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M - 1  INJECTOR DEVELOPMENT - PHILOSOPHY AND IMPLEMENTATION 

W i l l i a m  A. Tomazic, E. W i l l i a m  Conrad, and Thomas W. Godwin 
Lewis Research Center 

National Aeronautics and Space Administration 
Cleveland, Ohio 

Abstract  s c a l e  t e s t i n g  p r io r  t o  committment t o  the  f u l l  

The i n j e c t o r  design was a cooperative e f f o r t  
between Aerojet-General Corporation and the  Lewis 
Research Center with the  goal being t o  achieve 
high performance with completely s t a b l e  operation. 
The approach w a s  based on the  technology already 
es tab l i shed  i n  the  RL-10 and J-2 engine develop- 
ment programs, supplemented with the  l a t e s t  da t a  
obtained a t  LeRC. Small-scale t e s t s  were conducted 
a t  LeRC t o  ve r i fy  the  design concepts p r io r  t o  

s c a l e  design. 

This paper describes t h e  design approach, 
t h e  methods of implementation, and t h e  ac tua l  
hardware developed. The r e s u l t s  from f u l l  s ca l e  
t h r u s t  chamber t e s t i n g  a r e  presented and compared 
t o  corresponding data obtained from subscale 
t e s t i n g .  The advantages and l imi t a t ions  of sub- 
s c a l e  t e s t i n g  a r e  discussed. 

N 

M 
m incorporation i n t o  t h e  fu l l - s ca l e  hardware. In j ec to r  Development a, 
I w Ful l - sca le  in j ec to r  t e s t i n g  demonstrated t h a t  

t h e  design goals were achieved. 
e f f ic iency  of 96 percent a t  5.5 mixture r a t i o  w a s  
achieved. Vacuum spec i f i c  impulse, extrapolated 
from the  bas i c  t e s t  da ta  t o  intended engine condi- 
t i ons  was approximately 430, which i s  j u s t  above 
t h e  PFRT goal .  The in j ec to r  was  highly r e s i s t a n t  
t o  both hydraulic and acous t ic  i n s t a b i l i t i e s .  No 
i n s t a b i l i t i e s  of any kind were experienced a t  ra ted  
conditions.  Low l e v e l  "chugging" occurred during 
t h e  s t a r t  t r ans i en t  only. Acoustic i n s t a b i l i t y  
was not encountered u n t i l  hydrogen in j ec t ion  tem- 
perature w a s  reduced below 80°R. 
was r e s to red  by r a i s i n g  t h e  hydrogen temperature 
t o  loo%, ind ica t ing  a subs t an t i a l  margin even 
under conditions of extreme per turba t ion  (engine 
design operating temperature i s  142%). 

A combustion 

S tab le  operation 

Introduction 

In j ec to r  development has h i s t o r i c a l l y  been a 
prolonged, i t e r a t i v e  process. The bas ic  d i f f i -  
cu l ty  vas been one of avoiding combustion in s t a -  
b i l i t y ,  while a t  t h e  same time achieving high 
combustion performance. This problem has become 
more severe as engine s i z e  has increased. Lack of 
bas i c  knowledge on i n s t a b i l i t y ,  i t s  prevention and 
cure, has genera l ly  forced in j ec to r  development 
along t h e  tortuous path of "cut and t r y "  with 
l i t t l e ,  i f  any, r a t i o n a l  bas i s .  

The M - 1  i n j ec to r  w a s  designed with t h e  in t en t  
of circumventing t h e  "normal" development rou te  by 
using a l l  pe r t inen t  technology t o  obtain t h e  "end 
product" i n  t h e  i n i t i a l  design; t h a t  is, an in jec-  
t o r  combining high performance, s t a b l e  operation 
and du rab i l i t y .  The design was a cooperative 
e f f o r t  between the  engine contractor (Aerojet- 
General Corporation) and the  Lewis Research Center. 
The primary design goa l  was  t o  achieve high per- 
formance (g rea t e r  than 96 percent combustion e f f i -  
ciency) with completely s t a b l e  operation. 
addition, mechanical i n t e g r i t y  and compatibil i ty 
with t h e  chamber were required.  The design 
approach was based on t h e  technology already 
es tab l i shed  i n  the  RL-10 and J-2 engine develop- 
ment programs, supplemented with the  l a t e s t  
research da ta  obtained at  LeRC. Where possible,  
aspects of t h e  design were f ina l i zed  and proven 
through s m a l l  s ca l e  t e s t s .  Four spec i f i c  areas,  
t h e  in j ec to r  proper, t h e  i n j e c t o r  ba f f l e s ,  t he  
ab la t ive  chamber, and the  start system were a l l  
subjected t o  in tens ive  design ana lys i s  and/or sub- 

In 

Background 

An assessment of t he  cur ren t  s t a t e  of 
hydrogen-oxygen in j ec to r  technology i n  l a t e  1964 
ind ica ted  t h a t  t he  5-2 in j ec to r  design was t h e  
most appropriate base t o  start from i n  designing 
t h e  M - 1  i n j ec to r .  The coaxial  tube in j ec to r  had 
by then become es sen t i a l ly  "standard" f o r  hydrogen- 
oxygen; both t h e  RL-10 and J-2 used it. The RL-10 
development had not encountered acous t ic  i n s t a -  
b i l i t y  during i t s  development primarily due t o  i t s  
high hydrogen in j ec t ion  temperature and s m a l l  s i z e .  
Accordingly, no usefu l  data on suppression of 
acous t ic  i n s t a b i l i t y  were ava i lab le  from t h e  RL-10 
e f f o r t .  The l a r g e r  J-2, however, d id  encounter 
acous t ic  i n s t a b i l i t y  and techniques f o r  i t s  sup- 
pres  s i on  were developed. 

