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ANALYS I S  OF THE LINEARIZED SUPERSONIC FLOW ABOUT POINTED 
BODIES OF REVOLUTION B Y  THE METHOD OF CHARACTERISTICS 

SUMMARY 

The method of characteristics applicable to the linear potential equation 
governing the supersonic flow over bodies of revolution at zero and small 
angles of attack is presented. For axisymmetric flow the equations used are 
those derived by Sauer and Heinz, whereas for flow due to angle of attack the 
equations are those derived by Oswatitsch and Erdmann. 
vestigates the limits of applicability of these methods. 
tion was programmed in Fortran IV to be used for computing the axisymmetric 
and angle of attack flow fields about convex and concave parabolic ogives and 
cone-cylinder bodies of various body fineness ratios at low supersonic Mach 
numbers. The results of these computations were compared with J. L. Sims' 
exact method of characteristics, the linear theory of Reference I ,  and, when- 
ever available, with experimental data. It was found that these methods a re  
applicable to flow fields where the hypersonic similarity parameter, M, E, 
is less than about 0.6 .  

This analysis in- 
The flow field computa- 

I NTR OD UCT I ON 

The linearization of the potential equation for supersonic flow about a 
body of revolution rests on the assumption that the disturbances produced in 
the flow by such a body are everywhere small. The solution of the potential 
equation may be obtained by either the method of singularities o r  the method 
of characteristics. 
is well documented in the literature having originated with Von Karman and 
Moore [ 21 for axial flow, and Tsien [ 31 for bodies at angle of attack. The 
method of characteristics as  applied to the linearized potential equation is not 
very well known, especially in this country. 

The application of singularity methods to the present problem 

For flow fields where the potential equation can be linearized, there are 
several advantages in using linearized methods as opposed to exact methods. 
The speed of the linear methods and the simplicity of the equations involved are 
the primary advantages. Also, in the case of flow about cone-cylinder bodies, 
an important consideration is the ease with which the solution at the expansion 
corner may be obtained. In this situation, the exact method of characteristics 
involves a Prandtl-Meyer calculation in order to treat the flow field caused by 
the body slope discontinuity. In the linearized method of characteristics, the 



flow field calculation at the expansion corner is treated by the use of a "doubleff 
characteristic reflected from the corner. 

The linearized method of characteristics which is considered in this 
analysis is that of Sauer and Heinz [4] for  axial flow, while for flow due to angle 
of attack the method is that of Oswatitsch and Erdmann [ 41. The most important 
feature of these methods is that the particular combination of tlow variables 
in the compatibility relations eliminates the singular behavior caused by the 
use of cylindrical coordinates so that these modified variables change quite 
slowly near the body. This in turn permits the use of a relatively large grid 
size which makes possible a very fast numerical calculation of the flow field. 

i 

The nondimensionalization of the quantities used in the following treat- 
ment, where s tarred (* ) quantities are dimensional and unstarred quantities 
are dimensionless, is 

U* 

U2 
u = -  

I 

V* 
U2 

v=-  

The cylindrical coordinate system (x, r, $ )  used in the following treat- 
ment is affixed with the body so that the x-axis is coincident with the axis of 
symmetry of the body (Fig. I). 

TECHNICAL DISCUSS ION 

The Nature of the Procedure 

We start with the linearized potential equation for supersonic flow 

2 



With G(x, r) as the perturbation potential of the axisymmetric part of 
the flow and F(x, r) as the perturbation potential of the flow due to angle of 
attack, we may write as a solution of equation (I) 

cp = cos a [ x  + G(x, r ) ]  + sin a cos t) F(x, r) . (2) 

The velocity components in terms of the potential cp are 

Taking the inclination in the plane t) = 0, and introducing equation (2) 
into equation (I), we get for the axisymmetric part of the flow 

and for flow due to angle of attack 

a2F a2F I a F ; i  F = O ,  (MZ -I) - - - - - -  
ax2 ar2 r a r  r2 (4) 

The axisymmetric disturbance velocity components divided by cos a 
are 

aG u' = - 
ax 

aG v' = - 
a r  

and the angle-of-attack disturbance velocities divided by sin CY cos t) are 

aF  u" = - 
ax 

aF  v" = - 
a r  * 

To facilitate further derivation, the relations of equation (3) and (4) may be 
combined into a single relation 

where 

cp=Gfor  A = O  

3 



and 

9 = F f o r A =  I .  

