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A SURVEY OF STRUCTURAL DYNAMICS
OF SOLID PROPELLANT ROCKET MOTORS:

by J. H. Baltrukonis
ABSTRACT

From the point of view of dynamics, a solid propellant rocket motor is an
unique structure in that it is composed of a substantial mass of propellant
material case-bonded to a relatively massless, thin-walled cylinder. The
mechanical properties of the propellant are such that it contributes little to
the stiffness of the composite_structure but it does contribute to the dynamic
characteristics of the structure because of its mass. Furthermore, due to the
viscoelastic character of the propellant, it can be expected to provide con-
siderable damping to the system. At this point in the development of the art
of design of solid propellant rocket motors there are no clear-cut or well-
founded methods to quantitatively evaluate the contributions of the propellant
to the dynamic responses of the composite structure. It is clear that unless
such methods are devised, it will be difficult to arrive at accurate missile

designs.

In the paper a survey of the dynamic problems of solid propellant rocket
motors is presented starting from the simplest model thereof and proceeding,
step-by-step, to the consideration of more sophisticated and realistic models.
The consideration is restricted to infinitesimal deformations of propellant
grains with linear mechanical properties. Substantial progress has been
achieved towards the solution of many important dynamical problems. We shall
attempt to summarize the pertinent developments and indicate along which lines
we feel future study should proceed. A few illustrative solutions are included

in areas wherein progress has been substantial.

*An abbreviated form of this paper was presented at the International
Conference on the Mechanics and Chemistry of Solid Propellants held at Purdue
University, Lafayette, Indiana on April 19-21, 1965.




INTRODUCTION

Structural dynamics concerns the analysis, by theoretical and/or experi-
mental means, of the interactions of time-dependent loads and/or deformations
externally applied to a structure or structural element and the internal
stress and displacement response wherein inertial effects must be included in
the analysis. It is the objective of this paper to present a survey of the
field of structural dynamics of solid propellant rocket motors, to discuss
those aspects of the subject which are of particular interest to the author
and to recommend those areas in which further study should prove fruitful and
rewarding. It is not our objective to present a bibliographical survey of the
field and, consequently, many specific, individual contributions will probably
be overlooked. There is no claim of uniqueness for this survey of the field
nor do we maintain that it is complete since it is inevitable that a study of
this sort will be biased to a large extent by the limitations, interests and
viewpoint of the author.

The first logical step in a task of this sort is to delimit the field
under consideration. In general, we shall not be interested in the dynamics
of complete rockets or missiles which may consist of several stages. Instead,
we shall limit our concern to individual solid propellant rocket motors; i.e.,
casing plus propellant. We shall not be interested in any attachments to the
casing such as rocket nozzles, guidance and control system assemblies, etc.

It is not intended to imply that the dynamics of complete rockets is not im-
portant, but rather the intention is to limit the scope of this presentation,

A solid propellant rocket motor is an unusually complicated structure,
at least from the standpoint of analysis thereof. It consists of a thin,
circular cylindrical casing with domed end closure. The energetic propellant
grain is bonded to the casing along its outer cylindrical surface. Frequent-
ly, a rubber liner is interposed between the grain and casing for purposes of
insulation. The flow of the gases developed by surface combustion of the solid
propellant occurs through passages of relatively complex geometry within the
grain to the one or more nozzles in the aft dome of the motor. The motor
casing material is usually an elastic material such as steel though there has

been a recent trend to casings wound of fiberglass filaments and impregnated
with some sort of hard resin.

The propellant material is a composite consisting of an elastomeric
binder, a crystalline oxidizer and dispersed solid materials such as aluminum
particles. This material is very compliant relative to the casing, is time-
or frequency-dependent and is highly temperature-sensitive. Finally, the
grain is very massive compared to the casing usually constituting from 80 to
95 per cent of the total mass of the motor.

Clearly, analysis of this structure for its responses to various dynamic
stimuli is an imposing task indeed. The usual first step in the analysis of




a complicated structure is the formulation of a tractable mathematical model.
The structure involves several fundamental difficulties but probably the
principal ones are (1) the complex geometry of the internal passages in the
propellant grain; and (2) the fact that the motor is of finite length thereby
introducing possible interaction of end effects. These two difficulties are
of the same nature as the complications that have plagued elasticians from

the very beginnings of the field of elasticity. Consequently, at the outset,
it seems wise to idealize the structure to the extent that these complications
are no longer present. Thus, we consider a mathematical model that is in~
finitely-long with a circular perforation. We do not include a liner so that
the motor consists only of grain and casing. We further restrict the present
consideration to linear analysis; i.e., we consider only infinitesimal de-
formations of linear materials. These restrictions may not be as severe as
they seem when it is realized that most of the dynamic environments of interest
will result in very small displacements within the linear range of the mater-
ials under consideration. Materials properties investigations have revealed
that, for small strains, propellants typically behave as linearly-viscoelastic
solids.

ELASTIC GRAINS

The mathematical model which we have thus far devised is still too com-
plicated for initial studies. Thus, we introduce the further assumptions that
the grain is perfectly elastic with no internal perforation and, since the
casing is very stiff relative to the core, that the casing be perfectly rigid.
Therefore, our initial, very crude model of a solid propellant rocket motor
consists of an infinitely-long composite cylinder with a rigid outer layer
and a very compliant, solid, elastic core. Investigation of such a model,
however crude, will begin to yield valuable information concerning natural
frequencies and displacement and stress fields corresponding to normal modes.
Such information is of immediate utility, for example, in the design of the
guidance systems whose reliability depends, to a large extent, on estimates
of natural frequencies and mode shapes of the rocket motor.

Other possible applications are dynamic loads analyses, staging studies,
transportation and handling studies, etc. Over and above these practical
applications, initial analyses of crude mathematical models provides the
analyst with the experience required for subsequent refinement of the model.
Additionally, a catalog of solutions is rapidly developed which may prove to
be very useful as checks on the solutions of more refined models.

The natural coordinate system for the formulation of the problem posed is
the polar cylindrical system. There has long been activity within the general
area of dynamics of elastic bodies in polar cylindrical coordinates. The
earliest formulation of a problem by means of the dynamical equations of
elasticity in cylindrical coordinates is due to Pochhammer (1) and Chree (2)
who independently investigated longitudinal and transverse wave propagation
in infinitely-long circular rods with traction-free surfaces. An excellent




survey of the history of this problem was presented by Abramson, Plass and
Ripperger (3) but, nevertheless, it would be useful and interesting to mention
a few of the more important investigations. TFollowing Pochhammer and Chree
the next study that should be mentioned is due to Ghosh (4) who derived dis-
persion equations for longitudinal wave propagation in thick- and thin-walled,
infinitely-long, hollow, circular cylinders with both surfaces free of trac-
tion and with one surface traction-free and the other rigidly clamped.

Bancroft (5) was among the first to publish numerical solutions of the
dispersion equations for longitudinal wave propagation. In addition, he re-
corded the dispersion equation for transverse wave propagation in infinitely-
long, circular rods with traction-free surfaces but no numerical work was
indicated. Hudson (6) carried out some numerical work with the dispersion
equation for transverse wave propagation but arrived at the erroneous conclu-
sion that there was only one mode of propagation of transverse waves. This
error was subsequently propagated by Davies (7) and Kolsky (8), among others,
and was finally pointed out by Abramson (9) who calculated several dispersion
curves in the first mode of propagation of transverse waves.

McFadden (10) was cancerned with radial vibrations in hollow, thick-
walled cylinders while Gazis (11) presented a study of plane strain vibratiors
in hollow cylinders with traction-free surfaces. The most complete study, to
date, by means of the dynamical equaticns of elasticity, was presented by
Gazis (12) on the longitudinal and transverse wave propagation and free vibra-
tions in infinitely-long, thick-walled cylinders with traction-free surfaces.
Other pertinent studies were reported by Herrmann and Mirsky (13), Mirsky and

Herrmann (1%, 15), Greenspon (16, 17, 18) Bird, Hart and McClure (19) and
Bird (20).

