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NEUTRAL AIR WAVES IN THE THERMOSPHERE
by
H. Volland
ABSTRACT

Under the influence of gravity, heat conduction, molecular viscosity, Coriolis
force and ion drag eight plane characteristic waves obliquely incident on a
horizontally stratified atmosphere can propagate, four of them upward and the
other four downward. The four pairs of characteristic waves are the well known
acoustic-gravity waves, heat conduction waves, and the ordinary and extraordinary
viscosity waves. The eigenvalues of the characteristic waves are calculated nu-
merically giving the following main results:

(a) Under the influence of heat conduction acoustic-gravity waves exist in
the whole frequency range and at all angles of incidence.

(b) Coriolis force and iondrag make the atmosphere anisotropic with respect
to the characteristic waves. Their propagation characteristics at east-
to-west and at north-to-south propagation differ from each other.

(c) At the equator upgoing internal gravity waves prefer a predominant
west to east path while downgoing heat conduction waves tend to propa-
gate from north to south.

(d) Downgoing internal gravity waves travelling from north to south lose
their abnormal behavior under the influence of the Coriolis force and
have phase and group velocities the vertical component of which go
in the same direction,



NEUTRAL AIR WAVES IN THE THERMOSPHERE
I. INTRODUCTION

It is a well known experience that the air within the lower atmosphere be-
haves as aheatinsulator andis free of molecular friction. The negligibly small
heat flow within air is responsible for the adiabatic behavior of acoustic waves
and leads to an "adiabatic' velocity of sound

C, =VyuT (1)

a

in which y = c, /c, is the ratio between the specific heats at constant pressure
and at constant volume, =R /M is the ratio between the ideal gas constant R
and the molecular weight M, and T is the mean temperature of air.

In order to estimate the velocity of heat flow within quiet air we use the one
dimensional equation of heat conduction

oT 92T
K

- 2
Tl (@)

pc

in which 7 is the mean density, « is the coefficient of heat conductivity, t is the
time and z is the altitude coordinate. Replacing t by a characteristic time 7
and z by a characteristic length for which we choose the scale height H, equation
(2) leads to a velocity of heat transport

nzﬂz K. (3)
T ch

ol

Using the numerical values at the earth's surface

T=273 K



Kk = 1.8 x 102 /T = 3.0x 103 erg/cm sec °K
©2=1.29x 103 g/cm3
c, =7.2x 106 erg/g °K

H =8 km
gives a velocity of

V,=4x 10-7 cm/sec

verifying the adiabatic behavior of air at low heights. Since the coefficient of
heat conductivity « only depends on the temperature T the situation reverses
completely if we consider the upper atmosphere. At a height of 200 km mean
values are

T =1000 °K

©=2.7x%x10"13 g/cm3

H=40km

yielding from equation (3) a velocity of

Va = 8m/sec

which is by no means negligibly small.

The coefficient of molecular viscosity 7 is proportional to the coefficient
of heat conductivity < and therefore also depends only on the temperature. The




viscosity usually is characterized by the Reynolds number which is defined as

2

T

ol

R =

a

yvhereL and 7 are again characteristic length and time. Replacing L by a
reciprocal wave number C_/w and 7 by the period 1/w of a wave with angular
frequency « and a phase velocity equal to C, we obtain from equation (1)

(4)

=

it
e
sl

Here we used the ideal gas equation

(5)

0l
n
=
o
=

in order to introduce the mean pressure p.

By choosing the same numerical values as above, taking (Chapman and
Cowling, 1959)

and considering the angular frequency » = 1 sec ~! we obtain

8.5 x 109 at sea level

3.8 at 200 km height .



Thus with respect to the influence of viscosity we again find an entirely different
behavior between the lower and the upper atmosphere. The range of turbulence
is related to high Reynolds numbers and small Richardson numbers. In heights
below 100 km wind shears and thermal instabilities due to the small heat con-
duction are responsible for turbulent mixing of the different constituents of the
atmosphere. In heights above 120 km the air is nearly in diffusive equilibrium
as the result of negligibly small turbulence.