It was found t h a t  increasing hydrogen veloc- 
i t y  ( o r  momentum) and/or decreasing oxygen veloc- 
i t y  r e su l t ed  i n  g rea t e r  s t a b i l i t y .  In  designing 
coaxia l  i n j ec to r s ,  t h i s  w a s  accomplished by 
reducing hydrogen in j ec t ion  a rea  and increasing 
oxygen in j ec t ion  area.  LeRC research i n  t h i s  a r ea  
showed the  r a t i o  of hydrogen ve loc i ty  t o  oxygen 
ve loc i ty  t o  be a s ign i f i can t  cor re la t ing  parameter, 
with an increased ve loc i ty  r a t i o  r e su l t i ng  i n  
g rea t e r  s t a b i l i t y .  In  evaluating t h e  s t a b i l i t y  
of a spec i f i c  i n j ec to r ,  hydrogen ve loc i ty  w a s  
varied by varying hydrogen in j ec t ion  temperature. 
This approach t o  s t a b i l i t y  evaluation has been 
used extensively both a t  LeRC and a t  Rocketdync for 
t h e  J-2 development. The LeRC developed method 
used for t h e  M - 1  was t o  begin a t  a temperature wel l  
above an t ic ipa ted  s t a b i l i t y  l i m i t s ,  then t o  ramp 
temperature down by increasing t h e  proportion of 
l i q u i d  hydrogen entering t h e  mixer and simultane- 
ously reducing the  gaseous hydrogen. Figure 1 
( r e f .  1) shows hydrogen temperature at  t r a n s i t i o n  
t o  unstable operation as a function of i n j ec t ion  
a rea  r a t i o .  Rcgardless of hydrogen temperature, 
t r a n s i t i o n  for t h i s  pa r t i cu la r  i n j ec to r  occurred 
a t  a ve loc i ty  r a t i o  of approximately 6.5.  
ve loc i ty  r a t i o s  r e su l t ed  i n  s t a b l e  operation, lower 
r a t i o s  i n  i n s t a b i l i t y .  

Higher 

Another s ign i f i can t  e f f e c t  was  recessing of 
t h e  oxygen tube below the  face. For the  J - 2  a 
recess  of 0.210 inch r e su l t ed  i n  a 20' t o  25 
reduction i n  se l f - t r i gge r ing  temperature and a 2 
percent increase  i n  combustion performance. Fig- 
ure  2 shows da ta  obtained a t  LeRC f o r  a 0.1 inch 
recess.  Se l f - t r igger ing  temperature was improved 
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by approximately 50' and performance by 3 t o  4 
percent.  Both t h e  high ve loc i ty  r a t i o  and recess  
techniques enhanced mixing and atomization of t he  
coaxia l  p rope l lan t  streams, and resu l ted  i n  
improvements i n  both s t a b i l i t y  and performance. 
The 5-2 f l i g h t  r a t i n g  t e s t  i n j ec to r  ( f igu re  3) 
employed both e f fec t ive ly .  

These same techniques were incorporated i n t o  
t h e  M - 1  i n j e c t o r  design. Hydrogen ve loc i ty  and 
ve loc i ty  r a t i o  were made as high a s  p r a c t i c a l  
within t h e  engine pressure budget. Both oxygen 
and hydrogen pressure drops were s e t  a t  a high 
l e v e l  t o  prevent chugging i n s t a b i l i t y .  This was 
done based on a s ing le  dead time approach t o  
chugging ana lys i s  which spec i f i ed  t h a t  increases 
i n  e i t h e r  or both pressure drops tended t o  improve 
s t a b i l i t y .  As  with t h e  J-2, an element i n l e t  
r e s t r i c t i o n  was used t o  obtain the  required oxygen 
pressure drop f o r  chugging s t a b i l i t y  and ye t  allow 
low oxygen in j ec t ion  ve loc i ty  f o r  b e t t e r  acoustic 
s t a b i l i t y .  

Subscale Testing 

Subscale tests of t h e  in j ec to r  element design 
chosen were undertaken to :  

1. confirm performance expectations 
2. check suscep t ib i l i t y  t o  chugging i n s t a -  

3. check on general  du rab i l i t y  of i n j ec to r  

4. examine acous t ic  i n s t a b i l i t y  character-  

b i l i t y  

elements and facepla te  

i s t i c s  

The subscale t e s t i n g  e f f o r t ,  including t e s t s  
of o ther  M-1 element configurations,  i s  reported 
i n  d e t a i l  i n  reference 3. 
out a t  15,000 l b .  t h rus t ,  t he  highest  t h r u s t  pos- 
s i b l e  a t  1040 p s i  chamber pressure i n  t h e  LeRC 
Rocket Engine Test Fac i l i t y .  The subscale in j ec to r  
( f i g u r e  4)  w a s  5.4 i n .  i n  diameter and contained 
51 elements as compared t o  40 in.  and 3248 elements 
fo r  t h e  fu l l - s ca l e  in j ec to r .  The fu l l - sca l e  com- 
bustor was dupl ica ted  exactly i n  t h e  following 
aspects : 

