brought to you by 🗓 CORE

ovided by NASA Technical Reports Ser

X-716-66-248

MASA TAX- 55577

RADIOACTIVE NUCLEI PRODUCTION FROM RELATIVELY ABUNDANT NATURAL ELEMENTS

JULY 1966

GPO PRICE \$_	
CFSTI PRICE(S) \$_	
Hard copy (HC) _	1.00
Microfiche (MF)_	150
ff 853 July 85	

RADIOACTIVE NUCLEI PRODUCTION FROM RELATIVELY ABUNDANT NATURAL ELEMENTS

•

.

•.

by Robert J. Janda

July 1966

GODDARD SPACE FLIGHT CENTER Greenbelt, Maryland

RADIOACTIVE NUCLEI PRODUCTION FROM RELATIVELY ABUNDANT NATURAL ELEMENTS

INTRODUCTION

•

The function of this data is to furnish a guideline in evaluating potential radioactive nuclei production that could affect experiments or personnel in the Goddard Space Flight Center accelerator laboratory. The elements given in the table have been selected based upon the following criteria:

- a. Theoretical reaction threshold energies less than 17.0 Mev.
- b. Half-life time greater than 0.2 second.
- c. Natural element abundance greater than 1%.

The use of the table is intended to serve accelerator personnel by estimating decay half-life for materials placed within the accelerator beam. The beam energy and particle type are taken into account for each material in determining if the reaction goes to completion. Since activation cross-section data is not provided, the table cannot provide reaction yields, it being a monumental task to obtain cross-section data for each threshold energy and particle type.

Since the cross-section data is not readily obtainable, it does not necessarily mean the particular reactions shown in Table II do or do not constitute a radiological hazard. The table shows that the potential reaction exists.

DEFINITION

The following list of definitions are headings as listed left to right in Table II.

Target Nuclide: The element bombarded by the accelerated beam. The superscript refers to the atomic weight. Most elements exist in the form of several isotopes - some radioactive, some stable.

Natural Abundance: The percentage of the particular isotope which is found in any sample of the element.

Radioactive Nuclei: The radioactive product formed when the accelerated beam interacts with the target nuclide.

Production Scheme: The method of interaction to form the radioactive product. The first symbol in parentheses names the accelerated beam particle

which interacts with the target nuclide to yield the radioactive nuclei. The second symbol names the subatomic particle which is produced by the interaction in addition to the radioactive nuclei. 7

Decay Scheme: Defines the type of radiation produced by the radioactive nuclei during its decay. In some cases, there are multiple modes by which the radioactive nuclei may decay, and these are listed by their symbols.

Half-Life: The time required for one half of all the nuclei in a given sample to decay exponentially. The activity never reaches zero, but becomes very small after several half lives. For example, after ten half lives the activity has reduced to $\sim 0.1\%$ of the original amount.

Threshold Energy: The theoretical minimum energy in the center of mass, in million electron volts, an accelerated particle must have to interact with the target nucleus to produce a radioactive nucleus. In practice, the numbers quoted must be increased by 10% to 15% to give the corresponding laboratory energies. For example, light nuclei with heavy bombarding particles will have a large center of mass correction. Conversely heavy nuclei with light bombarding particles will have a small correction.

SYMBOLS

The following symbols are used in Table II:

- α : alpha particle
- β^- : electron emission
- β^* : positron emission
- γ : Gamma ray or x-ray
- ∂ : deuteron (heavy hydrogen nucleus)
- d : days (under half-life heading only)
- e : electron
- ex : exothermic (the accelerated particle does not need any energy to trigger the reaction)

h : hours

٩.

٠

- IT : isometric transition (γ -ray emission)
- K : K shell electron capture (γ -ray emission)
- L : L shell electron capture (γ -ray emission)
- m : minutes

Mev : million electron volts

- n : neutron
- p : proton
- s : seconds
- t : triton (double heavy hydrogen nucleus)

y : years

TABLE UTILIZATION

A typical example of using the tables would be in evaluating the activation hazard of a proton beam on an aluminum target. The relative hazard can be obtained as follows:

- 1. Find Al in Table I, note it is the seventh element listed in Table II.
- 2. Find Al as the seventh element in Table II.
- 3. Choose the correct atomic weight of the element. (Typically, the highest percent of the natural abundance.)
- 4. Seek the correct production scheme, in this case protons or the (p, n) reaction. Note that neutrons should be anticipated if the threshold voltage is reached.
- 5. Find the corresponding threshold energy and add 10% to be conservative. In our case, the final value would be about 6.1 Mev.

6. If the planned accelerated proton beam is to exceed 6.1 Mev, the resulting decay half-life is 4.4 seconds. This element should not constitute a hazard since in an accelerator run the element will decay typically before the accelerator voltage is reduced to ground potential. Y

Table I

ORDER OF TABLE II ELEMENT LISTING

1.	Li	10.	Ar	19.	Ge
2.	N	11.	К	20.	\mathbf{Zr}
3.	0	12.	Ca	21.	Sn
4.	Ne	13.	Ti	22.	Sb
5.	Na	14.	Cr	23.	Та
6.	Mg	15.	Fe	24.	Au
7.	Al	16.	Ni	25.	Pb
8.	Si	17.	Cu	26.	Th
9.	Р	18.	Zn	27.	U