The potential equation (5) can be written as 

A 
r v + 2  9 = 0  au av I 

P2 - -; 

where 

This hyperbolic partial differential equation (for  Mo, > I )  has two families 
of characteristic curves 5 and q. The curves for  ( =  constant a re  referred to 
as left-running characteristic lines, while those for 
right-running characteristic lines. 

= constant are called 

The following relations apply to these characteristic lines: 

< = x - p r  (left+running lines) (7) 

q = x + p r  (right-running lines). 

From equations ( I )  through (7) , the compatibility relations for axi- 
symmetric flow may be obtained. These relations, 

and 

a re  the fundamental relations on which the Sauer-Heinz linear characteristics 
method for axisymmetric supersonic flow is based. 
the values of ut and v' along the characteristic lines described previously, 
which are just the Mach lines of the freestream. 

They are  used to obtain 

4 



The compatibility relations for flow due to angle of attack are  obtained 
from equations ( I )  through (7) also. These relations 

and 

are the relations on which the Erdmann-Oswatitsch linear characteristics 
method for flow due to angle of attack is based. 

the values of ru" and VI*  + - along the characteristic lines, i. e. , the free- 

stream Mach lines. 

They are used to determine 
F 
r 

To solve the linearized potential equation ( I ) ,  it suffices to solve, 
in the case of axisymmetric flow, equations (sa) and (8b) for u' and v' and, 
in the case of flow due to angle of attack, equations (sa) and (9b) for u" and 
v". Knowing these values, any other desired flow property may be obtained 
at any point within the region of disturbed flow. 

Calculation of t he  Flow Properties in the Field 

To explain the calculation of the flow properties in the field, we will 
consider point 4 as an example (Fig. I). 
points a re  obtained by solution of -the left- and right-running characteristic lines 
simultaneously. Replacing equation (sa) by its finite difference form and ap- 
plying it along the right-running characteristic line 3, 4 we obtain 

The physical coordinates of the field 

( rv ' )g  - ( r ~ ' ) ~  = - prq (u; - 4). (loa) 

Similar application of equation (8b) along the left-running character- - 
istic line 2,4 yields 

where rq is the average ordinate, between the two points under consideration 
on the right-running characteristic line and rt is the average ordinate between 
the two points under consideration on the left-running characteristic line. 

5 



.,,-,,.-.,..., -. .,.. .... , .,. . , ,. .. ... _._-........---.--- 

Simultaneous solution of equations (loa) and ( lob) yields for 4 

and for ( r ~ ' ) ~  

Equations (11) and (12) give the values of the zero angle-of-attack flow 
properties, u' and rv t ,  at field point 4. 

By the following identical procedure with equations (sa) and (gb), the 
relations which give the values of the angle-of-attack flow properties at point 
4 may be obtained. These relations are 

and 

Equations (11) , (12), (13), and (14) give the values of the flow prop- 
erties at point 4 in terms of known values at points 2 and 3. The solutions of 
the other field points are obtained by a similar procedure. 

Calculation of the Flaw Properties at the Body 

To explain the calculation of the flow properties at the body, we will 
consider point 5 (Fig. I ) .  
obtained by simultaneous solution of the equation of the right-running charac- 
teristic line and equation of the body. 

The physical coordinates of the body point are  

6 
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Consider a body contour given by r = h(x) (Fig. 1). 

direction 8 in the plane II, = 0 ,  with velocity components u = 

in  accordance with equation (1) , is given by the relation 

Then the flow 
a+ and v = - ax a r  

Hence, there follows the exact boundary condition for axisymmetric flow: 

v' 5 =(3(1 + u;) . 

Equation (16) inserted into equation (15) gives, after brief manipulation, the 
exact boundary conditions for flow at angle of attack 

dh = u" - 
dx 

- 
Applying equation (sa) along 4,5, as in the previous section, we obtain 

Simultaneous solution of equations (16) and (18a) yields 

Equations (15) and (18b) give the values of the zero angle-of-attack 
flow properties at body point 5. 