The t e s t i n g  was ca r r i ed  

1. element s i z e  and d e t a i l  
2 .  chamber pressure (1040 ps i a )  
3.  element spacing 
4. chamber length  (29 in .  t o  t h roa t )  
5. cont rac t ion  r a t i o  (1.7) 
6. Rigimesh face poros i ty  
7 .  facepla te  attachment 

Figure 5a shows the  element with a s t r a i g h t  
bore l i q u i d  oxygen tube; f igure  5b with a 7' t aper  
ream at  t h e  t i p  of t h e  LCW tube. The t ape r  ream 
w a s  added t o  decrease t h e  LCW ve loc i ty  and hence 
increase  t h e  hydrogen-oxygen ve loc i ty  r a t i o .  This 
p a r t i c u l a r  technique was  demonstrated as e f f ec t ive  
i n  t h e  work of reference 1. 
LCK ve loc i ty  prompted some concern about chugging 
i n s t a b i l i t y .  Therefore, both configurations were 
t e s t e d  t o  determine t h e  e f f e c t  of t h e  modification 
on chugging and on performance. There were some 
minor d i f fe rences  i n  t h e  severa l  non-tapered e l e -  
ments t e s t ed ,  but they apparently did not a f f e c t  
t h e  performance. 

However, t h e  lower 

A heavy w a l l  carbon s t e e l  chamber with a 
coating of .018 in .  of z i rconia  over .OlZ in .  of 
nichrome was used. Most of t h e  t e s t i n g  w a s  done 

2 
with a chamber 2il in.  long from i n j e c t o r  t o  th roa t .  
Some tes ts  were made with a 44 i n .  long chamber t o  
assess  poss ib le  response of t he  i n j e c t o r  t o  longi- 
t ud ina l  o sc i l l a t ions  i n  t h e  same frequency range as 
pred ic ted  fo r  tangent ia l  o sc i l l a t ions  i n  t h e  f u l l -  
s ca l e  chamber. 

Combustion e f f ic iency  ( ac tua l  C* divided by 
theo re t i ca l  C*) of t h e  taper-reamed configuration 
is  p lo t t ed  i n  f igu re  6 as a function of oxidant- 
f u e l  r a t i o  f o r  a nominal hydrogen in j ec t ion  temper- 
a tu re  of 140'. A s  noted, two da ta  poin ts  a t  lower 
chamber pressures were used t o  extend t h e  curve t o  
mixture r a t i o  extremes. The l e v e l  i s  generally 
very high (98 percent or b e t t e r )  although a s l i g h t  
dropoff of approximately 1 percent occurred bet,ween 
an oxidant-fuel r a t i o  of 4.5 and 6.5. 

Figure 7 shows t h e  e f f e c t  of hydrogen in jec-  
t i o n  temperature on combustion e f f ic iency  f o r  both 
s t r a i g h t  and taper-reamed elements. These da ta  are 
f o r  oxidant-fuel r a t i o s  from 4.5 t o  6.5. Although 
some s c a t t e r  i s  observed, both in j ec to r  types main- 
t a i n  approximately Y9 percent combustion e f f ic iency  
from 184% a l l  t h e  way down t o  60%. No d i f fe rence  
w a s  observed i n  e f f ic iency  between t h e  23 and 44 in.  
long chambers. 

These da ta  ( i n  pa r t i cu la r ,  those  showing t h e  
e f f e c t  of H2 temperature) i nd ica t e  a very high per- 
formance po ten t i a l  f o r  t h i s  i n j ec to r  design. Per- 
formance f o r  t h e  f u l l  s ca l e  in j ec to r ,  however, 
would be expected t o  be somewhat lower due t o  t h e  
f u e l  devoted t o  baffle-cooling (approximately 5 
percent) and t h e  peripheral  f u e l  f i lm  cooling 
(approximately 3 percent) intended t o  pro tec t  t h e  
regenerative chamber tubes. Rocketdyne experience 
on J-2 and t h e  da t a  of reference 4 ind ica t e  t h a t  8 
percent f u e l  devoted t o  cooling w i l l  decrease 
i n j e c t o r  performance by 1 t o  2 percent. It should 
then be expected t h a t  combustion e f f ic iency  f o r  t h e  
f u l l  s ca l e  chamber would be approximately 97 per- 
cent.  

I n  regard t o  s t a b i l i t y ,  ne i the r  hydraulic or 
acous t ic  i n s t a b i l i t y  was encountered a t  or near 
nominal M-1 operating conditions. Chugging was 
encountered during many s tar t  t r ans i en t s .  
should be expected t h a t  similar chugging might be 
encountered on t h e  f u l l  s ca l e  t e s t s ;  however, it 
should not be of consequence due t o  t h e  low pres- 
sures  and flows a t  the  time of occurrence. No 
instances of t angen t i a l  mode acous t ic  i n s t a b i l i t y  
occurred. Four t e s t s  with t h e  44 in .  long chamber 
showed r e l a t i v e l y  mild longi tudina l  i n s t a b i l i t y .  
This was  not unexpected, due t o  the  extreme L/D of 
t h e  chamber. Even then, t he  only s ign i f i can t  
i n s t a b i l i t y  occurred a t  conditions of chamber pres- 
sure,  O/F, and hydrogen temperature far from t h e  
normal operating conditions. Table I shows t h e  
da t a  f o r  these  t e s t s .  