In the following paper we consider plane atmospheric waves propagating
obliquely through a horizontally stratified atmosphere under the influence of
heat conduction, molecular viscosity, ion drag and the Coriolis force. We shall
see that within the upper atmosphere three important parameters exist closely
related to the parameters C_, V_ and R, of equations (1), (3) and (4) which are

C=vuT *“isothermal’ velocity of sound

heat conduction velocity (6)

R=_P_ Reynolds number
wmn

Within the lower atmosphere the two well known acoustic-gravity wave modes
(one upgoing and one downgoing) exist (Hines, 1960). Their typical phase velocity
is C in the high frequency region. Under the influence of heat conduction two
new modes are created, called heat conduction waves (Volland, 1967). Their
typical phase velocity is V in the low frequency region. Molecular viscosity
generates four additional modes, ordinary and extraordinary viscosity waves.
Their phase velocity is typically C/vR.

In section 2 the eigenvalue equation is derived. Section 3 deals with special
analytical solutions within an isothermal atmosphere. The difference in the be-
havior of the wave modes as compared with the original adiabatic acoustic-
gravity waves introduced by Hines (1960) is stressed. In section 4 the general
dispersion equation of all 8 modes is discussed in greater detail.

The first numerical calculation of vertical wave motions in the upper at-
mosphere taking into account heat conduction was made by Harris and
Priester (1962) in their famous Harris-Priester-model. Pitteway and Hines




(1963) and Midgley and Liemohn (1966) discussed the influence of heat conduction
and molecular viscosity on the acoustic-gravity waves. In this paper the prop-
erties of all kinds of wave modes within the upper atmosphere are examined.

II. THE EIGENVALUE EQUATION

We start from the equations of conservation of mass, momentum and energy
and the ideal gas equation of the neutral gas which are

g—'?+div (pv) =0

-

,O-g—:+divo-+v,o‘(\7—\7i)—2§x V+gradp-pg=0
(7
dT - .
c,p=—+pdivv + 8-div (x grad T) = 0

dt

P-ppT=0.

o- density; v = (u,v,w) velocity
P pressure; T temperature
v number of collisions between neutral molecules and ions

o viscous stress tensor

avi avk 2 L=
O =7 —?Tk.pé—;:-gorikdwv element of o

coefficient of molecular viscosity

Ol 3

earth's rotational vector

gravitational acceleration force

oal



c, specific heat at constant volume

. (V-By)B
V., =

viscosity heating

x coefficient of heat conductivity
p =R/M
R gas constant

M molecular weight

For solving the system of equations (7) a consequent perturbation method is
applied assuming that the time independent mean values like density o, pres-
sure P and temperature T are already known and that the mean velocity of the
air v is zero. The perturbation is considered to be a plane harmonic wave of
angular frequency @ and of wave number k obliquely incident on a horizontally
stratified plane atmosphere in which all parameters depend only on the vertical
component z. Then all variables are functions of the coordinates x, y, z, and
time t according to

f(z) eiwt -~ jk sin 6 (x cosA+ysinA). (8)

6 is the angle of incidence and A is the azimuth of the plane of incidence of the
wave with respect to geographic south. We assume that no internal energy
source exists. Therefore, the vertical component of energy transported by the
different wave modes is continuous at any internal boundary. This implies
Snell's law:




k sin 8 = ko sin 6’0 = const.

A= A0 = const. (9)

It is possible, therefore, to relate wavenumber k, angle of incidence 6 and azi-
muth A of a wave to an arbitrary wave with wavenumber k 0 =w/ C, and angle of
incidence 6, at the arbitrary height z, travelling in the A, direction., We choose
as such an arbitrary wave an undissipated acoustic wave which has in the frequency
limit w -~ » within a loss free atmosphere the isothermal acoustic phase velocity

C, = VuT, of equation (6) and the real wave number k,. The angle of incidence of
this wave is real. C, plays the role of a reference velocity equivalent to the ve-
locity of light in the electromagnetic wave propagation in plasma.

For convenience we rotate the coordinate system in such a manner that the
new x-axis points in the A, direction. Then the horizontal components of the
velocity with respect to the new coordinate system are

~
u:ucosAo+vson

~ 3
v = -usin A0+vcosA0.

