,, is (see Appendix A) 

= k,, {sin(h-A,l)  [ 5 s i n 2 + - 1 ]  s i n u + c o s ( A - A g l )  [15s in2+-11]  s inmcosu}  (35) 

where 

Introduction of the orbit geometry relations, Equations 29a through 29d, causes Equation 35 to 
become 

(15 s in '  i s in '  B - 11) (s in2  i s i n  28) s i n  
- -  

(I - sin2 i sin2 e) ' /~  

5 s in '  e s i n 2  i - 1) cos i sinAA 

(I - sin2 i s in2 8)'/2 
+ cos (A, - 

+ 
(15 s in2 i s in '  B - 11) (sin2 i s i n  20)  

2 (I - sin2 i sin2 0)1/2 

13 
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Introducing the expressions for  the longitude excursion in the "figure 8", Equations 23 and 
24, causes Equation 36 to become 

{I - s in2  e [I - cos i l} (5 sin2 e s in2 i - 1) 
F,,,, (0) = k,, {sin ( A o  - A,,) roS 1 - s i n 2 i s i n 2 B  

s i n 2  i s i n 2  28(cos i - 1) (15 s i n 2  B s i n 2  i - 11'1 
4 (1 - s in2  e s in2 i) 

i (5 s in2  e s in2  i - 1) s i n  2 ~ ( c o s  i - 1) 

2 (I - s in2  e s in2  i) 
t cos (Ao - A,,) 

+ 
s i n 2  i s i n  28 (15 s i n 2  i s i n 2  0 - 11) (1 - s i n 2  B( 1 - cos i)} 

2 (1 - s in2  B sin2 i) 

Once again it is seen that the factor of cos (A,, - A,,) in Equation 37 is an odd function about e = 7~ 

so that its orbit-averaged effect over 0 < 0 < 2n is zero. When only the relevant t e rm s i n  ( A o  - A, 1 )  

term is retained, Equation 37 becomes 

- s i n 2  i s i n 2  28(cos i - 1) [15 s i n 2  B s i n 2  i -111) (37a) 

- s i n 2  i s i n 2   COS i - 1) -10 1 - s in2  i s i n 2  8) + 5 sin2 i s in2 0 - [ (  
4 0 )  

-4 cos i (1 - s i n 2  0 s i n 2  i) -4 c o s z  i 16 cos i s i n 2  6 s i n 2  i 1 0  sin2 i s i n 2  26(cos i - 
4(1 +cos  i )  4 ( 1 + c o s i )  + 4 ( l + c o s i )  ' 4 -  = k,, s i n  (Ao  -A,,) - 

v .. . 

+ 
16 cos2 i s i n 2  i s i n L e  

- sin2 i s in2 2 q c O s  i - 1) [S sin' B s in '  i - 
~- 1 + cos i 

4 (1 - s in2  B sin2 i) 

16 cos2 i s i n 2  i s in '  8 t s i n 4  i s i n 2  28(5 s i n 2  0 s i n 2  i - 1) 
4( 1 +cos- i )  (1 - s i n 2  B sizi) = k,, s i n ( A o  - A 3 l )  

14 



16 cos2 i s i n 2  i s i n 2  8 - s i n 4  i s i n 2  26 

4 (1  + c o s  i )  (I - (374  
= k,, s i n  A, -A3, 

--- 

cos i (1 - s i n 2  0 s i n 2  i) - 4 cos2 i -+ 16 cos i s i n 2  8 s i n 2  i - 11 s i n 4  i s i n 2  28 
4(1  + c o s  i )  = k,, s i n  (A, -A3,) 

v J 

(37f) 
16 cos2 i s i n 2  i s i n 2  6 t 4 s i n 6  i s i n 2  28 s i n 2  8 

4( 1 + cos i ) (I - sin2 e s in2  i) 
~ ~~ t 

s i n 2  8 s i n 2  i [4(1- s i n 2  i )  t s i n 4  i s i n 2  281 

( l t c o s  i )  ( 1 - s i n Z e s i n Z  i) 
= k,, s i n  (A, -A , , ) .  

(37i) 

Reducing D ( 8 )  in Equation 37j gives 

4 s in2  8 sin2 i(4cosi +cos  i) -4cos i(1 + c o s  i) - 16 s i n Z  @sin4 i - 11 s in4  i sin2 28 t 16sin2 8sin2 i (1 t sin2 8 s h 2  i) 

4 ( l + c o s  i )  
D(8)  = - 

s i n 2  8 s i n 2  i ( 5  cos i t 4 )  
( 1  + c o s  i )  

s in4  i - - - cos i - 4(1 cos i )  (11 s i n 2  28 - 16 s i n 4 8  + 16 s i n 2  8 )  (37k) 

15 



From Equations 37j and 37k the orbit-averaged tangential perturbing force on the inclined-orbit 
24-hour satellite, due to  J3 ,  is 

s i n Z i ( 5 c o s  i + 4 )  
s i n 4  i [5 - 6 + F]] = k,, sin (A, - A,,) - cos i + 2(1 + cos i )  - 4 ( l + c o s i )  

( 1  - cos  i )  (5 cos i + 4 )  15(1 -  cos i )  
- 

8 

{ 
= k,, s i n  (A, -A,,) 2 

5 c o s  i 5 15 . 15 
= k,, s i n  (Ao  - A,,) cos i + 7 - 2 (1 - s i n Z  i) + 2 - 2 cos i - 8 s in2  i + s sin' i cos 

F( i )3 ,  
7 -  

- 5 s i n Z i ( l + 3 c o s i )  

I 
= -k3, sin (A, - A, 1) 8 

But -k,, s i n  (A, - A,,) = F,, s i n  2(A, -A,,) , which is the tangential perturbation force on the 24- 
hour equatorial satellite at longitude A,. Thus, the orbit-averaged force on a 24-hour inclined 
circular orbit satellite whose ascending node is at A, is just  F( i ) ,  , t imes the force on the 
equatorial 24-hour satellite at A,, due to J 3  , where 

(39) 1 + cos i 5 s i n 2  i 
- ( 1 + 3 c o s  i )  . F(i)31 = 2 

Orbit-Averaged Ef fec t  of J,, 

The tangential force on the 24-hour inclined-orbit satellite at B from its ascending node, due 
to J32,  is (see Appendix A) 

F,,,, (8) = s i n  a + Fd,32 cos a 

= k,, f i n  2 (A - [2 s i n  a s i n 4  cos 4 1 + cos 2 (A - [,OS Q (3 s i n Z  4 - 1) cos 4]}  , (40) 

where 
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Introducing the orbit geometry relations, Equations 29a through 29d, causes Equation 40 to become 

F T , 3 2 ( e )  = k,, (Sin2(Ao-A,?) [ 2 c o s i s ~ n i s i n B c o s 2 M - c o s B s i n i ( 3 s i n ~ i s i n ~ B - 1 )  sin2M] 

+ cos 2 (Ao - A, ,) [2 cos i s i n  i s i n  e s i n  2M + cos 0 s i n  i (3 sin2 i sin2 8 - 1) cos 

When Equations 25 and 26 a r e  used, Equation 41 now becomes 

s i n  i cos e (3 sin2 i sin2 e - I)  
2 (1 - sin2 B sin2 

s in2  28(1- cos i ) 2  

. (1 - s in2  St1 - cos i)}  {s in 28(cos i - 1)) 

1 - s i n 2 8 s i n Z  i I 
{I - sin2 ~ ( 1 -  cos i)} {s in  2qcOs i - 1)) 

1 - s in2  B s i n Z  i 
+ cos 2(A0 - 

The factor of s i n  2(A0 - A 3 2 )  in Equation 42 is an odd function with respect to 6 = n. Thus it has a 
zero orbit-averaged effect. The factor of cos 2(A0 - 

respect to e = rr/2 and 3n/2. The orbit-averaged effect of this te rm is also zero. Therefore, the 
orbit-averaged contribution to  the longitude acceleration of the inclined-orbit 24- hour satellite due 
to the tesseral  J,, is zero, as it is at all orbit anomalies, identically, for the equatorial satellite. 

in Equation 42 is an odd function with 

Orbit-Averaged Effect  of J 3 3  

The tangential force on the 24-hour inclined-orbit satellite at 8 from its ascending node, due 
to J,, is (see Appendix A) 

= k,,  {sin3(A-A3,) s i n a c o s 2 + + c o s 3 ( A - A 3 , )  (43) 

where 

17 
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I I , ._ ........ ~~ , ,. , , ., .,- ....-. .-.-... .-,-...-.. ... . 

Introducing the orbit geometry relations, Equations 29a through 29d, causes Equation 43 to become 

s i n 2  i 
FT,33 ( e )  = k,, {sin 3(A0 - A3,) i (1 - s i n 2  e s i n 2  i ) 1 / 2  cos 3M - - 2 s i n  28 (1 - s in2  8 s i n 2  s i n  3M] 

s in2  i + c o s  3 ( A ,  - A3,) i (1 - s i n 2  8 s i n 2  i)”2 s i n  3M + 7 s i n  28 (1 - s i n 2  8 s i n 2  i)lI2 COS 

Using the longitude excursion relations, Equations 27 and 27a, in Equation 44 gives 

(1 - sin2 ~ ( 1  - c o s  i )}  
s i n 2  2e( 1 - cos i l2  

F,,,, (8) = k,, [in 3 ( A o  - A,,) F o s  i (1 - 2 (I - s in2  e s in2  i) 

s i n 2   COS i - 1 ) 2  

2 (1 - s in2  8 s in2  i )  
-cos i {I - s in2  e ( i  - cos i,} 

[I - s i n 2  ~ ( 1 -  cos i ) ]  [sin 20(cos i - I,] [I - s in2  ~ ( 1 -  cos i ) ]  

(I - s in2  8 s in2  i) 
s i n 2  i -- 

s in2  i s i n 2 8  
2 

+ cos 3(A0 - A 3 3 )  

sin2 28(1-  cos i ) 2  

2 (1 - s in2  e s in2  i) 

[I - sin2 q i  - cos i ) ]  [sin  cos i - I)] [I - s in2  q 1 -  cos i ) ]  

(1 - s in2  e s in2  i) 
cos i 

l- s i n 2  28( 1 - cos i ) 2  s i n  28(cos i - 1) 

2 (1 - s in2  e s in2  i) H + c o s  i (1 - 

1 - s in2  ~ ( 1  -cos i)} I {  s in2  28(1- cos i )2 (1- 2 (I - s in2  e s in2  i) 
s in2  i s i n  28 

2 + 

[I - s in ‘  e ( i  - cos i ) ]  [s in  28(cos i - I)] [sin 20(cos i - 
2 2 (I - s in2  B sin2 i) 

Once again the factor of COS 3(A0 - A3,) above is an odd function with respect to 8 = n, so that it 
orbit-averages to zero. 
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Rewriting Equation 44 and including only the relevant s i n  3 ( A 0  - t e rm gives 

[I - s i n 2  @ ( I  - cos i ) ]  1 sin '  28(1-  COS i l2 
F,,,, ( 8 )  = k,, s in3(Ao - A 3 , )  2 (1 - sin2 8 sin2 i )  

[sin2 2qcOs i -I) '}  

2 (1 - sin2 8 sin2 i) 

si;z i [I - sin2 e ( i  - cos i ) ] ' s i n z  2e(cos i - 1) 
~ _ _  - 

- 2  (1 - s in2  0 sin2 i) 
- c o s  i [I - sin2 @ ( I  - c o s  i ) ]  

s i n 2  2 8 ( 1 - c o s i ) 2  

2 (1 - sin2 e s in2  i )  
4 [sin2 2 q c o s  i - I > ]  

s i n 2  i - -  

A, ( e )  
I > 

i [l - s in '  e( l  - cos  i)] - 7 [sin' 28(cos i - I ) ]  

\- J 

A 
s i n 2  i = 

k,, s i n  3 ( A 0  - A,,) 

s i n 2  i s i n Z  28(1 -  cos i ) 2  

+ 2 (1 - sin2 B sin2 i )  cos i (1 - s in2  e ( i  - cos i)} + 7 (sin2 2qcOs i - 1)) 