Table II

Ľ

۰,

TARGET NUCLIDE	NATURAL ABUNDANCE	RADIOACTIVE NUCLEI	PRODUCTION SCHEME	DECAY SCHEME	HALF LIFE	THRESHOLD ENERGY
Li ⁶	7.4%	₂ He ⁶	(n,p)	β-	0.82 s	2.74
Li ⁶		2He ⁶	(e,γ)	β-	0.82s	ex
Li ⁶		4Be ⁷	(p,y)	К	53.0d	ex
Li ⁷	92.6%	4Be ⁷	(p,n)	к	53.0d	1.66
Li ⁷		3Li ⁸	(n,γ)	β ⁻ , 2α	0.84s	ex
Li ⁷		4Be ¹⁰	(t,γ)	β^-	2.7 x 10 ⁶ y	ex
N ¹⁴	99.6%	8 ^{0¹⁴}	(p,n)	β^{\dagger}, γ	72.05	5.97
N 14		6 ^{C¹⁴}	(n,p)	β^-	5730.0 y	ex
N ¹⁴		7N ¹³	(γ,n)	β^+	10.0 m	10.56
N ¹⁴		80 ¹⁵	(p,γ)	β^+	2.1 m	ex
N ¹⁴		9F ¹⁸	(α,γ)	β ⁺	1.87 h	ex
O ¹⁶	99.0%	7N ¹⁶	(n,p)	β-,γ	7.48	9.60
O ¹⁶	1	80 ¹⁵	(γ,n)	β^+	2.1m	15.60
O ¹⁶		9F ¹⁷	(p,γ)	β^+	66.0s	ex
O ¹⁶		9F ¹⁸	(3,7)	β^+	1.87 h	ex
Ne ²⁰	90.0%	11 Na ²⁰	(p,n)	β^+, α	0.3s	16.2
Ne ²⁰		9 F ²⁰	(n,p)	β , γ	11.0s	6.25
Ne ²⁰		10 Ne ¹⁹	(γ,n)	β^+	18.5s	16.92
Na ²³	100.0%	12Mg ²³	(p,n)	β^+, γ	12.0s	4.89
Na ²³		10 Ne ²³	(n,p)	β-,γ	40.0s	3.58
Na ²³	+	10 Ne ²³	(e,γ)	β-,γ	40.0s	3.38
Na ²³		11 Na ²⁴	(n, y)	β,γ	15.0h	ex
Mg ²⁴	79.0%	13 Al ²⁴	(p,n)	β^+, γ	2.1s	14.85
Mg ²⁴		11Na ²⁴	(n,p)	β¯,γ	15.0h	4.71
Mg ²⁴	1	12 Mg ²³	(γ, n)	β^+, γ	12.0s	16.57
Mg ²⁴		11Na ²⁴	(e, y)	β ⁻ , γ	15.0h	7.69
Mg ²⁴		13 Al ²⁵	(p,γ)	β^+, γ	7.3s	ex
Mg ²⁴	1	13 Al ²⁶	(7,7)	$\beta^{+};\beta^{+},\gamma$	6.5 s; 10 ⁶ y	ex
Mg ²⁵	10.0%	13 Al ²⁵	(p,n)	β^{\dagger},γ	7.3s	5.05
Mg ²⁵	1	11 Na ²⁵	(n,p)	β ⁻ , γ	60.0s	2.92
Mg ²⁵		11Na ²⁴	(γ,p)	β ⁻ , γ	15.0h	12.07
Mg ²⁵	1	11Na ²⁵	(e,γ)	β,γ	60.0s	3.22
Mg ²⁵		13 Al ²⁶	(p,γ)	$\beta^{+};\beta^{+},\gamma$	6.5 s; 10 ⁶ y	ex
Mg ²⁵		13 A1 ²⁸	(t,γ)	β,γ	2.3 m	ex
Mg ²⁶	11.0%	₁₁ Na ²⁵	(γ,p)	β,γ	1.0 m	14.07
Mg ²⁶		13 Al ²⁶	(p,n)	β^+ β^+, γ	6.5s 10 ⁶ y	4.83
Mg ²⁶		12 Mg ²⁷	(n,γ)	β',γ	9.5 m	ex
Mg ²⁶		13 A1 ²⁸	(2,7)	β,γ	2.3 m	ex
Mg ²⁶	1	13 Al ²⁹	(t,γ)	β.γ	6.6 m	ex
Al ²⁷	100.0%	14 Si ²⁷	(p,n)	β ⁺ ,γ	4.4s	5.62
A1 ²⁷	1	12Mg ²⁷	(n,p)	β,γ	9.5 m	1.79

