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.ABSTRACT

The method of discrete ordinates is extended to describe the
steady state intensity distribution of thermal radiation and the
parallel semi-infinite particulate medium in radiative equilibrium
in the presence of an outside point source of visible radiation.
The greenhouse factor [B(r) / F(©) ] is found to approach a
finite limit as T —» 00, Numerical calculations show that the
diffuse field of visible radiation generated by multiple scatter~
ing processes is extremely effective in heating the lower regions
of a particulate atmosphere, For slightly'more»realistyf single
scattering parameters than those considered in this study, it
would appear that the large differences in temperature between
the surface and the effective level of infrared radiation of Venus,
as inferred from the infrared and microwave observations, can be
mostly accounted for. Neither high surface pressures nor internal
heat sources are required to make %he heating mechanism work

effectively,




I. INTRODUCTION

It has been demonstrated (King, 1963) that under certain
conditions the temperature of a planetary atmosphere in radiative
equilibrium increases with optical depth, even though the sole
source of heating decreases exponentially with optical depth. . The
majog requirement for a strong greenhouse effect appears to be
that the ratio of the infrared to visible absorption coefficients
be fairly 1érge at most infrared wavelengths, Frequent and fairly
wide infrared windows are the rule for atmospheres containing
realistic amounts of optically active gases.' In general such.
windows do not exist, however, for atmospheres composed of pafti-
cles of a few microns in diameter. Exceptions to this rule are
likely to occur in rather narrow spectral intervals just to the
shorter wavelength side of regions of anomolous dispersion, where

he real part of the refractive index of the relevant substance

is close to unity. For this and several other reasons to be dis~
cussed it would seem germane to investigate the role that parti-
culate matter plays in giving rise to strong greenhouse effects,
In order to do this in any proper sense it is mandatory to include
‘anisotropic scattering effects in solving the appropriate equation

of radiative transfer,
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II. SOLAR HEATING

Consider-first the diffuse field of visible radiation
arising from sunlight multiply scattered in a particulate atmos-
phere., Approximating the sun as a point source, the equation

of transfer becomes (Chandrasekhar, 1960; henceforth referred to

a.S R. TC)
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where the symbols have the same meaning as in R.T.. In particular,
mF, is the flux of direct visible radiation from the sun which
crosses a unit area normal to the beamn,

It will be assumed throughout this study that the atmosphere
in question is grey with respect to both visibleiand infrared
radiation, although the two wavelength regions will be considered
as having two different greyness parameters, By this is meant
that the scattering and absorption properties of the atmosphere are
the same throughout each of the two spectral regions, but that the
atmospheric properties become different in going from one to the
other. Thus (1) is independent of wavelength,

As is customary, we assume:the intensity in (1) to be of

the form
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and the phase function for single scattering representable by

the finite series expansion of Legendre polynomials:
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where ® is the angle through which radiation is singly
scattered. As is demonstrated in R.T., equation (1) separates
into (N + 1) linearly independent equations. In particular,

the azimuth-independent term in (2) obeys the equation

69
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where the cosine of the zenith angle u is evaluated at the 2n

discrete intervals +u. (i=1, ..., n), As in R,T,, the slymbols

7% and §£ are defined by the expressions:
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and where the aj's are the usual Gaussian weights determined in

accordance with the relation
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An alternative expression for fl is given by the recursion

relation
WP = oy WP~ Q)

In both (8) and (11)
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The n constants of integration Ld in (5) may be evaluated by

]

imposing the n boundary conditions
® ,
I (0/'/“1) =0 (,4:‘/) ...)h), (13)

We shall be interested solely in the atmospheric heating
caused by the incident solar radiation, For this purpose an
expression is required for the flux divergence of the ESEEl
visible radiation field. In this context the azimuth-depehdent
terms in (2) contribute nothing, and we shall neglect them.

The expression for the net flux T E£(7) of the diffuse

radiation field, with the aid of (9) and the definition

Tt = % ‘ggé—i) ,) I (14)
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becomes
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By virtue of (8) and the relation* (R.T., page 154)
N
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equation (15) becomes
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or, from (11), (12), and (14):

£t = ,o:'i:% g _ (-5%) Lﬁl f SAT o7, e'%]} , a®

where CU:, the albedo for single scattering in the visible, is
superscripted with a "V" to differentiate it from the albedo

for single scattering in the infrared.

¥The term R[(Mo) in (16) was omitted in a previous report

(Samuélson, 1965), and invalidates the subsequent derivation
for Fo- (7). Equations Cl10, through C20 and also equation 96
of the report, which depend upon the derivation, are conse-
quently incorrect.