It 

FINE ELEMENT INSTABILITY TABULATION 

Test Pc O/F RIT f AMP Mode 
No. Ps ia  OR Cps Ps i  

216 1007 5.18 66 750 25 1L 

217 554 7.47 90 1200 100 2L 

218 860 5.93 67 750 2 0  1L 

219 767 5.73 68 1300 35 2L 



. 

This run experience was encouraging but not 
conclusive as far as predic t ing  s t a b l e  operation 
f o r  t h e  fu l l - s ca l e  chamber. 

Throughout t h e  t e s t ing ,  t h e  i n j e c t o r  showed 
No overheating or  erosion exce l len t  du rab i l i t y .  

problenz were encountered. 

F u l l  Scale Testing 

The f u l l  scale in j ec to r  layout  and some of 
t h e  design d e t a i l s  a r e  shown i n  f igu re  8. A s  
shown, t h e  chosen b a f f l e  layout produced 19 sepa- 
r a t e  i n j e c t i o n  compartments. The t o t a l  number of 
i d e n t i c a l  elements requi red  t o  produce t h e  fu l l  
s c a l e  t h r u s t  was 3248. The four outer  rows of 
elements were canted towards t h e  chamber center 
l i n e  a t  7 O  t o  move t h e  point of impingement with 
t h e  11' convergent chamber fu r the r  downstream. 
This was done because of ana lys i s  and previous 
experience which foresaw a poss ib le  chamber erosion 
problem due t o  propellant stream impingement on t h e  
chamber w a l l  p r i o r  t o  complete combustion. 

The f i r s t  goal of t h e  full sca l e  t es t  e f f o r t  
w a s  t o  determine performance. The t e s t s  were made 
i n  an ab la t ive- l ined  chamber t o  provide s u f f i c i e n t  
duration. Thrust, weight flows, pressures,  and 
temperatures were measured t o  determine performance. 
Spec i f ic  impulse and cha rac t e r i s t i c  ve loc i ty  were 
derived from the  bas ic  data.  Charac te r i s t ic  veloc- 
i t y  w a s  ca lcu la ted  both from measured spec i f i c  
impulse using an ana ly t i ca l ly  derived t h r u s t  coef- 
f i c i e n t ,  and from bas ic  parameters (Pc, weight 
flows, AT) with ana ly t i ca l  cor rec t ion  made f o r  
non-isentropic acce lera t ion  (momentum pressure 
loss). 
with t h e  C* derived from spec i f i c  impulse being 
t h e  lower. Figure 9 shows combustion e f f i c i ency  
vs .  oxidant-fuel r a t i o  f o r  both t h e  f u l l  s ca l e  and 
subscale t e s t i n g .  Combustion e f f ic iency  w a s  c a l -  
cu la ted  using t h e  C* derived from spec i f i c  impulse 
and the  theo re t i ca l  C* f o r  140°R hydrogen i n l e t  
temperature. The f u l l  s ca l e  performance a t  5.5 
O/F was 96 percent of t heo re t i ca l  with a s l i g h t  
increase  a t  lower O/F's and a dropoff a t  higher 
O/F's. This performance l eve l  met t he  c r ig ina l  
goals prescribed f o r  t h i s  i n j ec to r .  The subscale 
da ta  show the  same t rend  with O/F, but a r e  about 3 
percent higher.  The subscale in j ec to r  data define 
a base or  i dea l  l eve l  of performance. Deviation 
from t h i s  i dea l ,  as noted e a r l i e r ,  was caused by 
two fac to r s .  F i r s t ,  t he  fu l l - s ca l e  in j ec to r  de- 
-Toted approximately 5 percent of i t s  f u e l  flow t o  
b a f f l e  cooling and 3 percent t o  per iphera l  f i l m  
cooling. Data obtained a t  LeRC and a t  Rocketdyne 
on the  5-2 program ind ica t e  a performance loss of 
approximately 1 percent f o r  each 4 percent f i l m  
cooling. This implies a performance loss  f o r  t h e  
M - 1  i n j ec to r  of approximately 2 percent.  
more, 748 elements (23 percent) adjacent t o  the  
ba f f l e s  were modified ( see  b a f f l e  sec t ion)  i n  
order t o  p ro tec t  t he  ba f f l e s .  
evaluation of t h i s  e f f e c t  was not made during sub- 
sca l e  t e s t ing ,  it i s  conceivable t h a t  a percent or 
more lo s s  could be a t t r i bu ted  t o  t h e  "dimpling". 

