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MONOTONIC MAGNETOSTRICTION FOR NONFERROMAGNETIC MATERIALS 


by Lawrence Flax 


Lewis Research Center 


SUMMARY 

The constant magnetostriction coefficient for  nonferromagnetic materials is derived 
in te rms  of changes in the Fermi surface. The theory is applied to  Fermi surfaces of 
spherical and elliptical geometries. The magnetostriction coefficient along the trigonal 
axis of bismuth is calculated and compared with experimental results. 

INTRODUCTlON 

The magnetostriction of nonferromagnetic materials was first observed by Kapitza 
(ref. 1) fo r  large transient fields. Subsequently, Shoenberg (ref. 2), Wolf and Goetz 
(ref. 3), Anderholm (ref. 4), and Aron (unpublished NASA data) investigated this phenom
enon. These investigators observed that magnetostriction was a function of crystal direc
tion relative to  the field and was dependent on the first power of the magnetic field. The 
phenomenon w a s  assumed to  ar ise  from the change of magnetization, which provides the 
energy for elastic deformation. 

The magnetostriction coefficient of a sample in a homogeneous magnetic field is de
fined as the fractional change in length per unit magnetic field. The magnetostriction is 
called longitudinal or transverse depending on whether the change in length is measured 
in the direction of the magnetic field or perpendicular to  it. 

In classical physics, a system of f ree  electrons confined t o  a fixed volume has zero 
diamagnetic moment. In quantum mechanics, the quantization of angular momentum in a 
magnetic field results in a nonzero magnetic moment. The magnetization is composed of 
two components, one of which is constant and the other is oscillatory with respect t o  
changes in magnetic field. This report is concerned only with the constant component of 
the diamagnetic moment. 

The constant component of magnetization is formed chiefly from the bunching of en
ergy levels. The application of a magnetic field does not, however, change the average 
density of the levels. The magnetostriction coefficient, which depends on the magnetiza
tion, is derived in t e rms  of the effect of an elastic deformation on the extrema1 area  of 



the Fermi surface. This deformation is caused by a change in both the equilibrium elec
tron density and the energy of the electrons. 

In general, an electron in a metal is governed by a complicated dispersion law. The 
frequently used quadratic dispersion law for  conduction electrons is valid only when the 
Fermi surface is the lower part of the Brillouin zone. The theory presented in this re
port can be applied to  an arbitrary dispersion law. 
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SYMBOLS 

C longitudinal magnetostriction 


C speed of light 


E electron energy 


EO electron energy in undeformed state 


E' electron energy in deformed state 


e electron charge 


f- (E -P )  Fermi distribution function 
kT 

g(P) density of states 


H magnetic field 


Ti Plank's constant divided by 277 


K compressibility (isotropic), Si ke6 


Kij deformation parameter 


k Boltzmann constant
-
k wave number 
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kn normal displacement of Fermi surface in k space 

kO 
radius of spherical Fermi surface 

P deformed length 

undeformed length 

M magnetization per unit volume 

MT temperature component of magnetization 

m.. effective mass  tensor element 
1J 
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P 

P O  

Oke 

w.. 
1 1J 


mass  of free electron 

number of electrons per unit volume 

number of electrons per unit volume in undeformed state 

pressure 

electron momentum 

extrema1 momentum 

electron momentum in z-direction 

summation index 

cross-sectional Fermi surface a rea  

compliance tension element 

extrema1 cross-sectional a rea  of Fermi surface 

temperature 

volume of sample 

Fermi velocity 

mo/m,.
13 


hole effective mass  


phase 


directional cosines 


dilation 


see equation (8) 


Kronecker delta function 


chemical potential 


chemical potential in undeformed state 


stress tensor element 


strain tensor element 


THEORETICAL ANALYSIS 

The longitudinal magnetostriction coefficient developed from thermodynamics (ref. 5) 
is given by 
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The first term of equation (1)gives an extremdly small contribution (about per 
gauss. Therefore, the magnetostriction coefficient is very closely given by 

The constant diamagnetic component of the magnetization of electron gas as given 
by Lifshitz and Kosevich (ref. 6) is 

f (9)
dE (3) 

where 

-1 
f(x) (1+ ex) 

and aS/apo is a derivative of S with respect to  p evaluated at the extrema1 momentum. 
For kT << p,  equation (3) becomes 