- 
Application of equation (9a) along 4,5 yields 



Equation (19) shows that, in order to determine the value of VI' at 
the body, an explicit knowledge of F along the body is necessary. 
differential of F is 

The 

(20) 
aF dF(x, r) = aF dx+ - d r  = ut' dx + v" dr. ax a r  

If the step size is taken sufficiently small, the wall elements AQ (Fig. I )  can 
be considered straight lines, and we have 

AX = COS e M and A r  = sin 8 M ,  (21) 

and from equation (17) , 

A s  stated previously, the primary advantage of this method is that 
i t  permits the use of a relatively large grid size. 
is not in contradiction with this fact since the method assumes that the rate 
of change in the slope of the body is small. 

The preceding restriction 

Equations (21) ,  which are difference equations, and equation (22) 
inserted into equation (20) yield 

Application of equation 23 along the body segment 2,5 gives F at the new body 
point 5 in terms of known properties at the previous body point 2 and uy , 
which is still unknown: 

F 
r Combining equation ( 17) with equation (24) yields for (v'l + -) at point 5 

m 2  F, + (4  f uy) - 
2Ax 

r5 
9 

5 

and equation (25) inserted into equation ( 19) yields, after some manipulation, 
uff at point 5 

8 



I 
~ ... . ..__ . .. . .. . . . _- 

Equations (19) and (26) give the values of the angle-of-attack flow 
properties at  body point 5. The solutions of all other body points are  obtained 
in a manner similar to the one described above. 

The Method of Obtaining Starting Values 

It follows from the conditions for linearization of the potential equation 
that only pointed bodies of revolution can be treated by the procedure described 
in this analysis. 

Beginning at the apex of the body of revolution, the initial Mach line 
or  left-running characteristic line is constructed. 
characteristic lines are given by the relations 

The inclinations of the 

I (left-running) - tan p = - A r  - -  
Ax P 

and 

(right-running) I 
- tan ( - p )  = - - A r  

Ax B .  
-- 

A f t e r  choosing a suitable step size, the first point on the initial Mach 
The right-running characteris- line is located. 

tic line is drawn from this point and intersects the body at point 2. 
of the body between the apex and point 2 is replaced by a cone formed by the 
chord line between these two points. 
region formed by the apex, point I, and point 2 is conical, thus' enabling us to 
begin the characteristics solution. 

In Figure I ,  this is point I. 
The portion 

Therefore, the flow in the triangular 

Because of assumed parallel flow at point I, we have u' = u" = v' = 0, 

F = r, and VI '  = I. 
easily proved geometrical relation 

F 
r Therefore, we also have v" + - = 2. If we introduce the 

hO I r = -  
r 1 4  ( 3 +  p 

9 



into equation (18b), we obtain for axisymmetric flow 

4 tan2 d o  
- 

UI = - I + 3 p tan d o  + 4 tan2 d o  

Introducing the geometrical relation into equation (26) we obtain for flow due 
to angle of attack 

(I + 3 @ tan d o )  sin 2 d o  
ull - _. - 

2 ( 1 + 3 p t a n d o )  ( I +  s in2do)  + 4 j 2 s i n 2 d 0  ' 

where ho is the body radius at point 2 and d o  is the semi-apex angle. 
(27) and (28) are independent of the body radius within their range of validity 

Equations 

- - -  dh - d o  = CONSTANT dx 

and thus represent the approximate solution for conical flow. 

Con e- Cy I i n d e r Bod i es 

In the solution of the flow field about cone-cylinder bodies by the methods 
described previously, we can see from the boundary conditions in equations (16) 
and (17) that a discontinuity in h, e. g. , at x = k in Figure 2, results in a dis- 
continuity in the calculation of the flow properties at that point. Therefore, it 
is necessary to calculate the flow properties at the body both upstream and 
downstream of the point of discontinuity, although the physical coordinates of 
the point are the s a m e  in each case.  Because of the necessity of this double 
calculation at this point, the reflected characteristic from there produces a 
discontinuity in the calculation of the flow properties at each field point along the 
'ldoublel' characteristic. 