Figure 10 shows combustion e f f ic iency  as a 

The two values agreed within 1/2 percent,  

Further- 

Although a prec ise  

function of hydrogen in j ec t ion  temperature. Both 
t h e  f u l l  s c a l e  and subscale in j ec to r s  maintain 
constant e f f i c i ency  down t o  low hydrogen tempera- 
tu res ,  probably due t o  t h e  high hydrogen-oxygen 
ve loc i ty  r a t i o .  Other work a t  LeRC has shown t h a t  
a high ve loc i ty  r a t i o  is  he lpfu l  i n  maintaining a 

3 
high e f f i c i ency  l e v e l  with decreasing hydrogen 
temperature ( r e f .  1) . However, t h e  fu l l - s ca l e  
performance d i d  begin t o  drop prec ip i tous ly  approx- 
imately 5' before t h e  onset of acous t ic  i n s t a b i l i t y  
as hydrogen temperature was  ramped downward from 
r a t e d  conditions t o  determine t h e  se l f - t r igger ing  
point.  This coincided e s s e n t i a l l y  with beginning 
of a metastable condition p r i o r  t o  full-blown 
i n s t a b i l i t y .  

The performance da ta  obtained a t  sea  l e v e l  
with a 2.08 a rea  r a t i o  nozzle were extrapolated 
t o  vacuum conditions assuming a 40 area  r a t i o  noz- 
z le .  
termined using a nozzle performance evaluation 
computer program developed by United Ai rc ra f t  
Corporation. Figure 11 shows the  r e s u l t s  obtained. 
The performance a t  5.5 O/F ( the  t h r u s t  chamber O/F 
a t  engine r a t ed  conditions) i s  429-1/2 seconds 
which is  equivalent t o  the  cont rac t  spec i f i ca t ion  
f o r  PERT. 

This w a s  done using t h r u s t  coe f f i c i en t s  de- 

The fu l l - sca l e  i n j e c t o r  operated s t ab ly  under 
a l l  conditions of mainstage, normal operation. 
Chugging was experienced during t h e  ea r ly  phases 
of t he  s taged  start t r a n s i e n t  when in j ec t ion  pres- 
su re  drops were very low. Chugging pressure ampli- 
tudes were approximately 45 p s i  peak-to-peak during 
t h e  f i r s t  phase of t h e  start a t  300 p s i  chamber 
pressure.  The amplitude f e l l  t o  about 23 p s i  
during the  second phase of t h e  start a t  450 p s i  

' 

and chugging disappeared completely as t h e  chamber 
pressure  rose  fur ther .  This is  subs t an t i a l ly  i n  
keeping with t h e  subscale r e s u l t s  and ind ica tes  a 
qu i t e  s t a b l e  system. 

The next phase of e f f o r t  was t o  evaluate t h e  
acous t ic  s t a b i l i t y  cha rac t e r i s t i c s  of t h e  in j ec to r .  
W i n g  t h e  performance determination phase of t h e  
t e s t ing ,  t he re  w a s  no ind ica t ion  of any acous t ic  
i n s t a b i l i t y ,  even during t h e  start t r a n s i e n t  when 
temperatures dipped below 80% and mild chugging 
w a s  i n  progress. The method used t o  induce 
screaming was t o  reduce t h e  hydrogen temperature 
as was done i n  t h e  subscale t e s t ing .  The r e s u l t s  
of t h i s  t e s t i n g  a r e  shown i n  f igure  12. Se l f -  
t r i gge r ing  temperature (temperature a t  onset of 
i n s t a b i l i t y )  var ied  from about 76' t o  81°R with 
t h e  lower values occurring at  low O/F's. 
some of t he  l a t e r  runs, t h e  temperature was ramped 
back up after i n s t a b i l i t y  began. Return t o  s t a b l e  
operation occurred a t  approximately lW%. 
results ind ica t e  a subs t an t i a l  margin even under 
conditions of extreme per turba t ion  s ince  t h e  engine 
design operating temperature i s  142%. When ins t a -  
b i l i t y  was induced, t h e  high frequency pressure 
pickup da ta  showed no d e f i n i t e  mode of i n s t a b i l i t y  
which i s  i n  keeping with some experience with F-1 
ba f f l ed  in j ec to r s .  

During 

These 

In summary, t he  o r ig ina l  performance goals 
were m e t .  The in j ec to r  operated s t ab ly  under nor- 
mal conditions of operation and s t a b i l i t y  evalua- 
t i o n  t e s t s  a t  lower hydrogen temperature showed 
considerable margin. 

Baffle Development 

Background 

Even though &ery attempt was made i n  
designing t h e  in j ec to r  i t s e l f  t o  u t i l i z e  t h e  best 
information on design f o r  s t a b l e  operation, sta- 
b i l i t y  could not be guaranteed because of a l ack  



of information on scal ing.  It was decided, there-  
fore ,  that combustion baf f les  should be incorpo- 
r a t e d  t o  fur ther  reduce t h e  p o s s i b i l i t y  of de le te -  
r ious acous t ic  i n s t a b i l i t y .  The ac tua l  b a f f l e  
configurat ion was designed using t h e  Sensi t ive 
Time Lag Theory developed by Crocco and coworkers 
3% Princeton Vniversity.  
technique, it was determined t h a t  the most l i k e l y  
modes of o s c i l l a t i o n  would be the t h i r d  o r  four th  
tangent ia l  with frequencies from 2000 t o  3000 cps. 
The baf f le  was designed with r a d i a l  blades t o  pro- 
vide pro tec t ion  against  spinning tangent ia l  modes. 
Twelve blades were provided around the  periphery 
t o  preclude standing modes of lower order than t h e  
s ix th .  
t h e  f i r s t  radial mode. 
i n  d e t a i l  i n  reference 5. 
se lec ted  b a f f l e  arrangement. 
no s p e c i f i c  guide as  t o  b a f f l e  length; however, 
p a s t  experience l e d  t o  a choice of 4-inches. It 
was f e l t  t h a t  a 4-inch b a f f l e  was long enough t o  
be e f f e c t i v e  and not so long as t o  promote i n t e r -  
cavi ty  modes. (This length was l a t e r  reduced t o  
3-1/2 inches based on cooling considerations.  ) 