I} sin2 i 
- cos i (1 - s i n 2  e(1-  cos i ) }  - (cos i - 1) (1 - s i n 2  e( 1 - cos i )}2  (46a) 

s in2 i s in2 2 ~ ( c o s  i - 1) {cos i + (1 - sin2 e sin2 
+ -  1 +cos i 

._ - 
4 t -  

sin2 2 q 1 -  cos i ) 2  } {- 2 cos i ( e )  + 2 ( 1 -  sin2 e s in2 i) 
= k,, s in3(Ao -A,,) 

s i n 2  i + [,os i + (1 - s in2  e s in2 i)]} + 7 sin2 qcOs i - 

B, (8) 
I 

s i n 2  28(1-  cos i ) 2  

2 ( l + c 0 s i )  
s i n 2  2e( 1 - cos i)2 

= k 3 3 s i n 3 ( ~ - o - ~ 3 3 )  [ 1 - c o s i - s i n ' e s i n ' i ]  + 2 (1 - sin2 e sin2 i) 

v 

I> cos i 
1 +cos i {- COS i + (1 - s i n 2  s i n 2  i)} + s i n 2  i s i n 2  8 (1 - sin2 8) (1 - C O S  i )  (46d) 
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A - 

f‘ s in2  2e(1-  cos i l 2  c o 2 i  s i n 2  28(1 - c o s  i12 

[- cos2 i - s i n 4  i s i n 2  B (I - s in2  8 (46e) )I> 

[I - (1 - s i n 2  e s i n 2  i) s i n Z  i - s i n 4  i s i n 4  8 (46f) 11 
D, (8) 
A 

-)2 (1 + s i n *  8 s in2  i) 
- 

sin2 i sin2 2 q 1  
= k,, s in3 (Ao  -A,,) 2(1 +cos i )  2 ( l + c o s i )  

__-_ 
+ 

Thus, the orbit-averaged tangential force due to J,, is 

(1 - c o s  i I 2  s in2 ~ .- i (1 - c o s  i)Z cos i ( 1  - cos  i l 2  
8(1  + c o s  i )  + 4(1  + c o s  i, - 4(1  + c o s  i )  - 

s i n 2  i ( l - c o s i ) 2  s i n 2  i ( l - c o s i ) 2  
- 8 ( 1 + c o s i )  + 4 ( 1 + c o s i )  -} (47) 
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( 1  - c o s  i l 2  } (47b) 
= k,, s in3(Ao-Ag3)  ( 1  + c o s  i )  + 8(1 +cos i )  [ ( l  + c o s  i ) 2  + 2 ( 1 - c o s  i )  - 2  + 2 c o s  i] 

+ 
( l - c o s i ) 2 ( 1 + c o s i ) 2  

= k,, sin3(Ao -A,,) 8(1 +cos i )  

= k,, s i n  3(A, - A3, )  8 [4 cos i + 1 - 2 cos i + cosz i]} {- 
= k,, s in3(A0 - A 3 3 )  f 1 + c ; i ) 3 }  , 

But k,, s i n  3 ( A ,  - A,,) = F,, s i n  3 ( A ,  - A , , ) ,  which is the tangential perturbation force on the 24-hour 
equatorial satellite at longitude A,. Thus, the orbit-averaged perturbing force on a 24-hour, 
inclined-circular orbit satellite whose ascending node is at A, is just  F(i),, t imes the perturbing 
force on the equatorial 24-hour satellite at A,, due to J,,, where 

Orbit-Averaged Effect  of J4, 

The tangential force on the 24-hour inclined-orbit satellite at B f romi ts  ascending node, due 
to J 4 , ,  is (see Appendix A) 

= k, ,  {s in(h-A4*) s i n a [ 7 s i n 2 4 - 3 ]  s i n 4  + cos cosa [28s in44-27s in2Q+3]} , (49 )  

where 
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Introducing the orbit geometry relations, Equations 29a through 29d, causes Equation 49 to take 
the form 

i (7 sin2 e sin2 i - 3)  sin e sin i cos A A  

(I - sin2 B sin2 i)1/2 FT,41 ( e )  = k4f 

sin i cos 8 (28 sin4 e sin4 i - 27 sin2 8 sin2 i + 3) sin Ah 
~ 

(1 - sin2 e sin2)i 1’2 1 
cos i (7 sinZ 0 sin2 i - 3 )  sin 8 sin i sin AX 

(I - sin2 B sin2 i)1/2 + cos (A, - A41) [--- 

C O S A ~ ~ )  (50) 
(28 sin4 B sin4 i - 27 sin2 8 sinZ i + 3) 

(1 - sin2 e sin2 i)1’2 + sin i cos B 

Next the longitude excursion relations, Equations 23 and 24, in Equation 50 give 

cos i (7 sin2 @sin2 i - 3) sin e sin i (1 - sin2 e ( i  - c o s  i)} 

(1 - sin2 e sin2 i) ‘T,41 ( e )  = k,l sin (’0-’41) [- 
sin i cos 8 (28 sin4 8 sin4 i - 27 sinZ 0 sin2 i + 3) sin ~ ~ ( C O S  i - 1 )  

- - 1 - 
2 (1 - sin2 e sin2 i) 

i (7 sin2 e sin2 i - 3)  sin e sin i sin 2e(cos  i - 1 )  __ 
2 (I - sin2 e sin2 i) + cos ( A o  -A41) 

- (1 - sinZ e( 1 - cos 
sin i cos e (28  sin4 B sin4 i - 27 sinZ 0 sin2 i + 3)  

+ 
(1 - sin2 e sin2 i) 

The first term of the factor of sin (A, - A41) in Equation 51 is an odd function about e = n. Thus, 
this t e rm orbit averages to zero. The second t e rm of the factor of sin ( A o  - A 4 1 )  in Equation 51 
also is an odd function about e = i-r as it is controlled by sin 28 COS e = 2 sin e cos2 8, which is odd 
about 8 = n. The first t e r m  of the factor of COS (A, - A 4  l) in Equation 51 is an odd function about 
B = n/2 and 3n/2, as it is controlled by sin 8 sin 28 = 2 sin2 B COS e ,  which is odd about 0 = n / 2  and 
3n/2.  Therefore, this t e rm orbit averages to zero. The second term of the factor of C O S  (A, - A 4 l )  

in Equation 5 1  is also an odd function about e = n/2 and 3n/2. Thus, the orbit average of the entire 
forcing function Fr,41 ( e )  is zero; 
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Thus, there can be no long-term contribution to the longitude drift of a 24-hour, inclined, circular- 
orbit satellite due to this gravity harmonic. 

Orbit-Averaged Ef fec t  of J42 

The tangential force on the 24-hour inclined-orbit satellite at 8 from its ascending node, due 
to J 4 2 ,  is (see Appendix A) 

= k,, k i n  2(A - s i n  a ( 7  s i n Z  6- 1) cos 4 

+ c 0 s 2 ( h - A , ~ )  c o s a ( 7 s i n 2 ~ - 4 ) 2 c o s ~ s i n ~  

where 

Introducing the orbit geometry relations, Equations 29a through 29d, causes Equation 52 to become 

F,,,, (8) = k,, t i n  2 (A, - [cos i (7 s i n 2  B s i n 2  i - 1) cos 2AA - s i n 2  i s i n 2  28 (7 s i n 2  B s in2  i - 4) s i n  2 4  

+ cos 2(A, - 

t s in2  i s i n  28 (7 s in2  0 s in2  i - 4)  cos 2axl j  . 

[cos i (7 s i n 2  8 sin’ i - 1) s i n  2 A A  

(53) 

Using the longitude excursion relations, Equations 25 and 26, makes Equation 52 become 

s i n 2  28( 1 - COS i ) 2  

2 (I - s in2  8 s in2  i) 
F,,,, (8) = k,, i (7 s i n 2  8 s i n Z  i - 1) 

{I - s in2  0 ( 1 -  cos i)} {s in   COS i - 1)) 

(I - s in2  8 s in2  i) r I - s i n 2  i s in  28(7 s i n 2  8 s i n 2  i - 4) 

cos i (7 sin’ 8 sin’ i - I) 

(I - s in2  e s in2  i) 
{I - sin’ @(I  -cos i)}{sin 28(cos i - 1)) 

(54) 
s i n ~ 2 8 ( 1 - ~ o s i ) ~  

2 (I  - s in2  B s in2  i) 

i + cos 2 ( A ,  - 

+ s in2  i s i n  28 (7 s in2  8 s in2  i - 4) 
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The factor of COS 2(A0 - A 4 2 )  in Equation 54 is an odd function about 8 = T .  Thus, it orbit averages 
to zero and has no relevance on the long term drift of the satellite. 

Considering only the relevant s i n  2(A, - A 4 2 )  term, Equation 54 becomes 

A, ( 8 )  
A 

F,,,? (8) = k42 i (7 s i n Z  8 s i n 2  i - 11 
v 

- 
cos i (7sin28sin2 i-1) sin228(l-cos i )2 -2s inz  isin228(cosi-1)(7sin2Bsin2 i -4){ l - s in2B( l -cos  

2 (I - s in2  8 s in2  i) 

= k,, s i n  2(A0 - A 4 2 )  A, ( e )  

= k,, s i n  2(A0 - A 4 2 )  A, ( 8 )  

- 6 s i n 2 i 3 i n 2 2 8 ( 1 - c o s  i )  [ 1 - s i n 2 8 ( 1 - c o s i ) ]  (55b) 1 

(55c) i cos i s i n 2  28( 1 - cos i ) 2  (7 s i n 2  8 s i n Z  i - 1) - 6 s i n 2  i s i n 2  28( 1 - cos i) [l - s i n 2  8( 1 - cos i)] 
+ 

2 (1 - s in2  e s in2  i) 

k,, s in2 (Ao-A42)  s i n 2 2 B ( 1 - c o s  i )2  6 s i n 2  i [cos i + (1 - s i n Z  B s i n 2  
i (7 sin2 e s in2  i - 1)- 

(1 -cos i )  (1 +COS i )  
i 

2 (I - s in2  e s in2  i) 
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i [- (1 - s i n 2  0 s i n 2  i) + 6 s i n 2  6' s i n 2  i] 
k,, s in2 (Ao  - A 4 2 )  s in226 ' (1  -cos i)2 

+ 
2 (I - s in2  6' s in2  i) 

i + (1 - s i n 2  6' s i n 2  

= k,, s i n  2(A, - [A2 ( 6 ' )  + B, ( e ) ]  

k,, s i n  2 (Ao - s i n Z  26'(1 -cos i )2  
{[1 - s i n 2  0 s i n 2  i] [(- 6 -cos i )  - 6 cos i]} (55f) _ _  t 

2 (I - s in2  6' s in2  i) 

( 5 5 d  r ~s in2 2 q  1 - 

2 
= k,, s i n  2(A, - ( 8 )  + B, ( 8 )  - - -  

v -- L. ~. 

Thus, the orbit-averaged tangential force due to J 4 2  is (from Equation 55g) 

77 + 7 s i n 2  i (1 -cos  i )2  s i n 2  2 8 s i n 2 B d 0  -3 (1-cos i ) ,  ( 6 + 7 c o s  

7 s i n 2  i ( 1  -cos i l2  
= k,, s in2 (Ao  -A,.)(... i (7 - 1) - 2 

( 1  -cos i)2 
4 

7 s i n 2  i +- ( ~ - c o s  i>2 - 

- k,, s in2 (Ao  - A 4 2 )  
- 

4 (14 cos i (1 - cos2 i) - 4 cos i - 2 (1 - 2 cos i + cos2 i) 

+ 7 (1 - cos2 i) (1 - 2 cos i + cos2 i) - (1 - 2 cos i + cos2 i) ( 6  t 7 cos i)} (56b) 
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k,, s in2(Ao - A  ) 
4 14cos i +  14cos3 i + 4 c o s  i + 2 - 4 c o s  i + 2 c o s 2  i -  7 = 4_2 {- 

f 14 cos i - 7 cos' i +7cos2 i - 14 cos3 i + 7 cos4 i + 6 - 12 cos i 

+ 6 cosz i + 7 cos i - 14 cosz i + 7 cos3 i}(56~) 

- k,, s i n  2(A, - A,,) 
4 (1 - 5 cos i- 6 cosz i + 7 cos3 i + cos4 i} - -  

- + 2cos i +cos2 i - 7cos i (1 +cos  i -cos2 i - cos3 i)} 
k,,  s i n  2 (A, - A4,) 

4 
- -  

- 
+cos i ) '  7 cos i (1 - cos' i) (1 f cos i )  

= - k,,  s in2(A0 -A,,) 4 

7 s inZ i cos i (  1 + cos i )  
= - k,, s i n  2(A, - A,,) 4 

But - k,, s i n  2(A, - A,,) = F,, s i n  2 (A, - A,,) is the tangential perturbation -3rce on L e  2 -hour 
equatorial satellite at longitude A,. Thus, the orbit-averaged perturbing force on a 24-hour, 
inclined circular orbit satellite whose ascending node is at A, is just F( i ) , ,  times the perturbing 
force on the equatorial 24-hour satellite at A,, due to J4*, where 