The field and constitutive equations for dynamic deformations of com-
pressible elastic continua in polar cylindrical coordinates may be reduced
to the following three equations of motion:
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Solutions of these equations of motion are readily obtained by means of three
displacement potentials as follows:
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It may be verified by direct substitution that Egqs. (1) are identically satis-
fied by these components of displacement provided we take the displacement
potentials as solutions of the following differential equations:
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wherein ¢ and c¢_ denote the dilatational and shear wave velocities, respec-

tively, and are Eiven by
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€ = /e = [(1-2v) / 2(1-v)]? (4c)

We recognize the differential equations (3) as wave equations, solutions of
which are well known., On selection of appropriate solutions of these wave
equations, the displacements follow from Egs. (2) while the components of
stress are obtained from the following stress-displacement relations:
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Let us now illustrate the application of this general theory in the cal-
culation of the natural frequencies and normal modes of the initial crude
model for the solid propellant rocket motor.

Since the prain is solid, the
boundary conditions are given by

u, = %) = u =0 (6)
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The simplest modes of vibration are the so-called axial-shear modes which
are defined as those modes of free vibration in which the only non-zero
component of displacement is that parallel to the axis of the cylinder.
Furthermore, this axial displacement component depends only on the coordinates
in the plane of a cross-section. These modes are of fundamental importance
if for no other reason than that they are among the verv few modes for which
exact, closed-form solutions of the three-dimensional equations of elasticity
are possible. There are, however, other reasons for concern with axial-shear
modes. They represent limiting flexural or longitudinal modes; i.e., they are
flexural or longitudinal wave modes with infinite wave-length. In accord with
their definition we seek solutions of the equations of elasticity in the form

u = u, =0 (7a)

u. = W(r) elwt cos né (7b)

Substitution into Egs. (1) results in the following single equaiton:

-
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wherein primes denote differentiation with respect to the argument., This is
the well-known ntb-order Bessel equation which has the following general

solution:

W(r) = C Jn ( Qr/a) + Cn Yn (Q r/a) (9a)

nl 2

wherein Q is a dimensionless frequency coefficient defined by

2 = 222 (9b)

C, and C , are arbitrary constants which must be evaluated such that the
bgundary 86nditions will be satisfied, and J_ and Y_ are the nthoorder Bessel
functions of the lst and 2nd kinds, respectively. Tn view of Eqs. (7) the
boundary conditions given by Eqs. (6) reduce to the following single condition:

W(a) = 0



This condition will be identically satisfied provided that we take C to
vanish and that 2n

Jn(Q) =0 (10)

This result constitutes the frequency equation in the present problem. It
defines a doubly-infinite family of natural frequencies and normal modes;
i.e., corresponding to each value of n we find an infinite number of roots of
Eq. (10). It is clear from Eq. (9a) that the n=0 modes are axisymmetric
whereas the modes for which n=1 are antisymmetric. In view of Eqs. (9a) and
(7), we observe that all the stresses vanish with the exception of the shear
stresses ¢__ and ¢, and the latter vanishes for the axisymmetric modes.
Clearly, tﬁ?ﬁ geneﬁgi type of vibration is pure shear in nature accounting,
partially, for the name axialshear. These modes, among others, were thorough-
ly investigated in Ref. (21).

Another important class of vibrations occurs when the axial component of
displacement vanishes identically yielding a transverse mode of vibration.
Such a mode of vibration occurs when we take

¢ = Cnl Jn (Kﬂ%) e*¥t cos ne (11a)
y=0 (11b)
X = Cn2 Jn (Q %») elwt sin neo (11c)

It is immediately clear from Eqs. (2) that we obtain a plane strain mode of
vibration wherein u, vanishes identically. Substitution into Eqs. (2) and,
thence, into the boundary conditions given by Eqs. (6) results in the follow-
ing frequency equation:

Joy (W I, k@) + I3 L@ (k@) =0 (12)
wherein we have used the recurrence relations for the Bessel functions. These
transcendental frequency equations define a doubly infinite set of natural
circular frequency coefficients which depend upon Poisson's ratio. In Refer-
ence (22) this dependency is investigated in detail. The first four branches
of the first four modes of vibration are plotted in function of k which de-
pends only upon Poisson's ratio. Additionally, the displacement fields for
several different modes are plotted.
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The last problem of interest concerning this initial crude model is that
of transverse wave propagation. In Ref. (23) this problem was treated in some
detail. The dispersion equations were derived and several branches were
plotted. Additionally, it was pointed out that the dispersion equations de-
generate for infinite wavelengths into two uncoupled frequency equations de-
fining the axial-shear and transverse vibrations modes which we have discussed
above.

Before proceeding to the refinement of our initial mathematical model,
mention should be made of an interesting problem that arises in connection with
Eq. (12), the frequency equation for free, transverse vibrations. It was men-
tioned that the natural frequency depends upon Poisson's ratio. In Ref. (22)
it was demonstrated that finite, real natural frequencies exist when the
material of the core is ideally incompressible; i.e., when Poisson's ratio has
the value 1/2. A question immediately arises: '"How can natural frequencies
exist for an incompressible material when it occupies the entire internal
volume of the tank?" In Ref. (24) it was demonstrated that, as the core mater-
ial tends to become incompressible; i.e., as Poisson's ratio tends to 1/2,
the frequency spectrum tends to a simple line spectrum. Clearly, this kind of
a frequency spectrum is physically impossible. That this should be the case
is not surprising since the ideally incompressible material is a hypothetical
material which cannot exist in nature. Nevertheless, the assumption of such
a material is quite regularly used in practice. The behavior mentioned above
is simply one difficulty that can arise from the application of such an as-
sumption. Finally, we draw attention to a few interesting studies due to
Magrab (25, 26, 27) concerning the displacement and stress fields in the solid
grain due to steady-state, forced harmonic oscillation of the rigid case.

On the basis of the studies cited we conclude that our initial crude
model has been thoroughly investigated and that its steady-state response is
adequately understood. Therefore, we proceed to a slight refinement of our
mathematical model by allowing for a circular internal perforation of the
grain. Now our model consists of an infinitely-long, two-layered cylinder
with the outer layer ideally-rigid and the inner layer elastic. The boundary
conditions in this case are given by the following:

o, = T.g =T =0 (13a)
r=b rsb r=

u, = u, =u, =0 (13b)
r=a r=a r=a



wherein a and b denote the external and internal radii, respectively, of the
grain. Equations (13a) express the conditions that the internal grain perfor-
ation be free of surface tractions while Eqs. (13b) result from the assumption
of an ideal bond between the grain and rigid casing.

For the axial-shear mode of vibrations we seek solutions in the form
given by Eq. (7) so that Eq. (8) is the governing equation of motion while
Eq. (9a) gives an admissible solution. In view of Egs. (5), (7) and (9a)
we find that all but two of the boundary conditions given by Eqs. (13) are
trivially satisfied and these two conditions result in the following:

Cnl Jn Q) + Cn Yn Q) =0

2
(n = 0. l’ 200. 0)

b
' - =
Yn (Q 3 ) 0

b
)
Cnl Jn (2 a ) + Cn

2

This is a homogeneous system of linear, algebraic equations in the unknown
constants Cp; and Cpp. Such a system can have non-trivial solutions only if
the determinant of the coefficients of the unknowns vanishes identically.
Thus, we are led to the following frequency equations:

Axisymmetric Modes:

b b _
Iy (Q) Y (QZ)-Jl (sz;)yo Q) =0 (14a)

Anti-symmetric Modes:

b b - -
Jgy@Yt(@=)-J" (<)Y (R) =0,n =1, 2. (14b)

The zeros of these frequency equations were calculated in Ref. (21).

