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ANALYSIS OF TRANSIENT HEAT TRANSFER THROUGH A COLLISIONLESS
GAS ENCLOSED BETWEEN PARALIEL PLATES
by Morris Perlmutter
Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio
ABSTRACT
The problem of transient heat transfer through a monatomic collisionless
ideal gas enclosed between parallel walls with wall accommodation coefficients
of unity is analyzed for the case of a step change in one wall temperature.
The results indicate that steady state heat transfer condition is ap-
proached in an oscillatory manner requiring about 20 to 30 crossings of the
atoms across the channel at the mean thermal velocity based on the initial

)1/2

wall temperature, C.; = (2R , tc achieve steady state.

g Twi

The solution is obtained in terms of an arbitrary quantity Q transported
across a unit elemental .area some distance X from the 'channel wall. Results
for other transported quantities than energy i.e. density, temperature, can
be obtained from the present formulation. The results can be readily extended
to an arbitrary change in wall temperature as a function of time.

INTRODUCTION

The interest in rarefied gases has been increasing largely due to the
possibility of flight at high altitudes and high speeds. This is because
the mean free paths for molecular collisions increases with increasing altitudes.
For instance (ref. 1) at an altitude of 62.5 miles the mean free path
is 0.1 ft. The mean free path increases to 100 feet at an altitude. of

120 miles. Thus, convective heat transfer in a earth satelite open to the

atmosphere would be through a rarefied gas.
X-52278
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There has been very little consideration given to transient heat trans-
fer between surfaces enclosing a collisionless gas, i.e. where intermolecular
collision of the molecules are sufficlently rare sc that they can be neglected.
The problem of transient heat transfer from a single plate to a collisionless
gas has previously been treated by Yang and lLees (ref. 2) for a step increase
in wall temperature. They also included the effects due to a step increase
in wall velocity in a direction in the wall plane.

The present analysis considers the effect of a step change in one wall
temperature on heat transfer when the collisionless gas is enclosed between
two walls. In this case the Yang and lees solution would apply for early
times before the effect due to the second wall would be felt. In the analysis
we will determine how long and in what manner the final steady state condition
is achieved. If the time for the transient to be completed is a significant
part of the time used in a heat transfer situation then this transient effect
would have to be included in the analysis.

The present analysis can be readily extended to the case of an arbitrary
change in wall temperature with time. In this case if the rate of change in
the wall boundary temperature is small compared to the time needed for steady
state conditions to be attained then the transient effects also would have
to be accounted for in calculating the heat transfer. This assumes that the
convective heat transfer is significant compared to the radiant heat trans-
fer. The radiant heat transfer transient for this same problem takes place
almost instantaneously so that the trahsient can be neglected for that case.

The present analysis also serves as a limiting solution to the more

general and more difficult problem of transient heat transfer in the case
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of a rarefied gas where the intermolecular collisions are sufficiently
numerous so that this effect must be included in the analysis.

The present results show the time needed for steady state conditions
to be achieved and the behavior of the heat flux as it changes in time from
its initial value to its final steady state value. These results are shown
for several different values of the ratio of final to initial wall temperatures.
Results for both step increases and step decreases in wall temperature are
shown. Tt was assumed that the wall accommodation coefficient was unity and
the gas was ideal aﬁd monatomic.

The solution is obtained in general form so that various other quantities
in the gas such as tempersture and density could be obtained as was done in
Ref. 2. These results were not carried out because it was felt that they
would not be significant in a collisionless gas.

NOMENCLATURE
C average thermal velocity (ZRgT)l/2
D distance between walls
M mass of a atom
m, mass flux leaving the wall, (pV,), = (prW/Zn'l/ 2)
Q molecular quantity
q total energy flux
R®  ratio of wall temperatures, (Tw,o/TW,i)
R gas constant
r see fig., 1
S see fig. 1
T temperature

u inverse dimensionless velocity, 1/v



V molecular velocity

v dimensionless velocity, V/Cy

X coordinate normal to wall

6 dimensionless quantity, TCi/X

o%* dimensionless quantity, 7C;/(D - X)

3 ratio of densities, p/pi

o} gas density

T time

) dimensionless time, tC;/D

O refers to averaged quantity
Subscripts:

+,- to or from wall wo

i initial conditions before transient occurs

s steady state

wo,wl refers to wall WO or wall wl
Superscript:

refers to quantity leaving wall at time t!'
ANALYSIS

The problem treated here is the heat transfer through a collisionless
gas enclosed between two infinite parallel plates when the temperature of one
plate is changed in a stepwise manner. Of prime interest is the net heat
transfer between the gas and walls as a function of time from the initiation
of the transient until steady state heat transfer conditions are achieved.