The net flux WhAE) of the attenuated direct radiation

‘from the sun in the direction -um, and at a level T is clearly

given by

(19)
The net flux #F{&) of .the total visible radiation field must
be the sum of #F;&') and 77'5(1') . Hence, from (18) and (19),

F(5) = - (1-33) E{ﬁ fékn +,un:‘e'v‘("} 5 (20)

where T, is the optical depth in the visible, Differentiating
(20) with respect to T, we obtain for the flux divergence (apart

from the factor Tr):




III. RADIATIVE EQUILIBRIUM :
THE TEMPERATURE PROFILE
! We now assume (King, 1963) that the flux divergence in the
%visible must'equal the flux divergence in the infrared; i.e,, in
Ea steady state there are no sources or sinks of radiation
Einternal to the atmosphere, This is what shall be meant by an
atmosphere in radiative equilibrium. For a quantitative com-
parison we shall need an expression analogous to (21) for the
infrared. _
The appropriate equation of transfer for a partially thermally

emitting, partially anisotropically scattering semi-infinite

atmosphere is (Samuelson, 1965; henceforth referred to as R-215)
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where B(T) is the Planck function in units of specific intensity

and integrated over all (infrared) wavelengths, and
/ 44 0/9 f? /
a”%#, =;_:oz‘?e ) @) . (23)

All parameters in (22) refer now to the infrared, and are not to

be confused with previous parameters referring only to the visible,

.




In particular & is the albedo for single scattering in the
infrared.

We may obtain an expression for 8 (7' ) by multiplying through

t

both sides of (22) by du and integrating over the interval

(.1 S u s+ 1). With the aid of (23), the identity

+ :
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and the definition for the flux integral,
o+l
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a straightforward evaluation yields

+
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and (22) becomes
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This is to be compared with equation (3) in King's (1963) paper.

We now require in accordance with King that

dFas) _ _ dF(@)
de dz 7

where 2 is the vertical distance measured from some reference

(29)

height (e.g. 2,) to the height of interest.
By definition
v . .

dr, = =MD Xz d2 ‘ (30)
and : 0 ‘
Aty = -M@ X dz (31)
where M,(#) is the number of particles per unit volume at a level

v IR . .

2 and Xz and X. are the effective extinction (absoyFtion
plus scattering) cross-sections per particle in the visible and
infrared respectively. We shall assume that the particles are
spherical and homogeneous, and that the definitions of X: and
x:k in terms of the Mie parameters as: given in R-215,

section 3, are valid.

Let v
Rh= X . | (32)
P |
Then, from (30) and (31),
At, = d%Gg | (33)
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or, if B is assumed to be independent of z:
T, = Bl . , | (34)

This latter assumption is of doubtful validity for realistic
atmospheres,

By virtue of (21) and (29) - (34), equation (27) becomes
N ‘

AL( , Sy ,
pEIE = Tir ) - ég A

(35)
Yy
- 50- m"VF{ZLc + %€ /"}a
where T=T;, . Since &, = 1 the homogeneous part of (35) is
formally equivalent to comnservative scattering, Denoting the
solution to the homogeneous part by the supscript G, we have, by
the method of discrete ordinates in the nth approximation*

(R.T., page 154):

- -k, T
I (Z'/M‘) = constant x 3 /7_,_8 - e EZw EA“’S«)P@:)_?

(36)

HO-5B)TH4]M, + M, ) Getg,zm,

*There is no necessity for solving both (4) and (35) in the same
degree of approximation, It is done here merely for the sake
of simplicity.
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where K (@ =1, ..., n-1) are the n-1-positive nonzero roots

of the characteristic equation [cf. (8)-(12) ]

E;;a3§¥@9§¥%0
14 4 Ko Q'=.t/)...)1-n), (37

| =24
A

That k=0 is also a root satisfying (37) is a characteristic common
to all problems formally equivalent to conservative scattering.

It is clear that the (n+l) constants M, (0 =1, ..., n-1),
Mo, and M cannot all be determined from conditions (13) . We shall
find presently in obtaining the complete solution to (35) that an
appéal to the flux integral resolves thé difficulty.