In Ref. (28) the problems of plane strain vibrations and transverse wave
propagation in the more refined model are treated. In the case of transverse
wave propagation none of the boundary conditions given by Eqs. (13) is triv-
ially satisfied so that a dispersion equation is obtained in the form of a
6 x 6 determinant set equal to zero. The elements of the determinant are, in
general, linear combinations of nthP-order Bessel functions of the first and
second kind. This dispersion equation is written in Ref. (28) and sample
calculations were carried out in Ref. (29) for an incompressible grain. In
Ref. (28) it is demonstrated that the dispersion equation governing transverse
wave propagation degenerates for infinite wavelength to two uncoupled frequency

10




+equations. One of these is that for axial-shear modes of vibration as given

by Eq. (1u4b) and the other is that governing plane strain vibrations. The
latter frequency equation is a 4 x 4 determinant involving ntb-order Bessel
functions of the first and second kind set to zero. Four branches for each of
the first four modes of vibration were calculated in Ref. (30) for an incom-
pressible grain. '

The next refinement we can make in our mathematical model of the rocket
motor is to allow for an elastic casing so that our new model consists in a
composite cylinder of two concentric elastic layers both of which are infin-
itely-long. In general, the stiffness of the grain will be considered small
as compared with that of the casing material in deference to the origins of
the problem. The understanding of the behavior of such a model should shed
considerable light upon the rocket motor problem. To be sure, the outer layer
which models the motor casing will usually be thin relative to its mean radius
and, consequently, shell theory may be used in describing its behavior. How-
ever, for the time-being, we shall treat both layers by means of elasticity
theory as given in Eqs. (1) - (5). We shall return, subsequently, to the use
of shell theory in treating the behavior of the outer layer. In order to as-
sociate a given quantity with one or the other of the two layers, we append a
1 when referring to the outer layer and a 2 when reference to the inner layer
is intended. Thus, uzo denotes the axial component of displacement in the
inner layer while uz] denotes the same quantity in the outer layer. In accord
with this convention, the boundary conditions are given by

orl =T, =T, =0 (15ab ,¢)
1 1
r=r r=r) r=r
u =u (154)
rl . ry
r=a r=a
ue = ue2 (15e)
1
r=a r=a
u =u (15f)
Zl 22
r=a r=a

11




Or = o, (15g)
1 2
r=a r=a
T R ; (15h)
rel = r62
r=a r=a
_ (15i)
Trz T Tpz
1 2
r=a r=a
g = T =1 =0 (155,k,1)
P2 r62 rz2
P=P2 r=r2 r=r2

For the axial-shear mode of vibration
displacement is the axial component and we

the only non-zero component of
take it in the form

. r r fut
uzj [Ejl Jn (0 33 )+ CJ2 Yn (n 53 E] e cos nf (16a)
(j =1, 2)
wherein
2 2
Q ;%P5 a2/ Gj, (G =1, 2) (16b)

Direct substitution reveals that the equations of motion given by Egs. (1)
are identically satisfied for this displacement field. Substituting into
Eqs. (5) we find that the only non-zero components of stress are the

12




’ following
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remain to be SatlSTlOd. Substitution into the latter corditions vesultﬂ in

3 homoseneous svstem of four linear, algebraic equations in the unknown
constants le and Cy2. The nqcess:ww and sufficient ceondition that non-
trivial solQtions of this system exist is thet the determinant of the coef-
Fficients of the unknowns vanishes identicallv, Thus, we cbkbta2in the following

frequency equations:
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wherein n = 0,1,2,.... On expansion and rearrancement, these frequency
ecuations reduce te the following:
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wherein

r, r,
= ) -
fjn Jn' (Qj) Yn' (Qj 3 ) Jn' (Qj_%) Y nl (Qj) (19a)
J=1, 2)

hjn =3 (Qj) Y ! (Qj =) -J! (Qj =) Y (Qj) (19b)
R = 02/ Py (19¢c)

G,/6

2 _ 2 2 _ 721
U 5,75, (19d)

The frequency equation given by Eq. (18) is an implicit function relating the
density ratio 92/91 » the ratio of the shear modulii Gy/G3, the radius ratios
rj/a and ro/a and one or the other of the two frequency coefficients @, or
Q. In Ref, (31) it is shown that this frequency equation includes Eqs. (10)
and (14) as special cases, as it should., Additionally, various branches of
the frequency equation are plotted in order to establish the conditions under
which the earlier simpler solutions can be used. In general, it would seem
that when the casing is reasonably thin, the assumption of a rigid casing is
acceptable only for axisymmetric, axial-shear modes.

For transverse (plane strain) vibrations of the composite cylinder we
take the axial displacement to vanish identically and all displacements and
stresses to be independent of the z coordinate variable. Under these condi-
tions 1., and 1, vanish identically and four of the twelve boundary condi-
tions given by Eqgs. (15) are trivially satisfied. Substitution into the re-
maining boundary conditions results in a system of 8 homogeneous, linear,
algebraic equations in the 8 unknown constants. The necessary and sufficient
condition that non-trivial solutions of this system exist is that the deter-
minant of the coefficients of the unknowns must vanish., Thus, the frequency
equation is obtained in the form of an 8 x 8 determinant set to zero. In
general, the elements of the determinant are linear combinations of nth_order
Bessel functions of the first and second kinds. Calculations of natural fre-
quencies have been carried out in Ref., (32) for a case wherein the outer layer
(casing) is very much stiffer than the inner layer (grain). In this particu-
lar case, the various branches of the frequency equation have been plotted and
analyzed for modes wherein n = 1; i.e., for modes that have only a single nodal
diameter. Modes of vibration have been identified that degenerate to pure
grain and pure casing modes. A pure grain mode is defined as that mode of
vibration existing in the grain when the case is perfectly rigid while a pure
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casing mode occurs in an empty casing. It was shown that, for typical
geometries and material parameter values, the lowest n = 1 casing mode is
substantially higher than the lowest n = 1 grain mode. It is demonstrated
that the natural frequency of the lowest casing mode is very sensitive to
grain thickness. It may be possible to include this effect in an approximate
solution based on shell theory wherein the mass of the grain is lumped with
the mass of the thin casing and the stiffness of the grain is neglected.

This possibility 'should be exploited. Additionally, it was shown that the
grain modes are relatively insensitive to variations in casing thickness
indicating that, at least for the material parameters considered, the
coupling of casing and grain rigidities is relatively weak. It follows that
reasonable approximations to the natural frequencies of the grain modes can
be obtained by assuming that the casing is perfectly rigid. The studies of
Ref. (32) were limited to n = 1 modes. Work is in progress at The Catholic
University of America to obtain similar results for n = 2,3,4% modes. The
frequency equation has been programmed for machine computation, the program
has been checked and data produced. It remains to analyze the data presently
available and to supplement it as required.

As previously mentioned, it is possible to use thin shell theory in
treating the deformation of the casing rather than elasticity theory. However,
since thin shell theory is not substantially simpler than elasticity theory in
this particular application, there appears to be little profit especially
since elasticity theory must be used for the grain. Sann and Shaffer (33)
have performed an interesting study wherein shell theory was used for the
casing, Although the frequency equations are developed for all modes of
transverse vibrations, numerical results and analysis are presented only for
axisymmetric modes, Two different solutions are presented: one applicable
to a compressible grain and the other to an incompressible grain., It is
found that with a compressible core, the axisymmetric mode has two uncoupled
motions; one is a 'rigid' rotation of the casing with a twisting of the grain
and the other is a purely radial motion. The latter motion is not present
in an incompressible grain. Some simplified frequency equations are also
presented for limiting extremes of rigidity and density ratios.

The steady-state, transverse wave propagation problem for the two-layered,
elastic cylinder remains for further treatment. None of the boundary
conditions given by Egs. (15) is trivially satisfied in this case so that the
dispersion equation takes the form of a 12 x 12 determinant set equal to
zero., This dispersion equation is readily written down but it remains to
calculate its branches and perform the requisite analyses thereof,

We are once again ready for an additional refinement of our mathematical
model. There are two types of refinements that can be made, both of which
are fraught with difficulties: (1) complicated internal perforation and
(2) finite length. It would appear that each of these possible
refinements requires individual treatment.

15



Let us first consider the problem of the complicated geometry of the in-
ternal perforations of the grain. These internal passages are usually three-
dimensional in character having shapes that are usually dictated by the con-
siderations of internmal ballistics. Little has been accomplished concerning
the dynamics of such motors nor is it likely that a great deal will be achieved
in the near future other than numerical solutions of specific problems. How=~
ever, it frequently happens that these internal grain perforations are two-
dimensional in nature over substantial portions of the total length of the
motor. In these portions the grain cross-section is circular, of course, with
a star-shaped perforation. Therefore, it is not unreasonable to consider an
infinitely-long grain with such a cross-section. A considerable volume of
work has been accomplished with this model of a rocket motor and in the fol-
lowing paragraphs we shall attempt to survey at least a portion of the work
with which the author has a familiarity.