5

TARGET NUCLIDE	NATURAL ABUNDANCE	RADIOACTIVE NUCLEI	PRODUCTION SCHEME	DECAY SCHEME	HALF LIFE	THRESHOLD ENERGY
A1 ²⁷		12Mg ²⁷	(e,γ)	β^{-}, γ	9.5 m	2.18
A1 ²⁷		13A1 ²⁸	(n,γ)	β-,γ	2.3 m	
Si ²⁸	92.0%	15P ²⁸	(p,n)	β^+, γ	0.28 s	14.55
Si ²⁸		13Al ²⁸	(n,p)	β^{-}, γ	2.3 m	3.86
Si ²⁸		13A1 ²⁸	(e,γ)	β^{-}, γ	2.3 m	4.16
Si ²⁸		15P ²⁹	(p,γ)	β^+, γ	4.5s	ex
Si ²⁸		15P ³⁰	(9,7)	β^+, γ	2.5 s	ex
Si ²⁹	5.0%	15P ²⁹	(p,n)	β^+, γ	4.58	5.76
Si ²⁹		13A1 ²⁹	(n,p)	β^{-},γ	6.6 m	1.95
Si ²⁹		13Al ²⁸	(γ,p)	β^{-},γ	2.3 m	12.35
Si ²⁹		13Al ²⁹	(e,γ)	$\beta^{-} \gamma$	6.6 m	3.40
Si ²⁹		15P ³⁰	(p,γ)	β^+, γ	2.5 m	ex
Si ²⁹		15P ³²	(t,γ)	β ⁻	14.5 d	ex
	3.0%	15P ³⁰	(p,n)	β^+, γ	2.5 m	5.12
Si ³⁰		13Al ²⁹	(Y,P)	β^{-},γ	6.6 m	13.79
Si ³⁰		13 14 Si ³¹	(n, γ)	β^{-}, γ	2.6h	ex
Si ³⁰		15P ³²	(2, 7)	β ⁻	14.5 d	ex
Si ³⁰	+	15P ³³	(t,γ)	β ⁻	25.0 d	ex
P ³¹	100.0%	15 ⁻	(p,p)	β^+, γ	2.65	6.24
P ³¹		10 ¹⁰	(n,p)	β^{-},γ	2.6h	0.68
P ³¹		15P ³⁰	(Y.n)	β^+, γ	2.5 m	12.40
	99.6%	10 ^{K40}	(p,n)	β-; к	10 ⁹ v	2.29
		19	(n,p)	β^{-}, γ	1.82 h	ex
K ³⁹	93.2%	20 Ca ³⁹	(p,n)	β ⁺	1.08	7.61
к ³⁹		10 Ar ³⁹	(n,p)	B ⁻	260.0 v	ex
K ³⁹		10 K ³⁸	(γ,\mathbf{n})	$\beta^+;\beta^+,\gamma$	7.7 m; 0.95 s	12.88
Ca ⁴⁰	96,9%	21Sc ⁴⁰	(p,n)	β^+, γ	0.2s	14.72
Ca ⁴⁰		10K ⁴⁰	(n,p)	β ⁻ ; K	10 ⁹ v	0.53
Ca ⁴⁰		19K ⁴⁰	(e, y)	β ⁻ ; K	10 ⁹ y	0.83
Ca ⁴⁰		21Sc ⁴¹	(p,γ)	β ⁺	0.87 s	ex
Ca ⁴⁰		20 Ca ⁴¹	(n, γ)	К	10 ⁵ y	ex
Ca ⁴⁰		21Sc ⁴²	(7,6)	$\beta^+, \gamma; \beta^+$	62.0s; 0.66s	ex
Ca ⁴⁰		21Sc ⁴³	(t,γ)	β^+, γ	3.9h	ex
Ca ⁴⁰		22Ti ⁴⁴	(α,γ)	К	10 ³ y	ex
Ca ⁴²	0.64%	19K ⁴²	(n,p)	β^{-},γ	12.5h	2.87
Ca ⁴²		19K ⁴²	(e, y)	β^{-},γ	12.5h	3.2
Ca ⁴²		21Sc ⁴³	(p, y)	β^+, γ	3.9h	ex
Ca ⁴²	1	21Sc ⁴⁴	(7, 7)	IT; β^+ , K	2.4d;4.0h	ex
Ca ⁴⁴	2.1%	21Sc ⁴⁴	(p,n)	$TT; \beta^+, K$	2.4d;4.0h	4.45
Ca ⁴⁴		19K ⁴⁴	(n,p)	β^-, γ	22.0 m	5.35
Ca ⁴⁴		19 K ⁴³	(γ,p)	β-, γ	22.0h	12.24
Ca ⁴⁴		19K ⁴⁴	(e, y)	β ⁻ , γ	22.0 m	6.1

٠.

•

TARGET NUCLIDE	NATURAL ABUNDANCE	RADIOACTIVE NUCLEI	PRODUCTION SCHEME	DECAY SCHEME	HALF LIFE	THRESHOLD ENERGY
Ca ⁴⁴		20Ca ⁴⁵	(n,γ)	β	160.0d	ex
Ca ⁴⁴		21Sc ⁴⁶	(θ, γ)	IT, K; β^- , γ	20.0s;85.0d	ex
Ca ⁴⁴		21Se ⁴⁷	(t,γ)	β^{-},γ	3.4 d	ex
Ti ⁴⁶	8.0%	23V ⁴⁶	(p,n)	β ⁺	0.4s	8.17
Ti ⁴⁶		₂₁ Se ⁴⁶	(n,p)	IT, K; β^{-} , γ	20.0s;85.0d	1.56
Ti ⁴⁶		₂₂ Ti ⁴⁵	(γ,n)	β ⁺ ; K	3.1h	13.4
Ti ⁴⁸	74.0%	23V ⁴⁸	(p,n)	β ⁺ ; K	16.2 d	4,83
Ti ⁴⁸		21Sc ⁴⁸	(n,p)	β^{-}, γ	44.0h	3.24
Ti ⁴⁸		21Sc ⁴⁷	(γ,p)	β ⁻ , γ	82.0h	11.4
Ti ⁴⁹	5.5%	23V ⁴⁹	(p,n)	Κ (no γ)	1 y	1.41
Ti ⁴⁹		₂₁ Sc ⁴⁹	(n,p)	β ⁻ , γ	57.0m	1.19
Ti ⁴⁹		21Sc ⁴⁸	(γ,p)	β^{-},γ	44.0h	11.4
Ti ⁵⁰	5.3%	23V ⁵⁰	(p,n)		10 ¹⁴ y	3.21
Ti ⁵⁰		21Sc ⁴⁹	 (γ,p)	β^{-},γ	57.0 m	12.2
Cr ⁵⁰	4.4%	25 Mn ⁵⁰	(p,n)	III, $\beta^+; \beta^+$	2.0m; 0.28s	8.60
Cr ⁵⁰		23V ⁵⁰	(n,p)	_	10 ¹⁴ y	0.60
Cr ⁵⁰		24Cr ⁴⁹	(γ,n)	β ⁺ , γ	42.0 m	13.2
Cr ⁵⁰		25 Mn ⁵⁷	(p,γ)	β^+, γ	45.0 m	ex
Cr ⁵⁰		24Cr ⁵¹	(n,γ)	к	27.0d	ex
Cr ⁵⁰		25 Mn ⁵²	(7,7)	IT, β^+ ; K	21.0 m ; 57 d	ex
Cr ⁵⁰		25 Mn ⁵³	(t, y)	К	140.0y	ex
Cr ⁵²	84.0%	25Mn ⁵²	(p,n)	Π, β ⁺ ; Κ	21.0m; 5.7d	5.50
Cr ⁵²		23V ⁵²	(n,p)	β-,γ	3.8 m	3.10
Cr ⁵²		23V ⁵²	(e,γ)	β-,γ	3.8 m	3.40
Cr ⁵²		25 Mn ⁵³	(p,γ)	Κ (πο γ)	10 ⁶ y	ex
Cr ⁵²		25Mn ⁵⁴	(7,7)	к	314 d	ex
Cr ⁵³	9.5%	₂₅ Mn ⁵³	(p,n)	Κ (πο γ)	10 ⁶ y	1.40
Cr ⁵³		23V ⁵²	(γ,p)	β-,γ	3.8 m	11.1
Cr ⁵³		25 Mn ⁵⁴	(p,γ)	ĸ	314 d	ex
Cr ⁵³		25 Mn ⁵⁶	(t, y)	β-,γ	2.6h	ex
Cr ⁵⁴	2.4%	25 Mn ⁵⁴	(p,n)	К	314 d	2.00
Cr ⁵⁴		24Cr ⁵⁵	(n,y)	β	3.6 m	ex
Cr ⁵⁴		25Mn ⁵⁶	(7, 7)	β ⁻ , γ	2.6h	ex
Cr ⁵⁴		25Mn ⁵⁷	(t,γ)	β ⁻ , γ	1.7 m	ex
Fe ⁵⁴	6.0%	27Co ⁵⁴	(p,n)	β+	0.18s	9.70
Fe ⁵⁴	1	25 Mn ⁵⁴	(n,p)	К	314 d	ex
Fe ⁵⁴	1	26 Fe ⁵³	(γ,n)	β^+, γ	9.0 m	13.6
Fe ⁵⁴		25Mn ⁵⁴	(e,γ)	К	314 d	0.1
Fe ⁵⁴	1	27Co ⁵⁵	(p,γ)	β⁺, К	18.0h	ex
Fe ⁵⁴		26 ^{Fe⁵⁵}	(n,γ)	Κ (πο γ)	2.9y	ex
Fe ⁵⁴		27Co ⁵⁶	(Ͽ, γ)	К,β ⁺	77.0d	ex
Fe ⁵⁴		27Co ⁵⁷	(t,γ)	К	267.0d	ex

