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ABSTRACT

The instability of contrastreaming plasmas is investigated
taking into account the Coulomb Collisions via the Fokker-Planck
co-efficients in the Boltzmann equation. The dispersion relation
is obtained on the assumption that the Coulomb collisions are
weak and solved on the additional assumptinn that the phase
velocity of the wave is much larger than the mean thermal velocity
of the particles, It is found that while the temperature has the
effect of increasing the maximum wavenumber ZI% (which for a cold
plasma is equal to (3:)”’1' in units of O.)P/U' , where w"is the electron
plasma frequency andii is the streaming velocity) below which the
plasma 1is unstable, the collisions have no effect on this wave-
number. However, the growth rate of maximum instability decreases
{compared to its value for a cold plasma) on taking into account
the thermal motions but increases when the collisions are taken

into account,




I. INTRODUCTION

The instability of longitudinal electron oscillations
in a plasma where we have two streams of electrons moving
with equal and opposite velocities has been discussed exten-
sively by several authors (1,2) when the thermal spread of the
electrons as well as the collisions between the particles are
ignored. It is well known that such a system is unstable for
all wavenumbers x(:hv/w,, , where &, is the wavenumber of the
perturbation,?]'the speed of the stream and (%Fthe electron
plasma frequency) which are less than a certain critical value

acc = CJ)‘/J' . Further the wavenumber for which the insta--
bility is maximum is known to be:r;(_:(’s)‘/mo?, . Jackson (3) has
considered the problem of two stream instability when the
velocities of the two streams are smeared out by an equal amount
and finds thatIX% increases on taking into account the spread
of the distribution function of the electron streams.

Tidman and Weiss (4) calculated thé'effect'Of col1isions on
the two stream iﬁstability assuming zero thermal spread of the
electrons and the ions. The collisions were taken into account
by a simple relaxation model in which the electrons are taken to
be scattered into a local Maxwellian distribution in a time T .
They found that collisions increased this instability. This
result led them to suspect that the diffusion nature of the
Coulomb thermalization of the electron streams is an essential
feature of the problem and hence the more exact Fokker-Planck

equation for Coulomb scattering should be used. It was later
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pointed out by May (%) that Tidmanr and Yeiss did not carry out the
calculations consistently as they neglected the equilibrium
current density and the associated magnetic field which results
due to the mass motion of the electrons. May considered two
interpenetrating streams so that there is no current in equilibrium.
He calculated the effect of collisions using the relaxation model
of Gross and Kvook (() and fourdd that the unstable mode ceasés to
grow after a time of the order of one collision time. However, he
had taken into account only the electron-electron collisions
claiming that the electron-ion collisions are negligible due to
the large ion-electron mass ratio. We will show here that the
electron-ion collisions are actually coﬁparable with the electron-
electron collisions for the problem at hand.

Tidman (7) considered the effect of collisions on:the instability
of a stream of particles moving with a velocity &i(with no thermal
spread) through cold ions at rest. He took into account the effect
of Coulomb collisions using the Fokker-Planck equation and found
that as the ordered streaming energy of the electrons is thermalized
due to diffusion in velocity space, there results an enchanced
Landau damping which competes with the growth of instability. He
did not take into account the equilibrium current density which
results in his model. It will be shown from our more rigorous
calculations that weak collisions cannot even cancel the effect of
thermal motions much less quenching the instability.

Comisar (8) and Buti and Jain (9) have studied the effect of weak

Coulomb collisions on the damping of longitudinal and transverse
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plasma oscillations respectively using the Fokker-Planck equation
in the form given by Rosenbluth et al (10). They find -that to the
first order in the collision frequency %é, the electron-ion
collisions dominate the electron-electron collisions in damping
the plasma oscillations.

Following Comisar and Buti and Jammwe consider the effect of
Coulomb collisions on the stability of contrastreaming hot plasmas
in a systematic manner. We assume that the collisions are not too
frequent so that we can make an expansion in powers of (?é/QUP) and
we calculate the collisional effects to the first order in the
collision frequency. In the absence of collisions, the dispersion
relation, including the thermal effects, is exactly solved numerically
to determine the region of instability and the growth rate of maximum
instability. When collisions are taken into account along with the
thermal effects, then we use an iterative procedure to solve the
dispersion relation and to study the effect of collisions on the
critical wavenumber and on the growth réte of maximum instability.