For a mathematical model consisting of an infinitely-long, circular grain
with a complicated internal perforation, ideally bonded along its outer peri-
phery to a rigid casing, the boundary conditions are that along the outer
periphery the displacements must vanish while the periphery of the complicated
internal perforation must be traction-free. The latter condition is expressed
analytically as follows:

or nr + Trene =0

TP t %gPp © 0 along S(r,6) = 0
(20)

Trznr + Tez"e =0

wherein S(r, 9 ) = 0 defines the internal perforation and n_ and n g denote
the components in the radial and circumferential directions of the unit nor-
mal drawn outwardly with respect to the domain under consideration. In
writing this condition we have taken n,, the axial component of the unit nor-
mal, to vanish since the grain is cylindrical. Our initial considerations
concerning this problem should be directed toward developing a method of solu-
tion, For this reason we choose to simplify the problem by considering a
solid cylindrical bar with its outer periphery having the same shape as the
internal perforation of the grain. Thus, the boundary condition applicable

to this bar problem is given exactly by Eq. (20). Basically, the only dif-
ference between the bar problem and the grain problem is that the displacement
boundary conditions are absent in the former., Consequently, techniques suc-
cessfully applied in the bar problem should also be successful for the grain
problem,
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| Additionally, for the sake of simplicity, we concern ourselves only with
the axial-shear mode of free vibrations., Thus, we seek solutions in the form

¢=x=0 (21a)
)
j V=¥ (p, 8) eVt (21b)
Accordingly, Egs. (2) reduce to
u, =u, = 0 (22a)
iwt _ 2
u, = -e v ¥(r,0) (22b)

and Egs. (3) degenerate to the following single lHelmholtz equation:

V \P=--——'—‘ \l’ (23)

Finally, as a consequence of Egs. (22), the stress-displacement equations
given by Egs. (5) become

o, =0y = o, = T = 0 (24a)
= api2 Y iwt
Tag = PU° 33— e (2ub)
19v iwt )
= pwl =
Toy = PW° =3 e (2u4c)

Now, it can be shown® that the outward unit normal to S in the plane of S is
given by

* See, for example, Wylie (3u4)
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wherein ‘

Vs = 1 -g-g- + 3 %3.2.
It follows that
n =2/ | Vs | (25a)
ng = %:_s_ / |¥s| (25b)
Vs| = (-:—i)z ¥ (%2—% )2:! 1/2 (25¢)

In view of Eqs. (24) and (25) the boundary conditions given by Egs. (20) re-
duce to the following single condition:

¥38S

1
vt T (Tae ) Gae )| | =0 (26)

o

Thus, the problem has been reduced to one of finding a solution of Eq. (23)
such that the boundary condition given by Eq. (26) will be identically satis-
fied.

Closed form solution of the problem posed above is not feasible so we
shall be content with approximate solutions.

In Ref. (35) the collocation method is applied to solve the problem for
a star-shaped boundary (with four star tips) given by

S(r,0) =r - a - b cos 46 = 0 (27)

We readily recognize the similarity of this family of plane curves to the
boundary curve of the internal perforation of many common solid propellant
rocket motors. Another advantage of this family is the fact that the circle
is one curve of the family. Consequently, solutions can be degenerated to
those for circular boundaries. Since the latter are available, we have a
ready means for checking the results. The collocation method used consisted
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« in taking a solution in the form of a finite sequence of solutions of Eq. (23)
and satisfying the boundary condition given by Eq. (26) at a finite number of
points on the boundary. Little is known concerning convergence of the col-
location method applied to eigenvalue problems such as the present case., It
is generally presumed that, provided a sufficient number of collocation points
are used, the resulting eigenvalues will be reasonably accurate. Even less
is known concerning the manner of distributing the collocation points along
the boundary although it is generally presumed that the distribution becomes
less important as the number of collocation points increases., In this study
the first four natural frequency coefficients were calculated and plotted in
function of the parameter b/a which governs the length of the star tips.

When b/a = 0, the bar is circular and as b/a increases the star tip grows
longer, The study concludes that, for the problem under consideration, the
collocation method is very sensitive to the distribution of collocation points.
Furthermore, little convergence is demonstrated for as many as seven colloca-
tion points taken within an actant of the boundary. In view of the fact that
it is not possible to obtain exact, closed form solutions in problems of this
type, procedures for obtaining upper and lower bounds on the branches of the
frequency equation are sorely needed. Only then can we be expected to make
definitive statements concerning error in approximate procedures. Such
bounding techniques frequently begin with estimates of the eigenvalues., Per-
haps the value of the collocation method lies in its ability to provide these
estimates fairly easily and quickly.

Jain (36) has introduced a new kind of collocation procedure which elim-
inates some of the difficulties of the boundary collocation method referred -
to above., He refers to the method as 'extremal point collocation'. He has
applied the new method with striking success to the solution of several
boundary value problems. The method requires the initial selection of a fin-
ite number of collocation points. This selection is arbitrary as in boundary
collocation., Instead of requiring that the error in satisfaction of the
boundary conditions vanish at the collocation points, as in boundary collo-
cation, in extremal point collocation it is required that the error at ad-
jacent collocation points be equal in magnitude but opposite in sign., Fur-
thermore, the error at the collocation points must be larger than that at any
other boundary point. It is from the latter condition that the method de-
rives its name. In order to satisfay these collocation conditions, an itera-
tive procedure is required by means of which the distribution of collocation
points is determined. Extremal point collocation has two distinct advan-
tages. Selection of the collocation points is not arbitrary; instead it is
determined by the method. In ordinary collocation there is no control over
the maximum error or the distribution of error., In extremal point colloca-
tion the error can nowhere exceed that at the collocation points and the
error is uniformly distributed over the entire boundary.

In Ref. (37) the problem defined by Egs. (23), (26) and (27) was solved
using extremal point collocation. In this study it is shown that the method
is an effective technique for the calculation of eigenvalues. It is rela-
tively simple to use provided that a large-scale computer is available. The
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method converges rapidly and yields reasonably accurate results even for a
small number of collocation points. The question of accuracy requires. fur-
ther study by means of a method wherein the eigenvalues can be bounded.

Let us return to the boundary conditions given by Egs. (20) for further
consideration., If we substitute into Eqs. (20) from Eqs. (24), we obtain

Y 1 3¥ _
(S tFgefg )| =0

The quantity on the left is the normal derivative which defines the rate of
change of ¥ in the direction of the normal to S. Thus, the boundary condi-
tion that requires that the lateral surface of the bar be traction-free can
also be written in the following form:

Y |
—= (=0 (28)

S

This form suggests that there may be some advantage in formally mapping the

bar cross-section onto a unit circle., If the conformal transformation is
defined by

w=w (£)

wherein w = rele defines the real plane while £ = Re'" defines the complex
plane, the boundary condition given by Eq. (28) becomes

a¥
aR
R=1

= 0 (29)

To be sure, satisfaction of this boundary condition is a trivial task com-
pared to satisfaction of the boundary condition given by Eq. (28). However,
we should hasten to point out that, by conformal transformation, we have
simplified the task of satisfying the boundary conditions but we have com-
plicated the task of finding solutions of the differential equation of motion
since it, too, must be transformed. It can be shown* that the plane,
Laplacian operator transforms according to

-2
32y 3y 32 d 32 3 3%y
9y L, raY 1oty |dg (= L1 }.___2 ) (30)
3p2 r dr  r262 |aw aR? R 3R R? ap

#See, for example, p. 629 of Wylie (34)
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and it follows, therefore, that, under the conformal transformation, Eq. (23)
becomes

32y 1 oy 1 82y 2 2
oY LY 1 9% put |dg y (31)
3R2 R 3R R? 8}12 G dw

It is immediately clear that we will probably have difficulties finding solu-~
tions of this differential equation. Nevertheless, this formulation of the
problem proves advantageous in certain circumstances. For example, common
approximate methods of solution of problems of this type such as Rayleigh's
principle or the Ritz method require trial functions that satisfy the bound-
ary conditions. In the transform plane such trial functions can be formulated
with little difficulty.

In Ref. (38) conformal transformation is used as outlined above in the
solution of the problem of axial-shear vibrations of a star-shaped bar with
a cross-section in the form of a four-lobed epitrochoid. The epitrochoidal
boundary was chosen since its conformal mapping onto the unit circle is rela-
tively simple and since it possesses the general characteristics of the solid
propellant rocket grain perforation. To solve the problem in the complex
plane the collocation method is applied wherein the boundary conditicn is
identically satisfied and the error in satisfaction of the differential equa-
tion is collocated at a finite number of points in the interior of the unit
circle., The results were considered favorable though some difficulty was en-
countered with regard to the spatial distribution of collocation points.

