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RECURSION FORMULAS FOR THE COEFFICIENTS OF THE 
f AND g SERIES 

If the xy-plane coincides with the plane of motion and if  the positive x-axis 
is along the position vector To at time to ,  the two-body equations can be written 
in the form 

where p is a constant and r is the magnitude of F. Zero subscripts designate 
values at time to, and a dot over a symbol indicates a time derivative. 

Equation 1 expresses the constancy of angular momentum and Equation 2 is 
obtained by multiplying through by r the equation 

; =  (pe s ine) /h  

I- 

= [ ( p s i n 8 , ) / h ]  c o s ( 8 - 8 0 )  + 1(pecosB0)/h] s in (B-o^o)  , 

where 8 is the true anomaly, e the eccentricity, and h the magnitude of the 
angular momentum. 

In the reference frame described above, the equation 

reduces to 

- x - f r o  + gio , (4) 

(5) 
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Equation 2 is not valid when Go = 0, Le., for  the rectilinear cases. Sub- 
stituting Equation 5, however, into Equations 1 and 2, 

Taking advantage of symmetry in the summations, Equations 10 and 11 
~ become, for i12, 

c = b - p / r o ,  

Substitution of 

co 

(9) x = ai  ( t  - t o ) i  , g -  - f: bi ( t - t o ) i  
i = O  i = O  

into Equations 6 and 7 with a. = ro, a l  = io, bo = 0, and b, = 1 gives, for  i 21, 



k = integral part of (%) (i - 2), 

q = fractional part of (%) (i - 2), 

Having X( t ) and g(  t ), f can be computed from Equation 4 and I( t ) from 
Equation 3. Inversion of Equations 6 and 7 yields 

(io x + cg) x - bro  g , r2 ;r = 

where 

Then f ( t  ) and ?( t ) are obtained frclm 

f = (i-iogpo, 

For purposes of numerical control it may be advisable to let 

t - t o  = h - r ,  h = t , - t o ,  

where [ to  , t ] is a time interval of interest. The corresponding interval for 
T is LO, 11. Equations 12 and 13 still hold provided a. = ro ,  bo = b, = 0, 
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al  = i o h ,  b, = h, a2 = -ph2/2rO2, c = ( b  -p/r0)  h.  
Equations 9 become 

a i 7 '  , g = b i 7 i  , 
i=O i=O 

which offer a further advantage when t = t Le., when 7 = 1. 

Formulas for the radii of convergence of the f and g series are given by 
Moult on. 
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