7

¢

TARGET NUCLIDE	NATURAL ABUNDANCE	RADIOACTIVE NUCLEI	PRODUCTION SCHEME	DECAY SCHEME	HALF LIFE	THRESHOLD ENERGY
Fe ⁵⁶	92.0%	27Co ⁵⁶	(p,n)	к,β+	77.0d	5.40
Fe ⁵⁶	1	25 Mn ⁵⁶	(n,p)	β ⁻ , γ	2.6h	2.90
Fe ⁵⁶		25 Mn ⁵⁶	(e,γ)	β-, γ	2.6h	3.20
Fe ⁵⁶		27Co ⁵⁷	(p,γ)	К	267.0 d	ex
Fe ⁵⁶		27Co ⁵⁸	(3,7)	IT; β^+ , K	9.0h;71.0d	ex
Fe ⁵⁷	2.0%	27Co ⁵⁷	(p,n)	К	267.0 d	1.30
Fe ⁵⁷		₂₅ Mn ⁵⁶	(γ,p)	β ⁻ , γ	156.0 m	10.6
Fe ⁵⁷		27 ^{Co⁵⁸}	(p,γ)	IT; K, β^+	9.0h;71.0d	ex
Fe ⁵⁷		27Co ⁶⁰	(t,γ)	β ⁻ , γ	5.2y	ex
Fe ⁵⁸	0.3%	27Co ⁵⁸	(p,n)	IT; K, β^+	9.0h;71.0d	3.10
Fe ⁵⁸		26Fe ⁵⁹	(n,γ)	β ⁻ , γ	45.0d	ex
Fe ⁵⁸		27 ^{Co⁶⁰}	(θ,γ)	β-,γ	5.2y	ex
Fe ⁵⁸		27Co ⁶¹	(t,γ)	β¯, γ	1.65 h	ex
Ni ⁵⁸	68.0%	29Cu ⁵⁸	(p,n)	β ⁺ , γ	3.2 \$	10.80
Ni ⁵⁸		27 ^{Co58}	(n,p)	IT ; Κ , β ⁺	9.0h;71.0d	ex
Ni ⁵⁸		28 Ni ⁵⁷	(γ,n)	β ⁺ ; K	36.0h	11.8
Ni ⁵⁸		27Co ⁵⁸	(e, y)	IT ; Κ, β ⁺	9.0h;71.0d	ex
Ni ⁵⁸		29 ^{Cu⁵⁹}	(p,γ)	β^{+}, γ	81.0 s	ex
Ni ⁵⁸	**	28 ^{Ni⁵⁹}	(n,γ)	Κ (no γ)	10 ⁵ y	ex
Ni ⁵⁸		29Cu ⁶⁰	(3,7)	β^+, γ	24.0 m	ex
Ni ⁵⁸		29Cu ⁶¹	(t,γ)	β^+, γ	3.3h	ex
Ni ⁵⁸		30Zn ⁶²	(α,γ)	К,β ⁺	9.0h	ex
Ni ⁶⁰	26.0%	29Cu ⁶⁰	(p,n)	β^+, γ	24.0 m	7.1
Ni ⁶⁰		27Co ⁶⁰	(n,p)	β ⁻ , γ	5.2y	2.0
Ni ⁶⁰		27Co ⁶⁰	(e,γ)	β ⁻ , γ	5.2y	0.80
Ni ⁶⁰		29 ^{Cu⁶¹}	(p,y)	β ⁺ , γ	3.3h	ex
Ni ⁶⁰		2 9 ^{Cu⁶²}	(3,7)	κ,β [±]	9.9 m	ex
Ni ⁶⁰		28 ^{Ni⁵⁹}	(γ, n)	Κ (no γ)	10 ⁵ y	ex
Ni ⁶¹	1.1%	29Cu ⁶¹	(p,n)	β^+, γ	3.3h	3.0
Ni ⁶¹		27Co ⁶¹	(n,p)	β ⁻ , γ	1.7h	0.6
Ni ⁶¹		27 ^{C0⁶¹}	(e,γ)	β ⁻ , γ	1.7h	2.40
Ni ⁶¹		29 ^{Cu⁶²}	(p,γ)	β ⁺ , γ	9.9 m	ex
Ni ⁶¹		27 ^{Co⁶⁰}	(γ,p)	β-,γ	5.2y	ex
Ni ⁶²	4.0%	29Cu ⁶²	(p,n)	β^+, γ	9.9m	4.70
Ni ⁶²		27Co ⁶²	(n,p)	$\beta^{-};\beta^{-},\gamma$	1.6m; 14.0m	3.70
Ni ⁶²		27Co ⁶¹	(γ,p)	β ⁻ , γ	96.0 m	11.0
Ni ⁶²	1	27Co ⁶²	(e, y)	β¯;β¯,γ	1.6m; 14.0m	4.5
Ni ⁶²		28 ^{Ni⁶³}	(n,γ)	β¯	80.0y	ex
Ni ⁶²		29Cu ⁶⁴	(2,7)	Κ , β [±]	12.8 h	ex
Ni ⁶⁴	1.0%	29Cu ⁶⁴	(p,n)	Κ , β [±]	12.8 h	2.50
Ni ⁶⁴		28Ni ⁶⁵	(n,γ)	β ⁻ , γ	2.56 h	ex
Ni ⁶⁴		29Cu ⁶⁶	(2,y)	β,γ	5.1 m	ex