To explain the upstream and downstream calculation of the flow properties 
at the slope discontinuity on the body, we will consider points 5 and 6 of the 
configuration in Figure 2. The values of the flow properties upstream of the 
slope discontinuity are obtained by simp$ applying equations (16) , (18b), (19) , 
and (26) at point 5. The zero angle-of-attack flow properties downstream of the 
singular point are found by reapplying equations (16) and ( 18b) at point 6; however , 

which is double-valued at the corner, assumes its downstream dh in this case, - dx' 
value. The relations which give the values of the angle-of-attack flow properties 

10 
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downstream of the singular point cannot be used as  they appear in equations 

(19) and (26) due to the terms, he - 0 and that F does not change at the singular point; in the limit a s  Ax - 0, - 
2Ax 

and F,. It can be shown, however, that 
At2 

i. e. , F, = F,. Therefore, the relations which give the angle-of-attack flow 
properties at point 6 are with r = r6 = r 

rl 

- .. 
dh U 6  - ~ 

"6 -k ' 6 ( Z l 6  

and 

The calculation of the field poiants on the left-running "double" character- 
istic from the corner follows the usual procedure outlined earlier,  i. e. , the 
application of equations (11) , (12), (13) and (14). The distinction of this cal- 
culation from any other lies only in the proper selection of base points on the 
left-running characteristic and in the case of the calculation of the downstream 
point (e. g. , point 10 in Fig. 2) and in the interpretation of rq. In this case 
r is simply r9 = rio since the points 9 and 10 are physically coincident. rl 

It is desirable in the cone-cylinder case to have several intermediate 
points on the right-running characteristic which intersects the expansion corner 
so that the flow field downstream of the corner will be as accurate as  possible. 
For this reason we choose the initial step on the cone, i. e. , the two point 
conical approximation as given by equations (27) and (28), to be a fraction of 
the total cone length. 

Pressure Relations and Force Coefficients 

According to Oswatitsch and Erdmann [4 ]  , the pressure coefficient at 
angle-of-attack Q is given by the relation 

F2 c = - 2 (ut+ ut' a cos $) + a2 (I -7 sin2$) 
P 



For small angles of attack, the second order terms in a may be neglected, and 
we obtain 

c = c  + c  aces$, 
P PI P2 

where C 

attack and C 

= p2 uf2 - 2uf - vf2  is the pressure coefficient at zero angle of 
PI 

= 2u" (p2 u" - I) . 
P2 

The normal force coefficient is given by 

Introducing equation (32) into equation (33) and differentiating with respect 
to a, we get the normal force coefficient slope 

It follows immediately from equation (34) that the local normal force variation 
is given by 

RESULTS AND DISCUSSION 

The Sauer-Heinz and Oswatitsch-Erdmann methods were programmed in 
Fortran IV to solve flow fields varying in body shape, body fineness ratio, and 
Mach number. To investigate the limits-of applicability of these methods, the 
results of these computations were compared with J. L. Sims' exact method of 
characteristics* , the linear theory of Reference I ,  and experimental data. 

* Sims, J. L. : Results of Method of Characteristics Analysis at Small 
Angle of Attack (Unpublished). Aero-Dynamics Division of NASA, 
Marshall Space Flight Center, 1965 

12 



.- 

The approach taken by Sims is based upon a small angle-of-attack pertur- 
bation superimposed on a nonlinear axisymmetric flow field which is determined 
by the method of characteristics (eqs. 26-15, 26-16, 26-17, and 26-18 in Ref. 5). 

For comparison of the zero angle-of-attack flow properties computed 
by the Sauer-Heinz method, the pressure coefficient was computed for convex 
and concave parabolic ogives. The equations of these ogives are 

E h(x) = 2 ( x +  x2) concave ogive 

and 

h(x) = E ( 2 ~  - x2) . concave ogive 

The values of the body fineness ratio, E ,  used in these computations were 
0.05, 0.10, 0.15, and 0.20, and the Mach numbers were I. 5 and 3.0. These 
results are given in  Figures 3 through 18. 
also computed for 5-degree and IO-degree cone-cylinder bodies at Mach, 
numbers of I. 5 and 3.0 and an ogival body whose configuration is given by the 

equation h(x) = - x - - x2 [ I )  at Mach numbers of I. 84, 2.45, and 3.01. 