The values G, 3’, w,Ap,Ap and AT are the deviations from the mean values and
are considered to be small compared withp (z), 7(z) and T (z) of the quiet at-
mosphere. Thus all products of these small values can be neglected. We nor-
malize these variables according to

e = o _AT o _l’\;. o _'\\;
1 ¢’ 3““?‘" 57 ¢’ 77 C.
(] 0 (i (10)
1 Nl NI
e, =LP; o= KA, o UL o =Y
) Cop w w

The derivation with respect to z has been replaced by a prime (3/93z="').



Introducing the expressions of equation (10) into the system of equations (7)
and considering the time and spatial dependence of equation (8) the variables w”
and Ap can be eliminated which leads to a system of first order differential
equations which in concise matrix form is

e’ - jk,Ke =0, a1y

where

e(z) =

is the row matrix containing the 8 independent variables defined in equation (10).
The coefficient matrix

K1 K2
K= (12)
K, K,

has the submatrices




~2jA,

- (1-5D)d,

-5 <2Alsoj+%

2jA, 8

RB, dl>

-2jA

2jA

0 0
35,5 3R6B,d,
T4 T4
0 0
0 0
0 0
, S
j . 2o
~S,R {1+ -
0 <+3R> '3
0 0
0 0



Rd, (1-jB,) -iS} 0 : jRB,d, 0

K, =
0 0 0 -j
-jRB d, 0 Rd, (1-jBy) -jS} 0

Here the following abbreviations have been used:

ko =& CO = V;L:i:/ _
Co Z..ZO
S, = sin &, C =VuT (2)
1 —
A= oy
2k, H H=t"=-_2
4 P’
1 B
A = H = --"—
1 —
2k H 1 .
1 T
A = H = —
2 —
2AC
G=—2 v=_2F
v c_pH
C2
dl =_0.. d2 = Y
c2 (r-1)
c _
'y:.i Rz_l?._
c wn

10




3:_____]:'3 _;ZI:._2Q;22:1
1-2jR “ v
4

.3 ) 1 (3 2A
D-—1+1—R22COS I+EI<ZS%-4A§-T{—O~>

}—Z sxnz?san iZ 51nIcosIcosA

=2, sxnt?cosA0+Z sxnIc05151nA

cos? A,
sin? A,

1 -cos?1

B
5
}-Z cos ¥+ Z, cosZIcosAosu1A0

cos I = sin ¢ sin I = 2 cos ¢
vV1+3 cos? ¢ V1 +3 cos?2 ¥

9 geographical co-latitude
I geomagnetic dipangle
A, azimuth
In this calculation the geomagnetic field has been approximated by a dipole
field with its axis parallel to the earth's rotational axis. Moreover, the deriva-
tives of u, « and n with respect to z have been neglected.
In order to solve equation (11) uniquely it is necessary to know the conditions
at the upper or lower boundary of the model atmosphere. Physically appropri-

ate solutions need the separation between upgoing and downgoing waves at these
boundaries. Such waves are the characteristic waves which are defined by the

11



eigen values q, of the matrix K. They can be found from the eigenvalue equa-
tion

K-\, E| =0, (13)

with

A, =-(a+3A)

and
E unit matrix.

Now a characteristic wave has the z-dependence

ik A -ikga, z + 37
f(z)=e O¥ize OV (14)

Here the real exponential factor 1/2H = k, A has been split from the eigenvalue
q, merely because of convenience. It gives the increase of the amplitude with
height of a non-dissipative wave in an isothermal atmosphere. Therefore the
imaginarytermof q, is negative or zero for an upgoing wave.

A characteristic wave is uncoupled from the other waves if the elements of
the matrix K and therefore the g, are height independent. Since K depends on
V and R which themselves depend on s and p, respectively, the characteristic
waves are always coupled in a realistic atmosphere. Therefore, in order to find
out the relative importance of the different wave modes one has to solve the sys-
tem of equations (7) by numerical methods beginning at an arbitrary level z, and
integrating upwards (or downwards) to a second arbitrary level z_ (see figure 1).
This leads to a solution of the general form

e(z,) =T." e (7)) (15)

12




The physical quantities e (z,) and e (z_ ) at the boundaries are connected with
the characteristic waves by the equation

e=Pec. (16)

Here

is composed of four upgoing waves a, and four downgoing waves b, while P
has to be chosen in such a manner that

>\1 0- 0
0.. .
P-1KP=N=| A, 17)
. -
0 0 A

is the diagonalized normal form of the matrix K.