It is, perhaps, in order to remark here that the Fokker-Planck
equation is not strictly valid for an unstable plasma, particularly
near the electron plasma frequency (11,12). However, the motivation
for the present undertaking is to clarify the contributions of the
frictional and the diffusion terms in the electron-electron and
electron-ion collisions. We find that the contribution of the
frictional term is dominant compared to that of the diffusion term
in electron-ion collisions wiereas in ¢loctrun-clectryron collisions

the two are of the same order. (urther, the contribution of the



electron-ion collisions is much larger than that of the electron-
electron collisions. It may be reasonable to expect that the
qualitative nature of these results will not be altered by using
a more exact kinetic equation for an unstable plasma.
II. GENERAL THEORY

Let us consider two streams of hot unbounded plasmas in which
the ions form only the neutralizing background but the electrons
have non-relativistic streaming velocities. The equilibrium dis-
tribution functions, normalized to unity, for the electrons and the

ions are assumed to have the form:
2/ 3
-3 —-( V-
Jc (;vrrv)b' (Y- Ua) /v (1)

and

. —v¥av?

f ~(frrv)3 > (2)

where V:: @a. //M and V3=<“DL~/M 5 @a and ®i denote the temperatures
(in energy units) of the electrons and the ions respectively. The
subscript a on the electron distribution function refers to either
of the streams. The density of electrons on ions in each stream

is taken to be N, The distribution functions given by Ei}S.(l) and

(2) do not satisfy the Fokker-Planck equation:

2 oygf +Fuf -2 (e 12-00)f]

where\E is the force per unit mass and

(4)= NFZ (i+" ’J"!V o W/) ’ (4)
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whereADis the Debye length. In fact we find that

dla _ 42 U, U fav®) o+ L Qv
dt c«r)'bv(ua/ve,)3 2 /°)+‘* A

where -
2
_Q(x)=J w et A,
(8)
[-]
and the effective collisioﬁ frequency is defined to be

= (@ /A) by A (9)

In writing Eq. (7) we have taken the electron temperatures of each
. 2 2
stream to be the same and put vo. = \{’

As we shall see later the effect of thermal motions enters the
dispersion relation through the parameter (k2 Ax with 4= V/U
and x = RU/wp-

LNow for all situations of physical interest (k’)D) must be much

less than unity. Further we know that two-stream instability arises

for values of X of order unity. Thus the condition kAD<<[ implies



thatfq be less than unity for the unstable situations we are

considering here. Since
J
Qey:/voz) :i(«rr) 2. {gn- Vf/qf«i ; (10)

we can write

3
dla . 29 t(_V_) (11)
T = cya() U:. ’

or in order of magnitude

1A 9% i’e_)s (12)
wydt *wp\U/ -

The quantity (7%/&}) is always much less than unity for
physical situations of interest and we have seen that (\G/QL) is
also less than unity for the unstable situations under consideration
here. Hence(J changes in time on a scale which is very much larger
than a plasma period. On the other hand we know that in the absence
of collisions the two stream instability has e-folding time of the
order of a plasma period. Thus for the problem at hand, the dis-
tribution function satisfies the Fokker-Planck equation to a good
approximation and we may take!élin Eq. (1) to be constant. Moreover,
the neglect of this term is justified on the ground that this is
independent ofi: and thus would affect only the k:o mode when we

take the Fourier transform of the linearized equations in J- space;

and we are not primarily concerned with this mode here. 1In a similar
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manner, it can be shown that the Fokker-Planck equation for the
ions is also satisfied to an equally good approximation.
For longitudinal oscillations the linearized Fokker-Planck

equation for the motion of electrons has the form:

e 4 v-pf - e £.7 £ =(l£z.) , (13)

2t w Ja m — ~VJoa ot Gl
where the right hand side represents the effect of collisions.
Again the subscript a in Eq. (13) implies that this equation
refers to either of the plasma streams, =1 or 2. The change in

fo.; due to collisions results from collisions with the ions or

electrons in either stream. Thus we can write

(%?‘)w,‘é [GE),, +(§t£g)e&] ’ e

where algzl or 2. The collision terms are given by

(7?%)% b}i\{ (<A> J[;' &Bvav <<*“" 17(‘0) (15)

(%’%:)eﬁ. "“‘(< )oefa <A> J[:m>

-

a.bvw <<éé>¢eﬁx+ M»> :§:00~)

(16)

where

(&), = NM(1r ) 2 [ £l )