It w a s  a l s o  c lear  t h a t  the  b a f f l e  must be 
both adequately and economically cooled. 
perform its function continuously and r e l i a b l y  
without s u b s t a n t i a l l y  compromising the  in jec tor  
performance. Four t o  six percent of t h e  f u e l  was 
chosen as t h e  maximum which would be devoted t o  
b a f f l e  cooling without dropping t h e  combustion 
performance below minimum goals.  
nent design information came from the  F-1, 5-2, 
and G m I P  programs. Rigimesh appeared t o  .be a 
l o g i c a l  f i r s t  choice f o r  e f f i c i e n t ,  r e l i a b l e  
cooling. However, t h e  general ly  unsuccessful 5-2 
experience with Rigimesh baf f les  was not encourag- 
ing. 
b a f f l e s  appeared unsat isfactory because of the  
much higher heat f luxes f o r  M-1. With no f i rm 
precedent f o r  design, it was decided t o  ac tua l ly  
develop t h e  b a f f l e  cooling technique a t  subscale 
p r i o r  t o  f i n a l  design of the  fu l l - sca le  baf f le .  

Vsing t h i s  a.nalysis 

A r i n g  b a f f l e  was provided t o  eliminate 
The analysis  is presented 

Figure 13 shows the  
'%ne analysis  offered 

It must 

The most p e r t i -  

The cooling scheme used for  the F-1 copper 

Subscale Testing 

!The subscale t e s t  program was conceived and 
conducted a t  the  Lewis Research Center using, with 
some modifications,  t e s t  set-up and hardware pre- 
viously used f o r  the  i n j e c t o r  element invest iga-  
t ion .  The engine manufacturer contributed 
s t rongly t o  both the  concepts and hardware aspects  
of t h e  subscale program, and a l s o  designed the  
f u l l - s c a l e  in jec tor  t o  accommodate readi ly  any 
b a f f l e  concept determined t o  be optimum i n  the  
subscale t e s t s .  It was decided t o  b o l t  the  baf- 
f l e s  t o  t h e  i n j e c t o r  t o  minimize the  welding 
required,  and a l s o  t o  provide a quick-change capa- 
b i l i t y  i n  the  event t h a t  b a f f l e  de te r iora t ion  
would be experienced during t h e  fu l l - sca le  t e s t  
program . 

A cutaway drawing of the  subscale engine 
t e s t  assembly i s  given i n  f igure 14. A separately 
cont ro l led  and metered flow of hydrogen a t  a tem- 
perature  of c lose t o  140% (M-1 design) was sup- 
p l i e d  through tubes t o  the  base of the baf f le .  
This deviated from the  fu l l - sca le  design where a 
separate  b a f f l e  cooling system was not provided 
and t h e  coolant t o  the  b a f f l e  was supplied from 
the hydrogen i n j e c t o r  cavi ty  through holes d r i l l e d  
i n  t h e  in jec tor  faceplate .  However, t h e  subscale 
t e s t s  were i d e n t i c a l  t o  fu l l - sca le  i n  regard t o :  

1. chamber pressure 
2. mixture r a t i o  
3. contract ion r a t i o  
4.  i n j e c t o r  elements 
5. 

surfaces  
6. element densi ty  

Accordingly, and i n  view of the  f a c t  t h a t  
subscale chamber diameter was not much smaller 
than the  f u l l - s c a l e  b a f f l e  cavi t ies ,  the  a x i a l  
heat f l u x  d i s t r i b u t i o n  i n  t h e  v i c i n i t y  of the  
b a f f l e  is believed t o  have been closely simulated. 

element spacing with respect  t o  b a f f l e  

A s  s h m  i n  f igure  15, t h e  subscale b a f f l e  
specimens corresponded t o  a 2.85-inch s l i c e  from 
one of the  s i x  inner spokes of the fu l l - sca le  
baf f le .  
t e d  by gradually reducing t h e  baf f le .coolan t  flow 
u n t i l  f a i l u r e  occurred. Detailed r e s u l t s  Ere 
given i n  reference 6 and only a few of t h e  mo2.e 
s i g n i f i c a n t  f indings a r e  covered herein.  

A t o t a l  of 25 b a f f l e  designs were evalua- 

In  t h e  25 specimens tes ted ,  f i v e  bas ic  
coolin@ schemes were involved as indicated sche- 
mat ical ly  i n  f igure  16. 
mary i n t e r e s t  herein a r e  t h e  t r a n s p i r a t i o n  ( type 
A) and f i lm and convection ( type E).  
types assessed were a s  follows: 

The b a f f l e  types of p r i -  

The other  

Ty-pe B - convective cooled: all configura- 
t ions  (copper) showed some erosion 
near t i p  but f u r t h e r  development 
could pcobably achieve successful  
design. 