These results are given in Figures 19 through 25. 

The pressure coefficients were  

I 10 
3 36 

For comparison of the angle-of-attack flow properties computed by the 
Oswatitsch-Erdmann method, the normal force coefficient slope was computed 
and plotted as a function of Mach number for the convex and concave ogives and 
the 5-degree and IO-degree cone-cylinders. These results appear in Figures 
26 through 31. Also, the local normal force variation was computed for the con- 
vex and concave ogives at Mach numbers of I. 5 and 3.0 and the ogival body [I] 
at Mach numbers of I. 84, 2.45 and 3.01. These results appear in Figures 32 

.through 42. 

For comparison of the Oswatitsch-Erdmann method with experimental 
data, the local normal force variation was computed for a convex parabolic 
ogive with body fineness ratios of 0.066, 0. I ,  and 0.1667 at Mach numbers of 
I. 59, 3.0, and 4.25 and also for  a IO-degree cone-cylinder at Mach numbers of 
I. 99 and 2.44. These results appear in Figures 43 through 49. 

Figures 3 through 18 show that the Sauer-Heinz method agrees closely 
with Sims' method for body fineness ratios of 0.15 or less; however, for a 
body fineness ratio of 0.20 they'begin to deviate considerably, especially at the 
higher Mach number. These two methods compare very we l l  for the 5-degree 
and IO-degree cone-cylinders also. In view of the assumptions made in the 
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linearization of the potential equation, this is exactly the trend that one would 
expect. This same trend can be observed when comparing the Oswatitsch- 
Erdmann method with Sims' method in Figures 26 through 39. Although the 
range of values for the body fineness ratios and Mach numbers in the experi- 
mental data is somewhat limited, the trend seems to be present there also. 
Figures 19 through 21 and 40 through 42 show that the comparison between these 
methods and the linear theory of Reference I is very good except at the apex of 
the body. This disagreement there could be attributed to the size of the initial 
step-length used in  the conical approximation flow region, from which the start- 
ing values are obtained. 

CONCLUDING REMARKS 

The truncation e r r o r  in  the numerical solution was studied by system- 
atically varying the field mesh width. A constant step-length in the entire 
field was used. Step-lengths in  the range 0.0025 - 0. 0200 were tried to 
increments of 0.0025. The truncation e r ro r  was found to be sufficiently small 
with a step-length of 0.01, which was then used to compute all of the solutions 
for this report. Using this step-length, the average time for a complete run 
for both zero and nonzero angle-of-attack solutions at one Mach number was 
about thirteen seconds on the IBM 7094 digital computer. 

A careful study of the comparisons of the Sauer-Heinz and Oswatitsch- 
Erdmann linear methods given in the figures shows that these methods are 
applicable to flow fields where the hypersonic similarity parameter, Mo, E, 
is less than about 0.6 

George C. Marshall Space Flight Center 
National Aeronautics and Space Administration 

Huntsville, Alabama, April 19, 1966 
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FIGURE I .  ILLUSTRATION OF SMOOTH BODY CALCULATION 
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FIGURE 2. ILLUSTRATION OF CONE-CYLINDER BODY CALCULATION 
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Linearized Method of Characteri 5 t i c s  

X 

FIGURE 3. PRESSURE DISTRIBUTION ALONG A CONVEX PARABOLIC OGIVE WITH 
BODY FINENESS RATIO OF 0.05  AT M, = I .  5 

X 

FIGURE 4. PRESSURE DISTRIBUTION ALONG A CONVEX PARABOLIC OGIVE WITH 
BODY FINENESS RATIO OF 0 .05  AT M, = 3 . 0  
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FIGURE 5. PRESSURE DISTRIBUTION ALONG A CONVEX PARABOLIC OGIVE WITH 
BODY FINENESS RATIO OF 0 . 1 0  AT I&, = I. 5 

