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ABSTRACT 

The damping of the ion-acoustic waves by Coulomb collisions 

is studied by using the Fokker-Planck equation of Rosenbluth et al. 

for both the species constituting the plasma, namely the electrons 

and the ions. In a plasma with weak collisions and in the absence 

of any external field, one finds that irrespective of the ratio of the 

ion temperature to the electron temperature, T ,  the characteristic 

frequency gets affected only by the electron-ion collisions. How- 

ever, as far as the collisional damping is concerned, both the 

ion-ion and the electron-ion collisions play a somewhat equally im- 

portant role; the electron-electron and the ion-electron contribu- 

tions a r e  negligible compared to the other two. The damping in- 

creases  with increase in the collision frequency but decreases with 

increase in T. 
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I. INTRODUCTION 

Ion acoustic waves, which were  first predicted by Tonks and Langmuir' 

using the fluid analysis, have been studied by a number of authors 2-5 on the 

basis of collisionless Boltzmann equation. The collisionless theory shows that 

when the electrons and the ions have the same temperatures, these waves are 

very heavily Landau-damped. Experimentally, the ion waves were first observed 

by Revan& and their Landau-damping was measured by Wong et al.7 Wong 

et al. studied the space damping rather than the time damping in Cesium and 

Potassium and observed that the damping constant depends on the magnitude 

of the ion drift. 

The collisional damping of the ion waves was studied by Bhadra and Varma;8 

they used Krook's model' to describe the ion-ion collisions. Kulsrud and 

ShenlO used a slightly more realistic model for the collisional process; in the i r  

model, the ions were described by the Fokker-Planck equation of Rosenbluth 

et  al.,11 however, the electrons were treated by a fluid equation with the further 

assumption that the electrons were isothermal. This assumption of electrons 

being isothermal is equivalent to considering the Vlasov equation for  the 

electrons, thereby neglecting the electron-electron and the electron-ion col- 

lisions. We remove this restriction on the electrons and treat both the 
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electrons and the ions by the corresponding Fokker-Planck equations. We in- 

deed find that the electron-ion contribution to the collision term can not be 

neglected as compared to the ion-ion contribution. 

Similar calculations for high-f requency plasma waves have been done by 

Comisarl2 and Buti.13-15 The effect of strong collisions on the low-frequency 

electrostatic plasma oscillations with and without an external magnetic field 

has been studied by Kuckes16 by using fluid equations. Following Comisar 

and Buti, we solve the Fokker-Planck equation on the assumption that the 

Coulomb collisions are weak i.e., UT >> 1, where w is the characteristic fre- 

quency of the wave and 7 is the mean collision time for the collision process 

under consideration. We find that in the absence of any external field, irrespec- 

tive of the ratio of the ion temperature to  the electron temperature, the char- 

acteristic frequency gets affected only by the electron-ion collisions; however, 

as far as the collisional damping is concerned, both the electron-ion and the ion- 

ion collisions play a role : the electron-electron and the ion-electron contributions 

ale llegllgl~le bulllpU+.b.u "V I.." ""A*-- - -  ' *  - . I - -  - - - - - - - -A tr. +hn nthar + T . r m  

11. GENERAL THEORY 

Consider an unbounded fully ionized hot plasma consisting only of electron 

and ions without any external field. In equilibrium both the electrons and the 
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ions obey Maxwellian distribution of velocities i.e., 

where the subscript a stands either for the electron o r  for the ion and V: =KTa/ma 

with m e  = m and m i  = M. Nf o a  is the equilibrium distribution function for  

species a. For  small perturbations, the linearized Fokker-Planck equation 

for longitudinal oscillations is given by 

where f a  (x ,  v ,  t) is the perturbed distribution function and (a f a/a t ) 

into account the collisions between like and unlike particles and is represented 

takes 

by 

with 
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( A a > a  = N r a  &h‘ f ,  ( v ’ )  I v - v ’ I  
J = e , i  

and 

In these equations ra = (4.r ei/m:) &(hNA;)with A t  = KTaV/(4vNe2) ; T,, is 

the average of the electron and the ion temperatures. The perturbed electric 

field in Eq. (2) is given by the Poisson’s equation 

d i v E  = 4 7 i - c  e , J d v f ,  . 

To solve the pair  of coupled equations (2) and (8), we take the Fourier trans- 

forms in space and Laplace transforms in time of all the perturbed quantities; 

Eq. (2) then becomes 

‘e a a f o a  
( s + i  k -  v )  fa’ (k,v, s )  - g a ( k ,  v )  + ma E,‘ *,x = (%)c 9 (9) 

where f a’ and E; are the Fourier-Laplace transforms of f a  and E and g a ( k ,  v )  

is the Fourier transform of the initial perturbation in the distribution function. 

To ensure the convergence of the integrals, we can have s in Eq. (9) such that 

R e  s > 0 .  On further taking the Fourier transforms in velocity space, thus 
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defining 

Eq. (9) takes the form 

where 

In writing Eqs. (11) and (12), we have assumed that k is along the z-axis. Fol- 

lowing the procedure outlined in references 12-14, we can easily evaluate the 

collision term and on integrating Ey. i i i j ,  wt: gGt 
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and 

In Eq. (13), we have introduced the Coulomb mean free path L a  = vf/(Nra). 