Type C - reverse  flow convection: both .030 
copper and n icke l  s t a i n l e s s  s t e e l  
(e lectrodeposi ted)  s h e l l  configura- 
t ions  met design but showed inc ip ien t  
f a i l u r e  a t  75 percent of design 
coolant flow. Discarded as too com- 
plex. 

Ty-pe D - f i lm cooled: t i p  erosion of copper 
tang occurred with film-cooled 
lengths  of 1.5 inches or over. 

Early i n  t h e  subscale invest igat ion,  it was 
found the  close proximity of the  i n j e c t o r  elements 
t o  the  b a f f l e  resu l ted  i n  LOX-rich propel lant  
stream impingement and consequent erosion. It 
was found t h a t  indenting or "dimpling" the  e le -  
ments immediately adjacent t o  t h e  b a f f l e  would 
completely r e l i e v e  t h i s .  The "dimpled" elements 
a re  shown i n  f igure  17 .  As discussed e a r l i e r ,  it 
is  l i k e l y  t h a t  t h i s  modification e f fec ted  perform- 
ance s ince over 700 elements had t o  be "dimpled" 
on the  fu l l - sca le  i n j e c t o r  t o  adequately pro tec t  
the  baf f le .  
used t o  pro tec t  the exposed inner end of the  sub- 
sca le  b a f f l e .  There were no exposed ends on the  
f u l l - s c a l e  b a f f l e .  

A s t r i p  of ab la t ive  mater ia l  was  

Results obtained with the t ranspi ra t ion-  
cooled b a f f l e s  a r e  t y p i f i e d  by the data  of f igure  
18  where b a f f l e  d i f f e r e n t i a l  pressure is p l o t t e d  
as  a function of b a f f l e  coolant flow. The shaded 
region represents  t h e  range of values acceptable 
i n  the  M - 1  engine. It is seen t h a t  a s  the  b a f f l e  
coolant flow was reduced from maximum, t h e  b a f f l e  
pressure drop a t  f i r s t  decreased as  expected, but 
then increased rapidly with fur ther  reductions of 
flow below about 0.27 pound per  second (equivalent 



5 

c 

. 

t o  4.5 percent  of t o t a l  f u e l  flow). 
0.15 pound per  second, a maximum apparently 
occurred followed by a decrease again toward t h e  
o r ig in  of t h e  p lo t .  AE shown i n  reference 6, 
o ther  designs of d i f f e r e n t  poros i ty  and construc- 
t i o n  d i d  in t e rcep t  t h e  design region. 
l e s s ,  a l l  of t h e  t r ansp i r a t ion  cooled ba f f l e s  were 
unacceptable because a l l  exhib i ted  t h e  unexpected 
"S-shaped" c h a r a c t e r i s t i c  s h a m  i n  f igu re  18. 
Operation could occur a t  any of these  regions (A, 
B or C )  for a given i n j e c t o r  pressure drop, prob- 
ably depending upon t h e  sequence of propel lan t  
flows during t h e  complex conditions t y p i c a l  of 
engine start t r ans i en t s .  
was marginal and damage occurred a f t e r  two shor t  
runs a t  poin t  C. On t h e  bas i s  of a very cursory 
ana lys i s ,  it appeared t h a t  t h e  r eve r sa l  ( a t  0.27 
pound pe r  second i n  f ig .  18) may be assoc ia ted  
with sudden d is rupt ion  of t h e  cool boundary l aye r  
normally formed by the emerging coolant on the 
hot side of t h e  b a f f l e  material. Data s imi l a r  
t o  these  had not been found i n  t h e  p r i o r  l i t e r a -  
ture poss ib ly  because experiments a r e  not gener- 
a l l y  c a r r i e d  out t o  f a i l u r e  and t h e  r eve r sa l  point 
was  not reached. 

A t  about 

Neverthe- 

Baffle i n t e g r i t y  a t  B 

A number of type E b a f f l e  configurations 
employing combined convective and f i lm  cooling 
were inves t iga ted  with t i p  damage gradually e l i m -  
i na t ed  by d e t a i l e d  modifications. Flow chaxac- 
t e r i s t i c s  f o r  t h e  f i n a l  configuration a r e  s h a m  
i n  f igu re  19.  
t o  operate with a t o t a l  flow of 5 percent of t he  
f u e l  flow f o r  t he  i n j e c t o r  (subscale b a f f l e  flow 
equivalent t o  .3 lb/sec) . Local a reas  could be 
higher or lower depending on in j ec to r  flow d i s -  
t r i bu t ion ;  however, the lowest flow a t  any poin t  
should be equivalent t o  approximately 4 percent. 
The subscale b a f f l e  was t e s t e d  a t  t h i s  equivalent 
flow r a t e .  Only very minor t i p  damage was sus- 
t a ined  ( f i g .  2Oa). Another t e s t  was made a t  EO 
percent of t h e  lower design flow l i m i t  (approxi- 
mately 3.3 percent equivalent flow rate) .  Con- 
s iderably  more t i p  erosion was sustained ( f i g .  
2Ob). However, it appeared t h a t  t h e  ba f f l e  had 
eroded t o  an equilibrium s t a t u s  and could have 
maintained i t s  bas ic  s t r u c t u r a l  i n t e g r i t y  with 
f u r t h e r  operation. 
t h e  inves t iga t ion  were designed t o  fu l l - s ca l e  
chamber spec i f ica t ions  and were found t o  have 
adequate s t r u c t u r a l  i n t eg r i ty .  This w a s  confirmed 
both with these  hot t e s t s  and with shake-table 
v ib ra t ion  t e s t s  using the  predicted M - 1  engine 
v ib ra t ion  spectrum. 