For T M 0, the second term in brackets contributes very little, and therefore, 

M = -2 e2 Sin 2 ~ R y- COS dE-
7T

3 
BC2 .E-R2R=l 
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If a function cp is considered, where 

then, 

and equation (4b) becomes, 

I 

To determine the component ap/ao, the following reasoning is applied. The magnetic 
field disturbs the lattice, moving the atoms away from the position of zero field equilib
rium and thereby deforming the Fermi surface and changing the value of p. It is assumed 
that the influence of an elastic deformation of the latter can be taken into account in the 
form of a small addition to  the electron energy proportional to  the deformation tensor. 
This assumption implies that the energy of the electrons after deformation is 

E(@ = Eo(@ + E'(@ 

. 
where E(K), Eo(E) .a r e  the electron energies in the deformed and undeformed metal, re

4. spectively, and E'(k) is the change in the energy of the electrons due to  a deformation. 
Assuming the number of electrons is constant and using equation (6), Ziman (ref. 7) 

showed that the change in the chemical potential is 
z 

The changes involved in the energy surfaces may be described by a deformation ten
sor K. .(E) introduced by Pippard (ref. 8). This tensor is defined by

13 


5 




where w.. is the strain tensor element and 6kn is the normal displacement of the 
1.l 

Fermi  surface. The right side of equation (8) represents the sum of the nine te rms  that 
results from summing the dummy indices i and j over the range of values 1, 2, and 3. 

Under a deformation, the energy of an electron is changed by the amount 

With equation (8), E' can be written as 

E' = fiVF(kt)K..(C)~..
1.l 9 

Substitution of equation (10) into equation (7)leads to  

If the generalizedform of Hook's law w . .  = SijkeuM is used, where S.. is the
1.l 1.lkQ

elastic compliance tensor, the change in chemical potential with s t ress  can be written as 

Hence, from equation (5), 

f 

+2V e2H sin 2 ~ R y- COS 2 ~ R y  + fiVF(k)Kij(kt) SijM
c = - - - ~-

T 3  tic2 1 R2 I 
R=1 aPO 

6 


.. 

I 



For temperatures above T = 0, the second term in equation (4a) must be included, 
and this gives the contribution 

1 e2VH(KT)2 5 sin 2 ~ R 7- COS 2 ~ R 7  
M T = - 

fic2 R=1 R2 

Hence, the temperature component of magnetostriction coefficient can be written as 

APPLICATIONS 

The longitudinal magnetostriction coefficient is computed for two cases. As an ex
ample of a spherical Fermi surface, sodium is used, and for other alkali metals, y =  1/2; 
hence, 

- _E Sin 27iRy - COS 27rRy - 71
2 

12 
R=1 R2 

2 
= - P o 3 

S = 271m0 
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For a spherical Fermi surface, 

K.. = -1 6. .k  
1J 3 9 0 

where ko is the radius of the Fermi surface. 
Inserting the previous values into equation (13) yields 

where 

k = 156 cm"/dyne 

po = 3.2 eV 

therefore, C/H = 1.85X10-I8, which is too small t o  be observed experimentally. 

ELLIPSOIDAL FERMI SURFACE FOR BISMUTH 

Before calculating the coefficient of magnetostriction, it is advantageous to  explain 
some of the salient features of bismuth. Bismuth has five electrons per atom and is 
classified as a semimetal. This metal has a small number of free electrons due to  over
lap outside the Brillouin zone. It is believed that the Fermi  surface of bismuth consists 
of highly anisotropic ellipsoids. 

No detailed calculation of the energy bands of bismuth has been made. Thus, it is 
impossible to  determine K..(k9)and effective mass  analytically, but it may be possible

1J 
to  evaluate them by experimental techniques. Fortunately, a large amount of experimen
tal information has accumulated on the band structure of bismuth. Measurements of the 
de Haas - Van Alphen cyclotron resonance and ultrasonic attenuation can be interpreted 
in t e rms  of a simple model of ellipsoidal energy surfaces. An interpretation of the 
de Haas - Van Alphen experiments for  electrons has shown that the axis of an ellipsoid is 
not along but is tipped out of the principle symmetry axis of the crystal. Other models 
propose more than three electron ellipsoids; usually they assume six ellipsoids. Most of 
these models have one factor in common, which is that some of the ellipsoids are asso
ciated with holes and some with electrons. The question of the correct model for bismuth 
has not yet been resolved. 
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m h  

Recent investigations by Aron (unpublished data), and Brandt and Venttsel (ref. 9) 
have indicated that some of the physical properties for bismuth, such as the amplitudes 
on the trigonal direction of oscillatory magnetostriction and very low temperature 
de Haas - Van Alphen effects, come from the hole ellipsoid. 