Among the many methods available for the solution of eigenvalue problems
the methods of Rayleigh and Ritz are probably the most familiar. These
methods yield upper bounds on the eigenvalues but, in the absence of exact
values, it is difficult to estimate the error in the approximate solution.
Temple (39) suggested a method for estimating the error in each stage of an
iteration procedure directed toward the precise determination of the lowest
eigenvalue. Temple's method can be interpreted as one which establishes the
lower bound. A very powerful method for the determination of upper and lower
bounds on all eigenvalues has been developed independently by Kohn (40) and
Kato (41), as a generalization of Temple's method. This method was applied
in Ref, (42) for the calculation of the natural frequencies in axial-shear
vibrations of circular and epitrochoidal bars. The resulting bounds were ex-
tremely accurate for the fundamental natural frequency but the accuracy deter-
iorated somewhat for the high natural frequencies. However, it should be
pointed out that the bounds can be improved at will if one is willing to ex-~
pend the requisite additional effort.

In an eigenvalue problem it is required to find one or more constants ),

called eigenvalues, and corresponding functions B8 , called eigenfunctions,
such that a differential equation

M [B] = AN [B]
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is satisfied throughout a domain D subject to certain boundary conditions on
the boundary of D. In general, the domain D may be either a one- or a two-
dimensional continuum. For many eigenvalue problems M [..] and N [..] are
both linear, self-adjoint, positive-definite, defferential operators with the
order of M greater than N. Under these conditions the eigenvalues are real
and positive and the eigenfunctions form an orthogonal set. When the eigen-
value does not appear in the boundary conditions, the eigenvalue problem is
called special provided that the operator N has the form

N [B] = gB

where g is a prescribed continuous function which is positive throughout the
domain D, Thus, the governing differential equation for special eigenvalue
problems becomes

M [B] = AgB

We see immediately that Eqs. (23) and (31) have this form and, since the
eigenvalue does not appear in the boundary condition, it is clear that the
axial shear vibrations problem is a special eigenvalue problem in both the
real and complex planes. Therefore, we can make use of the methods that have
been developed for special eigenvalue problems. Collatz (43) has developed

a procedure for obtaining upper and lower bounds in special eigenvalue prob-
lems, Using a trial function which satisfies the boundary conditions, but
not necessarily the differential equation, a few simple operations are per-
formed and the upper and lower bounds result. However, these bounds may not
be very good unless the trial function is close to the exact solution of the
problem., The fact that the method is relatively simple to apply for any given
function indicates that it might become much more useful if a systematic pro-
cedure were added for 'choosing" these trial functions. Such a procedure was
developed by Appl and Zorowski (44)., Another such method was developed in
Ref. (45) and applied in the solution of the axial-shear vibrations problem
for an epitrochoidal bar. The bounds obtained were adequate and subject to
additional refinement but the effort involved is probably less than that re-
quired to obtain Kohn-Kato bounds,

We have discussed a number of techniques that should prove useful in the
solution of the vibrations problem for the rocket motor model consisting of
an infinitely-long, circular grain with a complicated internal perforation,
ideally bonded along its outer periphery to a rigid casing. The more effec-
tive of these techniques require trial functions that satisfy the boundary
conditions. It is clear, therefore, that a key requirement is a technique
for conformally transforming the circular domain with a complicated perfora-
tion onto a circular annulus. Wilson (46) has developed such a technique
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but it is limited to the case that the web fraction® is relatively small.,

For example, Arango (47) has shown that, when the perforation has four axes
of symmetry, the error in mapping the external boundary increases rapidly
when the web fraction increases beyond 0.5. When the web fraction reaches
the value 0.9, the outer boundary has lost all semblance of a circle. This
error arises due to the fact that Wilson treated the conformal transformation
of an infinite domain with a hole into another such domain. Consequently,
while the mapping function accurately transforms the internal boundary into
the unit circle, the external boundary transforms only approximately into a
circle. Rim and Stafford (48) have very recently presented a simple method
of deriving approximate mapping functions in the form of low order polynomials
which conformally transforms an annular region into one whose inner and outer
boundaries are star-shaped and circular, respectively. The derivation is
based on the Schwarz-Christoffel transformation. This method has the same
accuracy problems in transforming the outer boundary as Wilson's method.

This concern with the accuracy of the transformation of the external boundary
is of substantial importance since, while the web fraction may be relatively
small in the unburned solid propellant grain, it will increase toward unity
as a consequence of the burning process, It should be clear, therefore, that
it is essential to develop techniques for the conformal transformation of
finite, doubly-connected domains.,

Laura (49) has developed such a technique based on numerical integration
of a pair of dual integral equations derived by Kantorovich and Muratov (50)
for the purpose of conformal transformation of an arbitrary, finite, doubly~-
connected region onto a circular annulus., Laura demonstrates that, if the
domain under consideration has one or more axes of symmetry and one of the
boundaries is a circle, the system of two integral equations simplifies con-
siderably. Several illustrative transformations are presented including the
transformation of a domain which is typical of a solid propellant rocket
motor., The accuracy of the technique is exceptional.

For purposes of illustration, let us consider a grain cross-section with
4 axes of symmetry. An octant of this cross-section is shown in Fig. 1 be-
tween the heavily-accented inner and outer boundaries. The outer boundary
is a circle with a radius of 18 inches while the inner boundary has a maximum
radius of 9-inches and a minimum radius of 3-inches. The inner and outer
boundaries are further identified with the captions R = 1,0 and R =b = 2,61,
respectively. A mapping function of the following form was used to con-
formally transform (approximately but with more than adequate accuracy) the
domain between the inner and outer boundaries in Fig. 1 onto a circular

* Web fraction is defined as the ratio of the diameter of the circle circum-
scribing the inner boundary of a doubly connected region to the diameter of
the circle circumscribing the outer boundary.
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Fig. 1 First approximation to a set of burning curves for a typical solid
propellant rocket motor

annulus with unit inner radius:

l"JP + l*]P (32)

M
Z Al+jp

'I o~

l-Jp

wherein p denotes the number of axes of symmetry. In this case we had 4 axes
of symmetry and, therefore, we took p = 4. A twelve term mapping function
was used; i.e., we took M = 1 and N = 10, A larger number of terms would
have resulted in a more accurate mapping. The unknown coefficients, A

in Eq. (32) were evaluated by Laura's method. Using this mapping functléH>
seven additional circles in the complex plane, intermediate between the

inner and outer boundaries, were transformed onto the curves shown in Fig. 1.
Each of the contours shown is identified by the radius of the circle in the H
complex plane upon which it maps. Thus, the curve R = 1.6 transforms into

the circle with radius 1.6, the curve R = 2,0 transforms into the circle with

radius 20, etc, If one were able to stop the burning process in a solid

propellant rocket motor at seven instants of time between ignition and burn-

out and to plot the shape of the inner boundary at each time, the so-called

'burning curves' would be obtained. The resulting contours would look much
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like the curves of Fig. 1. Thus, as a first approximation, we regard the con-
tours of Fig. 1 as a set of burning curves for a typical solid propellant
rocket motor. Incidentally, it should be pointed out that, if actual burning
curves were given, they could be conformally transformed onto circles in the
complex plane with exceptional accuracy using Laura's method.

With the mapping function known it is not a difficult task to calculate
the natural frequencies in the axial-shear mode for each of the regions of
Fig. 1. The results would provide estimates of how the natural frequencies
change during the burning process. There are any number of approximate pro-
cedures available for this calculation. We choose to use Galerkin's method.
The applicable equation of motion is given by Eq. (31) which we choose to
rewrite as follows:

2
220 1y 1Y

+ A2g (R,u) ¥ = 0 (33a)
3R2 R 93R RZ 3p?

wherein
2n2
A2 = °“Gb (33b)
2
g (R,p) = Lide (33c)
b2ldw

The quantity g(R,u ) was calculated using Eq. (32). The appropriate bound-
ary conditions are

y ‘ =0 (34a)
R=b

Y

= =0 (34b)

R=a

The first of these conditions expresses the fact that the displacement at the
outer periphery of the grain must vanish since the grain is ideally bonded to
a rigid case. The second condition above expresses the fact that the inner
contour is free of tractions. The quantity a will take on 7 different values
corresponding to the 7 different burning curves in Fig. l. The following
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trial function, satisfying the boundary conditions, was used:

n

AJS - E R,2 a R a
¥(Ru)¥] BW (R)= ] B (R -2() (P +(2g-1) (35)
n=1

n=1

We have chosen to ignore the u -dependency, which we are at liberty to do
since we are attempting an approximation, If the p -dependency had been in-
cluded, the resulting approximation would have been better than that obtained
using Eq. (35). For these calculations we used a one-term trial function;
i.e., S = 1, Substitution from Eq. (35) into Eq. (33a) results in

