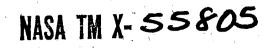
A-040-0/-2005



RECURSION FORMULAS FOR THE COEFFICIENTS OF THE f AND g SERIES

· . 1 4		- * ; 	
GPO PRICE	\$		
CFSTI PRICE	s) \$		 1.

На сору (HC) <u>З-00</u>

Microfiche (MF)_____65

ff 653 July 65

E. R. LANCASTER R. H. ESTES

HINE 1967	
N67-28678	
X (ACCESSION NUMBER)	(THRU)
<u> </u>	1
(PAGES)	(CODE)
1 TMX-55805	19
(NÁSA CR OR TMX OR AD NUMBER)	CATEGORY)

GODDARD SPACE FLIGHT CENTER GREENBELT, MARYLAND

X-643-67-255

٠

RECURSION FORMULAS FOR THE COEFFICIENTS OF THE

•

۰.

.

f AND g SERIES

by

E. R. Lancaster R. H. Estes

June 1967

GODDARD SPACE FLIGHT CENTER Greenbelt, Maryland

RECURSION FORMULAS FOR THE COEFFICIENTS OF THE f AND g SERIES

If the xy-plane coincides with the plane of motion and if the positive x-axis is along the position vector \overline{r}_0 at time t_0 , the two-body equations can be written in the form

$$\dot{xy} - \dot{yx} = \dot{y}_0 r_0 , \qquad (1)$$

$$\dot{x}\dot{x} + \dot{y}\dot{y} = \dot{r}_{0}x + (\dot{y}_{0} - \mu/\dot{y}_{0}r_{0})y$$
, (2)

$$x(t_0) = x_0 = r_0$$
, $y(t_0) = y_0 = 0$,

where μ is a constant and r is the magnitude of \bar{r} . Zero subscripts designate values at time t_0 , and a dot over a symbol indicates a time derivative.

Equation 1 expresses the constancy of angular momentum and Equation 2 is obtained by multiplying through by r the equation

$$\dot{\mathbf{r}} = (\mu e \sin \theta) / h$$
$$= \left[(\mu e \sin \theta_0) / h \right] \cos (\theta - \theta_0) + \left[(\mu e \cos \theta_0) / h \right] \sin (\theta - \theta_0) ,$$

where θ is the true anomaly, e the eccentricity, and h the magnitude of the angular momentum.

In the reference frame described above, the equation

$$\overline{\mathbf{r}} = \mathbf{f} \overline{\mathbf{r}}_0 + \mathbf{g} \overline{\mathbf{r}}_0 \tag{3}$$

reduces to

$$\mathbf{x} = \mathbf{fr}_0 + \mathbf{g}\dot{\mathbf{r}}_0 , \qquad (4)$$

$$y = g y_0 . (5)$$

Equation 2 is not valid when $\dot{y}_0 = 0$, i.e., for the rectilinear cases. Substituting Equation 5, however, into Equations 1 and 2,

$$\mathbf{x}\dot{\mathbf{g}} - \mathbf{g}\dot{\mathbf{x}} = \mathbf{r}_0, \qquad (6)$$

$$\dot{\mathbf{x}} + \mathbf{b}\mathbf{g}\mathbf{g} = \dot{\mathbf{r}}_0 \mathbf{x} + \mathbf{c}\mathbf{g} , \qquad (7)$$

$$b = \dot{y}_0^2 = v_0^2 - \dot{r}_0^2$$
, $c = b - \mu/r_0$, $v_0 = \left| \dot{r}_0 \right|$,

$$x_0 = r_0, \quad g_0 = 0.$$
 (8)