Consider the equation [cf. eq. (35)]
/ A/ </
PTG P -Jz-lza').ffwf/,?wrzr,woy-#cp T G
=0 4

where Cp and % are constants.  Assume a solution for a particular -

integral of (38) of the form
-27
L@w =G4 | (@9

where 5%%)15 a function of M yet to be determined. In the scheme

of the nth approximation, upon replacing A by,ﬁﬁ (i = +l, ..o, jp)

12



and substituting for I(?;/';) in (38) according to (39), we

obtain:

L=0

(/+7/$9(74‘$) = Z’Zwlf@[,zdjfp'?)?@_)] +/ (/;.t/),,,)-_.r-@, (40)
¢ _
Therefore 394,) is of the form

9M) = /+W4["'Z@Ez@f@?] ; (41)

L=0

where the constants 61(7) are given by

) = Jf Za Pé«,gfzg '@:o),,.,)/v)‘ (42)
§

Substituting in (40) according to (41) we ohtain

iﬁ %(?)P;H‘) =L fZJ P@){Z fi—i&[j +Zw %[?)P@J} (43)
£:0 ‘ < lJe':o Bl H'?/“

Since (43) is valid for all u; we obtain, after some reduction,

£0) = @+zwe@ 0.8 @, @
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where
D,e,\(?)= 'i’i Z@M ‘ (45)
) J /fyﬁf7 e
Equation (44) yields an NxN system of equations which may thén
be solved for the N values of & for the argument 2.
We may also obtain from (45) a recursion relation satisfying

the D's:

@esdg () = §, ~7[@RQ +2R.O] . e

where aﬁk is the Kronecker §f=-function. Along lines analogous
to R.T., pages 154-155, we may use (44) and (46) to ohtain. the

recursion relation satisfied by the &%:

_ 24N P S0 .
&) = - Sy = E(D) + m . (47)

In particular (&% = [/ ):

/
E/@) = —?— 3 - (48)

a relation we will find useful in resolving the value of Molin (36).

It is clear that (47) provides an alternative method of

evaluating all § (L =0, ..., N) once the value of §, is known.

14




We try a relation of the form

) = L) 50) + £0) (49)

where #£(%) is unspecified for the moment. Substituting (49) into
(44) we obtain

&) = B0 + 5,(?)3%@_ LR + Af 5Bp0) 5 (s0
hence, upon setting JZ=0 : N
o + ZEEOD0
E() = ——F=2 ‘ (51)
| = ; @ 0D, L0

Again, substituting (49) into (47) we obtain, with the aid of (11),

the relation

_ 24y -w,
fol® = - H(L+]) b~ ,z+; ARy >,~(£+/) P

where, according to (12) and (49):

£() = o, - (53)

making (52) determinate for all £ . It appears possible to express
at least part of (51) in terms of Chandrasekhar's H-functions;
however, in the interest of comserving space, we shall not pursue

the matter here.

15



By virtue of (41) the particular integral (39) becomes

. |
Tlom) = 66" [+ S QEME)]  Giet1yr 2. 30

By analogy with (38) and (54), the solution to (35) is [cf. also
(36) ]

I(Z'/“) ’L(/ o)/?lt{z ey )90[;4: (&)féfvﬂ

+[:(I-é@,>2'+/ﬂ/‘4 + M
§ Ll Smcikofl))

+ 57 -I—Z@ f,‘/’@_]} (iz%).,tn),

H'/“ % (55)

The value of My in (36) may be resolved in the following

way. Substituting (55) into the flux integral

Foy= 2 TamIlu)  (istho,em) 6o

we obtain with the aid of (45) successively the relations

16
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'or, by virtue of (8) and  (44):

.17

(57



F&) = (-3 "),eF{ S Mty + by,

+ZL.(ej"”£¢k¢) rge’ s,(f)}

= (58)
Again, by (11), (12), and (48), since @, =1,
- VF L M, + -ﬁ%. |
F(r) = (l‘w.) 0138/ Z’ ""/“07; é J (59)
otd ' o
or, from (20) and (34), |
~In a steady state
RO tR@ =0 ; 61)

hence M, is zero for B# 0, and quite -'gen‘érally (60) j' becomes

Flaw + F(5) =0 B v (e

18




Re-writing (55) and (59) we have

Il = $0-T)0E PZ, L[5 8 S0I54] +M,

+Z f;;/:k [/.f.Zzaec}g/s)P@)J

‘+/“ ﬂ/ [’ ‘f‘ szl Slé%)’;é‘aﬂ} (j: i‘/) '"1-"-'”) (63)

=0
and

F@ = (- m°)F{Z i s } ) (e

from which it follows that [cf. also (21) and (29)-(34)]

dFD _ AN
= = (/w),eF{ZL.‘e +7€ } (65)

In a fashion completely analogous to the derivatiogjpf'(57)

et seq. we may obtain the relations
+ |
[Tapdu % TaTpm) Gt e
- .
=L10- ﬁ')ﬁF{ZM,e"‘r + M,

ol®!