N l - S c a l e  Testinrg 

The fu l l - sca l e  b a f f l e  was  designed 

The b o l t s  and s e a l s  used i n  

The fu l l - sca l e  r e s u l t s  i nd ica t e  t h a t  t h e  
b a f f l e s  were e f f ec t ive  i n  a t tenuat ing  i n s t a b i l i t y .  
Even during induced unstable operation, pressure 
excursions were l imi ted  t o  100 t o  150 p s i  peak t o  
peak. 

The ba f f l e s  themselves withstood t h e  r i g o r s  
of f u l l - s c a l e  t e s t i n g  qu i t e  well. The inner 
r a d i a l  ba f f l e s  were wholly undamaged, although 
seve ra l  erosion spots  occurred on t h e  outer  c i r -  
cu la r  ba f f l e ,  and subs t an t i a l  erosion occurred on 
seve ra l  of t he  outer r a d i a l  ba f f l e s .  Figure 2 1  
shows t h e  in j ec to r  and ba f f l e s  a f t e r  t h e  first 3 
see.  f u l l  t h r u s t  t e s t  a t  an O/F of 6.12. A sub- 
sequent tes t  of 4 sec.  a t  f u l l  t h r u s t  and 5.34 
O/F d id  not add t o  t h e  damage. Most of t h e  ero- 
s ion  on t h e  outer r a d i a l  l egs  appeared t o  be  due 

t o  inadequate coolant flow. Therefore, a f t e r  two 
full t h r u s t  t e s t s ,  t h e  two most severely eroded 
outer  r a d i a l  l egs  were replaced with new l egs  
which were r e d r i l l e d  t o  provide approximately 15 
percent g rea t e r  f i lm  coolant flow. Further 
t e s t i n g  showed subs t an t i a l ly  l e s s  damage t o  these  
legs, ind ica t ing  t h a t  t he  high coolant flov 
helped. 

In  general ,  t h e  bol t ing  of t he  ba f f l e s  t o  
t h e  in j ec to r  proved qu i t e  s a t i s f ac to ry .  The baf- 
f l e s  remained f i rmly  attached with no apparent 
b o l t  loosening during s t a b l e  operation. 
firmed both t h e  sub-scale f i r i n g s  and t h e  shake- 
t a b l e  tests. 
ing.  However, it w a s  not d i f f i c u l t  t o  r e t igh ten  
t h e  b a f f l e s  as necessary between s t a b i l i t y  l i m i t  
tests. 

This con- 

I n s t a b i l i t y  did cause b a f f l e  loosen- 

In  summary, the subscale development of a 

What proved t o  be a wholly ade- 
baffle-cooling design f o r  t he  M - 1  worked out very 
s a t i s f a c t o r i l y .  
quate f i n a l  b a f f l e  design was completely estab- 
l i s h e d  before beginning fu l l - sca l e  t e s t s .  
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Figure 5. - Cross-sectional view of subscale injector elements. 

(Al l  dimensions are in inches unless otherwise noted.) 
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Figure 6. - Subscale injector performance (taper reamed con- 
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Figure 7. - Subscale injector performance. 
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Figure 8. - Full scale injector 
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Figure 9. - M-1 t h r u s t  chamber c* Efficiency against oxi-  
dant fue l  ratio. 
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Figure  10. - M-1 t h r u s t  chamber c *  E f f i c iencyaga ins t  H2 i n j e c t i o n  tem- 
perature; O F  = 5.5kl.O. 
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Figure 11. - M-1 th rus t  chamber vacuum specific 
impulse against oxidant fuel  ratio. Pc = lo00 
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Figure 12. - M-1 th rus t  chamber combustion sta- 
bi l i ty  limits. 



Figure 13. - Recommended baffle conf igurat ion.  
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Figure 14. - Cutaway drawing of sub scalp engine. 
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F igure 15. - Layout of full scale M-1 engine baffle. 
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(a) Transpiration. (b) Convection ("dump"). 

(c) Revirse flow (d) Film. (e) Fi lm and 
convection. convection. 

Figure 16. - Baffle cooling concepts investigated. 
CD-8451 
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Figure 17. - Subscale injector showing "dimpled" elements 
adjacent to baffle. 
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F igure 18. - Flow character is t ics  of t ransp i ra t i on  cooled 
ba f f I e s . 
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Figure 19. - Flow character ist ics of t h e  prototype (copper, 
convective -f i I  m cooled) baffle. 



Figure 20. - (a) Post f i r e  condition of prototype baffle after 10 seconds of 
operation at t h e  lower l im i t  of design coolant flow. 
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Figure 20. - (b) Post f i r e  condition of prototype baffle after 10 seconds of 
operation at 80% of lower design flow l imit.  
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Figure 21. - Post f i r e  condi t ion of f u l l  scale baffle. 
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