۹,

TARGET NUCLIDE	NATURAL ABUNDANCE	RADIOACTIVE NUCLEI	PRODUCTION SCHEME	DECAY SCHEME	HALF LIFE	THRESHOLD ENERGY
Ni ⁶⁴	1	29Cu ⁶⁷	(t,γ)	β^{-}	61.0h	ex
Cu ⁶³	69.0%	$_{30}Zn^{63}$	(p,n)	β^{+}, γ	38.0 m	4.20
Cu ⁶³	· · · · · · · · · · · · · · · · · · ·	20 Ni ⁶³	(n,p)	B ⁻ v	92.0 v	ex
Cu ⁶³	1	20 20Cu ⁶²	(Y,n)	β^+ , γ	10.0 m	10.6
Cu ⁶³		28 Ni ⁶³	(e,y)	β^{-}, γ	92.0 v	ex
Cu ⁶³		29Cu ⁶⁴	(n, y)	<u>κ</u> , β [±]	12.8h	ex
Cu ⁶³		30Zn ⁶⁵	(7.5)	к. в+	245.0d	ex
Cu ⁶³		30-1 31Ga ⁶⁷	(q, y)	β ⁺ . K	78 h	ex
Cu ⁶⁵	31.0%	20 Ni ⁶⁵	(e, y)	<u>β</u> [−] γ	2.6h	0.1
Cu ⁶⁵		28 ¹¹	(0,7)	$\beta^{-}\gamma$	5.1m	ex
Cu ⁶⁵	· · · · · · · · · · · · · · · · · · ·	290 a	(n,n)	к в+	245.0d	2, 15
Cu ⁶⁵	-	3021	(p,n)	<u> </u>	2.6h	1.28
Cu ⁶⁵		28 ¹¹¹	(x,p)	K B [±]	13.0h	9.8
Zn ⁶⁴	49.0%	2900	(<i>y</i> , <i>n</i>)	β ⁺	2.5 m	8 1
Zn ⁶⁴		510u	(p,n)	K B [±]	12.8 h	0.1 ev
Zn ⁶⁴	<u> </u>	2gCu	(n,p)	κ, ρ γ ρ [±]	12.0 h	0.5
7n ⁶⁴		290u	(0, y)	$\mathbf{K}, \boldsymbol{\rho}$	15.0m	0.0
7n ⁶⁴		310a	(p,y)	и,р,к к о ⁺	245.0d	CA OV
7764		3021	(u,y)	κ, ρ ρ+ ν	243.00	ex
2n 75 ⁶⁴		31Ga-5	(0, y)	β, κ ν	5.41	ex
7,64		31 Ga- 7_63	·(t, y)	ρ^+, ν	10.0u	11.0
Zn 7-66	00.07	30 ² n	(γ,n)	β ; K	38.0 m	11.9
Zn ⁻¹	28.0%	31 Ga	(p,n)	β;κ 0 ⁻	9.4 h	6.0
Zn°5	<u> </u>	29Cu ⁰⁰	(n,p)	β,γ	5.1m	1.8
Zn		29Cu ⁰⁰	(e,γ)	β,γ	5.1m	2.1
Zn ⁶⁶		31Ga°'	(p, y)	K	78.0h	ex
Zn ⁰⁰		31Ga°°	(9,7)	β', K	68.0m	ex
Zn ⁶⁷	4.0%	31Ga ⁶⁷	(p,n)	K	28.0h	1.9
Zn ⁶⁷		29Cu ⁶⁷	(n,p)	β , γ	61.0h	ex
Zn ⁶⁷		29Cu ⁶⁷	(e,y)	β, γ	61.0h	0.1
Zn ⁶⁷		31Ga ⁶⁸	(p, y)	β*; K	68.0m	ex
Zn ⁶⁷		31Ga ⁷⁰	(t, y)	β^{-}, γ	21.0 m	ex
Zn ⁶⁷		32Ge ⁷¹	(α,γ)	К	12.0d	ex
Zn ⁶⁷		29Cu ⁶⁶	(y,p)	β ⁻ , γ	5.1m	8.9
Zn ⁶⁸	19.0%	31 Ga'0	(p,n)	β ⁺ ; K	68.0 m	3.70
Zn ⁶⁸		29Cu ⁶⁷	(γ,p)	β,γ	61.0h	9.4
Zn ⁶⁸		₃₀ Zn ⁶⁹	(n, y)	IT; β^-	14.0h; 52.0m	ex
Zn ⁶⁸	L	31Ga ⁷⁰	(2, 7)	β ⁻ ,γ	21.0 m	ex
Zn ⁷⁰	0.6%	31Ga ⁷⁰	(p,n)	β^{-} , γ	21.0 m	1.40
Zn ⁷⁰		30Zn ⁷¹	(n, y)	β ⁻ , γ ; β ⁻ , γ	3.0h; 2.5m	ex
Zn ⁷⁰		₃₁ Ga ⁷²	(2, y)	β ⁻ , γ	14.1h	ex
Zn ⁷⁰		31Ga ⁷³	(t,γ)	β ⁻ ,γ	5.0h	ex
Ge ⁷⁰	21.0%	₃₁ Ga ⁷⁰	(n,p)	β^{-} , γ	21.0 m	0.8