Iy —y/|
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8- b?' ’ / /
<“4‘éze=Nrb_ﬁy. jfbg(}!)lx-!ldk : (20)

4
The expressions for<é> and<AA>gcan be written down from Eqs. (19)
e /e
and (20) on replacing *;& by‘fé. . The electric field £i in Eq. (13)

is governed by the Poisson equation:

V-E =—477er3€ (z.v.t)dy . (21)

Equations (13) and (21) from the characteristic value problem
which we shall solve by the Fourier-Laplace transform method. We

thus define

£ x)- fufax St “Lzt), -

and

VAAn

_ h.x
E(A) fdtfdx ot -1 ““E(esé), (23)

widﬁ&izawfor the integrals to be convergent. The Fourier-Laplace

transforms of Eqs. (13) and (21) are:
. O . a
O (£,) -35(,&{) + by, (w)
E NOX Aeoa

5= =5 )a.
- 10 -

(24)



and

Eh("‘)="’ﬂi€"§ gfjiw(x,ﬂ) dy , (25)

&
where ¢2£('K ) is the Fourier transform of the initial distribution

function 1i.e.,

iy
3k”) Axez‘““f(w,w : (26)

In order to solve the characteristic value problem posed by Eqs. (24)
and (25), it is now convenient to take the Fourier-transform in

velocity space; we thus define

£ (4,0 "'fféa(x,/-’)é ey, (27)

Equation (24) now takes the form

(o~ k-2 )Rk - G(k.9)
. (28)
-"&_//%Q g’-Ek&“H—ffya 30 VQ} % (bta)zg ( )eﬁ]

In order to simplify the collision terms, we first observe that

the Fourier-Laplace transform of Eq. (15) leads to

(BFa)tz,_J‘clV/ éigxl[_z o é>€

ly-y/| awdJ = 3
and i§.(v- xl)
S =" -
, X"‘ kll - ar j\di € §4_ )



we find that
ﬁ 1 L€ Y f 2
(8) NI (Ari)lE & i B L2 6

and

(4 M4>€. -

o1l

4 S5 {iEu-p s

On using the foregoing results in Eq. (29) we obtain

(“F“ -NPfA:L K C@;%L)F(k 2.4),

¢ ) 9:-(9:—-@
K (2.3)= 5 [0 &) )ig-7)

I CEDF oy f (e}

Similarly l - "2,4

(30a)

(30b)

(31)

(32)

(BF‘L> Nrjd'll,[K E (&, 'Q.A)+K F(IE'QA)] (33)

where

, & _ 1 Q-(Q—)_Lf"'@i

e R A Gt Dk AT 9:—?2)}
K o) L[ L3 4 EW

(o) [ o507 ]

x exp {-.%vc (o)l (e-3)f -
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We shall now take ‘é to be along the Z-axis and also assume
4
that ya= L‘{.gz and further we set N['= Vv, /L_, , where L, represents the
mean free path of the particles between collisions. Eq. (28) now

reduces to

($- 2 )E (204 - 4G (4e)

B St TA R A P

6
0 (36)

+ K (G Rk 9.9+ K (& a)/;j(/e)w)]-

Equation (36) can be readily integrated to give

ECk,Q:/J) e/oo;/k[——ki- ﬂ—Aoi//kC;-w(k,Q.")ddg/

?,Ne E (/.))fg-' ‘@‘f{__'_o— __LO"U Yo /,Q}JG"/

(37)

A zl/k
_XOZ% do—fJ;Ze E{K (a) 1) + K, (o‘ Q)}F(kyr)@

+ k3¢(g:’:z)’€('k':;zuﬂ)] ’

Y
where @~ 7(0';,0;,0_2)-
We shall now assume that the collisions are weak so that

'k_L >>4. Under this assumption, to the lowest order, Eq. (37)

gives

20/
(kg r)=e [Q (k& _z/\l/aeul_—;k.“/?(}z,g)],

(38)
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Oz
~003'/k
Gk e)=—4 i Qrazy "™, )
and e
%2 2
B(k,g‘) =falo;’9;’_¢.,7g _,oo;’/k_éo*’vf'_éo;’ua}, (40)

We now substitute the zero-order solution given by Eq, (38) into

Eq. (37) to obtain:

003 2 )/k
ACELRR /*[[Q(mw zf %fize s

{[K (z,9)+ K (0'1)]Q (k,31)+K¢(0';¢)Q&(é¢)} (41)
_'LNC £ ("’) {P(k ‘r)"' Z :ré/‘dgze'o(o' 72 )/R