 $Substitution \ of$

$$x = \sum_{i=0}^{\infty} a_i (t - t_0)^i$$
, $g = \sum_{i=0}^{\infty} b_i (t - t_0)^i$ (9)

into Equations 6 and 7 with $a_0 = r_0$, $a_1 = \dot{r}_0$, $b_0 = 0$, and $b_1 = 1$ gives, for $i \ge 1$,

$$r_0(i+1)a_{i+1} = a_1a_i + cb_i - \sum_{j=0}^{i-1} (j+1)(a_{j+1}a_{i-j} + bb_{j+1}b_{i-j})$$
, (10)

$$\mathbf{r}_{0}(\mathbf{i}+1)\mathbf{b}_{\mathbf{i}+1} = \sum_{j=0}^{\mathbf{i}-1} (\mathbf{j}+1) \left(\mathbf{a}_{\mathbf{j}+1}\mathbf{b}_{\mathbf{i}-j} - \mathbf{b}_{\mathbf{j}+1}\mathbf{a}_{\mathbf{i}-j}\right) .$$
(11)

Taking advantage of symmetry in the summations, Equations 10 and 11 become, for $i \geq 2$,

$$\mathbf{r}_{0} \mathbf{a}_{i+1} = \left(\mathbf{a}_{1} \mathbf{a}_{i} + \mathbf{cb}_{i} \right) / (i+1) - \sum_{j=0}^{k} \mathbf{a}_{j+1} \mathbf{a}_{i-j} - \mathbf{b} \sum_{j=0}^{k} \mathbf{b}_{j+1} \mathbf{b}_{i-j} - \mathbf{q} \left(\mathbf{a}_{k+2}^{2} + \mathbf{bb}_{k+2}^{2} \right), (12)$$

$$\mathbf{r}_{0}(\mathbf{i}+1)\mathbf{b}_{\mathbf{i}+1} = \sum_{j=0}^{k} \left[(\mathbf{i}-\mathbf{j}) - (\mathbf{j}+1) \right] \left(\mathbf{b}_{j+1} \mathbf{a}_{\mathbf{i}-\mathbf{j}} - \mathbf{a}_{j+1} \mathbf{b}_{\mathbf{i}-\mathbf{j}} \right) , \quad (13)$$

 $k = integral part of (\frac{1}{2}) (i - 2),$

q = fractional part of $(\frac{1}{2})$ (i - 2),

$$a_2 = -\mu/2r_0^2$$
, $b_2 = 0$

Having x(t) and g(t), f can be computed from Equation 4 and $\overline{r}(t)$ from Equation 3. Inversion of Equations 6 and 7 yields

$$r^{2}\dot{x} = (\dot{r}_{0}x + cg)x - br_{0}g$$
, (14)

$$r^{2}\dot{g} = r_{0}x + (\dot{r}_{0}x + cg)g$$
, (15)

where

٦

 $r^2 = x^2 + bg^2$

Then f(t) and $\dot{\bar{r}}(t)$ are obtained from

 $\dot{\mathbf{f}} = (\dot{\mathbf{x}} - \dot{\mathbf{r}}_0 \dot{\mathbf{g}}) / \mathbf{r}_0 ,$ $\dot{\mathbf{r}} = \dot{\mathbf{f}} \mathbf{r}_0 + \dot{\mathbf{g}} \mathbf{r}_0 .$

For purposes of numerical control it may be advisable to let

 $t - t_0 = h\tau$, $h = t_1 - t_0$,

where $[t_0, t_1]$ is a time interval of interest. The corresponding interval for τ is [0, 1]. Equations 12 and 13 still hold provided $a_0 = r_0, b_0 = b_2 = 0$,

 $a_1 = \dot{r}_0 h$, $b_1 = h$, $a_2 = -\mu h^2 / 2r_0^2$, $c = (b - \mu / r_0) h$. Equations 9 become

$$\mathbf{x} = \sum_{i=0}^{\infty} \mathbf{a}_i \tau^i$$
, $\mathbf{g} = \sum_{i=0}^{\infty} \mathbf{b}_i \tau^i$,

which offer a further advantage when t = t_1 , i.e., when $\tau = 1$.

Formulas for the radii of convergence of the ${\rm f}$ and ${\rm g}$ series are given by Moulton.^1

REFERENCES

1. Moulton, F. R., "The True Radii of Convergence of the Expressions for the Ratios of the Triangles When Developed as Power Series in the Time Intervals," The Astronomical Journal 23, 93-102 (1903).