-I i zed Method of Character is t ics  
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FIGURE 6. PRESSURE DISTRIBUTION ALONG A CONVEX PARABOLIC OGIVE WITH 
BODY FINENESS RATIO OF 0 .10  AT Mm = 3 . 0  
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Linearized )lethod of Characteristics 

X 

FIGURE 7. PRESSURE DISTRIBUTION ALONG A CONVEX PARABOLIC OGIVE WITH 
BODY FINENESS RATIO OF 0 .15  AT M, = I .  5 

- - - - - - L i n e a r i z e d  Method of  Characteri s t i c =  
- - --Clm.' F r r r +  Method of Characterlstics 
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FIGURE 8. PRESSURE DISTRIBUTIOS ALONG A CONVEX PARABOLIC OGIVE WITH 
BODY FINENESS RATIO OF 0 .15  AT M, = 3 . 0  
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__ L i nearired Method of Characteri Stics 

E 

E 
n Y) 

X 

FIGURE 9. PRESSURE DISTRIBUTION ALONG A CONVEX PARABOLIC OGIVE WITH 
BODY FINENESS RATIO OF 0 .20  AT I& = I. 5 
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FIGURE 10. PRESSURE DISTRIBUTION ALONG A CONVEX PARABOLIC OGIVE WITH 
BODY FINENESS RATIO OF 0 .20  A T  M, = 3 . 0  
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Linearized Method o f  Characteristics 

X 

FIGURE 11. PRESSURE DISTRIBUTION ALONG A CONCAVE PARABOLIC OGIVE WITH 
BODY FINENESS RATIO OF 0.05 AT M = 1.5 

00 

Linearized Method of Characteristics 

X 

FIGURE 12. PRESSURE DISTRIBUTION ALONG A CONCAVE PARABOLIC OGIVE WITH 
BODY FINENESS RATIO OF 0.05 A T  M, = 3.0 
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-Linearized k t h o d  of  Characteri s t i c s  

X 

FIGURE 13. PRESSURE DISTRIBUTION ALONG A CONCAVE PARABOLIC OGIVE WITH 
BODY FINENESS RATIO OF 0 . 1 0  AT M, = I. 5 

Linearized Ilethod o f  Characteristics 
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FIGURE 14. PRESSURE DISTRIBUTION ALONG A CONCAVE PARABOLIC OGIVE WITH 
BODY FINENESS RATIO OF 0.10 AT Mo, = 3 . 0  
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Linearized Method o f  Characteristics 
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FIGURE 15. PRESSURE DISTRIBUTION ALONG A CONCAVE PARABOLIC OGIVE WITH 
BODY FINENESS RATIO OF 0 .15  AT MW = 1 . 5  

Linearized Method of Characteristics 
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FIGURE 16. PRESSURE DISTRIBUTION ALONG A CONCAVE PARABOLIC OGIVE WITH 
BODY FINENESS RATIO OF 0 .15  AT M, = 3 . 0  
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Linearized Metbod of characterietics 
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FIGURE 17. PRESSURE DISTRIBUTION ALONG A CONCAVE PARABOLIC OGIVE WITH 
BODY FINENESS RATIO OF 0 . 2 0  AT M, = I. 5 

FIGURE 18. PRESSURE DISTRIBUTION ALONG A CONCAVE PARABOLIC OGIVE WITH 
BODY FINENESS RATIO OF 0 .20  AT M, = 3 . 0  
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L i n e a r i z e d  Method o f  C h a r a c t e r i s t i c s  
0 L i n e a r  Theory, Reference i 

X 

FIGURE 19. PRESSURE DISTRIBUTION ALONG A BODY CONFIGURATION DESCRIBED 
BY T H E  EQUATION, h(x) = x/3 - 10x2/36, M, = I. 84 

L i n e a r i z e d  Method o f  C h a r e c t e r i s t  i c s  
0 L i n e a r  Theory, Reference i 
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FIGURE 20. PRESSURE DISTRIBUTION ALONG A BODY CONFIGURATION DESCRIBED 
BY THE EQUATION, h(x) = x/3 - 10x2/36, lb& = 2.45  
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- L i  n e a r i  zed Method of C h a r a c t e r i  S t  i cs 
O L i n e a r  Theory, Reference 1 