[{K( '9) +K, (0“ z)}P(é ;)+ K3 (W,;z)P(.é gjjﬁ
From Eq. (25) we-have
Ek(A)=f7Z—’§-e—% E (ko 0). (22)

On substituting for E; in accordance with Eq. (41) into Eq. (42),

we readily obtain

(43)

where

Plho)= 27 5[0 (ko)

+ZZ %fdo—fd o - 0(c5-7, )t x {(K (03 1)
+K (s, ¢))Q (t2) K Ks (%2, 2) Q, (4, ;z)}]

_;q-




ks - 4 G 0w 45 [ie
(kp) =1 ﬁ;[@z(&) M%jdafd;z

xe—f(g—%)[{/(f(o;,y) + Ko, 2)f Plbg) @
+K; (53,2) 5 (é,;z)]] :

We may note here that{ii(k,s) depends only on the initial
perturbation. If we consider only those perturbations for which
S%D(k,s) is analytic in the complex s-plane, then for the Laplace
inversion of Eq. (43), we have to consider only the zeros of‘ﬁkk,s)

which are given by

bk o) =0 (46)

This gives us the desired dispersion relation. It is now convenient
to define the effective collision frequencey as %!: yg/QJ. The

dispersion relation then reads
6p 22 s (e (4
1= 75% %ﬂjﬁ}(kﬁ)ﬁ— <= %fdo-éja('i

— _ R 8
P %)/A[{K, (5.3 + K, (=.3)f E%(k,:g)m
+K; (.2)E, (& cyﬁj]
We first need to i;:li?te / .
EZ (’k) Q) =/ 7172_ 72 a:%(.— f??l—il—% «7/ —“%Ua.), (48)

V.Y - 15 -



]
where zz:( 7]“'”77' ’72/ ). 1t is convenient to write this as

Ez-(k' ?‘) = ex/b (oéj_é lél?f) 472/7? exf —(da-—" %72// (2),/1).2’ (49)
7z

where
A ) s T

The integral which occurs in Eq. (49) can be expressed in terms

of the error function and we find that

2
/22( 1)-—-— eﬂ%{ \627} 7:)[1—‘,206&6%&‘2(74, (51)

where /7+ — Oéa. + %72/(2)%?- and.

Exf () =/e"3’;zg , (52)

o

which for large values of the argument has the asymptotic expansion

2
| /3.5
E - e [1—; +‘ ‘i- - 3 T .;] |
&bf(x) e LT Tax T gt 20 xf

On making the legitimate assumption that the phase velocity of

—~
N
o

~—

the wave is much larger than the mean thermal speed i.e. ﬂ/kVa>>i,

we obtain:

sk v, o
P (é ( k )‘Q,[:i (w__k(é‘)l ] ? (54)

where we have put O=-l@wfor the sake of convenience,

We next wish to evaluate
N -0k &
=J&6§J416 T K (5.2) B, (4:2). (55)
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We may note that K is independent ofU and as such of g—

a
We can, therefore, write II

I.’L "I,& s ‘: 1, 2. In order

to compare the relative orders of the diffusion term and the frictional

term, we split up Eq. (55) as follows:

~0(53-73)/k
ifot fdyfdl /fat(r‘“”P( s (s

where Iif and I represent the contribution of the
frictional and the diffusion terms respectively to the electron-ion
collisions. Further
2 2
o— '

K g, ) = — I+ ,‘f_(_ji)_encff-—l’c(o“e —4)

I ( ‘? 2 2 2 w2 2 (57)

f 'QT- /o'»ga "3}/

and

Kld(o—ﬂ) __ | {o (- "72)} _&/, {_ (U'éz—’;l):'}, (58)

177-'2 /O-ez fy_l+

On substituting for ,f( Z, and P 46)1 in accordance with

a
Eqs. (57) and (51) into Eq. (56), we obtain for If

o/k
I [ i

(€T sl mim) G |

It is now convenlent to introduce the varlable_{ o'ez_.j?lz_

The integral I/f can then be written as:

I’f e vz.[d(rfd§@+ “'(V" l)f a".vtl _f}
{e §+ —ad E»v.g(f*_)}[(prw)?i]

—_ )7

(60)