The problem of transient heat transfer from a single plate to a col-

lisionless gas has previously been treated by Yang and lees (ref. 2). They
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also included the effects due to a step increase in wall velocity in a
direction in its own plane. The results of reference 2 for one wall agree
with the present result for the wall that has its temperature suddenly
changed at early time before the effects due to the opposite wall are fglt.

The analytical model is shown in figure 1. Two plates enclose a col-
lisionless monatomic jdeal gas, i.e., the mean free path to collision between
molecules in the gas is large compared to the distance across the channel.
The plates are assumed to have an accommodation coefficient of 1, that is
all the incident molecules come to equilibrium with the wall during collision.
Initially the entire system is at temperature Ti‘ At time <1 = O there
is a step change in the wall wo temperature from T; to T,,. The upper
wall temperature remains fixed at T = Ti

The analysis of the present problem proceeds as follows: The amount of
some molecular quantity Q(V) transported across an elemental area at X at

time 1 +that originated at the lower surface elemental area dAwo at time

7' (fig. 1) can be derived from reference 3 equation (Al) to be

Qp'Vo [exp-(a‘}%o'>z](coszw dA,, dv)
(s(V,0)), = T (1)
WO
Ao JV

where the mass flux leaving the wall, my;, 1is given by (p&ocwo)/gﬁl/z_

Taking & ring element dA' = 2xr dr dr with’ S2 - X2 4+ r2 equation (l) j

can be rewritten as
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Wy, v3 exp - (CLYJXZ ds av
(o{V,Q)), 7— = Sg’° (2)
WO

The molecules that reach the elementsl s=rea dA at X will be of two kinds.

One group will have left the wall before the change in the wall temperature.
The second group reaching the elemental area will have left after the transient
is initiated. Considering the first group, part of these molecules that
reach dA at X at time <t that have velocities less than X/t for all
values of path length S will have left the surface before the change in
wall temperature. This term is given by part I in equation (3) where 6 =
¥/X. TFor the molecules with velocities greater than X/t, only those mole-
cules with path length S greater than 1V will have left the surface before
the change in wall temperature. This term is given by part II in equation (3).
Now consider the second group of molecules arriving at dA at time .
This group has left the wall after the change in wall temperature and will
consist of molecules with velocities greater than X/T and path length 8

less than 1V. This term is given by part III in equation (3).

0rl/2 /6w 3iu2)
J-C- (p(VoQ)), = 4X? f q Yoexp(~v7) = ) a5 av
ivi S
AN v=0 S=X ~ J
® ® B ( 2
v=1/6 S=‘er-

+ 4x2f 3 exp - <§‘L as dav (3)
v=1/6\s=X

J
N

ITT

\_/
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Transforming varisbles, S = (¥ - ¥')/u, v = 1/u using the Jacobean gives

1o v
u. ue
ds dv = apt qu = W _du ()
1 u
O - —
Z

Combining equations (3) and (4) we obtain

61=0

el=9_u =
+
=8 01 =m0 u=0 6'==00
u=0 \9':6-11
-2
x|4 Q(GXE - (u) ) aet dqul + 4
u3(9 - 91)3
u=0 6'=0

£l Q(exp - (Ru)™2)

(Ru(6 - 61))°

1/2
e (7)), =

G

dae! du (5)

By changing the order of integration this can be written as

an Q{exp - uw“)du 4o!
= 4
pj_Ci (p(V2Q> )+ u3( 0 - o )5
9':—00 u:o

u=6-0"!

e! Qlexp - (Ru)™?)
R3u3(6 - 6')3

du ae* (6)

Similarly the net Q transported from the opposite wall wl at X of D

across the differential area dA at X 1is given by



g% =0 U=60%-0%!