If we assume that the collisions a r e  infrequent i.e., kL, >> 1 , then to first 
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order in (kL,)- l ,  Eq. (13) gives 

On substituting Eq. (20) in Eq. (12), we obtain 

where 
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and 

In Eq. (23), utJ = 477 Ne2/mJ is the plasma frequency for  the species J. We 

may note here that @(k, s )  depends only on the initial perturbation, If we con 

only those perturbations for  which @( k, s ) is analytic in the complex s-plane, 

then f o r  the Laplace inversion of Eq. (21), we have to  consider only the zeros 

Y(k ,  s )  which are given by 

3 2 
v e  u c W p e  u 2  

1 = c $ P J ( u = o ) +  k3 kei +ai i  -t aee + aie)  9 

J= e ,  i 

where u c  = ve/Le is the effective electron collision frequency and 

L 

1 
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s?) /k daz‘ I. e [(K: + K i ) u = O ]  Pi (q) , 
- - 

a i i  

e doz‘ e- sa”k l d q  esTz/k  Pe (q ) (K; t K:)u,O (27) 

and 

- Pe ( q ) K i  ( 0  = O)] (28) 

Eq. (24) represents the required dispersion relation which gives the oscillatory 

behavior of the plasma under consideration. 

III. ANALYSIS OF THE DISPERSION RELATION 

From Eq. (15), we have 

where aJ = s/(kvJ) and 

2 
E r f ( x )  = dy e-Y . 
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While evaluating these integrals (PJ etc.), strictly speaking we  should take into 

account the pole contribution which gives Landau darning but since this has been 

discussed earlier, we shall not repeat it here. We shall further assume that 

ai  >> 1 but ae  << 1 which actually is a consequence of the fact that v," >> v:; 

thus on using the proper asymptotic and series expansions for the e r r o r  

function,17 we immediately get 

1 
Pi  ( 0  = 0) = - - 

vi2 a: 

and 

/ 

Like in the collisionless theory, we shall neglect terms of the order of a,'. 

Moreover, in evaluating the collision integrals, we shall retain terms only 

upto ( V a t )  . 
Let us first consider the electron-ion contribution which is given by aei  in 

Eq. (25). On substituting Eqs. (16) and (19) in Eq. (25), we obtain 

- 
- 1; -+ 14' , (33) 
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where 

and 

On rewriting Eq. (15) as 
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and on using Eq. (36) for Pi, Eq. (35) on performing q-integration reduces to 

2 
- dv 

4 7 ~ ’ ~ ~  M JOm (u -t b2)5’2 
14e - 

t p {p(l -uay) -3uQ} - ucr p 3  J , (37) 
2 (v + b2) 4(u + b2)2 

where 

1 
(38) p = (v ,zu-vi2y)  and b2 = 3 (v: t v ? )  . 

Now to car ry  out the y-integration, we shall neglect terms of the order of 

6 2  = v i  ’/v: as well as terms of the order of (l/a;) . 
can then be put into the dimensionless form by using the variables (ve Q) = x 

and 1/2 v: (v + b2)-l = z ; Eq. (37) thus reads 

The resulting expression 

( 1 - 6  2/2 ) m 

dz lo dx exp [- ae x -  
m 

7 ~ ~ ’ ~  Mv: 
- 14“ - 
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where 

z 2  x4 (3-52,)  - 7 

b, = - S 2 z 2  ( 1 - x 2 + x 2 z 2 )  

and 

S 4  z 2 x  
2 (1 - z2) . - b, - - 

I 

we get 

can be evaluated by proceeding on the lines similar to the ones for IC and 

W 

. I , .  dy r c i z z  [ dxexp [-sex - 2 x2 (1-,.,] 
’ 0  = f z  L 

T i  = 
- 1  

The ion-ion contribution can be similarly obtained by simplifying Eq. (26); 

this gives 

ai i = - 8 / ( 1 5 ~ ” ~ v f  a:) . 
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This, with i replaced by e ,  is exactly the same as the electron-electron contribu- 

tion obtained by Comisar.12 Eq. (28) however, on integration gives 

L 
9 

where 

Now it i s  easy to see that Smsx is 1/6; so we immediately find that aie - (a: M/m) aii 

and can thus be neglected. On using the similar argument, we can show that 

a -.. I \ uee - [a - OIVI/ 1111 &. . . Ezzze !c "naly7.e the dispersion relation, we have to con- 
11 

sider only the ion-ion and the electron-ion collisions. 