. )
Where now f_'_ - oéa.'. %(0"—?2)/@)/2.. Let us introduce a system
of cylinderical polar co-ordinateg (\fl.)elf'z' ); Eq. (60) then

reduces to

a OQ\ N
I/f Ty, J\do' “fa &76( o T 2)

(61)
-5
~ 2
sy
where S is defined to be
-3 (V"z*‘ "c?') .?J..z o £
d I+ )—2E . (62)
S, f £ £ ()=

If we now put f = tfz , this integral can be written as

lf &j D (1+ 1) o g, b i - WEE S, @)
where ’g'-'( Vo + V; / 2. The 1ntegraIIfthen takes the form
o2
Ilf ) 2 v-’-j:?j do’ Af &%/ éfa*'iw“ -1)8 EQ)

x(1+ »«)o—g [j__&o[ e E»r{(ﬁ] (64)

Again if we assume that §+ >>i l, we can use the asymptotic
expansion of error function and after some reductions we find

2 0 oo

a oly o
dv i
g e et g
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where o0

/ . 2 2
S = e s (e e
(66)

a

x[i__ Qo , o 3 3%a .5'+ » % 7“"‘79
d we h p-3x (B-9%)° (B-9=) (/3‘?‘1)
and we have put
(@it i), 3= /b, &=ciu, (@)
/LL-—'-(’m+M)/’mM.

We now observe that /9 is usually much larger than g, being of

the order of the phase velocity to the mean thermal velocity.
We can, therefore, carry out the expansions of the quantities

[+ 9
appearing in the denominators in 153 . The resulting integrations
are then elementary. We obtain after some straightforward cal-
culations:

S M(%Jowiua){i-a, s _ A

2 Y avhr Y (68)

2 A 3 5 2
o osefishe LA ],

where we have retained terms up to Tf only, and

hoe 1 Pk, Vopel (Gorit). o)

On substituting the foregoing results in equation (65) and after

some reductions we find o0 a a
6 3f 2 (70)

-

A »
If' ;2(ﬁr)%LLG34; 1)%&1
{

where
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@ oQ
§ 2t [ ot Gt A it
x{i—- Ga  [4_ta + 2(d- Alaz/ﬂﬂ]}
A+ Mg (A+ Aax)a (A + Aax)*
a 3A2 lS'Al
~ == 1- + 2
and (A'+A.‘Lx')2{ }

<AH- A?_x)a‘ <A|+ A:.x)"'

A’- 'L(k + U, _T‘g’uﬁ . (72)

The various integrals occuring in Eq. (71) can be evaluated in

)
terms of the error function t:a,( (%(_), where ’3*=A,/(3Aayland

the exponential integral E‘i/‘X) As y* is a quantity much
o/ Vo

larger than unity, being of orderl(one can use the asymptotic

expansions of these functions. The calculations are lengthy

but straightforward. The values of the various integrals are

given in Appendix A. The result is (retaining terms up to order A/—é):

- MM a f_ €A 3Q.a oAz
§f“aom’“ [An (t A,) (1 W

(73)
U 3A Za 1 (A .
PR (' 72')}]
We now observe that A’ can be written as
=&, (i'—%é&)’ (74)

where a:VoU /Cl ezand }’a /1) <<i l. We can, therefore,
again carry out the expansions of /4 in powers of ,ba/’))

Retaining terms up to the fifth power in /)a/.,) we obtain:
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o
s I gy ml s
§ " saiga |2

+25{%(¢Pa 313,3)— o —.,%%”é;% a;giz)}z (75

._2; {ah+wU¢(¢fa 31,/%’ } 3_%;%'24,

where

= [l g7 L)

It is, perhaps, worthwhile to remark again that the only assumption
which has been made to evaluate the integral Ig; is that the phase
velocity of the wave is much larger than the mean thermal velocity;
and this is indeed a legitimate one for the problem at hand.