TARGET NUCLIDE	NATURAL ABUNDANCE	RADIOACTIVE NUCLEI	PRODUCTION SCHEME	DECAY SCHEME	HALF LIFE	THRESHOLD ENERGY
Ge ⁷⁰		31Ga ⁷⁰	(e,γ)	β^{-}, γ	21.0 m	1.1
Ge ⁷⁰		33As ⁷¹	(p,γ)	β ⁺ , γ	62.0 h	ex
Ge ⁷⁰		32Ge ⁷¹	(n,γ)	К	12.0d	ex
Ge ⁷⁰		33As ⁷²	(7,7)	β ⁺ , γ	26.0 h	ex
Ge ⁷⁰		33As ⁷³	(t,γ)	K	76.0 d	ex
Ge ⁷²	27.0%	33As ⁷²	(p,n)	β ⁺ ,γ	26.0h	5.20
Ge ⁷²		31Ga ⁷²	(n,p)	β^{-}, γ	14.1h	3.20
Ge ⁷²		31Ga ⁷²	(e,γ)	β ⁻ , γ	14.1h	3,50
Ge ⁷²		33As ⁷³	(p,γ)	К	76.0 d	ex
Ge ⁷²		33As ⁷⁴	(θ,γ)	Π;Κ,β [±]	8.0s;18.0d	ex
Ge ⁷³	7.8%	33As ⁷³	(p,n)	к	76.0d	1.20
Ge ⁷³	1	31Ga ⁷³	(n,p)	β-,γ	5.0h	0.6
Ge ⁷³	1	31Ga ⁷³	(e,γ)	β-,γ	5.0h	0.6
Ge ⁷³		33As ⁷⁴	(p,γ)	Π; K , β [±]	8.0s;18.0d	ex
Ge ⁷³		33As ⁷⁶	(t,γ)	β ⁻ , γ	26.7h	ex
Ge ⁷⁴	36.5%	33As ⁷⁴	(p,n)	IT; Κ , β [±]	8.0s; 18.0d	3.4
Ge ⁷⁴	1	32Ge ⁷⁵	(n,γ)	IT; β^{-}, γ	49.0s; 82.0m	ex
Ge ⁷⁴		33As ⁷⁶	(3,7)	β ⁻ , γ	26.7 h	ex
Ge ⁷⁴		33As ⁷⁷	(t,γ)	β-,γ	39.0h	ex
Ge ⁷⁶	7.8%	33 As ⁷⁶	(p,n)	β¯,γ	26.7 h	1.90
Ge ⁷⁶		33As ⁷⁷	(p,γ)	β ⁻ , γ	39.0h	ex
Ge ⁷⁶		32Ge ⁷⁷	(n,γ)	IT, $\beta^{-}, \gamma; \beta^{-}, \gamma$	52.0s ; 12.0h	ex
Ge ⁷⁶		33As ⁷⁸	(<i>∂</i> , <i>γ</i>)	Γ Τ; <i>β</i> ⁻ , γ	6.0 m; 90.0 m	ex
Ge ⁷⁶		33As ⁷⁹	(t,γ)	β,γ	9.0 m	ex
Zr ⁹⁰	52.0%	41Nb ⁹⁰	(p,n)	IT; β^+, γ	24.0s ; 14.6h	5.20
Zr ⁹⁰		39 ^{Y90}	(n,p)	IT; β^+, γ	3.2h;64.2h	1.40
Zr ⁹⁰		39Y ⁹⁰	(e, y)	IT; β^+, γ	3.2h;64.2h	2.0
Zr ⁹⁰		41Nb ⁹¹	(p,γ)	IT , K ; K	62.0d; long	ex
Zr ⁹⁰		41Nb ⁹²	(2,7)	к	10.1 d	ex
Zr ⁹¹	11.0%	41 Nb ⁹¹	(p,n)	П.К;К	62.0d; long	2.20
Zr ⁹¹		39Y ⁹¹	(n,p)	ΙΤ; β,γ	50.0m; 58.0d	0.70
Zr ⁹¹		39Y ⁹¹	(e, y)	IT ; β ⁻ , γ	50.0m;58.0d	1.0
Zr ⁹¹		41Nb ⁹²	(p,γ)	К	10.1 d	ex
Zr ⁹¹		41Nb ⁹⁴	(t,γ)	IT, β^{-} , γ ; β^{-} , γ	6.6m, 10 ⁴ y	ex
Zr ⁹²	17.1%	41Nb ⁹²	(p,n)	к	10.1y	2.50
Zr ⁹²		39Y ⁹²	(n,p)	β ⁻ , γ	3.5 h	2.70
Zr ⁹²		₃₉ Y ⁹²	(e, y)	β ⁻ , γ	3.5 h	3.0
Zr ⁹²		40Zr ⁹³	(n,γ)	β^{-},γ	10 ⁶ y	ex
Zr ⁹²		41Nb ⁹⁴	(2, 7)	IT. $\beta^{-}, \gamma; \beta^{-}, \gamma$	$6.6 \mathrm{m}; 10^4 \mathrm{y}$	ex
Zr ⁹²		41Nb ⁹⁴	(t,γ)	IT. β ⁻ , γ; β ⁻ , γ	$6.6 \mathrm{m}; 10^4 \mathrm{y}$	ex
Zr ⁹⁴	17.4%	41Nb ⁹⁴	(p,n)	ΙΤ. β., γ;β., γ	$6.6 \mathrm{m}; 10^4 \mathrm{y}$	1.50
Zr ⁹⁴		39Y ⁹⁴	(n,p)	β^-, γ	20.0 m	4.60