Orbit-Averaged Ef fec t  o f  J43 

The tangential force on the 24-hour inclined-orbit satellite at B from its ascending node, due 
to J , ~ ,  is (see Appendix A) 

6.43 cos a F,,,, (0) = s i n a  + F 

cos a (4 sin2 4 - 1) cos2 4 
= k,, {sin 3 (A - A,3) s i n  a cos2 q5 s i n  q5 + cos 3 (A - 3 } ' (58) 
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where 

+ cos 3(h0 - A,,) 

PE 
k,, = 315 7 2  (Ro a*), J43 . ( s) 

Introducing the orbit geometry relations, Equations 29a through 29d, causes Equation 58 to become 

sin20(cos i -1 )  - 
(I - s in2  B sin2 i) 

cos i s i n  i s i n  8 (1 - s i n Z  e( l  -cos i )}2  

F,,,, (8)  = k,, i (1 - s i n 2  0 s i n 2  i)l’l s i n  B s i n  i cos 3 M  

- 
3 

Kin i cos 0 
(4 sin‘ 0 sin’  i - 1) (1 - s i n 2  0 s i n Z  i)1’2 s i n  

+ c o s 3 ( h 0 - h 4 , )  cos i ( 1 - s i n 2 B s i n Z i ) ” 2  s i n B s i n i s i n 3 M  [ 

Using the longitude excursion relations, Equations 27 and 27a, causes Equation 58 to become 

sin2 28( I - cos i ) 2  

2 (1 - sin2 B i i n 2  i) 
FT,,, (0 ) ’  = k,, (1 - sin2 0(1- cos i ) }  

s i n 2   COS i - 
{fi - sin2 e-} - cos i s i n  i s i n  0 {I - s in2  1 - cos i )} 

- 
s i n 2  2 0 ~ 1 -  cos i ) 2  

2 (1 - sin2 0 sin2 i) 
s i n  i cos 0 

6 ( 4 s i n Z o s i n Z i - 1 )  (1 - 

L 

s i n 2  28( 1 - cos i ) 2  
2 (I - sin2 e ---> sin2 i) s i n  20(cos i - 1) 

sin2 28(1- cos i)’ 
(4 s in2  0 sin2 i - 1) {I - 2 (I - s in2  B s in2  i) 

cos i s i n  i s i n 0  
2 

(1 - sin2 8(1 -cos i)} 
s i n  i cos 0 

3 

. 
s i n  i cos 0 

6 
sin2 2e(cos i - 1)2 

(I - sin2 e s in2 i) 
- (4 s in2  e s in2 i - 1) (1 - s in2  - cos i)} 



The first two te rms  of the factor of s i n  3 ( A 0  - in Equation 60 are odd functions about 0 = 77. 

The third and fourth t e rms  of the factor of s i n  3 ( A 0  - in Equation 60 are also odd functions 
about 8 = 7 ,  since they are controlled by s i n  28 COS e = 2 cos2  B s i n  B which is ttoddt' about e = 77. 

All the t e rms  of the factor of cos 3(ho - in Equation 60 are odd functions about e = 7~/2 and 
3 d 2 .  The first and second te rms  are controlled by s i n  8 s i n  28 = 2 s i n 2  8 COS 8 ,  and these are 
about 0 = 7/2 and 3 d 2 .  Thus, the orbit average of F,,,, ( 8 )  is zero and there can be no long-term 
contribution to the longitude drift of a 24-hour, inclined, circular-orbit satellite due to this gravity 
harmonic . 

Orbit-Averaged Effect  of Jq4 

The tangential force on the 24-hour inclined-orbit satellite at 8 from its ascending node, due 
to J,,, is (see Appendix A) 

F,,,, ( 8 )  = FA,,, s i n  a + F4,,, cos a 

= k,, t i n  4 (A - A,,) s i n  a cos3 + + cos 4 (A - A4,) cos a cos3 + (61) 

where 

WE 
k44 = 420 7 J,, ( as) 

Introducing the orbit geometry relations, Equations 29a through 29d causes Equation 61 to become 

s i n Z  i 
F,,,, (8) = k,, i (1 - s in '  0 s i n 2  i) cos 4 M  - 7 s i n  28 (1 - s i n 2  8 s i n 2  i) s i n  

2 
s i n 2  i 

s i n  28 (1 - s i n 2  8 s i n 2  i) COS i (1 - s in2 8 s i n 2  i) s i n  40A + - f COS 4 (Ao - A, ,) 

Using the longitude excursion relations, Equations 28 and 29, causes Equation 62 to become 

2 [I - s in2  e ( i  -cos i)]' [sin  COS i - 
.. ._ 

(1 - s in2  e s in2  i ) 2  
FT,44 ( 8 )  = k,, i (1 - s i n 2  8 s i n 2  i) 

s in28(cos  i -  1) s i n 2  28(1- cos i ) 2  
- s in2  i s i n  2e(1-  s in2  e s in2  i) {I - s in2  e ( i  - cos i)} . 

{(I - s in2  e s in2  ;r> (1 - 2 (1 - sin2 e s in2 

s i n 2  2e(1 -cos i ) '  

s in2 e s i n 2  i 
~ 

s in28(cos  i - 1 )  
+ c o s 4 ( h o - A q 4 )  i) 2 { 1 - s i n 2 B ( 1 - c o s i ) }  

2 [I - s i n 2  e(i - cos i)12 [sin 28 (cos i - I)].? 

(1 - s i n 2  e s i n 2  i ) 2  
(1 - s in2  8 s in2  i) (1 - s in2  i s i n  28 

t 2 
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The factor of cos 4(A0 - A,,) in Equation 63 i s  an odd function about 0 = n. Thus, it orbit averages 
to  zero and has no relevance on the long t e rm drift of the satellite. 

Considering only the relevant s i n  4(ho - A,,) term, Equation 63 becomes 

A ’  ( 8 )  
A - 

F,,,, ( 8 )  = k,, s i n  4 ( A 0  - A,,) i (1 - s i n 2  0 s i n Z  i) - s i n 2  i s i n  26 [I - s i n Z  @(I- cos i)] s i n   COS i - 2) 
Y 

k,, s i n  4 (Ao - A,,) 
+ (1 - sinZ e sinZ i) {- 4 c o s  i [I - s i n Z  e( l  - C O S  i)]’ [sin 28(cos i - 1 ) ] z  

- s i n 2  i s i n 4  28(1-  cos i ) 3  [1 - s i n Z  B(1 -  cos i)]} (63a) 

= k,, s in4 (Ao  -A,,) {A’ (8) 

+ } (63b) 
[I - sin2 e ( i  - cos i ) ]  [sin 2qcOs i - I)]’[- 4 c o s  i (1 - sin2 q i  - c o s  i ) }  + sin2 i s in2 2qcOs i - I)] 

2 (I - sin2 e s in2  i) 

= k,, s in4 (Ao  - A 4 , )  A ’  (8) 1 
J (1 - sin2 e s in2 i) 

B’ ( 8 )  
A r 

2 cos i - s in2 I - cos i )I [s in  2qcOs i - 1 )I ’ 
= k,, s in4 (Ao  -A,,)  1 + c o s  i 

~~ 

Y 
J 

[I - s i n Z  i (I - sin’  i s i n Z  8) - sin4 i sin4 e 
2 [I - sin2 e ( i  - cos i)]  [s in  qcos i - 1)]2 

( ~ + c o s i )  ( 1 - s i n 2 e s i n z i )  
- .  

= k,, s i n  4 (Ao - A,,) [A’ (8) + B’ (e)]  
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Thus, from Equation 63e 

FT.44 ( 8 )  = k,, sin 4 ( A 0  - A,.,) {A’) +B’) +c’(e) +o’(e>} 

-sin2 i ( c o s i - 1 )  - s i n ’ i ( l - c o s i ) *  cos i sin’ i = k,, sin 4 ( A 0  - A,,) 

~ C O S ~ ( I - C O S  i ) ( c o s i - l ) z  (i) - 2cos i(cos i -  1)‘ 
+ _. 

(1  +cos i )  (1  +cos i )  

~~ + 
(1  +cos i )  (1  +cos i )  

( c 0 s i - 1 ) ~  +(+) [ 2 ( l - c o s i ) ( c o r i - ~ ~ ’  ~ 2sinz i (cos i -1)Z 

(cos i + 1) (1  +cos i )  ( l + c o s i )  1 
- -J + 

(1  +cos i )  

sinZ i (1 -cos i )  
= k,, sin 4 ( A 0  - A,,) 

cos i(cos i - 1 -cos i s in2 i(cos i - 1)’ 

+ 1 + c o s i  [ T - I ]  + 

~ 

(64) 

(1 -cos i )  

2 1  

-3 

(cos i - 1)’ [1 - ( 1  - 7 s  i! sin* i 5 sin2 i 
+ - - -  cos i + 1 2 16 (1-cos i )  

s inZ i = 
k,, sin 4 ( A ,  - A,,) (1 + cos2 i) t 7 (1  - cos i )  (1  + cos i )  

(1 + C O S  i )  s in’  i (cos i - 1)’ cos i 
2 t l + c o s  i- [- 7 ( l + c o s i )  + 7 ( I + c o s i )  - 

s i n z  i 5 sin2 i ( 1 -  cos i )  
16 

- -  
2 +  
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R 

= k,, s in4 (Ao  -A,,) (1 - cos2 i ) 2  

4 

t __ 
(cos i - 1)2 (1 - c o s  i >  

(3 + 5 cos i )  ( 6 4 ~ )  I> (cos i - 1)2 
2- [- (1 + cos i )  + (1 - cos2 i) - 16 

cos i cos3 i 1 cosz i COS' i  COS^ i = k,, s in4 (Ao  -A,,) + q - 2 + - - -  4 + cos2 i 

(I - 3 cos i + 3 cos2 i -cos3 i 
cos i COS, i  cos^ i (3 + 5 cos i )  _ _ _ _ ~  

2 + c o s 3 i -  __ 2 - 16 

4 c o s  i 6 ~ 0 s '  i + 4 c o s 3 i  cos4 i 
= k,, s in4 (A0  -A,,)  {& + 7 + ~ 16 16 +-} 16 

[' 1 + c;; i "3 
= k,, s in4 (Ao  -A,,)  

But k,, s in4 (Ao  -A,, )  = F,, s in4 (Ao  - A 4 2 )  , is the tangential perturbation force on the 24-hour 
equatorial satellite at longitude A,. Thus, the orbit-averaged perturbing force on a 24-hour, 
inclined circular orbit satellite whose ascending node is at A, is just F( i ),, t imes the perturbing 
force on the equatorial 24-hour satellite at A,, due to J,, , where 

Summary 

The orbit-averaged, long-term drift of the inclined circular orbit, 24-hour satellite in an 
earth gravity field through fourth order  is derivable from 

= f Fnm s inmjh  - A n m )  F( i ) , , ,  r a d / ( s i d .  day)2 , 
n = 2  m = l  
For n-m. e v e n  

where the Fnm are given in Equation 2, and 



I 

and 

For n-m, e v e n  

FIRST INTEGRAL OF THE LONG-TERM LONGITUDE DRIFT 

The "trajectory solution" of A and a as a function of time for the 24-hour satellite drift in the 
fourth-order gravity field, stemming from Equations 66 and 68, cannot be expressed in a closed 
form with elementary functions. However a first "energy integral" of Equation 66 can be found 
which will prove valuable in the applications. 

The common separation technique used in Reference 5 yields: 

Substitution of Equation 69 into Equation 66 enables one to separate variables giving 

Integration of Equation 70 under the assumption that the only variables are A, the geographic longi- 
tude of the ascending node of the satellite, and i, its drift rate, gives 

( i ) 2  = c, + - (2r2))y x% COS m ( A  - An,,,) F ( i ) n m ,  [ rads id .  day] . 
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In the applications, C, in Equation 71 can be considered to be the mean long-term squared drift 
rate of the 24-hour satellite in the drift period under consideration. 
the initial elements of the orbit of the satellite as well as all the earth gravity constants and the 
initial positions of the sun and moon (see the section, COMPARISON OF THE THEORY WITH 

C, is evidently a function of 

NUMERICALLY INTEGRATED TRAJECTORIES). 

SIMPLE CLOSED-FORM SOLUTION TO THE LONGITUDE DRIFT OF A 24-HOUR 
SATELLITE FOR PERIODS CLOSE TO SYNCHRONOUS 

If the period of a 24-hour satellite is sufficiently close to synchronous, Equation 66 describes 
the motion of the mean geographic longitude of this satellite of small  orbit eccentricity, due to 
earth gravity through fourth order (see DISCUSSION). 