+ZL.‘€OQ‘A)6'€‘A + %6 (;‘eo)e-ﬁ%.,}. 66)
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Hence, from (65) and (66), expression (26) for the integrated

- Planck function becomes

nJ

BE) = 4 0-TeE { LMY + M,

+ZL-<£1 w°+€(‘€<"2-) ket [, W-’-Eﬁ] "}v (67)

’

The desired distribution of temperature with optical depth is
given through the relation
g Y
' (68)
= -12 2 4
where ¢ = 5.672 x 10 watts/cm4/deg”.
It should be noted in (67) that B{) approaches a finite
limit as T —o0. Hence, analogous to equation (25) of King's
(1963) paper, we may define a greenhouse factor from (64) and

(67) by the relation

-l

Bled)/F() = —ﬁM {Z Ly + Mo } . v_(69)

The remainder of this study will be devoted to the numerical
evaluation of some of the more relevant equations deriveg above
for certain physically interesting situations. The results will

be discussed in the context of the atmosphere of Venus,

20




IV. SINGLE SCATTERING

The atmosphere of Venus appears to support a cover of clouds
sufficiently thick to obscure completely any trace of surface
features. In addition this atmosphere may possibly support a
large greenhouse effect (Sagan, 19&2). If is of considerable
practical importance, then, to investigate the role that clouds
may play in the production of a greenhouse effect in the atmos-
phere of Venus. For the purpose of a preliminary reconnaissance
of this general problem it would seem that a knowledge of the
vertical temperature profiles and laws of darkening for a limited
number of physically realistic model cloudy atmosphefes, computed
in accordance with the theory outlined above, would be of con-
siderable interest. Before proceeding with such cdmputations,
however, it is necessary to adopt single scattering parameters
appropriate to the atmosphere of Venus.

According to Sobolev (1963) the albedo for single scattering
in the visible is very high ( w:’—'.989). Although the high
accuracy of the observational data from which Sobolev derived his
value of &J, has been only imperfectly demonstrated, it is felt
that the superior quality of his.work lends considerable weight to
the essential correctness of the magnitude of this value. For the
§purpose of constructing a preliminary set of models the value

Zx: = .99 has been adopted in this study.

21




In addition to the value of &) , it is necessary to assume
values of séveral other parameters'relevant :or single sFattering
in both the visible and the infrared., To fhis end we shall assume
tﬁat the particles of interest are spherical and homogeneous.

For one such particle the size parameter o« is given by

A = 'éfit“ )

where r is the particle radius and A is the wavelength of

(70)

radiation of interest. We shall adopt "effective"!wavelengths of
AV = 5625 % and AW:Z“ in the visible and infrared respectively,

yielding an effective size parameter ratio for a single particle of

R = 16, (71)

For the purpose of computational ease and uniqueness of
solution it was decided to consider'only*square‘particle size
distributions, i.e. distributions of particle sizes that are
flat over the ranges of interest. Under the assumption of homo-
genecus spherical particles, the Mie theory was used to compute,
for a variety of particle size distributions and complex indices of
refraction, the following infrared single scattering parameters:
(1) @ , the albedo for single scattering, (2) X? , the
effective extinction cross-section per particle, and (3) f(we 6) |,

the phaée function for single scattering. Eighteen values of the

22




complex index of refraction were used, covering the range

(1.1 - 0,01i s A <1.6 - 0.50i). 1In practice the particle

size distributions considered were repléced,by'size parameter

distributions over the range (0 € & € &,). Sixteen values of

o, were considered for each value of 7 . |
The computed results indicated that JDGM1-®) is very

dependent upon o, , but is almest independent of n . Hence,

- one mean phase function for each value of o, was considered

sufficient to represent the angular distribution of singly
scattered infrared radiation for a wide variety of possible sub--
stances, while three values of o, were chosen as beipg repre=-
sentative of a reasonable range of physically interesting con-
ditions., These latter values, along with the corresponding values
of B [cf. eq. (32)], &, , T, ', and «, are included in Table 1.
The visible radiation single scattering parameters reqguired %o
complete the table were calculated for an assumed index of
refraction of 1 = 1.33; the imaginary part of 7 was ignored, an

approximation that should be acceptable in view of the hilgh vdlue

of 4 Values of ocik < | would tend to be physically

o L

uninteresting, because £ would be quite large and the corresponding
greenhouse effect quite small. On the other hand, values of

o(:R S t,L ‘would not .show much dive?rsity since & w@ulq uniformly

23




remain about unity, and the single scattering patterns, both in

the visible and the infrared, would change only slowly.