The elements of the eigen vectors P, (Pu is the v*" row matrix of P) are
determined from the system of linear equations

K-X,E):P, =0. (18)

13



Finally by well known matrix calculus (Volland, 1968) one obtains from
equations (15) and (16) the scattering matrix M which is defined by the rela-
tion (see figure 1)

The scattering matrix completely describes the behavior of the atmosphere
with respect to plane atmospheric waves.

If the coupling between the different modes is weak a '""ray optics' approxi-
mation is valid in which each mode is considered to propagate without coupling
with a height dependence according to

. z _df
-Jko I:Oq (é‘) df + j‘z() 2H(§)

e (19)

In the complex eigenvalue
qv:av-jﬁv (20)
the imaginary part 5, is responsible for the attenuation of the wave mode in the

vertical direction while the real part a, is a measure of the phase velocity Vp
of the wave:

& S (21)
n

where n is a real refractive index.

The direction of the wave normal is given by

= arctg — (22)

[ —
A

14




while the ray direction can be found from the relation

da, sin A, da,
0] =-cos A st —5— 53
0 0

° (23)

i Bay cos Ao Bav
tgﬂygl:-s1nAOBSO_ S BAO

0

where ¥y, and &, are the angles of inclination of the ray components in the
(x,z )~ and the (y,z)—plane with respect to the z—axis.

The ray propagates with vertical group velocity

C
V| = 0 (24)
g'u a(wav) Bav

dw 0O BSO

thus allowing ''ray treatment' of the waves in complete analogy to electro-
magnetic wave propagation (see e.g. Budden, 1961). The WKB-approximation of

ray optics is distinguished by a specific normalization of the matrix P in such a
manner that

P-1PY= |- 0 - (25)

is a matrix in which the diagonal line consists only of zeros. (See e.g. Volland,
1968).

The time averaged vertical component of the energy transported by the vth
wave mode is approximately (see e.g., Eckart, 1960)

a*
aV aV

1
= ZPOWO (glv g;v + gIV g2v) b b* (26)
v v

15



where g  and g, are the elements of the two first lines of P and the star in-
dicates complex conjugate values. In the case of the WKB-approximation the
amplitudes a,a} and b b’ of the different modes are directly comparable.

III. SPECIAL SOLUTIONS OF THE EIGENVALUE EQUATION
(ISOTHERMAL ATMOSPHERE)

Numerical calculations showing the relative importance of the different wave
modes shall be given in an additional paper. Here we confine ourselves to the
discussion of the eigenvalue (or dispersion) equation. In this section a few
special cases are considered which lead to analytic s.lutions of the eigenvalue
equation. Such solutions are essential because they allow one t» identify the vari-
ous wave modes in more general cases treated numerically in i.e subsequent sec-
tion. For convenience we consider only an isothermal atmosphere. Then
T' = 0 and therefore A, =0, A, =Aand d; =1 in K (equation (11)).

In the case of a wave propagating at the equator (4 = 90°) in an east-west
direction (A, = £90°)

and

(27)

16




with

| S, 0
| .. 3 3
| -9 (2ASOJ iZRZJ 350
l(1 +A, E |
| 0 0
| 0 0
K=\ — - — — —
0 0 0o 0 N, -]
S j S2
2S,A¥jRZ, -S,R <1+3’_R) i4 0 R(l—_0-122> A,
(28)
A, -j
K, = < (29)
R <1 - —"-) A
R v
Now the eigenvalue equation can be separated into
K, | K| =0 (30)

17
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which implies

K. | =0

s

or (31)

K [ =0

The equation |K 6 | =0 gives the eigenvalues of a transversal type of viscosity
wave which we name the extraordinary viscosity wave mode:

S8
7«3+jR<1—j§- =0

(32)

q, =Fj V82 + jR-jA

8

The upper sign stands for the upgoing wave, the lower sign for the downgoing wave.
This wave is a pure transversal wave inasmuch as only the horizontal component
v orthogonal to the direction of wave propagation is involved. The wave is heavily
attenuated for large values of R and is a purely evanescent one at R = 0. It is
completely uncoupled from the other wave modes in this direction of propagation.
At vertical incidence its phase velocity is (equation (21)).

v :iﬁc" =+ [297 ¢
P VR 5

and its group velocity is (equation (24)).