We now assume that M/M«iand l{_.'z{< l/ozwhich is quite valid
in all cases of physical interest; the second requirement, as a

matter of fact, is a consequence of the first one. Under these

assumptions, we have

2 2
’g c:jé A /h.:: :ilkb (77)
and

/
2, = [ dy g ep(-Ul /o) (72

The integrals :S;bhave been evaluated numerically for suitable values

of the parameter A= 1{,2/0‘;2' . We thus finally obtain:




o aik’ 3kl , I8KV*
i @R G (- kU,)3 [Z {i+ w—kU, +(w kU, )2

U bla 12 b*ve
_Z{ ’"Z_ku (o EU,) - (4~ a/V)}

3. /2 vk 6 U N A
Z TV (w -—kUp.){ bt (w- A(Ia)} % V2 (e le)J

where we have put O=-Lwfor the sake of convenience. Proceeding

on similar lines, we obtain

Y.~k [._ sEv
d (&‘TI)%‘V‘,’B(&)- b, ) (w- kG) 3 (30)

U 4&% gk ls b |,
+ 2 ;LkV{ i a)} 7 To- B0

It is to be noted from Egs. (79) and (80) that in ion-electron
collisions it is the frictional term which is the dominant one;
the diffusion term tends to be smaller by a factor or order 1/%Qb
Combining Eqs. (79) and (80) we obtain for the contribution of the

electron-ion collisions:

o a4k’ [ 3bla Jo B2 }
If S ™ V3(w_kl/}3 2 i - RY, (m_.le(/»)1
Ui | Tkl Jo B2V, (81)
"2 ]t okl +<w_/e1/)2 5%)}

A 23 6%V, L ke
2 v:(w_,fzu){ﬂw’“+ } 3¢ W(w—kua)]

Next we wish to evaluate
_,o(o—v/;)/kK =
&
;a/ f"'rj;‘ ag P B A o2

where
(w¢)-~9‘(‘7*) 2R e 3 Y W e

and

- 22 -
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Ki( ﬁ A [o (o= '7})] «IL{ _Ly(o-e2 ;;2)-”}(0:7% (84)

2 .z7r—"-/o—eZ ;7/

The evaluation of I{-[l proceeds on similar lines as I

¢4

and we find:

7% 30( 2,24
.‘23)[ (‘77)/:-1/5 [ (1 03, 2% (85)
~Ld* Cfi* +7d(i+3a‘)+—d7—]

and
g 2
7 I 8T _ L fdE N _adT
l-?gd @T)Vz € 3 62'7; a.( +a'a)77 az' ’(86)
where
d = 2(U-U)/v, &=(orikd)/by, (o)
and

J 2,2
m-/ “yz(Ua“Uﬂ)/4V0
o= [y

€ ’ (88)

Combining Eqs. (85) and (86), we obtain

Fan 7
Z:?lﬁ (‘TT)/‘?' ¢ 3[77(1—'—_ +7.; a'L ;Za,

4
rpdad) T A3+ 2. 4T

In particular we find that for collisions between particles of

(89)

the same stream, this reduces to

Za = 1 (i“‘ g;) (90)

Ao 3((”)72- VDCCLB
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Finally, we wish to evaluate

‘A(‘T 72)/k
3”4 fdo—fdzz Kafd(fﬁ)fz(k'ﬁ)» (91)

where

.
Kaop 79)= = 7 -4  (o&e-2) (=9, oo

and

& 2
K34(°7§'Z) =— —z—“ﬁ{ 3o (fe -2) —i%(c'—%]j. (93)

a2 94

On substltutlng for P kl and K (Ujg\) into Eq. (91), we obtain:
3

3Lf —M_/ jdz)L[e Te_ao, E"{("M)} (94)

2 2 2
wa a»;v o i )

where now it is convenient to define

aa=(£..,.¢‘ua)/|4 , %:(f” %)/Vo (95)

and

(&) 7&_ = CL + v, 7@ .

We now first carry out the {-integration, The result is

o o 2
[, > ’7-
Ui fa gt
. _me o
e T 2d, B 5] ol Uey -2 5l ]
where
(-?)yl7.= azw K, - (97)
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Again introducing a system of cylinderical co-ordinates in

space and carrying out the angular integration we get

o 2 o(,i’ o ~_7o2,
La, =~ﬂr§f _Jj%[e +“°7°‘“E”f‘7*ﬂ (98)
xuf(a%%%—g%zﬁ)ﬁ
where
4][ fz LT {1 27 ¢ En{(’/-)} )

(7L+ z

After some elementary reductions, Eq. (99) can be put in the form

_ aod '—())—/)I.L l/z.
T f, 5 € , [= (@
(“- -x)/a
g ) EA{ (:-)‘l:. —-— ‘LJ ’

where we have put o= '-7?' . On substituting this expression

(100)

forS into Eq. (98), we get

b

o 0
T P —-'J)x —-\xzd- /E-(x-\ PN
l:?[f WVéJ—ZJJge YA (101)

where o is defined in Eq. (87) and

Fop<[1- o', opd(a o E%(az;::)]