٩

4

TARGET NUCLIDE	NATURAL ABUNDANCE	RADIOACTIVE NUCLEI	PRODUCTION SCHEME	DECAY SCHEME	HALF LIFE	THRESHOLD ENERGY
Zr ⁹⁴		39 ^{Y94}	(e,γ)	β^{-},γ	20.0m	4.90
Zr ⁹⁴		41 Nb ⁹⁵	(p,γ)	IT; β . γ	90.0n; 35.0d	ex
Zr ⁹⁴		40Zr ⁹⁵	(n, y)	β ⁻ ,γ	65.0d	ex
Zr ⁹⁴		41Nb ⁹⁶	(3,7)	β,γ	23.0h	ex
Zr ⁹⁴		41 Nb ⁹⁷	(t,y)	IT; β^{-},γ	1.0 m ; 72.0 m	ex
Zr ⁹⁶	3.0%	41 Nb ⁹⁶	(p,n)	β.γ	23.0h	0.50
Zr ⁹⁶		41 Nb ⁹⁷	(p,γ)	IT; β^{-}, γ	1.0 m ; 72.0 h	ex
Zr ⁹⁶		40Zr ⁹⁷	(n, y)	β ⁻ .γ	17.0h	ex
Sn ¹¹²	1.0%	49In ¹¹²	(e,γ)	$ IT \\ IT \\ K, \beta^{\pm} $	0.04 s 21.0 m 14.0 m	ex
Sn ¹¹²		49 In ¹¹²	(n,p)	ΙΤ ΓΓ Κ,β [±]	0.04s 21.0m 14.0m	ex
Sn ¹¹⁶		49 In ¹¹⁶	(e,γ)	ΙΤ; <i>β</i> ⁻ , γ <i>β</i> ⁻ , γ	2.2s; 54.0m 14.0s	2.8
Sn ¹¹⁶	14.3%	51Sb ¹¹⁸	(7, 7)	β ⁺ , κ κ	3.5 m 5.1 h	ex
Sn ¹¹⁶		₅₁ Sb ¹¹⁹	(t,γ)	к	38.0h	ex
Sn ¹¹⁶		₅₁ Sb ¹¹⁶	(p,n)	β ⁺ , к β ⁺ , к	60.0 m 15.0 m	5.50
Sn ¹¹⁶		49 In ¹¹⁶	(n,p)	$IT; \beta, \gamma \beta, \gamma$	2.2s;54.0m 14.0s	2.50
Sn ¹¹⁷	7.6%	49 In ¹¹⁷	(e,y)	β^{-}, IT β^{-}, γ	1.9h 45.0 m	1.00
Sn ¹¹⁷	· · · · · · · · · · · · · · · · · · ·	51Sb ¹¹⁸	(p,γ)	β ⁺ , κ κ	3.5 m 5.1 h	ex
Sn ¹¹⁷		51Sb ¹¹⁹	(2,7)	К	38.0h	ex
Sn ¹¹⁷		518b ¹²⁰	(t,γ)	К β⁺, к	5.8d 17.0m	ex
Sn ¹¹⁷		49In ¹¹⁷	(n,p)	β^{-}, IT β^{-}, γ	1.9h 45.0m	0.70
Sn ¹¹⁸	24.0%	51Sb ¹²⁰	(9,7)	К β ⁺ , К	5.8d 17.0m	ex
Sn ¹¹⁸		₅₁ Sb ¹¹⁸	(p,n)	β ⁺ , κ κ	3.5 m 5.1 h	4.90
Sn ¹¹⁹	8.5%	51Sb ¹²⁰	(p,y)	К β ⁺ , К	5.8d 17.0m	ex
Sn ¹¹⁹		51Sb ¹²²	(t,y)	ІТ β [±] , к	3.5 m 2.8 d	ex
Sn ¹²⁰	32.5%	50 ^{Sn¹²¹}	(n, y)	β^{-},γ^{-}	25.0y 27.0h	ex
Sn ¹²⁰		₅₁ Sb ¹²²	(7,7)	ΓΤ Κ, β [±]	3.5 m 2.8 d	ex
Sn ¹²⁰		51Sb ¹²⁰	(p,n)	К β⁺,К	5.8d 17.0m	3.50
Sn ¹²²	4.8	₅₀ Sn ¹²³	(n, y)	β ⁻ ,γ β ⁻ ,γ	130.0d 40.0m	ex