S
E (R,p) = zl B EJ;; (R) + %wr'] (R) + A2 g (R,u) W (R_Zl (36)
n=

wherein e(R,u ) is an error function which does not, in general, vanish
since, in general, W, is not an eigenfunction. Galerkin's method requires
that the error function € (R, u) be orthogonal to the trial functions
W,(R) throughout the domain of interest; i.e.,

| E(R, w) W (R)dD = 0, (n=1,2,00u00,8) (37)
D

Performing the indicated integration results in S homogeneous, linear, alge-
graic equations in the S unknown constants B,. We obtain a frequency equa-
tion by requiring that the determinant of the coefficients of the unknowns
vanish identically. This frequency equation was solved 7 times for the lowest
natural circular frequency coefficient corresponding to the 7 different values
of a. The results have been plotted in Fig. 2. The horizontal coordinate in
Fig. 2 is the web fraction but, since the web fraction will be a function of
time as the burning process proceeds, the plot in Fig. 2 shows the variation
of the lowest natural circular frequency coefficient with time throughout the
burning process from ignition to burnout., We see that the natural frequency
increases rapidly as the motor burns out which is not an unexpected result.
Such information is of extreme importance in the design of a guidance loop for
the vehicle in which the motor is to be used.

It has been demonstrated that substantial progress has been made con-
cerning the treatment of complicated grain perforations when these passages
are substantially two-dimensional. Conformal transformation of the perfora-
tion by Laura's method should open the door to the use of a variety of accept-
able methods for calculating natural frequencies in various modes of vibration
and to the study of various steady-state wave propagation and forced vibra-
tions problems. Incidentally, it is worth pointing out that Laura's method
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Fig, 2 Variation of the fundamental natural circular frequency coefficient
in the axial-shear mode with web fraction for a typical solid propel-
lant rocket motor

is equally applicable to the study of problems wherein inertial effects are
unimportant such as quasi-static internal pressurization. Thus far only
axial-shear modes of vibration have been considered for grains with compli-
cated perforations., Additional effort is required on transverse modes and in
wave propagation studies. When the geometry of the perforation varies rapid-
ly with distance parallel to the motor axis, application of these two-dimen-
sional methods becomes gquestionable., Little, if any, work is being accom-
plished on these three-dimensional problems. It would seem that future work
in this area will be confined to the application of finite difference tech-
niques.

We come now to the consideration of the ultimate refinement of our model
of a solid propellant rocket motor; consideration of a model of finite length.
Most of the modern solid propellant rocket motors are short with length-to-
diameter ratios of the order of unity not uncommon. Little has been accom-
plished with the study of such dynamic problems. However, much is being done
with quasi-static problems of this nature, particularly using finite differ-
ence schemes of various types. The development of understanding of finite
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length effects and the study of the validity of our two-dimensional results
when applied to relatively short motors are probably the most important un-
solved problems in solid propellant motor dynamics today. Some little work is
being accomplished but there is a noticeable lack of literature on the subject.
We should call attention to the experimental study of the vibrations of short,
solid elastic cylinders due to McMahon (51). Extensive experiments were per-
formed and comparisons with available theory presented. However, the avail-
able theories were limited to thick disk and Timoshenko beam theories, It
should be clear that much future effort should be expended in the area of
finite length cylinders.

VISCOELASTIC GRAINS

The study of elastic grains has been reasonably active as can be judged
from the detail of our discussion thereof., This is as it should be since,
because of the elastic-viscoelastic correspondence principle,® solutions of
elastic grain problems are intimately related to the solutions of viscoelastic
grain problems. This principle states that the Laplace- or Fourier-transformed
solution of a viscoelastic problem can be obtained from the Laplace- or
Fourier-transformed solution of the associated elastic problem by replacing
the elastic constants therein with appropriate functions of the Laplace or
Fourier transform parameter. Therefore, in principle, it would seem that one
can always obtain the viscoelastic solution associated with a given elastic
solution. In practice, the situation is not quite so straight-forward since
inversion of the viscoelastic solution remains to be accomplished. To be
sure, exact inversion is always preferable when possible. In the practical
situation this is rarely possible since the quantities replacing the elastic
constants are usually measured material property functions of the Laplace or
Fourier transform parameter available only in curve or tabular form. It
should be clear, therefore, that a considerable effort should be mounted con-
cerning approximate techniques for performing Laplace and Fourier transforma-
tions and inversions. In this regard we should mention the methods discussed
by Schapery (56) and Cost (57) for the Laplace transform and by Solodovnikov
(58) and Papoulis (59) for the Fourier transform. Assuming that approximate
inversion methods will be available, our principal concern should be with
elastic problems since these could be readily converted to viscoelastic solu-
tions. Clearly, therefore, those difficulties that arise in elastic problems
will remain with us in viscoelastic problems; for example, the finite length
difficulty is still troublesome., Summarizing, it seems evident that visco-
elastic problems present no fundamental difficulties that are not inherent in
the associated elastic problems; the computational problem is more complicated
and tedious but the basic qualities of the two types of problems remain the
same,

#See Alfrey (52), Lee (53) and Sips (54, 55)
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Because of the intimate relationship of elastic and viscoelastic problems
and because of our rather lengthy discussion of elastic grain problems, we
shall not belabor the viscoelastic problem area. However, we will mention a
few pertinent investigations and present an illustrative solution, just enough
to impart the flavor of the problem.

Gottenberg (60) has reported the results of an experimental investigation
of steady-state, transverse vibrations of a long, steel cylindrical tube con-
taining an inert propellant with a circular perforation. Many bending modes
were detected and the resonant frequencies and mode shapes compared with the
predictions of a Timoshenko beam theory in which the bending stiffness of the
propellant was neglected relative to the casing stiffness but the additional
mass of the inert propellant was included. The comparisons were quite adequate
for engineering purposes. Substantial difficulties were encountered in detect-
ing modes other than bending modes. However, one axisymmetric, longitudinal
mode and a few breathing modes were identified. No theory was available for
comparison with these modes.

Henry and Freudenthal (61) reported the results of an extensive analytical
investigation of the steady-state, forced vibrations of a thick-walled visco-
elastic cylinder contained by and bonded to a thin, cylindrical shell. Only
axisymmetric solutions were considered. Complex frequency response functions
were determined which may be easily used for arbitrary and random inputs by
means of the well-established methods of generalized harmonic analysis. The
study is broken down into three steps: (1) the thick-walled cylinder, (2) the
thin shell, and (3) the composite cylinder. For a thick-walled, elastic
cylinder the solutions of Eqs. (1) - (5) are developed in the usual manner ex-
panding the normal tractions on the inner boundary and the normal and tangen-
tial tractions on the outer boundary in Fourier trigonometric series in the
axial coordinate. The boundary conditions on the lateral surfaces are identi-
cally satisfied but, rather than requiring the axial normal and sheer stresses
to vanish over the ends, the axial normal stress and the radial displacement
are required to vanish. As a consequence of this relaxation of the boundary
conditions, the physical significance of the results has been obscured to a
certain extent. The difference between this 'finite-length' solution and the
infinite-length solution is not clear. In order to obtain the viscoelastic
solution, the elastic-viscoelastic correspondence principle is invoked wherein,
for a forced vibrations problem, the elastic constants are replaced by complex
material properties functions of frequency. Membrane theory is used for the
thin elastic casing and a higher-order shell theory is included in an appendix.
The latter should be used when the membrane theory is inadequate; for example,
for external loads of acoustic nature. The assumption that the propellant and
case form a continuous structure at their interface requires continuity of dis-
placements and, therefore, produces strong coupling of the motions of grain and
casing. This coupling is considered of primary importance and, therefore, the
interaction is treated rigorously. The internal pressure is taken as harmonic
and a large volume of numerical results is presented for the fundamental radial
mode. It is concluded "that any analysis of a solid fuel rocket motor which
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does not take into consideration the viscoelastic effects of the propellant
would not give a true overall picture". Another important observation is ar-
rived at by varying the grain geometry in simulation of the state of the com-
posite structure at various stages of the burning process. The results indi-
cate that, for certain ranges of frequency, there occurs a considerable in-
crease in the amplitudes of stress and displacements. The implication is that
the critical period in rocket operation would occur in the later stages of the
burning process when the propellant is almost completely burned out. Thus,
the important frequencies might be close to the fundamental radial mode of the
casing.