FIGURE 21. PRESSURE DISTRIBUTION A LONG A BODY CONFIGURATION DESCRIBED 
BY THE EQUATION, h(x) = x/3 - 10x2/36, M, = 3 . 0 1  

X 

FIGURE 22. PRESSURE DISTRIBUTION ALONG A 5 DEGREE CONE PLUS 
CYLINDER BODY, M, = I. 5, E = . 05  
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L i n e a r i z e d  Hethod of C h a r a c t e r i s t i c s  

FIGURE 23.  PRESSURE DISTRIBUTION ALONG A 5 DEGREE CONE PLUS 
CYLINDER BODY, M, = 3.0, E = . 05  
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FIGURE 24. PRESSURE DISTRIBUTION ALONG A 10 DEGREE CONE PLUS 
CYLINDER BODY, M, = 1.5, E = . I O  
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FIGURE 25. PRESSURE DISTRIBUTION ALONG A 10 DEGREE CONE PLUS 
CYLINDER BODY, M, = 3.0, E = . l o  

L i n e a r i z e d  Method o f  C h a r a c t e r i s t i c s  _ _  -S ims '  Exact Method of C h a r a c t e r i s t i c s  

Mach Number 

FIGURE 26. E F F E C T  O F  MACH NUMBER AND THICKNESS RATIO ON NORMAL 
FORCE COEFFICIENT SLOPE FOR A CONVEX P A R A B O W  OGIVE 
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Linearized Method of Character; s t i c s  _ _ -  Sims' Exact Method of  Characteristics 

~ a c h  Number 

FIGURE 27. E F F E C T  O F  MACH NUMBER AND THICKNESS RATIO ON NORMAL 
FORCE COEFFICIENT SLOPE FOR A CONVEX PARABOLIC OGIVE 

Linearized Method of Characteristics 
---sims' Exact Method of  Characteristics 
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FIGURE 28. E F F E C T  OF MACH NUMBER AND THICKNESS RATIO ON NORMAL 
FORCE COEFFICIENT SLOPE FOR A CONCAVE PARABOLIC OGIVE 
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Linearized Method of eharacter is t ics  
-- - - S i m s '  Exact Method o f  Characteristics 
-- --Slender Body Theory 

Mach Number 

FIGURE 29. E F F E C T  O F  MACH NUMBER AND THICKNESS RATIO ON NORMAL 
FORCE COEFFICIENT SLOPE FOR A CONCAVE PARABOLIC OGIVE 
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FIGURE 30. E F F E C T  O F  MACH NUMBER ON THE NORMAL FORCE COEFFICIENT 
SLOPE FOR A 5 DEGREE CONE PLUS CYLINDER BODY 
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-L inear i red Method o f  Characteristics 
- - - s i c "  Exact Wcthod o f  Characteristics 

Mach Number 

FIGURE 31. E F F E C T  OF MACH NUMBER ON THE NORMAL FORCE COEFFICIENT 
SLOPE FOR A 10  DEGREE CONE PLUS CYLINDER BODY 

Linearized Method of Characteristics - -_  Sims' Exact k t h o d  o f  Characteristics 

e 

X 

FIGURE 32. LOCAL NORMAL FORCE VARIATION 
OGIVES O F  FINENESS RATIO 0.05 AT A 

FOR CONVEX AND CONCAVE 
MACH NUMBER O F  1.5 
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L i nearl zed k t h o d  of Character1 s ti  cs 
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Linearized k t h o d  of Characteristics 

FIGURE 34. LOCAL NORMAL FORCE VARIATION FOR CONVEX AND CONCAVE 
OGIVES OF FINENESS RATIO 0 .10  AT A' MACH NUMBER OF I. 5 
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FIGURE 35. LOCAL NORMAL FORCE VARIATION FOR CONVEX AND CONCAVE 
OGIVES OF FINENESS RATIO 0.10 A T  A MACH NUMBER OF 3 . 0  