With the definitions of the constants Anm given in Equations 76, 85, 94, 102, and 105, Equation 
66 becomes 

h = 7 Anm s i n m ( A  - A n m )  
n = 2  m = l  
n-m, e v e n  

If the problem is restricted to small excursions in mean longitude from an initial 24-hour satel- 
lite configuration, Equation 71a may be integrated twice to give the long-term drift explicitly in 
a simple closed form. 

Let this small excursion M be given from an initial configuration at mean longitude (or longi- 
tude of the ascending equator crossing) A o ,  so that 

Providing & is sufficiently small, when Equation 71b is substituted into Equation 71a and it is 
expanded, the small excursion, long-term acceleration due to fourth-order earth gravity becomes 

=rFb  n m  s i n m ( A o  - A n m )  + x r A n m d A  c o s m ( A o  - A n m )  

With Equation 71c rearranged, the differential equation of long-term longitude drift for small 
excursions is 

I 



f 
A trial solution to the homogeneous equation of Equation 71d is 

M, C s i n w t  + D c o s w t  . 

Equation 71e satisfies the homogeneous equation of Equation 71d only if 

The particular solution to Equation 71d is 

The complete solution to Equation 71d is thus 

M = M, t MP 

An initial value problem corresponding to Equation 71d may be specified by giving the initial drift 
rate do (small) at time t = 0, when M = 0 .  

Thus, le t  

M = 0, when t = 0, 

and 

@i = A i o ,  when t = 0. 

This specification in the complete solution, Equation 71h, determines the coefficients C and D: 
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and 

The small excursion from an initial near 24-hour configuration at A, and t = 0, is thus given from 
Equation 71h as 

(71i) 

It may now be asked under what conditions will the mean longitude excursion of a 24-hour satellite 
be negligibly small for all time under the influence of earth gravity through fourth order. Such 
potentially stable mean longitude positions for the 24-hour satellite are to be found at those 
longitudes A, ,  where (from Equation 71i) 

Anm s inm(ho-Xnm)  = 0 . 
n = 2  m = l  
n-m, e v e n  

For the equatorial 24-hour satellite, the general stability criterion for 24-hour satellites, Equa- 
tion 71j, was first stated in Reference 5. There it was shown that for the "real earth" there are 
four such points around the equator, where long t e rm stability (on the order of years) can be 
achieved for this satellite in the presence of earth gravity through fourth order. Of these four 
longitudes, two are dynamically stable and two are only statically so. The first two points fall at 
the two relative minima of the longitude drift potential for the 24-hour equatorial satellite. The 
two longitudes only statically stable fall at the two relative maxima of the longitude drift potential 
(see Figure 5). In Reference 6 it w a s  shown that all of these stability points, in fact the entire 
drift  regime for the very high %-hour equatorial satellite of the "real earth," a r e  strongly dom- 
inated by the second order tesseral harmonic J 2 2  that is associated with the ellipticity of the 
equator of the earth. A comparison of the relevant inclination factors F( i),,,,, , Equations 67, will 
show that equatorial ellipticity dominates the drift regime due to the earth of the inclined 24-hour 
satellite to an even greater degree for all inclinations l e s s  than 90". However, for the inclined 
satellite, the total strength (for example the absolute difference between its relative maxima and 
minima) of this potential declines roughly in proportion to ( 1 + cos i ) ./4. Thus, for highly inclined 
24-hour satellites, sun and moon perturbations may have appreciable influence on long-term 24- 
hour satellite drift. 

Returning to Equation 71i, it may be seen that the criterion for the type of long t e rm stability 
for satellite placements near X, with zero initial drifts, where 
established by the character of the "frequency" term w at the placement longitude A,.  If 
- c EAnm m COS m(A, - Anm) at theT'stable" longitudes A, (from Equation 7lj)is  greater than zero, 

EAnm s i n  m (A, - A n m )  0, is 
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then w (from Equation 71f) is a real number and the character of the long t e rm drift in the neigh- 
borhood of A, is harmonic o r  self-limiting. These longitudes are the dynamically stable ones, 
and they have been shown (References 1 and 5)  to be at or near the longitudes of the minor equa- 
torial  axes for the "real earth" ( A z 2  f 90") . On the other hand, if - CXA,,,, m COS m(A, -A,,,,) is less 
than zero at or near a "stable" longitude A,, w is an imaginary number and the character of the 
long te rm drift in the neighborhood of A, will be exponentially divergent. These longitudes are the 
merely statically stable ones and they have been shown (References 1 and 5)  to be at o r  near the 
longitudes of the major equatorial axis for the "real earth" ( A z 2 )  . 

As to the excursion range of validity of Equation 71i, numerical evaluation of the exact elliptic 
integral of JZ2 -drift (Reference 6, Appendix D), in comparison with Equation 71i indicates it will 
predict excursions to the order of rrLM = 20" , with an order of accuracy of about 1%. Since J Z 2  

dominates the drift of the 24-hour satellite at almost all longitudes, this implies that Equation 71i 
is generally useful for predicting long t e rm excursions of the 24-hour satellite from an initial 
mean longitude A, up to about 10 degrees, providing Mo is sufficiently small (see DISCUSSION on 
this latter point), and providing sun and moon perturbations are negligible. 

To illustrate the accuracy of Equation 71i for predicting long te rm high order  drift in the 
neighborhood of the major equatorial axis of the earth where the influence of J~~ is small, a com- 
parison of Equation 71i with a numerically integrated third order earth, sun, and moon gravity 
drift is presented in Table 4, Case 2. The earth gravity field used is a recent weighted average 
estimate due to W. M. Kaula (Appendix A). 

The coefficients and initial orbit parameters in Table 4, Case 2, give the following: 

A,, = 20.7949 x r a d s i d .  day2 , 

A,, = -.254774 x r a d s i d .  day2 , 

A,, = 2.14239 x 10-6 , . rad / s id .  day2 , 

7, 7, Ann mcos m(A, - A,,,,) = 35.5169 x r a d s i d .  day2 

7 Anm s i n m ( A o  - A n m )  = -6.4100 x r a d s i d .  day2 . 

Equation 71 1 substituted in Equation 71f gives 

w = i ( 5 . 9 5 9 6 1 ~  lo-,  r a d s i d .  day) 
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Thus Equation 71i becomes [noting cos i ut = coshut, sin iut = i sinh ut] 

.~ - .180477 [5.95961x lo-, t] - 1} 
.02289"/solar day sinh [S. 95961 x lo-, t] 

5.95961 x lo-, radsid. day 
M = t  

= (.0668525) sinh [5.97593~ lo-, t] - .180477 [5.97593x lo-, t] - 1) radians , (71n) 

with t (in the final form of Equation 7ln)in units of solar days. Equation 71h is evaluated in the 
last column of Table 4. The discrepancy between the theoretical and the numerically integrated 
drift illustrates the relatively large influence solar-lunar gravity can have on the drift of a 24- 
hour satellite near the longitude of the axes of the elliptical equator of the earth (see Figure 5b). 

COMPARISON OF THE THEORY WITH NUMERICALLY INTEGRATED TRAJECTORIES 

Tables 1, 2, 3 and 4 and Figures 2, 3, 4 and 5 give data from numerically integrated 24-hour 
particle trajectories about the earth in various perturbing gravity fields. 

The trajectories were computedutilizing an earth gravity field as represented in Appendix A. 
The Gaussian gravity constant of the earth used for all the trajectories w a s  

pE = 3.9860319 x lo5 km3/sec2 . 

The mean equatorial radius of the earth used for all the trajectories was 

R, 6378.165 km 

Tables 1, 2 and 3 give trajectories in earth gravity perturbing fields due to the tesseral  harmonics 
J,,, J , ~  and J,, respectively, acting alone on a 24-hour satellite of zero and 60 degree orbit 
inclination. 

The J,, longitude harmonic constants were chosen larger than they a r e  in reality for these 
cases to emphasize the effects of the perturbations in a reasonable period of time. 

The additional earth gravity constants used in these trajectories were (Tables 1, 2, and 3; il- 
lustrated in Figures 2, 3 and 4) 

(72) I J,, = -6.0 x , A,, = -21.0" , 

J 3 1  = -100.0 x , A,, = -156.0" , 

J J,, = -10.0 x , A,, = -36.0" . 
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Table 1 

24-hour Satellite Drift (J22 perturbation only). 
(J 22 = -6.0 x A,, = -21.0") 

Time 
(days from 
injection) 

0.00000 
(1.00000) 
2.00000 

13.9687 
(14.9635) 
15.9583 
29.9271 

(30.9271) 
31.9271 
43.8958 

45.8958 
57.8750 

(58.8698 
59.8646 

(44.8958) 

Time 
(days from 
injection) 

0.00000 

2.00000 
13.96875 

15.95833 
29.92708 

31.92708 
43.89583 

45.88542 
57.86458 

59.85417 

INJECTION CONDITIONS: CASE 1 
Inclination: 0.0" 
Eccentricity: .149 x 
Initial Drift Rate: -.0056S"/day 

Numerically 
Calculated 

Longitude of 
the Ascending 

Equator Crossing 
(degrees) 

~ 

-66.00001 
(-66.00567) 
-66.01132 
-66.54857 

(-66.63223) 
-66.71588 
-68.51610 

(-68.68971) 
-68.86331 
-71.40683 

(-7 1.65802) 
-71.9092 1 
-75.37480 

(-75.69993) 
-76.02505 

Numerically 
Calculated 
Longitude 
Drift  Rate 

("/day) 

-.00566 

-.08409 

-.17361 

-.2 51 19 

-.32682 

; -66.00567' 

rheoretical  
Drift Rate 

("/day) 

-.00566 

-.32701 

Numerically 
Calculated 

Longitude of 
the Ascending 

Equator Crossing 
(degrees) 

[NJECTION ~ONDITIONS: CASE 2 
hc lination : 60.0" 
Eccentricity: .149 x lo- '  
n i t ia l  Drift Rate: .00322"/day at -66.00323" 

Time 
:days f ron  
injection) 

0.00000 

1.99454 
13.96261 

15.95742 
29.92199 

31.9 1706 
43.88826 

45.88360 
57.85623 

59.85180 

Table 2 

24-hour Satellite Drift (J, , perturbation only). 
(J,, = -100.0 x 10-6, A,, = -156") 

-66.00001 
(-66.00359) 
-66.00716 
-66.34588 

(-66.39862) 
-66.45136 
-67.58556 

(-67.69498) 
-67 .a0440 
-69.40947 

(-69.56747) 
-69.72547 
-71.92084 

(-72.12761) 
-72.33437 

Numerically 
Calculated 

Longitude of 
the Ascending 

Zquator Crossing 
(degrees) 

-66.00001 
(-66.00323) 
-66.00644 
-66.30873 

(-66.35585) 
-66.40297 
-67.41438 

(-67.51189) 
-67.60939 
-69.03966 

(-69.18039) 
-69.32112 
-71.27551 

(-71.45938) 
-71.64325 

INJECTION CONDITIONS: CASE 1. 
Inclination: 0.0" 
Eccentricity: .149 x lo-'  
Initial Drift Rate: -.00358"/day, a t  -66.00355 

Numericallj 
Calculated 
Longitude 
Drift Rate 

("/day) 

-.00358 

-.05302 

-.lo942 

-.15883 

-.20785 

rheoretical 
Drift Rate 

("/day) 

-.00358 

-.20814 

Numericall: 
Calculated 
Longitude 
Drift Rate 

("/day) 

-.00322 

-.04724 

-.09775 

-.14106 

- .1842 8 

NJECTION CONDITIONS: CASE 2 
hclination : 60.0" 
Eccentricity: -149 x 
hi t ia l  Drift Rate: .00146"/day at -65.99855" 

Time 
[days from 
injection) 

0.00000 

1.99451 
13.96135 

15.95578 
29.91624 

31.91051 
43.87586 

45.87005 
57.83472 

59.82879 

Numerically 
Calculated 

Longitude of 
the Ascending 

:quator Crossing 
(degrees) 

-66.00001 
(-65.99855) 
-65.99709 
-65.85450 

(-65.83231) 
-65.81011 
-65.33211 

(-65.28606) 
-65.24000 
-64.56675 

(-64.50049) 
-64.43423 
-63.51238 

(-63.42540) 
-63.33842 

Numerically 
Calculated 
Longitude 
Drift Rate 

("/day) 

.00146 

.02226 

.04619 

.06645 

.OB724 

rheoretics 
Drift Rat6 

("/day) 

-.00322 

-.la520 

Theoretical 
Drift Rate 

("/day) 

.00146 

.OS769 



Table 3 

24-hour Satellite Drift (J33 perturbation only). 
(J,, = -10.0 x )C3, = -36.0") 

Time 
days from 
injection) 