In Ref. (62) the stress response to pressure transients has been investi-
gated in an infinitely-long, two-layered cylinder having a thin, incompressible
elastic outer layer and an inner layer of an incompressible, two-parameter
Voigt material. This composite structure was taken as a crude mathematical
model of a solid propellant rocket motor. The particular problem of interest
concerned the circumferential stress response of the case to the pressure
transients induced at ignition in the grain perforation. Two different pres-
sure programs were studied in some detail: a square ignition pulse and a
triangular ignition pulse followed by a pressure, constant in time. By solving
the elastic problem first and then invoking the correspondence principle to
obtain the viscoelastic solution, it was shown that the stress response is
rather insensitive to the shape of the pulse. However, it was also demonstrated
that the duration of the transient is important. When the duration of the
transient is an order of magnitude smaller than the natural period of the cyl-
inder in the radial mode, the stress response barely reflects the presence of
the ignition pulse. However, as the duration of the transient approaches the
natural period, the circumferential stress approaches the stress level corres-
ponding to the pressure magnitude of the transient. The implication as far as
casing and igniter design should be evident. If one is to economize on casing
weight but nonetheless maintain rapid and positive ignition, the igniter must
be designed such that the pressure transient will persist for a time no larger
than one order of magnitude smaller than the natural period of the motor in the
radial mode.

Lockett(63) presented the results of a study of significant importance with
regard to the analysis of transient responses in viscoelastic materials. He
discussed the effect produced by a rapid, but not discontinuous, change in pres-
sure at the surface of a spherical cavity in an infinite, viscoelastic medium.
Invoking the correspondence principle, Lockett obtains the solution to the
viscoelastic problem from the Fourier transform of the associated elastic
problem by replacing therein the elastic shear and bulk moduli with the visco-
elastic complex shear and bulk modulus functions of circular frequency. Thus,
he is subsequently concerned with performing inverse transformations. It is
the manner of performing these inversions that is significant. Before proceed-
ing to the actual inversion procedure, Lockett discusses the nature of modulus
functions that should be used and the character of the pressure-time history.
Most solutions to viscoelastic problems appearing in the literature are either
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. left in the integral form or are specialized to some simple spring-dashpot
representation for the complex moduli. However, it has been shown by Kolsky
and Shi (64) that, in general, these simple models do not adequately represent
the behavior of real, viscoelastic materials. Thus, if only the solution to
a particular problem is required, it would seem advisable to use the experi-
mental data directly in the numerical inversion of the Fourier-transformed
solutions. If it is desired to keep a number of parameters in the solution,
then mathematical models should be chosen which fit the experimental data well,
even though they may not correspond to a simple spring-dashpot configuration.
The simple forms of modulus functions corresponding to spring-dashpot models
only have an advantage in the solution of simple problems when it may be pos-
sible to evaluate the integrals explicitly. In his subsequent numerical work
Lockett takes a constant bulk modulus; i.e., he assums that the material is
elastic in dilatation, and for the complex shear modulus he uses an analytical
expression that has been derived from curve fitting to experimental measurements
performed on real, viscoelastic materials. TFor a pressure-time history Lockett
selects a time function which has the following complex Fourier transform:

P (w) = ?Po/ iw, w (38)

in
€

< ®

wherein the range ( ), wp) defines the range in which accurate measurements
are available of the complex shear modulus. It follows that, since the Fourier
transform of the pressure-time history is a factor in the transformed solution,
the exact solution in both the elastic and viscoelastic problems is a finite
integral over the range ( W s w) within which the shear modulus is accurately
known. The following pressure-time history is obtained by inversion of the
Fourier transform given by Eq. (38):

Po Yy sin wt Po -
P(t) = — Iw — dw = — LSl (wyt) - si (wlt) (39)

1 W

where Si(x) denotes the sine integral which has been tabulated by Jahnke and
Emde (65) and Abramowitz and Stegun (66), among others. For W, very much
larger than ®jthis pressure program has the shape shown in Fig. 3. Lockett
considers this loading in its own right and not as an approximation to an
exactly square loading. The latter is not obtainable in practice, so the load-
ing shown in Fig. 3 is more realistic. Obviously, the rise-time of the pres-
sure program can be made shorter by increasing w, up to the upper limit of the
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Fig. 3 First version of the alternate pressure program

frequency range in which the shear modulus is well-defined. The Fourier inver-
sions of the transformed solutions are now performed numerically since integra-
tion is over a finite frequency range only. Lockett completes the solution and
arrives at some interesting conclusions concerning the differences between
elastic and viscoelastic solutioms.

Making use of Lockett's suggestions the problem of dynamic internal pres-
surization was solved in Ref. (67) for an infinitely-long, incompressible,
viscoelastic cylinder case-bonded to a thin elastic tank. The pressure-time
history of Fig. 3 has some of the character of a pressure-time program of a
solid propellant rocket motor but it has two important deficiencies: the ap-
plied pressure is negative for time less than zero and the pressure rise starts
at negative time. Both of these daficiencies were corrected by appropriate
shifting of axes so that Eq. (39) becomes

P(t) _1 1 . . W]
P =5t [gl (w2t - 7m) - 8i( wlt - ﬂ;; ﬂ (40)

This expression defines the one-parameter, wp/w , family of curves shown in Fig.
4, We see that these curves possess most of the characteristics of actual
pressure-time programs for solid rocket motors. We see a finite rise time
which is controlled principally by the value of w, and given very closely by

tR = 2n/ w, (41)

32




PLY)/ po

1.2 4
w, /w, = 1000
0.8 we /w, = |00
wy, /w, =10
0.4

R S e = : . ' ' ! '

-30 -25 -20 -i15 -10 -5 W 5 10 15 20 25 30
wot

-04 -

Fig. 4 Pressure-time program applied to the inner cylindrical surface of the
core

The family of curves rises to a maximum and then. oscillates about a quasi-
static curve whose shape depends upon the value of the ratio w,/ w;. In
Ref. (67) a value of 1000 was used for this ratio and for this value the os-
cillation is about a curve that is approximately parallel to the dimensionless
time axis at least for a substantial period of time. Since attention was
focused on the immediate dynamic effects of the pressurization it mattered
little that the pressure program decreases gradually for long times. The
Fourier transform of the pressure program is given by

? (w) ) e-i'w/ (DQ
Po = 18(w) + B e H (w- ml) - H (w‘w2) (42)

This transform is non-zero over a limited frequency range only so that, ulti-
mately, the inversion integrals can also be evaluated by numerical methods.

The shear storage and loss moduli used in the investigation were the actu-
ally measured data shown in Figs. 5. These material properties were introduced
into the transformed solution by expressing the shear storage modulus in the
following form:

N w212n
] -
G'(w) = G + ) G 5

n
n=1l l+wr
n

(43a)
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wherein Gg, Gy, Goseevneny Gy, 115 Tgssss+see5 T, and N are arbitrary constants
which must be evaluated such that Eq. (43a) willN&ield a good approximation to
the shear storage modulus shown in Fig. 5(a) in the frequency range of interest.
Equation (43a) is the analytical representation for the shear storage modulus
for the (2N+l)-parameter Maxwell material. Thus, use of this expression implies
that we have idealized the solid propellant as a linearly-viscoelastic, (2N+1)-
parameter Maxwell material. It is clear in Eq. (43a) that G_. constitutes the
shear storage modulus at zero frequency and, on the basis of extrapolation of
the data of Fig. 3(a), the value selected was

G0 = 400 psi

The remaining parameters in Eq. (43a) were evaluated by means of a method in-
troduced by Schapery (68) wherein the T1p's were arbitrarily assigned and the
Gn's evaluated by solving a system of N linear algebraic equations obtained by
the collocation method. Five collocation points were used and the resulting
analytical expression agreed with the curve of Fig. 5(a) to within the width
of a pencil line. The analytical expression for the shear loss modulus for
the (2N+1)-parameter Maxwell material, which is also required, is given by

g an
G" (w) = G (43b)
n=l % 1 + w212n

It is clear, therefore, that the shear storage and loss moduli are not indepen-
dent since the unknown parameters were evaluated from shear storage modulus
data and these same parameters allow immediate calculation of the shear loss
modulus by means of Eq. (43b). This result is not surprising and was recog-
nized by Gross (69) when he calculated the following exact inter-relation be-
tween these two material property functions:

2
G" (w) = = f: G' (o) 5 o 5
a’ - w

da (u4)

As an interesting experiment, the parameters calculated by means of Schapery's
method using Eq. (43a) and the shear storage modulus data of Fig. 5(a) were
used in Eq. (43b) to calculate the shear loss modulus. The results are plotted
as a dotted curve in Fig. 5(b). We observe a very substantial disagreement
between this result and the measured experimental data. This discrepancy has
not been explained. Rather than using the experimental data of Fig. 5(b),

Eq. (u43b) was used for the shear loss modulus.
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Fig. 5(a) Dynamic shear storage modulus as a function of frequency for
Hercules Powder Co. CYH solid propellant

1.0 - TEMPERATURE = 70 DEGREES F

EXPERIMENTAL
0.6 I

—— o,
S .