TARGET NUCLIDE	NATURAL ABUNDANCE	RADIOACTIVE NUCLEI	PRODUCTION SCHEME	DECAY SCHEME	HALF LIFE	THRESHOLD ENERGY
Sn ¹²²		₅₁ Sb ¹²⁴	(3,7)	$\frac{\mathbf{rr}}{\boldsymbol{\beta}^{-}, \gamma}$	21.0 m 1.3 m 60.0 d	ex
Sn ¹²²	.	51Sb ¹²⁵	(t,γ)	β ⁻ ,γ	2.7 y	ex
Sn ¹²²		51Sb ¹²²	(p,n)	$\mathbf{IT} \\ \mathbf{K}, \boldsymbol{\beta}^{\pm}, \boldsymbol{\gamma}$	3.5 m 2.8 d	2.30
Sn ¹²⁴	6.1%	51Sb ¹²⁵	(p,γ)	β ⁻ , γ	2.7у	ex
Sn ¹²⁴		50 Sn ¹²⁵	(n,γ)	β,γ β,γ	9.5 m 10.0 d	ex
Sn ¹²⁴		51 Sb ¹²⁶	(2,7)	$\beta^{-},\gamma;\beta^{-},\gamma$	19.0m; 12.5d	ex ?
Sn ¹²⁴		51 Sb ¹²⁷	(t,γ)	β¯,γ	93.0h	ex ?
Sn ¹²⁴		51Sb ¹²⁴	(p,n)	$ \begin{matrix} \text{IT} \\ \boldsymbol{\beta}^{-}, \gamma \\ \boldsymbol{\beta}^{-}, \gamma \end{matrix} $	21.0 m 1.3 m 60.0 d	1.40
Sn 124		50 Sn ¹²³	(γ,n)	β ⁻ ,γ β ⁻ ,γ	130.0d 40.0m	8.4
Sb^{121}	57.0%	₅₀ Sn ¹²¹	(γ,n)	β,γ β,γ	25.0y 27.0h	ex
Sb ¹²¹		51Sb ¹²⁰	(γ,n)	κ β ⁺ , κ	5.8d 17.0m	9.3
Sb ¹²³	43.0%	₅₀ Sn ¹²³	(e,γ)	β ⁻ ,γ β ⁻ ,γ	130.0d 40.0m	0.9
Sb ¹²³		₅₁ Sb ¹²⁴	(n, y)	$ \begin{array}{c} \mathbf{\Gamma}\mathbf{T}\\ \boldsymbol{\beta}^{-}, \boldsymbol{\gamma}\\ \boldsymbol{\beta}^{-}, \boldsymbol{\gamma} \end{array} $	21.0 m 1.3 m 60.0 d	ex
Sb ¹²³		₅₀ Sn ¹²³	(n,p)	β, γ β, γ	130.0d 40.0m	0.6
Ta ¹⁸¹	99.99%	72Hf ¹⁸¹	(n,p)	β¯,γ	46.0 d	0.20
Ta ¹⁸¹		73 ^{Ta¹⁸⁰}	(y,n)	β ⁻ K	8.0h	7.7
Au ¹⁹⁷	100.0%	78Pt ¹⁹⁷	(n,p)	$\begin{array}{c} \mathrm{IT} ; \beta, \gamma \\ \beta, \gamma \\ \beta, \gamma \end{array}$	2.8h; 82.0m 19.0h	0.00
Au ¹⁹⁷		78Pt ¹⁹⁷	(e,y)	IT; β, γ β, γ	2.8h; 82.0m 19.0h	0.30
Au 197		79 Au ¹⁹⁸	(n,γ)	β¯,γ	2.7 d	ex
Au 197		81Tl ²⁰¹	(a,y)	K.	3.0d	ex ?
Pb ²⁰⁴	1.3%	81T1 ²⁰⁴	(e,y)	β ⁻ , K	4.1y	0.30
Pb ²⁰⁴		₈₂ Pb ²⁰⁵	(n, y)	К	3×10^7 y	ex
Pb ²⁰⁴		83Bi ²⁰⁶	(∂,γ)	К	6.4d	ex
Pb 204		83Bi ²⁰⁷	(t, y)	K,Ľ	30.0y	ex
Pb ²⁰⁴		84Po ²⁰⁸	(α,γ)	.α,γ	2.9y	5.19
Pb ²⁰⁴		81Tl ²⁰⁴	(n,p)	β ⁻ , К	4.1y	0.0
Pb ²⁰⁶	26.0%	81T1 ²⁰⁶	(e,γ)	β	4.2 m	1.02
Pb ²⁰⁶		₈₃ Bi ²⁰⁷	(p,γ)	K,L	30.0y	ex
Pb ²⁰⁶		84 Po ²¹⁰	(α,γ)	α,γ	138.0d	5.41
Pb ²⁰⁶		83Bi ²⁰⁶	(p,n)	К	6.4 d	4.35
Pb ²⁰⁶		81T1 ²⁰⁶	(n,p)	β	4.2 m	0.72

TARGET NUCLIDE	NATURAL ABUNDANCE	RADIOACTIVE NUCLEI	PRODUCTION SCHEME	DECAY SCHEME	HALF LIFE	THRESHOLD ENERGY
Pb ²⁰⁷	21.0%	₈₃ Bi ²⁰⁷	(p,n)	к	30.0y	3.20
Pb ²⁰⁷		81T1 ²⁰⁷	(n,p)	β ⁻ ,γ	4.8 m	0.65
Pb ²⁰⁷		₈₁ Tl ²⁰⁶	(y,p)	β^-	4.2 m	7.5
Pb ²⁰⁸	52.0%	81T1 ²⁰⁷	(y,p)	β^{-},γ	4.8 m	8.0
Pb ²⁰⁸		83Bi ²⁰⁸	(p,n)	K,L	3.7×10^5 y	3.73
Pb ²⁰⁸		81T1 ²⁰⁸	(n,p)	β ⁻ ,γ	3.1 m	4.20
Th ²³²	100.0%	₉₁ Pa ²³²	(p,n)	β-,γ	1.3d	1.16
Th ²³²		90Th ²³¹	(γ,n)	β^{-},γ	26.0h	6.4
U ²³⁸	99.3%	93 Nb ²³⁸	(p,n)	β-,γ	2.1d	0.90
U ²³⁸		91Pa ²³⁷	(γ,p)	β¯,γ	39.0 m	7.5

Table II (Continued)

ADDITIONAL REFERENCES TO OBTAIN NUCLEAR DATA:

- National Bureau of Standards Circular #499 - Nuclear Data September 1, 1950
- Table of Isotopes Seaborg, G. T. & Perlman, I. Rev. of Modern Physics Vol. 20, No. 4, October 1948

ACKNOWLEDGEMENTS

The author wishes to acknowledge and thank Messrs. Eric Katz and Jesse Sabo for the assistance in compilation of the data.