TABLE 1
Single Scattering Parameters

xv
v - ZE
&, e Y oK %
£
0.99 0.2 16 1 5
0.99 0.4 32 2 2
0,99 0.5 64 4 1

The relevant phase functions in the infrared, demonstrating
the increase of the forward scattering lobe with increasing ¢u§R ,
are shown in Figure 1., Computations of 7p(am»é® for, the
visible, however, cannot be disposed of so easily. It is possible
to make the necessary computations for the values of o(;’
listed in Table 1, but the computer time required is raﬂher
excessive, However, the major difficulty stems from other
‘considerations. The extreme nature of the forward scattering
lobe of ,o(an ®) for such 1a,'rged values of o requires a
quite large value of N in,a least-squares Legendre pelynomial

|
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fit of g (cos @) in accordance with equation (3), and the computer
program developed to solve the corresponding equation of transier
becomes unstable for values of N much in excess of N = 17, Re-
finements in the computational techniques become a matter of
considerable delicacy beyond this point, and high values of &0y
tend to compound the difficulties,

Rather than attack the problem directly it was decided to
attempt an alternative approach. First, phase functions (M= 1.33)
were computed from the Mie theory for a{ = 1, 2, and 4, and then
fitted by equation (3) for N = 13, Next, the maximum value of
-4 was sought for which equation (3) would satisfactorily fit
the rigorously computed phase function. In this way it was found
that cx: = 6 would yield a phase function that could be' approxi-
mated by (3) everywhere to within one percent of the trﬁe value,
and much better over the forward scattering lobe; larger values
of od were found to yield unsatisfactory results. Finally, the
scattering pattern for very large spheres (ag >> 1) for a
Irefractive index of 1.33 was adopted from Table 21 on page 232
of van de Hulst's (1957) book. This phase function was calculated
by van de Hulst from geometrical optics, neglecting diffracfion |

effects.
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The five phase functions mentioned above have been reproduced
in Figure 2. The solid curves were computed from the rigorous Mie
theory, except for van de Hulst's large sphere (wx: = 00 ) model,
The dashed curve approximating the last phase function was computed
from (3) for N = 13; in all other cases the approximate and exact
phase functions are indistinguishable in the figure. We shall
see in the next section how these five phase functions are used
to approximate realistic limb functions and temperature profiles

for the atmospheric models of interest.

V. TEMPERATURE PROFILES AND
THE LAW OF DARKENING

We shall be interested in solving equations»(67)—(68) for
the temperature profile and (63) for the law of darkening (!‘:tD)
for each of the models listed'in Table 1. (In order to obtain
absolute temﬁerature determinations in conformity with the solar
flux at the distance of Venus, we have adopted a solar constant
mF, = 0.26 watts/cm%) In addition we will want to obtain solutions
for each of these models for varying zenith angles of incident_
solar radiation; for this purpose the values /“o== 1.0, 0.4, and

0.16 have been chosen to be representative of the range of interest,

.
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It has already been remarked that the actual computations must
be restricted to ofsé (o, = excepted). In order to obtain

" approximately correct results for the models listed in Table 1,
we have introduced the following artifice.

Consider first thé model { &=.47; @5 =.5; gz ¢ ; A=l 5 My=101;
for this model d: = 64. It is :required now to compute the
temperature profile from (67) and (68), using instead of oY = 64
the values cd: =1, 2, 4, and 6.  In the upper part of Figure 3
the temperatures thus computed from equations (67)-(68) for
infrared optical depths of T = 0,.1,1;10,and @0 are plotted as a
function of /o . It is now assumed that the radiation diff-
racted around spheres very large compared with the wavelength
“(i.e. <XX = ¢o ) is contained completely in the forward direction
(6 = O ). Physically this is the same thing as saying that the
diffracted radiation does not contribute to the diffuse radiation
field. According to the Mie theory, which includes the effects of
diffraction rigorously, the liﬁiting value of X as oy —» 0o is
Xz = 2 XG , where . XG is the geometrical cross-section. Qne
half of this limiting value of X{ is due to diffraction effects.
It would appear to be a fairly good approximaticon in the case of
large spheres to assume that none of the diffracted radiation is

lost from the radiation'field, since the‘corresponding-cgoss-section
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from geomeirical optics is just X4 . Hence, a reasonable approxi-
mation to impose on the model we are concerned with in the
limiting case of oy =¢o is to (1) retain the scattering pattern
calculated by van de Hulst, (2) reduce @8 by a factor of two,
and, in order to account for no losses of diffiracted radiation,
(3) reduce (/| = @) by a factor of two. The resulting single
scattering parameters become {wf=.9?j op=.5 ; of‘:- Y s A= .v5' }.