o /2 (p{V, Q) _ = Q(exp - uZ)au aox’
5.0, (V) =4 u

Pivi (ox - )%

6% ! =m0 \_J u=0
Gr! =GR M u=0%-0%" ¢ Q(exp - uf)au qex’
» — (7)
\/ (6% - ox1)*u”
9%1=0 u=0

Then the netvqﬁantity Q@ ‘transported across the elemental area at X 1is

given by
(o(7,0)) = 225 | o(.0), + o(V,Q) (8)
2 2ﬂl72 2>+ 2%/ -
Calculation of mass flux across the channel. - Assuming Q = 1 we can

obtain the mass flux transported across an elemental area from equations (6)

to (8). Carrying out part of the integration in equations (6) and (7) gives

1/2 9'=0 i I}xp - - ;
2n _ -1/62 L R(6 - 0') J .
= (V) =1-¢e + 2 a6
Pi¥i 0 - g1)3
010 R(6 - 6')
(9a)
1/2 %1 =0% 41| exp - ___.l__:]
an’” -1/6%% wl (6% - ox1)2 '
(p{Vo))_. =1 -¢ + 2 - — 0%
plCl al’- (9* - 9*!)3
6% ' =0 (9b)

Since at a wall the incident mass flux is equal to the reflected mass flux
(V) )4 = (0(V2)) _yy (10)
Then after the wall transient has occurred, T > O, at walls wO and wl we

have

(V)0 (VD)L
CIAZ) N (YA DI 28

(11a)



(Q<V2))-,wo (D(V2>)+,WO
Vol s T (Vo) )ys T REyo (11b)

Combining equations (9a) with (lla) and (9b) with (11b) we obtain a pair of

simultaneous integral equations

=y
i, £
£ = 1 - eV L —-——HQ———g exp -(@(w - w'i)'%]dw' (122)
pro RSP
g =Y :
EoR =1~ e=¥2 4 » W;')S exp[}(w - w')-%]dw' (12b)
¥1=0 -

These are solved by an iterative numerical integration procedure on a high
speed electronic computer and the results are shown in figure 2. Also shown
in figure 2 are the limiting results for very large times, . For this

case, equations (12a) and (12b) can be shown to give

2R

§n1,¥0 = T + R (132)
2R

Reyo, ¥ = T + R ~ (13b)

This limiting result for large time agrees with the steady state collisionless
solution given in reference 4. For very short times, 90 equations (12a)
and (12b) become
= 14
gwl,?li‘»O =1 (14a)
ngo,wbo =1 (14b)

This limiting result for small times agree with the results of reference 2.

Energy flux from the channel wall to the gas. - For a monatomic gas the
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energy transported across the channel is due to translational motion only

(ref. 2). The total energy being transferred across the channel is therefore

given by

-l

Then in equations (6) to (8) letting Q = V2/2 = C%/Zu2 we obtain

1/2 exp%-—)- exp(-iz>+ exp(iéi—“g) ) exp<-2'913>

26

" PFrﬁ?]
+ = 00 1 +[R(6 - 6')]'2}d6'

(6 - 0")3

6'=0

- ox1 g% Ewl exp[ m‘] EL + (6% - g*1)" ]d@* (186)

(6% - o%')
f%1=0

To find the total heat flux leaving the walls we write 6 and 6% in
terms of X and ¥ as given in the nomenclature and take the limits for

X =0 and D. This gives at wall wo the result

20 % ) -1+ e (/P <1 + —l->
0102 - 292
br=¥ )1 - Pr)T
- = )Edf : z(Lrv)S ) L/ (W-41)% gy (17a)
%1 =0 )

Similarly the result at wall wl is given by



. 1l

gﬂiﬁﬁ& = - P _< -';L 1 _i;>
piCS 1 Ewl( ) exp ?1!2 + sz
X=D
Wt = P T - Pr)]-
N ngo( )<l + [R(g w )] z) exp[—(R(?!f - P )) "zjddyv (l7b)
' (v - ¥")
¥ =0

These results are shown in figures 3(a) and (b).
The limiting solution for large times, ¥+« is the fully developed

collisionless result and agrees with the value given in reference 6.