(102)
X i ,{ )/’L a ag_x
cb)”b
If we carry out the asymptotic expansions of the error functions,
-5
we obtain on retaining terms upto (b :
3xt a,
Feo = =25 — = . (103)

(o) (agyt (Ora)(ag sy (o) Tap-)?
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Since oc/a £&£ 1, we can further expand the denominators in

this expression in powers of CI/a, and obtain:

s

FG) o — = +xL (-1 +2 + 3 2
a & /g aaa'& < G/’é 0;:* Oaal)

4 (104)

T J 2 3
._. ...-— A T - = .
We now substltute this expression for F(x') into I3£)[

given by Eq. (101). The resulting integrations are then elementary

and we obtain:

2 .

3&; ~ @R véa, a£[3(a’ 5~—|‘2 %— &a)
+‘7;{+(a1 a aag —24(—%&——5‘-;)
r(d)l(i“a; az a%)} { d) al;f _gfef 3—@)
(3 -} (3 0.

In a similar manner, we obtain:

(105)

o

2 _ L _d
I3&A:m:az[@7q (:z% 2a, )T

+ (2 a,@_ B O*a) "7}
On combining the foregoing expressions, we obtain:

I3L = 131;; + Ly
=m[ﬁ—é+%<é—wé§)+i}
+T{Qa£ -2z c%) O’(a& 2a,

(@ ('+ RO MR (G 3
~4(¢ }+T(d)‘*(a%-a—z—a§)}
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In particular for collisions in the same stream, this reduces to

R

—

- _ay
s 36,3 (i Sal

(108)

It is interesting to observe that for collisions in the same

stream, the total contribution of the electron-electron collisions is

I+Z=9(

’ (109)

and compared with the electron-ion collisions, this is smaller by

-2
a factor Q . It turns out that the integral Tm defined by

o
Eq. (88) is about an order of magnitude smaller that the integral
Zm defined by Eq. (78). Hence the contribution of the electron-
electron collisions between one stream and the other is an order
of magnitude smaller than the electron-ion collisions. Further,

in electron-electron collisions, the diffusion terms tend to be of

the same order as the frictional terms.

IV ANALYSIS OF THE DISPERSION RELATION

On carrying out the summations indicated in Eq. (47) the dis-

persion relation can be written as:
2

1= %
kz

LDkl L],

. 3 - %)
[}/Z (ko) + i‘(‘éﬁ‘) +2¢/€%— {-2‘[’./4_4‘[/2”'%/ (110)

~+

22 2
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where we shall now take U, = — U.‘Z, = U . We introduce

the following dimensionless variables:

=leU/a>/° , y=w/w/, A=Y UF and B='J7¢/wf.

(111)

on using the foregoing relations, the dispersion relation can

be written as:

with

C ._38i8 x 2y y+3x y+x
Gk (gra ‘)39
+£, b‘l’-f-loyac-f-.ix”

(3>

(112)

(113)

(114)

and
C,-_28 4 [ -
R (g2 Ly ] (05,
4 2
+/4xzy+/oyx+5':c +4-ch +2 ﬁ}
(= =%)° Z (g’:.x’-)‘"' (115)
R T A




where

.JE:Za“Ai s’

§-+(32, - 712, +§z,,),

(116)

(117)

ety ) 2054535 o

A STAT 4
= dT-7T + £T,

b2 Ty B b R
B T-77%
TR T TR
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(120)

(121)

(122)

(123)

(124)



2 2,
It is worth noticing here that /455 = (£2D) , a quantity which
is always small compared with unity for all cases of physical
interest, We shall now discuss some special cases of the dispersion
relation (112).

a) C’, =o' C,_ = O, C[z_ =0

In this case we obtain the well known cold case of two-stream
instability which has been extensively discussed. The dispersion

relation leads to the roots

t
y=1rx's (47"4"‘1)/&- (125)

The roots for (O are thus either real or purely imaginary; the
latter one gives rise to instability which occurs for all values of
]
XL which are less than .'.Cc: (.Q)/L It can be further seen that the
o
growth rate of instability is maximum for X = 923«(:(3) L. The
: . ] 1 . 2

corresponding growth rate of maximum instability is /g*%/z 0.25 .
Since the instability occurs only for the ‘root with the negative sign
in Eq. (78), we shall henceforth consider only this root and denote

it by the subscript 'O', i.e.