The remaining equation |K5 | = 0 can be solved analytically for two special
cases.

18




3(a) Small Reynolds numbers (R—0, § = 1)

The : quation |KS | = 0 can be written as

(A2 +S§)2{>\(>\+2jA)+S§ +j7G}:o (33)

and has the solutions

q1:q5:¢jso—jA
2 6
(34)
]/ iG G S
q; =% A2+S§+l—~i_;JA +—
4 7 2yA 2A2

where the last approximation is valid in the low frequency region (A2>> G >> 1).
The upper sign stands for the upward going waves, the lower sign for the down-
ward going waves. The acoustic-gravity mode (index 1 and 2) and the ordinary
viscosity mode (index 5 and 6) are purely evanescent waves while the heat con-
duction mode (index 3 and 4) has the phase velocity (see equation (21))

v
vV = Y

p ‘
I/ stg'yz
14—

2
CO

in the low frequency region which in the case of vertical incidence (S, = 0) is
equal to the phase and group velocity (see equation (3))

19



Thus the heat conduction wave mode is the only carrier of energy.

The ray direction in the low frequency region depends only slightly on S,.
According to equation (23) the heat conduction mode therefore tends to propagate
purely vertically. The amplification factor of the upward going wave is negative
and small compared with the factor A in equation (14):

S
- A~ —
Ps+ 2A

showing that part of the energy of the upward going heat conduction wave is con-
verted into internal energy of the surrounding air. The same is true for the
downward going component which is attenuated according to

~B, +A~2A

a factor twice as large as the attenuation factor of a non dissipative downgoing
wave (see equation (16)). The effective attenuation factors of the other wave
modes according to equation (32) and (34) do not depend on the earth's gravita-
tional field:

ImA, =8, -A=4+8, (»=1,2,5,6,7,8)

3(b) Large Reynolds numbers (R - w, & -0, R6 -4/3 j)

In order to solve this problem we have to transform the matrix K s in such a
manner that we can split the determinant |K p l into two independent determinants:

K1+>\E0

K | =
s 0o K

7

20




We do this by multiplying the 5th row of K s (equation (28)) with

jZl d SO
— ———
*T-iz, " 1-32,

respectively, and add this row to the 1st and 2nd row. Then the off diagonal sub-
matrices of K, no longer depend on R,, and their elements become negligibly
small compared with the elements of the matrix K, when R goes to infinity.
Thus the eigenvalue equation becomes

K,| K, +:E| =0

and we find the eigenvalues of the ordinary viscosity mode from |K7 | =0 as

ag=7;V S2 +RZ, + jR - jA (35)
6

while the solution of |K, + AE|=0 is

a, =F /A~ /o
2 (36)
q3—¥"a+\/§

with

az_;.(F-jG)-Ahsg

2AMS

b:%(F—jG)z +j—79{F-(y—1) . °}

21



1 wVH
Z M C
1 0
= F — H A = e—

F Uz T “H
Uu=1-352, ; S,=sinf,
20 v

Zl:—aT 3 22:—

In figure 2 the real parts a; and o, of the eigenvalues of the upgoing acoustic-
gravity wave and of the heat conduction wave calculated from equation (36) have
been plotted versus the sine of the angle of incidence S, = sin &, for different
angular frequencies between w = 10~° and 102 sec™" and for neglected Coriolis
force and ion drag (Z, =Z, = 0). The Harris-Priester model 5 at 12 %0 Jocal
time and 200 km height (CIRA, 1965) has been chosen as the atmospheric model.
For convenience the ordinate o is given in two different scales separated by a
dash-dotted line, respectively. Because of equation (36) the eigenvalues of the
downgoing waves differ only in sign from the eigenvalues of the upgoing waves.