The temperatures resulting from a solution for this model
for the optical erths of interest are included along the ordinate
cerresponding to; L/&f:O in the upper part of Figure 3. With
the addition of these last points the curves connecting points of
equal T can be drawn quite smoothly. In additioh, the\general
character of each curve tends to imply that valid temperature
profiles for any value of od'?l can be successiully extracted
from the figure. Of course, the only temperature profile thus
inferred having any physiocal significance is the one ( oC’ = 64)
we are interestedlin, andlishindicated by the arreows in the upper
part of the figure.

The lower part of Figure 3 contains a similar family of
interpolation curves for the model {@%=,99; 57;=.230(,IR=136=5 5 AM=./0].

For this model the limiting case d:=a> was calculated using

2.5 and @)= .98, The arrows in the lower part of

L

values of /3
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-of the figure refer.this time to the physically meaningful value
Cm: = 16, Notice in particular the peculiar nature of the curve
along 7= 0O relative to other curves for different values of 7T .
The temperature brofiles in Figures 4 and S refer for the
most part to the upper and lower families of curves in Figure 3
respectively. The five left-most solid curves in each of the
figures are the temperature profiles computed for the five size
parameters «d: =1, 2, 4, 6, and oo , while the.dashed curves are
the temperature profiles interpolated for each of the two
ﬁhysically meaningful values of o) . It is interesting to note
that a temperature minimum exists for the cases in Figure 5 some-
where in the range (,12 € T £ .19). For large zenith angles
of the sun it appears that, under the proper conditions, the extreme
upper part of a particulate atmosphere is heated primarily by direct
solar radiation, while further down the heating is caused primarily
by the diffuse radiation field. It would seem that the temperature
minimum occurs where the effects of the two mechanisms are oi
about equal magnitude. The high surface temperatures obtained
for the sun at the local zenith (Figure 4) are about the same
as those reported by Clark and KuZ[mip~(1965) for Venus, and hence
are quite suggestive %hat particulate matter may be of some
significance in the generation and maintenance oi a greenhousé

effect in the atmosphere of Venus.
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In order to test whether an increase in the forward scatttering
of visible radiation (resulting in a deeper penetration into the
atmosphere) could produce a significant increase in the temperatures
at large optical depths, the case of complete forward scattering
was considered. Physically this would require that all the
scattered radiation was scattered into the direction @#=( ., This
may be effected hathematically by replacing & with zerovand |
reducing @8 , in accordance with the original value of 53:, by
she factor (1 - &) ). Further considerations reveal that the
constants Ly (a=1, ..., n) in the relevant equations [cf. egs.
(63) and (67) ] should be set equal to zero, and the constant 9
iqéntified with unity. The right-most solid curves in Figures 4
and 5 illustrate‘the‘resulting temperature profiles for the
respective cases in a rather dramatic fashion. Physically these
cases refer to large spheres having a refractive index of unity in
the visible (with a small absorption component). It would appear,
therefore, that one method of enhancing the greenhouse effect is
merely to require a small index of refraction in the visible. Of
course the extreme case of complete forward scattering will result
in a planetary albedo of zero; hence, as the index of refraction
in the visible is steadily reduced, the corresponding value.
of Zﬁg must be steadily increased in order to maintain a 9onstant

¢

planetary albedo,
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Through the method of interpolation described above, tem~
perature profiles for each of the three‘models listed in Table 1
Wére computed for solar direction cosines of 4, = 1.0, 0.4, and
0.16, and the results depicted in Figure 6. It is readily
' apparent that the temperature,profile is relatively insensitive
to the particle size down to an optical depth of T~ 6 for the
models adopted, but becomes quite sensitive for T 210. Notice
that as g decreases the effective heating at large T increases,
as one. would expect intuitively. Far more important than & 1is
the effect of M, . The increase of temperature at all optical
depths with increasing ,ﬂg is due to the-corresponding increase
of incident.solar flux and decrease of planetary albedo. This
latter effect is enhanced by the forward scattering nature of the
individual particles.