2 i
yo = 4ra— (4+4x*) B (126)

We now wish to see how xcand X, change whenA;‘:oand B#O
b =0 =0 .

In this case the dispersion relation reduces to

2, _4
i-—'w + CAx? yﬁ'égx = . (127)

(== (g==I7
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This equation has been solved numerically for ‘yzfor given
values of I and A . The results are given in Table 1 and are
plotted in Fig. 1 to illustrate the effect of thermal motions on
two stream instability., It is rather interesting to note that in
this case the maximum wavenumber xc(')upto which the instability

occurs is larger than-xci.e.

()
xc > x'cz 1-4”4“2. (128)

It is to be further noted that while the region of instability is

increased, the growth rate of maximum instability is decreased,

2 [ Yo | {025

c) The effect of Collisions

In order to compute the effect of collisions, we first observe
that the terms C.‘L and C/z are much smaller than unity so that we can
solve Eq. (112) by iteration. Thus we can substitute g:z‘g/ in J,MCI.‘L
where %Iis the solution of Eq. (127) and yl is real for X \< .1'_‘220)
Thus Ca—andcllbecome real in this region. Moreover g, is positive
for an unstable mode which we are considering here. Since C-'L and C,z
are proportional toyand y—.—o at 36'—'-% , we immediately conclude that
the collisions cannot changexcand thus the region of instability.
However to study the influence of collisions on the growth rate of
maximum instability, we have solved Eq. (112) for various values of
A and B. The results are illustrated in Figures 2 and 3.

It is rather interesting to find that the growth rate of maximum

instability, which is reduced by the thermal motions of the particles,
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is enchanced by the collisions but the effect of thermal motions
cannot be quenched by the Coulomb collisions,
V. CONCLUSIONS

In the absence of cellisions, the region of instability of
contrastreaming plasmas is increased by the thermal effects while
the growth rate of maximum instability is decreased. However, on the
assumption that the collisions are not too frequent (Qé/h7r<<; 1)
one finds that they have only second order effects, The region of
instability is not affected by the presence of collisions while the
growth rate of maximum instability is increased. The binary collisions
that we have considered here do not seem to quench the effects of the
thermal motions of the plasma species.
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APPENDIX

We wish to evaluate integrals of the type

oo

I /;lac v P ~(Ax+riA=) (a-1)
mn ) (A,-:-A‘zac)

These integrals can be readily evaluated in terms of the Error and the Exponential
integrals defined by

«.-f'{(") j (a-2)
/.x); "'a[o_%:a_tdg . (A-3)

For large values of the argument, these functions have the asymptotic expansions (1<)

and

2
-xr 1.3.5
_ e _ ! ~+ 3 — -t =
Eﬁ'g(x) T Tax [1 axr a¥x" 936 ] (A-4)
and
-
: o2 3
FiG-x) =~ % [i'_i t T = J ) (4-5)

After some elementary reductions, we find:

I '.. /ZfL— [i—ély* eygE/{(%)}a (A-6)

2 & 7
I"? :zA“A,,, [+ b ™ Eiledh) ik (47)

o [i 2y e ‘5{(3*_)}, (4-8)

I /4 &* y”*[&t" (5‘*) + g% © £ (- ?i)] (8-9)
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and

<
. LN I*
IQ 0~ ﬂ&%‘*[ ot (Ar2gc )€ Exf C?f*j ’ (A-10)
where '(-y*-:.A,/(ZAg,)lfz . These integrals have the asymptotic values:
({L BAL + ’SA ) . (A-11)
AY AT

I’ - i___:BA:. + 'SAA__

Los ( 4’4‘ + "bA ) | (a-12)
)

] A,’“ > (A-13)
I = L (4= SAL 4 334 33A2. | (A-14)
Li A(3 < A[ A“} )

and

< '; L
D=_-2_<1..§_£3,_ bsﬁz,~-~>. (a-15)
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Figure Captions.

Figure 1, Effect of thermel motions on X5 Xy and y2 for
A = 0.001, 0.01, 0.05 and 0.1.

Figure 2, Variation of y2 with x for B = 0 and 0.1 is illustrated
for A = 0.05.

Figure 3. Variation of y2 with x for B = 0, 0.05 and 0.1 is
illustrated for A = 0.1.

Title for Table 1
The values of K> Xy and x: for various values of

2 2
A = \‘/U , and B = 'uc/d)p.
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