0.00000 

2.00000 
13.99687 

15.99687 
29.93750 

31.93750 
43.91667 

45.90625 
57.89583 

59.89583 

INJECTION CONDITIONS: CASE 1 
Inclination : 0.0" 
Eccentricity: .149 x 
Initial Drift Rate: -.01066"/day, at  -66.01067' 

Numerically 
Calculated 

Longitude of 
the Ascending 

Equator Crossing 
(degrees) 

-66.00001 
(-66.01067) 
-66.02 133 
-67.03684 

(-67.19582) 
-67.35480 
-70.75079 

(-71.077 00) 
-71.40321 
-76.14489 

(-76.60462) 
-77.06434 
-83.30173 

(-83.87285) 
-84.44396 

Numerically 
Calculated 
Longitude 
Drift Rate 

("/day) 

-.01066 

-. 15898 

-.32621 

-.46213 

-. 57 112 

l b o r e t i c a  
Drift Rate 

("/day) 

-.01066 

-,57160 

[NJECTION CONDITIONS: CASE 2 
Inclination : 6 0.0" 
Eccentricity: .149 x 
Initial Drift Rate: -.00454"/day, a t  -66.00454" 

~ _ _  

Time 
[days from 
injection) 

0.00000 

1.99455 
13.96297 

15.95790 
29.92364 

31.91893 
43.89178 

45.88742 
57.86230 

59.85826 

Numeric ally 
Calculated 

Longitude of 
the Ascending 

Equator Crossing 
(degrees) 

-66.00001 
(-66.00454) 
-66.00906 
-66.43768 

(-66.50455) 
-66.57142 
-68.00616 

(- -68.14449) 
-68.28281 
-70.30889 

(-70.50875) 
-70.70861 
-73.46010 

(-73.71939) 
-73.97868 

Xumerically 
Calculated 
Longitude 
Drift Rate 

("/day) 

-.00454 

-. 067 04 

-.13865 

-.20030 

-.25981 

f ieoret ical  
Drift Rate 

("/day) 

-.00454 

-.25953 

Table 4 

24-hour Satellite Drift  in a Third Order Earth,  Sun and Moon Gravity Field. 
(Jzz = -1.51 x 10-6, A,, = -15.5", J,, = -1.51 x l o T 6 ,  A,, = O.O", J3,  = -.149 x A,, = 22.8") 

Time 
(Solar 

days f rom 
injection) 

1.0 
24.9 
50.85 
74.8 

100.75 
124.7 
148.6 

INITIAL CONDITIONS: CASE 1 
Inclination: 32.8" 
Eccentricity: .45 x lo-', (as/Ro) = 6.6107211) 
Longitude: -66.00001" 
Longitude Rate: .00554O/day 

Numerically 
Calculated 

Longitude of 
the Ascending 

Equator Crossing 
(degrees) 

-65.99449 
-66.12636 
-66.91847 
-68.24578 
-70.34043 
-72.86641 
- 7 5.94402 

Numerically 
Calculated 
Longitude 

Rate ("/day) 

.00554 
-.01827 
-.04323 
-.066799 
-.093496 
-.11874 
-.13992 

Theoretical 
Longitude 

Rate 
("/day) 4. 

.00544 

-.OS415 

-.13970 

INITIAL CONDITIONS: CASE 2 
Inclination: 32.8" 
Eccentricity: .745 x loT8 ,  (aS/RO) = 6.6107208 
Longitude: -22.47719" 
Longitude Rate: .0228S0/day 

Time 
(Solar 

days f rom 
injection) 

0.00000 
22.93488 
48.86178 
74.78919 
98.72270 

122.65685 
148.58637 

Numerically 
Calculated 

Longitude of 
the Ascending 

Equator Crossing 
(degrees) 

-22.47719 
-22.00060 
-21.67153 
-2 1.55145 
-21.62043 
-21.89455 
-22.47249 

Theoretical 
Longitude 
(degrees) 

-22.47719 
-22.048 
-21.79 
-21.76 
-21.94 
-22.32 
-22.97 
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LONGITUDE EAST OF GREENWICH 

.Oo -75.0° -74.0' -73.0" -72.0' -71 .Oo -70.0" -69.0" -68.0' -67.0' -66.0" 
I T  I I I I I I I 0.1 

THE LONGITUDE AND DRIFT RATE REFERS TO THE LONGITUDE 
OF THE ASCENDING EQUATOR CROSSING OF THE TRAJECTORY 

'JOTES: 
EARTH LONGITUDE GRAV- 
ITY CONSTANTS USED: 
J22 = -6.0 x 
A22 = -21.00 
(SEE APPENDIX A )  

- 76 

7 

N UMER ICAL LY CALCULATED 

TION METHOD. INITIAL 
ECCENTRICITY OF THE 
24 HOUR ORBITS = .149 x 

BY A N  ENCKE INTEGRA- 

-.' THEORETICAL DRIFT, 
FOR A CIRCULAR 24 HOUR 
ORBIT. 

Figure 2-24-hour satellite drift due to J,, only. 
~. , +0.1 

THEORETICAL DRIFT VS. DRIFT RATE 

i = 60.0", ACTUAL 
DRIFT VS. 

LONGITUDE WEST OF GREENWICH DRIFT RATE 

t 

1 

EARTH LONGITUDE 

DAYS FROM INJECTION 
50$ACTUAL DRIFT 

NUMERICALLY CALCULATED 
BY A N  ENCKE INTEGRATION 
METHOD. INITIAL ECCENTRI - 
CITY OF THE 24-HOUR ORBITS 

i = 0", ACTUAL DRIFT VS.DRlFT RATE 

= .149 x io- '  

,,,THEORETICAL DRIFT, 
FOR A CIRCULAR 24-HOUR ORBIT. 
THE LONGITUDE AND DRIFT RATE 
REFERS TO THE LONGITUDE OF 
THE ASCENDING EQUATOR 
CROSSINGS OF THE TRAJECTORY. 

THEORETICAL DRIFT VS. DRIFT RATE 

0" 
0 -  

-8" 
2 
t m 
V 

Y 
I- 

- 
s 
I- 

-0.1 

-0.2 

Figure 3-24-hour satellite drift due to JJ1 only. 
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- THEORETICAL DRIFT FOR 

THE LONGITUDE AND DRIFT RATE 
REFERS TO THE LONGITUDE OF 
THE ASCENDING EQUATOR 
CROSSING OF THE TRAJECTORY 

- - / 0 0  A CIRCULAR 24-HOUR ORBIT. 

Figure 4-24-hour satell i te drift due to J,, only. 

- 0 . 6  

The "synchronoustt semi-major axis a s ,  assumed in the theory to be constant for all the orbits of 
these trajectories, is taken as the semi-major axis at "injection" of the 24-hour satellite, and is 

as  = 42,164.27 km 

Thus, in the theory, the constant ( R o / a S ) i s  

6378. I65 
= (52164.27) = .1512694 1 

(73) 

the constant (Ro/aS) '  is 

= .02288243 , (74) 
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LONGITUDE WEST OF GREENWICH 
75O 740 730 72O 71' 70' 69O 68O 67 ' 76O 

1 . I  I I I I I I I I I 
THE LONGITUDE AND DRIFT RATE REFERS TO THE LONGITUDE 
OF THE ASCENDING EQUATOR CROSSING OF THE TRAJECTORY. 

NOTES: 
EARTH GRAVITY CONSTANTS USED: 

J20 = 1082.30~ J30 = - 2 . 3 0 ~  
J40 = -1.80 x J z  = -1.51 x 
J31 = -1.51 x 10-4  J33 = -.149 x 
,422 = -15.5', A31 = O.Oo,A33 = 22.8' 
(SEE APPENDIX A )  

i s  = 32.8O, ACTUAL 

THEORETICAL DRIFT; 
/ FOR A CIRCULAR 24-HOUR 

ORBIT OF INCLINATION 
i = 32.8', IN A N  EARTH FIELD 

/' 
ACTUAL DRIFT, 

NUMERICALLY CALCUALTED ONLY. 
50.0 BY A N  ENCKE INTEGRATION- 

METHOD. INITIAL ORBIT 
48.6 ECCENTRICITY: .45 x 10 

(30.0 JAN. 1965) 
- -_ 

Figure 5a-24-hour satellite drift in a third order earth, sun and moon gravity field. 

ACTUAL DRIFT; CALCULATED THEORETICAL DRIFT; 
BY A N  ENCKE INTEGRATION FOR A CIRCULAR 24-HOUR 
METHOD. INITIAL ORBIT ORBIT OF INCLINATION 

/ 
/ 

ECCENTRICITY: .745 x lo-* i = 32.8", IN A N  EARTH 

/ 
FIELD ONLY. 

/ 
\ / 

/ / 

I 

is = 32.8' / \ 
ACTUAL DRIFT VS. TIME 
(WITHOUT EARTH LONGITUDE GRAVITY) 

NOTES: 
EARTH GRAVITY CONSTANTS USED: 

J20 = 1082.30~ 
J40 = - 1 . 8 0 ~  
J31 = -1.51 x 10-4 
A22 -15.5', A31 = O.Oo, 

J30 = - 2 . 3 0 ~  10-4 
J z  = -1.51 x 10-4 
J33 = -.149x 10-4 

A33 = 22.8" 
(SEE APPENDIX A )  

/ 

I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

20 40 60 80 100 120 140 160 180 0 
TIME FROM INJECTION,31.0 JAN. 1965 (solar days) 

Figure 5b--2dhour satellite drift in a third order earth, sun and m w n  gravity field. 
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F 

and the constant is 

(Ro/a1)3 = .003461411 . (75) 

The Theory for 24-Hour Satel l i te Dri f t  in a "J22-only" Perturbation Field 

When Equations 71, 2 and 67a are combined and it is noted from Equation 8 that gs - - P E / ( a s ) 2  9 

Equation 71 becomes for " J,,-only'' drift 

0;p = c, - A,, cos 2 ( ~ - A , , )  , 

where 

(Compare with Reference 6, Equation 36.) 

The corresponding longitude acceleration during " J22-only" drift is given from Equation 65 as 

The coefficient A,, in Equation 77a is always positive since all the tesseral  Jnm's in the gravity 
potential form of Appendix A are arbitrarily assigned as negative numbers. Equation 77a es- 
tablishes a one-dimensional potential regime for the long t e rm movement of the mean longitude 
of the circular orbit 24-hour satellite. This potential has a shape derivable from the right side of 
Equation 77a which is the effective "force" moving the longitude of the satellite. For a one- 
dimensional potential, the force is given as the first derivative of the potential. The one- 
dimensional (longitude) potential energy of the satellite (the negative of the potential) associated 
with the longitude perturbation expressed by Equation 77a is thus (assigning the potential constant 
as zero) 

(see Figure 6) 

The longitude potential energy of the satellite s from Equation 77b thus has an absolute and a 
relative maximum at A = A,, , and at A = A,, + 180". These a r e  evidently points of unstable 
equilibrium where the longitude perturbation force from Equation 77a is momentarily zero. The 
potential energy due to  J,, and A,, (from Equation 77b) has an absolute and a relative minimum 
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GREENWICH GREEN at A - h,, = *goo , o r  A = +goo +A,,  , which are at 
A22 A22 - EAST WICH longitudes lying on the extensions of the equa- 

torial  minor axis. These are evidently the only 
points of stable equilibrium for the placement 
of 24-hour satellites considering only the jZz 
perturbation. The "pendulum" dynamics as- 
sociated with Equation 77a has been discussed 

t 

MAJOR MINOR previously in Reference 6 in greater detail. 2 MAJOR MINOR 
AXIS AXIS AXIS AXIS 

If the initial longitude drift rate of the sat- 

at A,, then C, in Equation 76 is evaluated from 

Figure 6-24-hour satell ite longitude-drift potential 
energy and drift regimes due to J , ,. ellite is io , with the equator crossing 

(io)' = C, - A,, cos 2 ( A ,  -A, , )  , 

giving 

C, (io), + A,,COS 2 ( X , - A 2 , )  . (78) 

Substitution of Equation 78 into Equation 76 gives the theoretical drift ra te  of the 24-hour satellite 
at any subsequent longitude A, as 

(io)' + A,, [cos 2(A0 - A,,) - c o s  2 ( A  - h,,)]}1'2 r a d s i d .  day , (79) 

(The sign of the root in Equation 79 is to be taken according to the sense of the drift with respect 
to the longitude where x = 0 for the libratory regime (Reference 6).) 

From Equations 72, 74 and 77, A,, is 

A,, ( i  = 0") = 97.56311 x ( r a d s i d .  day), 

and 
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For the case of the equatorial 24-hour satellite in Table 1, (Case 1) 

A, = -66.00567 , 

solar da 1 .00566"/solar da 
( ' 0 ) '  = [ 5 7 . 2 9 5 7 8 d  .9972696 sidereal lay 

= 97.05385 x (radsid. day)' . 