X 

FIGURE 36. LOCAL NORMAL FORCE VARIATION FOR CONVEX AND CONCAVE 
OGIVES OF FINENESS RATIO 0.15 A T  A MACH NUMBER OF I. 5' 
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-Linearized Method of Character1 s t i  cs 
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FIGURE 37. LOCAL NORMAL FORCE VARIATION FOR CONVEX AND CONCAVE 
OGIVES OF FINENESS RATIO 0 . 1 5  A T  A MACH NUMBER OF 3 . 0  

___ L I neari red Method of Characteri S t i  cs 
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FIGURE 38. LOCAL NORMAL FORCE VARIATION FOR CONVEX AND CONCAVE 
OGIVES OF FINENESS RATIO 0 .20  A T  A MACH NUMBER OF I. 5 

33 



L i n e a r i z e d  Method of C h a r a c t e r i s t i c s  

X 

FIGURE 39. LOCAL NORMAL FORCE VARIATION FOR CONVEX AND CONCAVE 
OGIVES OF FINENESS RATIO 0 .20  A T  A MACH NUMBER OF 3 . 0  

Linearized Method of Characteri S t  i  cs _ _  -Linear Theory, Reference 1 

FIGURE 40. LOCAL NORMAL FORCE VARIATION ALONG A BODY CONFIGURATION 
DESCRIBED BY THE EQUATION, h(x)  = x/3 - 10x2/36, M, = I. 84 

34 

. .. . . . . _. . . . ... . . . ...,., 



linearized Method of Characteristics 
- - - Linear Theorv. Reference 1 
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FIGURE 41. LOCAL NORMAL FORCE VARIATION ALONG A BODY CONFIGURATION 
DESCRIBED BY THE EQUATION, h ( x )  = ~ / 3  - 10x2/36, M, = 2 . 4 5  

Linearized Method of Characteristics 
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FIGURE 42. LOCAL NORMAL FORCE VARIATION ALONG A BODY CONFIGURATION 
DESCRIBED BY THE EQUATION, h(x) = x/3 - 10x2/36, M, = 3 . 0 1  
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Linearized Method o f  Characteristics _- -  Sims' Exact Method of Characteristics 
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FIGURE 43. COMPARISON BETWEEN THEORY AND EXPERIMENT OF LOCAL NORMAL FORCE 
VARIATION FOR A CONVEX OGIVE O F  FINENESS RATIO 0.066 A T  A MACH NUMBER OF I. 59 
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FIGURE 44. COMPARISON BETWEEN THEORY AND EXPERIMENT O F  LOCAL NORMAL FORCE 
VARIATION FOR A CONVEX OGIVE O F  FINENESS RATIO 0. I A T  A MACH NUMBER O F  3 . 0  



Linearized Method o f  Characteristics 
- - - -S ims'  Exact Method of Characteristics 
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FIGURE 45. COMPARISON BETWEEN THEORY AND EXPERIMENT O F  LOCAL NORMAL FORCE 
VARIATION FOR A CONVEX OGIVE OF FINENESS RATIO 0. I AT A MACH NUMBER O F  4.25 

Linearized Method of Characteristics _ _ _  Zims' Exact Method of Characteristics 
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FIGURE 46. COMPARISON BETWEEN THEORY AND EXPERIMENT O F  LOCAL NORMAL FORCE 
VARIATION FOR A CONVEX OGIVE O F  FINENESS RATIO 0.1667 AT A MACH NUMBER O F  3 . 0  03 
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Linearized Method of Character Is t i c s  
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FIGURE 47. COMPARISON BETWEEN THEORY AND EXPERIMENT O F  LOCAL NORMAL FORCE 
VARIATION FOR A CONVEX OGIVE O F  FINENESS RATIO 0.1667 A T  A MACH NUMBER O F  4.25 
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FIGURE 48. LOCAL NORMAL FORCE VARIATION ALONG A 10 DEGREE CONE PLUS 
CYLINDER BODY, M, = I. 99, E = . I O  
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FIGURE 49. LOCAL NORMAL FORCE VARIATION ALONG A 10 DEGREE CONE PLUS 
CYLINDER BODY, M, = 2.44, E =  010 
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