DYNAMIC SHEAR LOSS TANGENT
G (w)/ 6'(w)

N —
~.
04 CONVERTED FROM/)r AN
STORAGE MODULUS N

0 2 L e - ’/ \\

N N,

\\
~
(o) L 1 ] 1 ]
-2 - (o] t 2 3

logyo f (f = w727 IN CPS)

Fig. 5(b) Dynamic shear loss tangent as a function of frequency for Hercules
Powder Co. CYH solid propellant

Making use of the transformed pressure program given by Eq. (42) and the
material property functions shown in Eqs. (43) the transformed stresses and
displacements in the two-layered cylinder were calculated. The inversion in-
tegrals were evaluated numerically with relative ease since they were inte-
grals over a finite frequency range only. The results for the circumferential
stress at the internal perforation are shown in Figs. 6. These results display
some interesting features to which we should draw attention. First, we draw
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attention to the small perturbations displayed by all solutions for time less
than zero and for time greater than zero although, in the latter time regime,
they may be obscured by larger oscillations. These perturbations of the
calculated responses are clearly due to the small perturbations present in
the pressurization program. These small oscillations can be ignored since
our interest concerns the gross responses due to the gross pressure increase.
Next, quasi-static solutions corresponding to all transient solutions were
obtained (and plotted in Figs. 6) by taking the specific weights of both case
and grain equal to zero. Now, we observe that, for the larger perforation
(7.0-incher) the circumferential stress at the internal perforation is
compressive despite the fact that the accompanying circumferential strains
are tensile. See Figs. 6(a). This same effect was noted in Reference (70)
and was explained therein., We summarize the explanation herein for purposes
of completeness. The circumferential stress may be thought of as consisting
of two components: a hydrostatic compressive component due to the compressiou
of the core against the restraint offered by the case and a tensile

component due to radial growth of the core under pressurization. If the

core is sufficiently thin, such that the case restraint is important,

then the compressive component is larger than the tensile component and the
resulting circumferential stress is compressive even though the circumferential
strain is tensile, This is undoubtedly the situation when a = 7.0 inches.

It is clear that, with the appropriate combination of material properties

and geometry, the opposite could also be true., As a matter of fact, we

see from Fig, 6(b) that, for a = 1,3 inches and for both rise times, the
circumferential stress at the internal perforation and the accompanying
circumferential strain are both tensile. It seems obvious in this situation
that case restraint plays the subordinate role.

Now, we observe that for the 40 millisecond rise time the transient and
quasi-static solutions coincided, for all practical purposes, for all
times and in all cases considered, It seems clear that the 40 millisecond
rise time is long compared to the fundamental natural period of the
cylinder and, under these conditions, the transient and quasi-static
formulations of the problem are equally valid thus accounting for the good
agreement, However, for the shorter rise time we observe a substantial
transient at small times and for the larger perforation., See Figs., 6(a).
We also observe that the transient does not occur for the shorter rise
time and for the smaller perforation. There appear to be two possible
explanations of this behavior. For the larger perforation we have shown
that the elastic casing plays a major role. The presence of this elastic
storage element could account for initiation of the transient oscillation
and for sustaining it thereafter. For the smaller perforation we have
already demonstrated that the case plays a subordinate role and since there
is a lack of the elastic storage element, the transient oscillation, if
initiated at all, would attenuate very rapidly as a consequence of the
dissipative quality of the core material which plays the major role. There
is another candidate explanation. In Fig. 6(a) for the smaller rise time
we see that the period of the transient oscillation, which is, of course,
the fundamental natural period of the composite cylinder, has a value of
about 4 or 5 milliseconds. Thus, since the rise time very nearly coincides
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with the natural period of the cylinder, we expect to excite a substantial
oscillation which will rapidly attenuate. For the smaller perforation, the
natural period changes and the rise time no longer coincides and we do not
expect to see a large transient oscillation, It is difficult, without
extensive study, to choose between these explanations although we do favor the
latter. There are, undoubtedly other features of these results that bear
further disscussion but we feel that we have drawn attention to the salient
features.

Achenbach (71, 72) has recently completed two investigations of general
import. The first of these concerns the transient, dynamic response of an
incompressible, elastic grain with an ablating circular port case-bonded to a
thin, elastic case. Despite the fact that this study concerns an elastic
grain, it is discussed here because of its close relationship with the
second study. An internal pressure program in the form of a step function in
time is applied and an approximate solution obtained by asymptotic integration
of the equation of motion. It is demonstrated that burning time affects the
period of the vibratory response but not the amplitude thereof., 1In the
second investigation, Ref, (72), the dynamic response is calculated in an
infinitely-long, composite cylinder consisting of a thich-walled cylinder of
an incompressible, viscoelastic material case-bonded to a thin elastic shell.
Two dynamic loadings are treated: a time step in internal pressure and a time
step in external pressure., The latter loading condition is applied to an
inoperative motor in a missile launching silo. The problem is solved,
numerial results plotted and discussed for a grain of a standard, linear
solid (three-parameter Maxwell material.) The manner of solution is discussed
when measured data is used for the grain shear modulus.

We can judge by the character of these last few references that a great
deal has been accomplished concerning transient, dynamic responses in
viscoelastic grains. However, additional effort is required to perfect and
simplify the application of the approximate methods for performing Fourier
transforms and inversions, Then we can look forward to solving many transient
dynamic problems using as input measured pressure programs and material
property functions.

A great deal has been achieved in the solution of general wave propagation
problems in linear viscoelasticity, See, for example, References (8), (73) -
(91). This list of references is by no means complete nor is it a listing of
the more important papers. Despite the fact that so much effort has been
expended in investigating this general problem, thereby testifying to its
importance, I was unable to locate a single reference involving a solution of
direct applicability to solid propellant rocket motors. It seems evident
therefore, that a considerable effort is required to elucidate those
environments that give rise to wave propagation problems and in solving the
problems posed.
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CONCLUSION

We have completed a survey of dynamic problems in solid propellant
rocket motors., Attention was restricted to linear analysis of elastic
and viscoelastic grains. It was not intended tihat this survey should
be a bibliographical study but rather a presentation of progress in the
field in an attempt to establish the current state-of-the-art. Many
important related areas have been omitted in the interests of conservation
of time and space. Consider, for example, nonlinear dynamic problems,
shock problems, coupled thermo-mechanical problems, acoustic instability
problems, and experimental measurement of propellant properties. Effort
should be continued and expanded in these important areas among others.
We have accomplished a great deal with regard to the dynamic problems of
solid propellant rocket motors, however, additional effort is absolutely
essential to extend the goals that we have already reached.
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NOTATION

radial, circumferential and axial coordinate variables
of polar, cylindrical coordinate system

time
mass density
shear modulus

radial, circumferential and axial components of
displacement

dur s, 1 Bue + buz

cubical dilatation = S -r£ =35 52—

2 2
Laplacian differential operator = ot 1 -é— Lot

, dr2 r dr 12 d62
a

dz2
displacement potential functions

dilatational wave velocity = (G/pr<2)l/2

/2

shear wave velocity = (G/p)l

ratio of shear wave velocity to the dilatational
wave velocity

radial, circumferential and axial components of
normal stress

shear stress components

Lame's second elastic constant = 2Gv/(1-2v);
dinensionless circular frequency coefficient

radii

circular frequency and circular frequency coefficient,
resp.

mode number

Bessel functions of the first and second kinds, resp.,
and of the n-th order
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Primes over a variable denote ordinary derivatives of the variable with
respect to its argument; e.g., £f'(r) = (d/dr)f(r)
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