Substitution of Equations 72, 80 and 82 into Equation 79 gives the theoretical drift rate for the 
equatorial 24-hour satellite in Table 1, Case 1 as 

i = - b 7 . 0 5 4  x 1 0 - 1 0 + 9 7 . 5 6 3  x loT6 [ - .00020-cos  2 A + 2 1 . 0 " ) ]  (rad/sid. day). (83) Y2 
See Table 1, Case 1 for an evaluation of Equation 83 at the respective ascending equator-crossing 
longitudes listed for the numerically calculated drift (see also Figure 2). 

For the case of the 60.0" inclined-orbit 24-hour satellite in Table 1, the theoretical drift 
formula corresponding to Equation 83 is 

i = - (31.412 x 10-"+54.879 x [-.00011 -cos 2(A+ 21.0°)]}1/2 (rad/sid. day) (84) 

(see Table 1, Case 2 and Figure 2). These cases make it clear that the theory for the drift of a 
24-hour circular orbit satellite due to J z 2 ,  summarized in Equations 76 o r  79, is essentially an 
accurate one. In the ?'Discussion" the probable limits of accuracy of the theory with respect to ec- 
centricity and period a r e  stated more precisely. 

The Theory for 24-Hour Satel l i te Dri f t  in a '031-only" Perturbation Field 

Combining Equations 71, 2 and 67b as in the first part  of this section causes Equation 71 to 
become for " J3 ,-only" drift 

(i)' = C, - 2 A 3 1 ~ ~ ~ ( A - A 3 1 )  , (85 1 

where 
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The corresponding longitude acceleration during "J, , -only" drift, is given from Equation 66 as 

A = A,, s i n ( A - A , , )  . ( 8 6 4  

Equation 86a establishes a one-dimensional potential energy for  the longitude excursions of the 
24-hour satellite with respect to the J,, perturbation. As before, this energy function is given as 
the negative of the first integral of the right hand side of Equation 86a (ignoring the integration 
constant): 

( P . E . ) ~ , ,  = A,, cos ( A - A , , )  . 

(see Figures 7 and 8). 

- A  

Y 

t 

GREEN 

1;" \ 

I 
GREEN - 

WlCH 

Figure 7-24-hour satellite longitude-drift potential 
energy and drift regimes due to J 3 1  (A3 ,  < 0, -41" < i 
< 41", )i 1 > 95.1"). 

Figure 8-24-hour satellite longitude-drift potential 
energy and drift due to J,, (A3 ,  > 0, 41" < lil<95.l0). 

Depending on the inclination of the 24- hour satellite, two oppositely directed libratory longitude 
drift  regimes are possible due to J,, (see "NONRESONANT" INCLINATIONS FOR THE EARTH 
GRAVITY HARMONICS J,, AND J~~ ). In the first, for I i I < 41" and i between +180" and +9s. I " ,  
stable long-term librations can occur about A = A,, . In the second regime, for i between +4 i0  and 
*95. l o ,  stable long-term librations can occur about A = A,, t 180" (see Figures 7 and 8 and Ap- 
pendix A). A t  the critical inclinations i = +41", +gs. 1" and +180", of course, there is no long-term 
drift  perturbation at any longitude due to J,, since A,, = 0 for these inclinations. 

If the initial longitude dr i f t  rate of the satellite is ,io with the ascending equator crossing at 
A,, then C, in Equation 85 is evaluated as in Equation 78 to yield, for 'I J,, -only" drift, 

(87) 
(i) = ~t {(io)2 + 2 A 3 ,  [ C O S ( A ~ - A , , )  -cos(A-A,,)]) 1 /2 ( r a d s i d .  day) 

(The sign of the root in Equation 87 is established from the sense of the drift with respect to the 
longitude where = 0 for the libratory regime.) 
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From Equations 72, 75 and 85, 2A3, is 

2A3, ( i  = 0") = -122.9859 x ( r a d s i d .  day)2 , 

and 

2A3, ( i  = 60') = 51.88468 x ( r a d s i d .  day)2 (89) 

For the case of the equatorial 24-hour satellite in Table 2, (Case 1) 

A, = -66.00359" 

and 

( i o ) 2  = 
1.00358) x (.9972696 '] - 

57.29578 - 
- (90) 38.82808 x l o - ' '  (rad,/sid.  day)2  , 

Substitution of Equations 72, 88 and 90 into Equation 87 gives the theoretical drift rate for the 
equatorial 24-hour satellite in Table 2, Case 1 as 

h = - (38.828 x 10-"-122.99 x l o w 6  [ . 0 0 0 0 6 - c o s ( ~ + 1 5 6 . 0 ° ) ] } 1 ' 2 ( r a ~ s i d .  day) . (91) 

See Table 2, Case 1 and Figure 3for an evaluation of Equation 91 at the maximum longitude drift 
excursion of the satellite in the numerically computed trajectory. 

For the case of the 60.0" inclined-orbit, 24-hour satellite in Table 2, the theoretical drift 
formula corresponding to Equation 91 is 

= f 6.458 x f 51.885 x [-,00003 - c o s  ( A  + 156.0")]}1'2 ( r a d s i d .  day) (92) { 
(see Table 2, Case 2, and Figure 3). 

The Theory for 24-Hour Satel l i te Dri f t  in  a "J33-only" Perturbation Field 

Combining Equations 71,2 and 67c causes Equation 71 to become for 1 1 ~ 3 3  -only" drift 

( i ) 2  = c, - (93) 
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where 

[cos is  + 133 
A,, = -54*2 (Ro/as) J,, 8 (rad/sid. day)2 . (94) 

The corresponding longitude acceleration during I' j,,-only drift" is given from Equation 66 as 

A = A,, s in3(A-A3, )  . (94d 

Equation 94a establishes a one-dimensional potential energy for the longitude excursions of the 
24-hour satellite with respect to the J,, perturbation. As before, this is given as the negative of 
the first integral of the right hand side of Equation 94a (ignoring the integration constant): 

(94b) 
A, 3 

(P.E. ) A 3 3  = --j- cos 3 ( x - x 3 , )  . 

(see Figure 9). 

Since A,, is always positive, the libratory 
longitude drift regime that can be established 
by J,, for the 24-hour satellite has the form 
shown in Figure 9. Stable librations can take 
place only about the three longitudes A = A,, +60° 
and A = A,, + 180", though momentarily no long 
te rm acceleration is experienced at A = A,, and 
A = A,, t120" (see also Appendix A). 

If the initial longitude drift rate of the sat- 

Figure 9-24-hour satel l i te  longitude-drift potential ellite is '0 with the ascending equator crossing 
energy and dri f t  regimes due to J3,. at A,, then C, in Equation 93 is evaluated as in 

Equation 78 to yield for 11J,3-only11 dr i f t  

2A3,  
= f {(io), + 7 [,os 3(A, -A , l )  - c o s  3(A-A,l)]}1'2 ( r a d s i d .  day) (95) 

(The sign of the root in Equation 95 is established from the sense of the drift with respect to the 
longitude where = 0 for the libratory regime.) 

From Equations 72, 75 and 94, A,, is 

2 4 ,  7 ( i  = 0") = 122.9859 x ( r a d s i d .  day)2 
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and 

2A33 7 ( i  = 60.0”) = 51.88468 x ( r ads id .  day)2 . 

For the case of the equatorial 24-hour satellite in Table 2, (Case 1) 

A, = -66.01067” 

and 

.01066 x .9972696 (io)’ = [ 57.29578 ] = 3.442661 x ( r a d s i d .  day)2 

(97) 

(98) 

Thus substitution of Equations 72, 96 and 98 into Equation 95 gives the theoretical drift rate for 
the equatorial 24-hour satellite in Table 3, Case 1, as 

= - (3.4427 x 10-8 t 122.99 x [-,00056 -COS 3(h+ 36.0”)] d a y ) .  (99) } 
See, Table 3, Case 1 and Figure 4 for an evaluation of Equation 99 at the maximum longitude drift 
excursion of the satellite in the numerically computed trajectory. 

For the case of the 60.0” inclined-orbit, 24-hour satellite in Table 3, the theoretical drift 
formula corresponding to Equation 99 is 

= - (7,9022 x +51.885x [-.00024-cos 3(A+36.0°)]}1’2(rad/sid. day) .  (100) 

(see Table 3, Case 2 and Figure 4). 

The Theory for 24-Hour Satel l i te Dri f t  in a “J42-only” Perturbation Field 

Combining Equations 71, 2 and 67d causes Equation 71 to become for ” J42-onlyf’ drift  

where 

I 



p 

The corresponding longitude acceleration during "J,, -only drift" is given from Equation 66 as 

Equation 103 establishes a one-dimensional potential energy for the longitude excursions of the 
24-hour satellite with respect to the J42 perturbation. As before, this energy function is given as 
the negative of the first integral of the right hand side of Equation 103 (ignoring the integration 
constant): 

2 (P.E. )A42 = 7 cos 2 (h - A,,) . 

(see Figures 10 and 11). 

*EAST 

/! \1 -"I 

(104) 

I 
GREEN - 
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Figure 10-24-hour satellite longitude-drift potential 
energy and drift regimes due to J,, ( A 4 2  < 0, -34.1" 
< i < 34.1", I i l  > 80.25"). 

Figure 11-24-hour satellite longitude-drift potential 
energy and drift regimes due to J,, (A42 > 0 ,  34.1" 
< I i I < 80.25'). 

Depending on the inclination of the 24- hour satellite, two oppositely directed libratory longitude 
drift  regimes are possible due to J,, (also see "NONRESONANT INCLINATIONS FOR THE EARTH 
GRAVITY HARMONICS J3 AND J,, ). In the first, for 1 i 1 < 34.1 ' and 1 i I > 80.25" , stable long 
t e rm librations can occur about A = A,, . In the second regime, for 34.1" < I i I < 80.25" 

long-termlibrations can occur about h = h,, k90" (see Figures 10 and 11 and Appendix A). At the 
critical inclinations i = f34 .1"  , k80.25" and k180.0" , there is no long te rm drift perturbation at 
any longitude due to J42y since A,, = 0 for these inclinations. 

stable 

The Theory for 24-Hour Satel l i te Dri f t  in a "J44-only" Perturbation Field 

Combining Equations 71, 2 and 67e causes Equation 71 to become for "J,, -only" drift  
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where 

A,, = - 
(1 +cos i 

-50407~~ (R,/as), J,, ~ ~ 16 

The corresponding longitude acceleration during 11J4, -only" drift is given from Equation 66 as 

A = A,, s in4(A-A4, )  . (106) 

Equation 106 establishes a one-dimensional potential energy for the longitude excursions of the 
24-hour satellite with respect to the J,, perturbation. As before, this energy function is given as 
the negative of the first integral of the right hand side of Equation 106 (ignoring the integration 
constant): 

A, 4 
( P . E .  )A44 = 7 cos 4 ( A  - A,,) 

(see Figure 12). 

Since A,, is always positive, the libratory 
longitude drift regime that can be established by 
J,, for the 24-hour satellite has the form shown 
in Figure 12. Stable librations can take place 
only about the four longitudes A = A,, +45" and 
A = A,, f13S0. Momentarily, no long t e rm ac- 
celeration is experienced at the four longitudes 
A = A,, , A = A,, f90" , and A = A,, + 180" (see 
Appendix A). 

It is noted that the actual longitude potential 
energy function of the earth for the 24-hour 
satellite will be a superposition of Figures 6 
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Figure 12-24-hour satel l i te longitude-drift potential 
energy and dr i f t  regimes due to J 4 4 .  

through 12. The exact form of this total potential energy will  depend on the relative proportions of 
the actual longitude gravityconstants of the earth. It is evident from the studies in References 6, 
1 and 10 that J,, dominates the actual longitude drift potential energy for the 24-hour satellite of 
the earth. 

Comparison of a Theoretical and Numerically Integrated 24-Hour Drift  Trajectory in a 
Third Order Earth, Solar and lunar  Gravity Field 

In Table 4, Case 1 are tabulated the results of a numerically integrated 24-hour satellite 
trajectory in a third order  earth, solar and lunar gravity field. The longitude earth field used 
is a recent weighted average estimate from W. M. Kaula (Appendix A). 
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The theoretical phase plane trajectory of the long t e rm drift  of a 24-hour satellite in a fu l l  
earth field alone, is derivable from Equation 71. Let io be the initial small drift rate of such a 
satellite at a time when its mean longitude is at A, . Then from Equation 71 the constant C, is 
evaluated as 

( - 2 ~ 2 ) r  F n m  c, = ( i 0 ) 2  + - m cos m ( X o  - A,,,,,) F( i)nm . 