Let us now introduce the following dimensionless variables: 

Ti 
'e 

and - -  u c  - -  a _ *  - -  a .  a ,  a - €3, - T  
Pl pi 

a = khe , 

14 



where A,' 

with the help of Eqs. (31), (32), (39), (41) and (42) can be written as 

KT,/(4nNe2), is the Debye length for the electrons, Eq. (24), 

where 

with E 

methoi 

= m/M, Cii  

of success 

we obtain 

w*2 

BE c = (Cii  tCei) 3 a ' 

- - v z  aiiand Cei - 6  - v, aei. W e  shall solve Eq. (45) by the 

ve approximations. To lowest order, on neglecting C and ae ,  

2 - - 2>( 1 [1 t (1 t 12xa2T)'/;1 e wo say . 
(47) 

Here x stands for (1 t l /a2 ) .  F o r  T << 1, Eq. (47) further reduces to 

1 
w; = - t  X 3k2Ai2 ; (48) 

the result obtained by Bernstein and Trehan.18 hi in Eq. (48) is the ion-Debye 

length. To next order Eq. (45) takes the form 
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which we shall solve numerically. It is worth pointing out that 

being pure imaginary, does not affect the real part of a*; however, Cei (w* = oo) 

is a complex quantity and thus changes both the real and the imaginary parts of 

w . Cii  and Cei for various values of aand T are given in Table 1. 

According to Eq. (49), although Re u* (w,*) increases with an increase in a, 

T as well as B but this increase, as shown in Tables (2a) and (2b), is negligible. 

As illustrated in Figures 1 and 2, Im * W* (a:) increases with increase in a and 

B but decreases with increase in T. So two-body Coulomb collisions have a tendency 

to stabilize the ion acoustic waves. As T increases, Landau damping takes over 

the collisional damping. For the sake of completeness, in Figure 3, we have 

shown the thermal effects on the ion waves. 

* 

In a system where the collisions a re  frequent, this model will break down; 

in this case one should use the Kinetic ayuztti~.z -;;z~k takes into account the 

correlations between the charged particles. 

IV. CONCLUSIONS 

Independent of the ratio of the ion temperature to the electron tempera- 

ture T, the characteristic frequency of the ion acoustic waves in a plasma with 

weak Coulomb collisions gets affected only by the electron-ion collisions, 
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Just as in a collisionless plasma, in th i s  case also w r  increases with increase 

in T; moreover it increases with increase in the collision frequency I/, as well 

as with (kh,) . The electron-electron and the ion-electron collisions are 

negligible compared to the ion-ion and the electron-ion collisions. The latter 

two play a somewhat equally important role in damping these waves. The col- 

lisional damping increases with increase in v, and (kh,) but decreases with 

increase in T . 
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Table 1 

Cii andCei for Various Values of a = khe and T = Ti/Te 

a 

1.0 

0.1 

0.05 

0.01 

0.001 

T 

0.10 

0.05 

0.01 

0.10 

0.05 

0.01 

0.10 

0.05 

0.01 

A i n  
U.LU 

0.05 

0.01 

0.10 

0.05 

0.01 

Im Cii 

- 2.3183 

- 6.9959 

-10.7640 

- 0.5656 

- 1.0082 

- 2.8690 

- 0.5568 

- 0.9915 

- 2.8175 

- 0.5540 

- 0.9862 

- 2.8011 

- 0.5539 

- 0.9860 

- 2.8004 

Re Cei 

3.3309 

3.6253 

4.0307 

2.1755 

2.2879 

2.4265 

2.1659 

2.2770 

2.4039 

2.1629 

2.2736 

2.3999 

2.1627 

2.2734 

2.3998 

I m  Cei 

-0.0228 

0.0217 

0.0686 

0.0465 

0.0648 

0.0825 

0.0471 

0.0652 

0.0826 

0.0473 

0.0653 

0.0827 

0.0473 

0.0653 

0.0827 

19 



Table 2a 

Rea" for  a = 0.1 and T = 0.1, 0.05 and 0.01 for Various Values of B 

B 

0.0 

0.0001 

0.001 

0.01 

0.05 

0.10 

T = 0.1 

0.1 10936 

0.110938 

0.110959 

0.111167 

0.112 108 

0.113323 

T = 0.05 

0.105914 

0.105916 

0.105939 

0.106160 

0.107161 

0.1 08447 

T = 0.01 

0.100927 

0.100929 

0.100953 

0.101187 

0.1022 13 

0.103456 

Table 2b 

Re a* for  a = 1.0 and T = 0.1, 0.05 and 0.01 for  Various Values of B 

B 

0.0 

0.0001 

0.001 

0.01 

0.05 

0.10 

T =  0 . 1  

0.883308 

0.883309 

0.883315 

0.883376 

0.8 83 647 

0.883987 

T = 0.05 

0.858313 

0.858313 

0.858318 

0.858370 

0.858599 

0.858881 

~~~ 

T = 0.1 
- 

0.838316 

0.838317 

0.838322 

0.838368 

0.838566 

0.838807 
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ILLUSTRATIONS 

Figure 1. Variation of I m  w* with B for  T = 0.1 is illustrated for a = 0.01, 0.1 

and 1.0 

Figure 2. Variation of Irn w* with B for  a = 0.1 is illustrated for T = 0.01, 0.05 

and 0.1 

Figure 3. Variation of Re  w* with a for B = 0 is illustrated for T = 0.01 and 0.1 
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