By measuring electrical resistivity and the Hall coefficient, Jain and Jagge (ref. 10) 
determined that tiV(gK..(G) along the trigonal axis is about 2 . 5  electronvolts. 

13

In order to  calculate the magnetostriction coefficient, two models are employed. For 

the first model the following assumptions are made: 
(1) The electron ellipsoids contribute negligibly to  magnetostriction. 
(2) The term liV(Z)Kij(g is due only to the hole contribution. 
(3) The hole contribution consists of two identical hole ellipsoids. 

When the constant energy surfaces are no longer spherical, a scalar effective mass does 
not apply. Since equation (19) can no longer be used, equation (13) must be referred to. 
The hole ellipsoid is described by the dispersion law 

The extrema1 area Sm(ph) of cross  section of the ellipsoid can be evaluated by ana
lytic geometry from equation (22) to be 

where 

and yii are the directional cosines that depend on the orientation of the magnetic field, 
and the subscripts on X refer to  the holes. In the following, the theory of the case where 
the field is parallel t o  the trigonal axis is applied. 

The area of the curve of constant energy is obtained by using the Bohr - Sommerfeld 
quantization condition and can be shown to be 

S ( p h , P , ) . f f i x d P y = ( n + $ ) ~ = SC ( p )  

Hence, the following can be obtained: 
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From quantum mechanical considerations y i s res t r ic ied  to  the range 0 <y < 1. 
For the case of a quadratic dispersion law y = 1/2, and for other. Fermi surfaces y dif
fers from 1/2. 

-Using the experimental data obtained by Jaggi and Jain (ref. 10) for the term 
4 

RV(k)Kij(k) and substituting equation (24) into equation (13) as well as summing over the 
two ellipsoids yield 

For the second calculation, the nontilted eight ellipsoid model proposed by Abeles 
and Meiboom (ref. 11) will be used. This model proposes two hole ellipsoids and six 
electron ellipsoids. For this case, the assumption employed will be that the holes and 
electrons contribute equally to  the term AV(gK..(@. Using equations (21) to  (24) and 

11 
substituting pe and CY.. produces the electron's Fermi energy and the electron's effec

11
tive mass  for  ph and P. .  respectively. Summing over the eight electron ellipsoids

13' 
yields the following: 

- .  1 

1 
To obtain the two hole ellipsoid contribution equation (25) is employed. The magneto
striction coefficient for this model is, therefore, 

2 

= 1.84X10- 16 
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A factor of 2 appearing in the term [fiVF(@K..(@S.. ]/2 is due to  the assumption that 
11 1Jke.

the electrons and holes contribute equally. 
From cyclotron resonance, de Haas - Van Alphen, and ultrasonic attenuation data 

(ref. 12), the following values are obtained: 

C Y l l  = 2.02 

= 1.67 

CY^^ = 83.3 

pe = 2 . 9 ~ 1 O - l ~erg  

ph = 2. 6X1O-l4 e rg  

Sijke = 4X1O-l2 cm2/dyne 

K = 3. 2X10-12 cm2/dyne 

PI1 = 2 . 0  

p22 = 2.0 

ps3 = 1.4 

-C (electron + holes) = 1.86X10- 16 
H 

The experimental values of C/H are reported in table I. 

TABLE I. - RATIO OF LONGITUDINAL 

MAGNETOSTRICTION TO MAGNETIC 

FIELD IN TRIGONAL DIRECTION 

Wolf and Goetz (ref. 3) 

Kapitza (ref. 4) 

Anderholm (ref. 4) 8 . 3  

Aron (unpublished NASA data) 7 . 2  



CONCLUSIONS 

The theory presented for the magnetostriction coefficient cannot be accurately tested 
for bismuth. In order for the theory to  be adequately employed, a band calculation for 
this metal must be made. An alternate procedure would be to  obtain sufficient experimen
tal data on the deformation parameter for bismuth. 

If this theory is correct, the value of the magnetostriction coefficient C depends 
basically on two quantities: the change of Fermi surface area with momentum, and the 
deformation parameter. I� the deformation parameter K.

4
.($ can be evaluated from 

theoretical calculations and C can be determined from experimental measurements, the 
phase factor y may be determined for complicated surfaces. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, May 12, 1966, 
129-02-05-09-22. 
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