Substitution of Equation 108 into Equation 71 gives the drift rate as a function of longitude: 

In terms of the Anm gravity-orbit constants, 

1/2 

F(i),,,,, [cosm(X-A,, , , , )  - c o s m ( h 0 - A n m ) ] }  

Equation 109 can be rewritten as 

,112 
= {(io)' + 7 x y  2Anm [cos m ( h ,  - An,,,) - cos m(* -An,,,)]) 

The Anm's for the trajectory in Table 4, Case 1 are the same as 71k. For these constants and the 
given initial conditions, the theoretical trajectory of Table 4, Case 1 is 

1 /2 

= {-4.2556 x - E ~ T  2Anm c o s m ( h - h n m ) }  (rad/sid. day) 

(see Table 4, Case 1). 

It is noted that the maximum deviation of the actual from the theoretical phase plane trajectory in 
this case is of the order of 0.5% and is due to long te rm effects of the sun and moon (see Figure 5a). 

"NONRESONANT" INCLINATIONS FOR THE EARTH GRAVITY HARMONICS J31 AND J42 

Equations 67a-67e make it evident that at every inclination the total long te rm drift regime is 
due to different proportions (functionally independent) of the relevant gravity harmonics. In gen- 
eral, it can be noted that all the harmonics higher than the second have reduced influence with 
respect to the JZ2 harmonic for increasing inclinations (at least for prograde orbits). For the 
"mixed tesserals" J, and J4 2 ,  which a re  strongly latitude- sensitive, a large part  of the smoothing- 
down effect is due to the latitude excursion of the inclined orbit. For the higher spatial frequency 
sectorial tesseral harmonics J B 3  and J44, the effect of the daily longitude excursion is to smooth 
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down their  orbit-averaged contributions with respect to that of the J,, harmonic. (See the pictorial 
representations of the potential in Appendix A.) 

These facts make it possible, for example, to distinguish between the effects of the gravity 
harmonics jZ2 and J 4 2  by utilizing two 24-hour satellites of reasonably different inclinations. 
With a single 24-hour satellite, this would not be possible because these harmonics have the same 
spatial frequency m. Of special interest for geodetic satellites are those inclinations for which 
the "tesserals," (J,,,,, with n - m even, n # m) have zero inclination factors F( i)",,,. Satellites 
having these special inclinations and periods commensurate with the rotation period of the earth, 
such as the 24-hour satellite, can have no secular perturbations of the semi-major axis due to that 
particular mixed tesseral  harmonic. It is conjectured that there can always be found at least  one 
"nonresonant" inclination for each of these harmonics for which F( i),,m = 0. Secular perturbation 
is defined as a non-zero along track force which is orbit averaged over the synodic period of the 
satellite with respect to the earth's rotation. Utilization of these special inclinations would sim- 
plify the difficult problem of separating the effects of the individual longitude harmonics in de- 
termining the exact shape of the geoid from observations on a limited number of earth satellites. 

"Nonresonant" Inclinations of J f l  

In Equation 67b let x = COS i .  Then the condition for a nonresonant 24-hour satellite due to J J 1  

is established when 

Equation 112 reduces to 

(x  + 1)  (15x - l o x -  1) = 0 

The three roots of Equation 113 (giving the critical inclinations for J J 1  ) a r e  

x1 = - l ( i  = +180°) 

x2 = .755( i  = t41 .0")  

x3 = - . 089( i  = k95.1") . (114) 

"Nonresonant" Inclinations o f  J42 

In Equation 67d let x = cos i . Then the condition for a nonresonant 24-hour satellite due to J 4 2  

is established when 

F ( i ) 4 2  = 0 = ( I + X ) ~  - 7 ( l - x 2 ) ( x ) ( l + x )  , (115) 
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Equation 115 reduces to 

( I + x ) ~  (7x2-7x+1) = 0 . 

Y 

The four roots of Equation 116 (giving the critical inclinations for J~~ ) a r e  

xt, x2 = -l(i = +180") , 

x3 = .828(i = k34.1') , 

x4 = .172( i = S O .  25") 

DISCUSSION 

The exact theory of 24-hour satellite drift due to earth gravity presented in this report and 
summarized by Equations 66, 68 and 71 res t s  on three fundamental assumptions. The f i rs t  is that 
the orbit of the satellite is always perfectly circular. It should be evident that any eccentricity in 
the orbit will give r i se  to greater e r r o r s  in this theory for inclined satellites than for equatorial 
ones. For the equatorial satellite of up to moderate eccentricity (i.e., e 5 . 2  ), the only change in- 
dicated in the simple theory would be to use the mean daily longitude position of the satellite as 
the characteristic longitude A of the satellite. In fact, this is also the indicated theory improve- 
ment change for the equatorial satellite of appreciable drift rate (Le. 
perturbation method relies fundamentally on orbit averaging the earth gravity effects with respect 
to geographical longitude and latitude. The situation with respect to eccentricity for inclined- 
orbit satellites is more severe. This is not merely because of the greater difficulty in locating 
the orbit averaged longitude location of the inclined-eccentric orbit 24-hour satellite. Difficult as 
this may be for perigee locations distant from the equator, the essential phenomenon which might 
cause distortion of the simple circular-inclined orbit theory applied to orbits with eccentricity is 
the possible introduction of significant energy perturbations to the orbit due to zonal earth gravity. 

> 2"/day) since the 

W. M. Kaula* believes that long term effects on the semi-major axis of a satellite due to 
zonal gravity must be negligible to at least the second order in the eccentricity. Assuming con- 
tributions to orbit-averaged energy from zonal gravity proportional to the third power of the ec- 
centricity, it is easy to see that these will give r i se  to effects of the order of magnitude of the 
longitude effects onlywhen the eccentricity is of the order of magnitude of 0.1. This is because 
the magnitude of the dominant zonal gravity force is of the order of 1000 times that of the strongest 
tesseral  force at a given altitude. 

The second assumption is that the semi-major axis of the 24-hour satellite is unchanged in 
the drift f rom a perfectly synchronous orbit. In Reference 6 it was shown that over the widest 

*Private communication. 
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possible longitude libration for a 24-hour satellite the expected maximum change of semi- major 
axis is only of the order of 0.1%. 

The third assumption (related to  the second) is that the period of the orbit remains synchronous. 
This assumption enters the theory in two places. One is in the calculation of the orbit-averaged 
effect of the harmonics. These effects a r e  assumed to be referable to a single constant longitude 
location over each orbit, an assumption valid only for an orbit with the earth synchronous period. 
The second place is in the assignment of the units "sidereal day'' for the basic orbit-averaged drift 
Equations 9 and 11 and all subsequent drift equations. The proper time unit in these orbit averaged 
equations is the period of the orbit 27r/ws, where w s  is the mean motion (mean angular rate) of the 
satellite in its orbit. Let w '  = Ios - w e  1 measure the difference of the actual mean motion of the 
satellite from the earth rate. Then it is evident that the e r r o r  arising from the assumption of a 
constant earth period unit in the drift equations is of the order of w ' / w e  . It can be shown that the 
first source of e r r o r  in the calculation of the orbit averaged effects (referred to a single longitude) 
for the longitude harmonic J,, , in the case of the nonsynchronous satellite of mean motion W '  , is of 
order p"'/w,. 

Thus to limit e r r o r s  in the simple drift equations for the second order harmonic J,, and the 
fourth J,, to one part  in a hundred, ~ w ' / w ,  5 10-2 . Since the drift rate for the near-synchronous 
satellite is given approximately as 360 w ' / u ,  degrees/day, the limiting drift rate with respect to 
these harmonics is 1.8 degrees/day. With respect to the third harmonic, J ~ ~ ,  it is 1.2 degrees/day. 
With respect t o  the fourth order harmonic, J4,, it is .9 degrees/day. With respect to the third 
order harmonic, J ~ ~ ,  the limiting drift rate is 3.6 degrees/day. For drift rates in excess of these 
limits, the simple theory given in this report may still hold with reasonable accuracy if  the longi- 
tude A is redefined as the mean geographic longitude traversed in the ground track over an orbit 
(Le. the mean of successive ascending equator crossings for a nearly circular orbit). In addition, 
the time unit of the drift equations should be redefined in terms of us. 

Many numerical trajectories made in conjunction with geodetic analysis of the motions of the 
Syncom I1 satellite (References 6 and 7) have confirmed the adequacy, for these purposes, of the 
simple, "first-order" perturbation drift equations presented herein (at least  for the J,, effect) 
with unmodified A, for  eccentricities up to .0012 and drift rates as high as 1 degree/day. 

1. The first order long-term longitude drift of a 24-hour satellite due to earth gravity through 
fourth order has been shown to be strictly analogous to a mathematical pendulum for each of the 
relevant tesseral harmonics J,,, J31, J J J  , J42 and J,,. 

2. Under the perturbation of the relevant gravity harmonic J,, , there are potentially m stable 
longitude positions around the equator about which long-term longitude librations of the 24-hour 
satellite can occur. 

3. The actual perturbed drift of the 24-hour earth satellite due to high-order earth gravity 
will, to first order, be a linear sum of the separate harmonic effects in a proportion depending on 
the magnitude of the actual gravity coefficients. 
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4. For the "real earth" the long t e r m  drift of the 24-hour satellite is undoubtedly dominated 
by the second order tesseral  effect (Jzz). Terms  of third order are probably next most influential 
on the 24-hour satellite, dominated by the effect of J33. 

5. The simple, first order pendulum drift theory due to earth gravity presented herein is 
valid for 24-hour circular orbit satellites of all inclinations and should give a good approximation 
to the actual long t e r m  drift  for nearly synchronous period satellites having an eccentricity of up 
to  order 0.1 and/or drift rates of up to the order of 1 degree/day. The theory can be expected to 
give the poorest accuracy for predicting drift in the immediate vicinity of the longitudes of the 
axes of the earth's elliptical equator under the additional perturbing influence of the sun and 
moon. 

6. The drift perturbation for each relevant gravity harmonic is strongest on the 24-hour 
equatorial satellite, and fo r  the "tesserals," J J 1  and J4* , becomes zero at all mean longitude 
locations f o r  certain critical orbit inclinations. 

7. For geodetic purposes, use of one o r  more inclined orbit 24-hour satellites (such as 
Syncom 11) as well as equatorial 24-hour satellites gives promise of defining most efficiently 
gravity t e rms  in the earth's potential to third and fourth order. 

(Manuscript received June 3, 1965) 
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Appendix A 

Earth's Gravity Field as a Series of Spherical Harmonic Components. 
Comparison of  Recent Longitude Gravity Fields 

The gravity potential used as the basis for this study is the exterior potential of the earth de- 
rived in Reference A-l for geocentric spherical coordinates referenced to the spin axis and center 
of mass of the earth. The infinite series of spherical harmonics is truncated after J 4 4 .  The 
zonal harmonic constants Jz0,  J 3 0  and J 4 0  used in the section on the comparison of the theory 
with numerically integrated trajectories are taken from Reference A-2. 

The earth equatorial radius Ro used in this study is 

R, = 6378.165 km . 

The Gaussian gravity constant of the earth used is 

pE = 3.986032 x lo5 km3/sec2 . 

The longitude harmonic constants used in the simulation studies are those of Kaula-Combined (1964) 
as listed in Table A-1. These correspond to the values shown on the "longitude geoids" below. The 
gravity potential of the earth (to fourth ordei,  probably sufficient to account for all significant per- 
turbations on a 24-hour satellite) may be illustrated (following Reference A-3 with the zonal con- 
stants of Reference A-2) as follows, from Kaula-combined (1964): 

J 2 0  RO2 R: 
(3 sin' + - 1) - 3J2, - cos' +cos 2(A - A'') 

"E - r' 

". 