Table 2 below lists the planetary albedos A and effective

temperatures T, computed for each of the nine models presented in

E
Figure 6 in accordance with the relatiocns
| A= FO)
- /"oFa- ' : ".(72)
and

a ¥
Flo= T L

e T e



where F(0) follbws from the flux integral (56). The values of

I(0,=p; )(1i =1, ..., 7) in (56) are identically zero by virtue

of the boundary conditions imposed at the top of the atmoéphere,

. while the required values of I(0, 4 )(i =1, ..., 7) were obtained
by interpolation procedures entirely.analogous to those ‘used for
‘obtaining the temperature profiles previously'discussed [cE.

"Fig. 3]; instead.pf interpolating along curves of equal T , inter-
polaticns were maée along curves of equal V' B These -latter |
interpolatiops weég equally as satisfactory in appearance as the
former. The'resuits are-illﬁstfated in Figure 7 in units of
tqmperaturé. | | | '

TABLE 2 |

Planetary Albedos and Effective Temperatures

Mo
ot 1.0 . 0.4 . . 0.16
| A - TgCR| A 1&;70 A Th(ﬁo
. "1 |0.442 | 399.8 0.614 290.1 0.720 212.9
2 10.434 401.4 0.602 292.2 0.712 214.5
4 |0.430 402.1 ‘| 0.598 292.9 0.707 215.3
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The albedos in Table 2 appear to be somewhat on the low side
compared with the obserVed values for Venus (cf. Kozyrev, 1954),
while effective températures listed'in the table averagé out
appreciably higher than those observed for Venus (cf., Murray,
'Wildey, and Westphal, 1963), and the variation of Tg with M is
nothing like that observed. Again, the laws of darkening illus--
trated in Figure 7 average out to be somewhat more extreme than .
those observed by Murray, et al.,'%hile the variation of the laws
with 4, do not agree with the observations at all. -In view of
the low rotation rate (Carpenter and Goldstein, 1963) and high

effective nighttime temperatures observed for Venus it is highly

likely that strong convection and advection are the dominant

modes of heat transfer in the atmosphere of the planet. . Such modes

of heat transfer would be expected to decrease horizontai tem-
‘perature gradients initiated through radiative proéesses Qﬁite
markediy. However, it is possible that surface temperatures of
600°K — 700 °K near the czum"or& and 450°K at the Ina/es
exist (Clark and Kuz'min, 1965), implying that large horizontal
tempefature gradients near the surface may well be present, It
appears very likely in any event that heat transfer mechanisms
other than radiative'play a large role in maintaining the‘actual

~ temperature profiles existing in the atmosphere of Venus. Never-




theless, the probability of radiative processes being responsible
in part for generating the gross features of the actual vertical

temperature distribution of the atmosphere cannot be ignored.

VI. CONCLUDING REMARKS

It has been'demonStrated that a thick cloud of particulate
matter suspended in an atmosphere of optically inactive gases is

capable of supporting a rather large greenhouse effect.b In some

- regards this greenhouse mechanism is particdlarly promising in the

case of Venus. One point‘that haé not been emphasized is con-
cerned with the small vertical distances reguired‘to attain'large
atmospheric optical thicknesses, ‘As an example, let r = 2 x 10_'4 cm
X:R =2mFr> , and the particié density N;) = 100 particles/cmBl.

A simple calculation in accordance with the rough relation [cf,

eq. (31)]

T=M X:K 20 (74)

. |
shows that the height of the atmosphere 2, corresponding to an

optical thickness of T = 100 is about 32,~ 40 km, Hence there is
no need to ascribe the high surface pressures to the atmosphere of
Venus that is required by a greenhouse model based solelyfon the
infrared blanketing propér%ies of carbon dioxide_gnd wafer'vapor

(Jastrow and Rasool, 1963). |
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It should be noted that Sobolev's (1963) value of @, = .989

was inferred from a much more isotropic phase function in the
visible than would be expected to be relevant for the atmosphere
of Venus, This is borne out in the somewhat low planetary albedos

(computed for @) = .99) listed in Table 2‘01 the preséntnStudy.