1/2
— - R(R - 1) (18)
P1Cy
=0, X=0,X=D

For short times, Y»0 we obtain the limiting results for early time for

wall wo which agree with reference 2

1/2 2
L/29 CRE -1 .
p1 €3
0,X=0

while at wall wl for early times the heat transfer from the wall to the gas

is zero

1/2
LS | =0 (20)

z
450, X=D

Pi
These results are shown in figure 3.
RESULTS AND CONCILUSIONS

The results for the mass flux leaving the walls are shown in figure 2.

Initially the mass flux leaving walls wo and wl remain constant after a
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step increase in wall wo temperature. Then the mass flux leaving the wall
wl first starts to change towards the steady state result. Somewhat later
the wall wo also begins to change towards the steady state result. The
results approach the final solution in an oscillatory manner.

The mass fluxes leaving the walls do not change for a short time after
the step change in wall temperature because although the wall wo ‘temper-
ature changes at 71 = O the incident mass flux on that wall remains constant
and so the mass flux leaving the wall remains constant from continuity.
However in the case of the step rise in wall temperature the molecules leaving
the heated wall wo will travel across to wall wl Taster because of their
higher thermal velocity causing the incident mass flux on wall wl to
increase as shown in figure 2. This is because not only are the faster
moving molecules from the hot wall wo now arriving but the slower moving
molecules that have left wall wo earlier also continue to arrive at wall
wl. Then since the mass flux incident and therefore also leaving the unheated
wall will now be greater, the mass flux incident on the heated wall will
become greater and the mass flux leaving the heated wall will now start to
rise towards the steady state result. Similar arguments can be used in
explaining how the cooled wall temperature case approach the equilbrium mass
flux.

The results for the heat flux from the wall to the gas is shown in
figure 3(a) for the case where the wall wo temperature is raised. It can
be seen that immediately after the step change:'in wall témperature there:
is a heat transfer from the heated surface wo to the gas. The other surface

wl with its temperature unchanged does not absorb any heat until the molecules
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that have left the heated surface reach surface wl. Both walls approach the
final steady state value asymptotically and are within 1 percent of the value
by about dimensionless time U ~ 10.

The results for a wall temperature decrease is shown in figure 3(b).
Heat is absorbed into the walls at the cooled surface wo immediately. The
other surface wl with its temperature unchanged does not transmit any net
heat to the gas until the molecules leaving the cooled wall reach it. Both
walls then approach the steady state result in a oscillatory manner taking
somewhat longer to reach the fully developed result than in the heating case
i.e. for Two/Twi = l/16 1 percent of fully developed heat transfer is
reached in dimensionless time ¢ ~ 30.

The present formulation of the problem allows the calculations of various
properties in the body of the gas such as density and temperature by choosing
appropriate properties of Q in equations (6) to (8). This was done in
reference 2 for the heat transfer from a single plate. However it was felt
for the collisidnless gas these properties would not be useful.

To illustrate the length of time needed for the step transient to reach
final equilibrium we can run out a sample calculation. Taking time to reach
1 percent of steady state in seconds, temperature in degrees rankine and

distance in feet, from the definition of wé we can write time <T_ as

S
?lfSD zlrSD
s T (2Rg: 1,2 T [:99 500 ]I/E (21)
m.w. Wl

Taeking the molecular weight, m.w., of air equal to 29, the distance between the

plates D as 2 feet and the initial wall temperature T, @as 100° R then
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if the dimensionless time wg needed to obtain fully developed conditions
is set equal to 30 we find from (eq. 21) a time <t ~ 0.1 seconds as about the
time needed to achieve thermal equilibrium. This implies that for heat trans-
fer changes on the order of seconds the transient collisionless heat transfer
behavior can be significant.
The times for the steady state heat transfer condition to be achieved
could be significantly different if the mean free path to collision in the
gas was smaller so that intermolecular collisions would have to be accounted
for and also if the accommodation coefficient of the surface was not equal 1.
The present results can be extended to arbitrary variations of wall tem-
perature as a function of time by considering the dimensionless temperature ratio
R2 as a function of time in the analysis.
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Dimensionless wall mass flux: wall WO, EyoR; wall W1, &pq
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Figure 2. - Dimensionless mass flux leaving the walls for different wall temperature ratios.
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Dimensionless wall heat flux, gy/ay Yoo
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Figure 3. - Concluded. Dimensionless wall heat flux for different wall temperature ratios.