26.6' 

00 

-26.6' 

cos q5 (15 sinZ + - 3) cos (A - A, 
J30 R2 J31 R: 

(5 sin3 + - 3 sin+) - - -- 
2r 3 2r 3 
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Ro3 
- 15J3, - cos' 4 s i n 4 c o s  2 ( A  - A 3 , )  

r3 
cos3 4 cos 3 (A - A S 3 )  

r03 
15533 

'4 1 

J 4 0  Rc? J 4 1  RO4 
[140 s in3  4 - 60 s i n  41 cos 4 cos (A  - A, (35 sin4 4 - 30 sin' 4 + 3) - ~ 

_ _ _ _  
8r4 8r4 

8 4 0 ~ i n q 5 c o s ~ ~ c o s 3 ( ~ - ~ ~ ~ )  
J43 RO4 

[420 sin' 4 - 601 cos' 4 COS 2 (A - A4') - ~ 

5 4 2  R; - _ _  
8r4 8r 4 

840 cos4 4 cos 4 (A - 
J 4 4  RO4 

8r 4 
-~ 
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The earth-gravity field (per unit test  mass) whose potential is Equation A-1 is given as the 
gradient of Equation A-1 o r  

PE 
Fr = -{-I rZ + (R0/.)' [3/2J2, ( 3 s i n z + -  1) + 9 J z 2 c o s ~ + c o s 2 ( A - A z 2 )  

+ 2(R0,h) J,, ( 5 s i n ' @ - 3 )  ( s i n + ) + 6 ( R o / r )  J,, ( 5 s i n Z @ - 1 )  c o s + c o s  (A-A, , )  

+ 60(R0/r) J 3 2 ~ ~ ~ Z + s i n + c o s  2(A-A,,) +60(Ro/r) J,, c ~ ~ ~ + c o s ~ ( A - A , , )  

+ 5/8(R0/r) J4,  (35 s i n 4  + - 30 s i n 2  + + 3) 

+ 25/2(RO/r)'  J 4 ,  ( 7 s i n 2 + - 3 )  c o s + s i n + c o s  ( ) . - A 4 , )  

+ 75/2(R0/r) J 4 2  (7 s i n Z  - 1) cos2  +cos  2 (A - A 4 , )  

+ 525(R0/r)2 J 4 3 ~ ~ ~ 3 + ~ i n + c o s  3 ( A - A , , )  +525(R0/r)2 J 4 4  cos4+cos4(A-A4, ) ] )  (A-3) 

PE 
FA = 7 (Ro/.)z ( 6 5 2 2 ~ ~ o s + s i n 2 ( A - A 2 z )  +3/2(R0/r) J,, [ 5 s i n 2 + - 1 ]  s i n  ( A - A , , )  

+ 30(R,/r) J,, cos + s i n + s i n  2(A - 

+ 5/2(R0p)z J4, [7 sin2+- 31 sin+sin(A-A4,) + 15(%/r)2 J42(7 sin2+- 1) cos+sin 2(A-A42) 

+ 315(R0/r)z J4,  c o s Z ~ s i n + s i n 3 ( A - A 4 , )  

+ 45(R0/r) J,, c o s ' + s i n  3 ( A  - A 3 , )  

+ 420(R0/r)2 J 4 4 ~ ~ ~ 3 + s i n 4 ( A - A 4 4 )  

PE 
F+ = yz (Ro/r) {- 3J2 , s i n  4 cos 4 + 6J2, cos + s i n  + cos 2 (A - A, ,) 

- 312 (~ , / r )  J30 (5 s i n 2  + - 1) cos + + 3/2 (R~/.) J,, (15 s in2  + - 
+ 15(R0/r) J32  ( 3 s i n 2 + -  1) C O S + C O S  2(A-A32) 

(A- 41 

I) s i n + c o s  (A-A,,) 

+ 45(R0/r) J , , ~ o s ~ @ s i n + c o s 3 ( A - A , ~ )  -5/2(R0/r)' J4,  ( 7 s i n Z + - 3 )  s i n + c o s +  

+ 5/2(Ro/r)' J4 ,  ( 2 8 s i n 4 + - 2 7 s i n 2 + + 3 )  cos ( A - A 4 , )  

+ 30(R0/r) 

+ 105(R0/r)2 J4, (4 s i n 2 +  - 1) cosz @ c o s  3 ( A  - A 4 , )  

+ 420(R0/r)2 J 4 4  cos3 + s i n @ c o s  4(A-A4,)} . 

J4, (7 s i n 2 +  - 4) cos @ s i n +  cos 2(A - A4,)  

(A-5) 
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The actual sea level surface of the earth is to be visualized through Equation A-1 as a sphere of 
radius 6378 km, around which is superimposed the sum of the separate spherical harmonic de- 
viations illustrated. T o  these static gravity deviations, of course, must be added a centrifugal 
earth-rotation potential at the surface of the earth to get the true sea level surface (Refer- 
ence A-1). 

Table A-1 gives recent estimates from a wide variety of sources of longitude gravity constants 
in the earth's potential. 
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Table A-1 

m "  

Longitude Coefficients in the Earth's Gravity Potentlal [1- (Rap)" PR ( s in+)  J,. cosm(A -Anm)]  >', As Reported 1915-1964'. 

'41 J i i  '42 J 4 3  hi3 J I ~  '4, 1 Longitude Geoid' J z z  ' 22  J J I  ' 31  J 3 1  '32 5 3 3  '33 J , I  

(1) Wagner (1964) 3 -1.7 x -1s. 
(2) Kaula-Combined (1964+ -1.51 -15.5 -1.51 x 0.0' 
(3) Izsak (1964)' 
(4) Kaula (1964T 
(5) Anderle and Oester- 

winter (1963)) 
(6) Guler (1963)) 
(7) Kaula (Sept. 196~3)~  
(8) Izsak (July 1963)' 
(9) Kaula (May 1963)4 

(10) Cohen (May 1963)3 
(11) Kaula (Jan. 1963)' 
(12) Uotila (1962)s 
(13) Kozai (Oot. 1962)4 
(14) Newton (April 1962)3 
(15) Newton (Jan. 1962)J 
(16) Kozal (June 1961)4 
(17) Kaula (June 1961+ 
(18) Izsak (Jan. 1961)' 
(19) Kaula (1961)s 
(20) Krassowski (19617) 
(21) Kaula (1959)l 
(22) Jeffreys (1959)s 
(23) Uotila ( 1 9 ~ i 7 ) ~  
(24) Zhongolovitoh (1957)) 
(25) Subbotin (1949)s 
(26) Nlskanen (1945)s 
(27) Jeffreys (1942)s 
(28) Helskanen (1928)s 
(29) Helskanen (1924)' 
(30) Helmert (1915)s 

-1.00 
-1.77 

-2.09 
-1.80 
-1.51 
-1.05 
-1.4 
-2.08 
-1.62 
-1.52 
-1.2 
-2.15 
-4.16 
-2.32 
- .55 
-5.35 
-1.68 
-5.53 
- .62 
-4.17 
-3.5 
-5.95 
-5.5 
-7.67 
-4.1 
-6.34 
-9.0 
-6.0 

-17.0 - .934 
-18.2 -2.12 

-14.1 
-10.4 -1.77 
-18.1 -1.65 
-11.2 -1.1 
-21.5 -1.6 
-14.1 
-21.4 
-36.5 
-26.4 
-10.9 
-11.0 
-37.5 
-13.3 
-33.2 
-38.5 

15.0 
-20.9 

0.0 
- 6.0 
- 7.7 

- 4.0 
0.0 
0.0 

18.0 
-17.0 

-1.81 
- .685 
-1.9 

-3.21 
-1.19 

- .98 

-2.21 

-2.1 

-15.5 
- 5.4 

6.3 
5.3 
3.2 

- 1.9 

- 3.57 
-81.0 

4.6 

22.0 
20.6 

55.4 

-25.7 

0.0 

-.lo2 x lo-' 0.0' - .149 x 22.8" - .465 x -136.0' -A63 x 10" 37.00 -.061 x - 1.9" -.0053 X 35.8' 
-.116 
-.379 

-286 
-.144 
-20 
-.15 

-.145 
-.409 
-.14 

-.41 
-.33 

-.11 

-.628 

- 3 6  

19.0 
10.5 

- 2.6 
46.4 

-21.8 
35.8 

6.6 
- 5.2 
-16.8 

31.0 
- .9 

13.3 

-26.4 

0.0 

- .173 
- .lo5 

- 2 0 4  
- .145 
- .14 
- .156 

- .112 
- .398 
- .10 

-1.91 
- .21 

- .19 

- .54 

- 2 4  

38.0 - .949 
23.1 - 2 6 3  

- .773 
24.1 - .I3 
15.8 - .471 
20.0 - .43 
18.5 - .53 

- .775 
31.6 - .479 
19.5 - 2 3 8  
42.6 - .52 

-2.53 

51.3 - 2 6 2  
22.6 - .611 

14.3 

13.0 

33.3 

-1.15 

- .46 

- .78 

-146.0 
-239.0 

-140.6 
-141.0 
-228.0 
-132.1 
-233.7 
-159.0 
-245.5 
-127.0 
-122.5 
-189.1 

-196.5 
-166.0 

- 13.0 

-132.3 

-149.1 

-.074 
-.117 

-287 
-273  
-.ole 
-.13 
-.12 
-288 
-.072 
-211 
-.062 

-.168 
-.14 

-.OB1 

-.OB0 

47.5 -.024 
42.3 -.0473 

34.7 -.163 
38.6 -.0791 
44.2 -.0265 
37.0 -.026 
44.5 -.019 
34.6 -.162 
47.7 -.OS88 
14.6 -.OB2 
65.2 -.035 

54.0 -.044 
21.1 -.031 

- 3.9 -.0206 
15.0 -.0104 

- 4.3 
- .7 -.0102 
22.6 -.0038 
11.5 -A19 
10.7 -.0038 

- 4.3 
5.9 -.0132 

- 9.3 -.0142 
0.5 -.031 

-13.0 -.054 
- .5 -.008 

25.3 
14.5 

35.0 
23.3 
14.8 
23.3 

28.4 
- 2.6 

14.9 

50.3 
26.4 

48.6 

45.0 

- 

-.01 

-.051 

-30.0 -.02 22.5 

- 3.8 -.0224 15.9 

i s  l e  "dial distance of l e  field p i n t  to the ccmer of mnrs of the earth, P rhe earth's Gaussim gravity cmstmt 3.9860 x IO2' cm3/scc2, R,, the mean equarmi.1 n d i u s  of the c u l  6370.2 h. 4 i s  l e  g c w c n u i c  Iatindc of the field 

6 where K i s  the integer part of (n - m)/2 m d  Tom, sinna-21 p in t .  A i s  the geographic Imgitude of the field p i n t .  J 21 0, since the polar axis i s  very nearly a p i o e i p l  axis  of inertia for thc earth. P: (sin 4) = cosm 4 

T,,, - 2' (-1)1(20 (n -I)! (~ -2t)! -I - 2r)I (See Kaula, 1964). The longitude Eoefficimts are those far h i c h  {O. t=0 

'The Jnm% and hnm's io  this rmblc, cxcep: in one u Rio instances. havc h e n  converted from the original nuthhor's set of g n s i t y  coefficients. The blanks indicate the author did not consider h t  p t i c u l u  humooic in fitting an euch pacDtLI 

3Satellite ~Dopplcr geoid 

'S.rellitc-cucn Ecoid. 

'Surface-gnrimeuic geoid, 

'Combined utroicodcric, grsrimcuic m d  sstcllite geoid. 

'Dctmilc, infomarim m rcfercncrs for l e  geoids listed hlm liven on following page. 

to l e  ohrcncd dsm. In one 01 n o  hsmnces, noted below. the nutbar repcrcd reasere1 cmffrcienrs to higher ordcc than the fourth. 
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Appendix B 

Symbols Used 

The long term 24-hour satellite longitude-drift driving function of the gravity harmonic J,, 

The instantaneous semi-major axis, and a near-synchronous semi-major axis of the 24- 
hour earth satellite assumed to be constant in a particular drift regime 

A gravity force per unit mass, acting on a 24-hour satellite 

The tangential (or circumferential) component of a gravity force acting on a 24-hour near 
circular orbit satellite 

An orbit-averaged gravity force 

The inclination factor of the longitude drift driving function Anm for the 24-hour satellite 

The radial acceleration of the earth's gravity field at the altitude of the synchronous 
satellite (-.7355 ft./sec. 2 )  

The inclination of the orbit plane with respect to the equator and the inclination of the 
near synchronous satellite's orbit plane assumed to be constant in a particular drift 
regime 

Spherical harmonic constants (order n, power m )  expressing magnitude and phase angle 
of that component of the earth's gravity potential 

The mean equatorial radius of the earth (-6378.2 km) 

The angle between a meridian plane through the satellite's position and the orbit plane 

Time zero quantity of the argument ( 

The argument from the ascending node to the 24-hour satellite's position (defined in Figure 1) 

Geographic longitude, geocentric radius and geocentric latitude of the 24- hour satellite 
position. In the text A also refers  to the daily longitude position of the ascending 
equator crossing, o r  the orbit-averaged, mean daily longitude position of the 24-hour 
satellite 

The earth's Gaussian gravity constant (3.98603 X lo5  km3/sec *) 

A circularfrequency, and the earth's sidereal rotation rate (.7292115 X 

). 

rad./sec.) 
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