It is reasonable, therefore, fo suspect'that the value of ZQ: for

‘Venus is donsiderably'h;gher;'.ln addition, it is unreasonable to

neglect gaseous absorption and emission in the infrared in view

" of the substantial amounts of carbon dioxide known to exist'in the

atmosphere of Venus, An 1ncluéion of these effects can only
serve to reduce the valués of B8 used in the present'study, since
absorption in the visible should be relatively minor by contrast.
A reduction in g, in turn, will serve to raise the surface |
temperature without affecting the effective temperature Tg{cf. eq.
(64) ]. On the other hand, increasing @) will serve to reduce Ty,
although it is not so obvious how the surface temperature will be
affected., In any event it would appear likely that certain more
realistic combinations of @Dy and /3 than those consideréd in
this study would maintain or increase the high surface tempefature
and at the same time‘réduce T., 1.e. increase the planetary albedo.v
A quantitative parametric study, more complete than the one

presented here, as well as.,an extension of the general theory fto




nongrey atmospheres, would be of considerable interest, 1In.
additioﬁ, any effort made to be definitive in describing the
thermal structure of the atmosphere of Venus without‘including
convection as an important mode of heat transfer is probably
useless, We intend to return to these and related topics at a
later time,

The unfailing willingness of Mr. J. D. Barksdale to perform
the many tasks involved in writing the major computer program and
providing the required computations is hereby gratefully

acknowledged,




REFERENCES

Carpenter, R.L., and Goldstein, R. 1963, Science, 139, 910..

Chandrasekhar, S.. 1960, Radiative Transfer (New York : Dover
Publications, Inc.)

Clark, B.G., and Kuz'min, A.D., 1965, Ap. J., 142, 23.

Hulst, H.C. van de, 1957, Light Scattering by Small Particles
(New York : John Wiley & Sons),

Jastrow, R., and Rasool, S.I.. 1963, Space Research III, ed.
W. Priester (Amsterdam : North-Holland Publishing Co.),
p. 1036.

King, Jean I.F., 1963, Icarus, 2, 359.

Kozyrev, N.A., 1954, Publ. Crimean Astroph. Obs., 12, 177,

Murray, Bruce C., Wildey, Robert L., and Westphal, James A.
1963, J. Geophys. Res., 68, 4813.

Sagan, C. 1962, Icarus, 1, 151.

Samuelson, R. E., 1965, Radiative Transfer in a Cloudy
Atmosphere (NASA Technical Report R-2I5).

Sobolev, V.V.., 1963, A Treatise on Radiative Transfer (New
York : D. Van Nostrand Co., Iinc.).




Figure 1 -

Figure 2 -

Figure 3 -~

Figure 4 -

FIGURE CAPTIONS

Phase functions for single scattering in the infrared,
computed for square size parameter distributions over
the range ( 0 = P < Odk ). The curves are averages
of 2§ phase functions computed for various complex
indices of refraction covering the range ( /! = 0,0/ 4
S W S le-0.504).

Phase functions for single scattering in the visible,
computed for square size parameter distributions over
the range ( O $ &Y £ « ). The sQlid curves are

the exact Mie calculations for a real index of refrac-
tion of M = 1.33, except for the case of &' = <o
which was computed from geometrical optifs (neglecting
diffraction) . The dashed curve is a 14-term Legendre

.potynomial approximation for the last case.

Curves of temperature vs, optical depth used to
interpolate for two T-T relations for realistic

size parameter maxima u{; The arrows for the upper
family of curves locate the relevant size parameter
o = 64, while the arrows for the lower set locate
the value od'= 16,

Temperature profiles for the model { WY = ,99 3

& =.85;5 o= ¥ ; A=/ ; M= L0} Te
temperature profile correspomgjing tof{,ithe physically
significant size parameter maximum ocg=64 as inter-
polated from Figure 3 is shown by the dashed curve.
The right-most solid curve is the temperature profile
computed for the limiting case of complete: forward

scattering from very large spheres.
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Figure 5 =~

Figure 6 -

Figure 7 -~

FIGURE CAPTIONS (Continued)

Temperature profiles for the model { @) = ,99 ;

D5 =.2 § oGt= ] 58T 5 ;M= .t }. The
temperature profile corresponding to the physically
significant size parameter maximum o) =/6 as inter-
polated from Figure 3 is shown by the dashed curve.
The right-most solid curve is the temperature profile
computed for the 1imiting case of complete forward
scattering from very large spheres, Notice the
transition from a linear to a logarithmic scale at

T = 1.

Temperature profiles for the models listed in Table 1
as interpolated in accordance with the discussion
given in the text (cfi. also Figure 3).

The laws of darkening for the models listed in Table 1

as interpolated in accordance with the discussion given

in the text. The corresponding temperature profiles
are shown in Figure 6. '
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