In figure 2a the characteristic behavior of the acoustic-gravity waves can
be seen which in the low frequency range (w < 1072 sec'l) has a downward
direction of phase propagation while the energy of the wave propagates upward.
This behavior can be derived from equations (22) and (23) in which the angles of
the direction of the wave normal and of the ray (in our special case the ray
direction does not depend on A ) are given as:

S

0
RACIr

tgd, = __ai‘f_

35S,

Figure 3a shows the geometry of the vectors of the wave normal and of the
ray direction derived from equations (22) and (23) at two frequencies belonging

22




to an acoustic wave type (v = 1072 sec™ ') and to an interval gravity wave type
(w= 10"% gsec”!) and illustrates again the reversal of vertical phase and group di-
rection of the internal gravity waves. But contrary to the adiabatic case of zero
heat conductivity (see Hines' (1960) fig. 9) ,the interval gravity waves as well as
the acoustic waves, exist within the whole range of S,. For comparison the
adiabatic waves ( «=0) at the same frequencies have been drawn in fig. 3a as
dashed lines. There exists a continuous transition from the interval gravity
wave type to the acoustic wave type again in contrast to the adiabatic case where
no wave mode can exist within the frequency range of

C . C. Vv
o fr=1 o7
H v 2H

At high frequencies the acoustic wave approaches the phase velocity of sound
C.
0

The heat conduction modes in fig. 2b only slightly depend on the angle of in-
cidence. These wave modes therefore transport their energy nearly vertically
(see fig. 3b). In the low frequency range (w <10~* Sec-l) the phase velocity of
the heat conduction wave is (see equations (21) and (6))

and approaches the heat conduction velocity v. In the high frequency range
the heat conduction modes become evanescent.

The dependence of o, and ag (and therefore of a,and a, ) on the parameter
of the upper atmosphere at vertical incidence (S o = 0) has already been shown
in a previous paper (Volland, 1967). There are some slight differences in the
denoting of the variables in that paper compared with the present paper:

old notation new

n3 CL4

n4 a2

By koBy + 1/2H
54 kO’BZ + 1/2P

23



Moreover the following printed errors should be corrected: In fig. 1a (z = 400
km) of (Volland, 1967) the trace of n, should be moved upward by a factor of
10, and the element A21 of A in equation (39) should be read as

-jwa,; (1 -2dD).

Figure 4 gives the imaginary terms k 3, and k (3, of the acoustic-gravity mode
and of the heat conduction mode. Since according to equation (14) the factor
1/2H has been split from the imaginary terms of q the upgoing waves have in-
creasing amplitudes if k,5 < 1/2H and decreasing amplitudes if k ;8> 1/2H. The
last one occurs at w > 10~? sec™! for the acoustic-gravity mode. For compari-
son we note that the adiabatic acoustic-gravity waves have the value 3, = 0 over
the whole frequency range.

The heat conduction mode has an almost constant amplitude at w < 1073
sec™! while at frequencies w > 107! sec”' the wave is attenuated nearly com-
pletely after a distance of some km.

Under the influence of the Coriolis force and ion drag the atmosphere behaves
like an anistropic medium with respect to neutral air waves. This can be seen
from the A, -dependence of the ray direction in equation (23). In our special case
of equation (36) the propagation in the east-west direction is different from the
propagation in the west-east direction recognized by the change in sign of Z.

But this difference is rather small. The ion drag tends to decrease the influence
of the Coriolis force at very low frequencies as can be seen from equation (36)
where at S| = 0 the factor F has the value

s 2
—l<v+4i> 2,2, >> 1
w v
F~ ) for 37)
4Q
—:2— Zl >>; 2220

thus decreasing like w? at Z, =0 as compared with a decrease like o' at
Z,#%0
2 .

Because of our assumption that the ion velocity is zero orthogonal to the
geomagnetic field lines (see equation (7)) the horizontal ion drag is fully effec-
tive for the east-west propagation while for the north-south propagation the
horizontal ion drag completely disappears. Because of equation (37) we there-
fore expect a rather large difference in the behavior between these two directions
of propagation. This will be confirmed in the next section.

24




IV. GENERAL BEHAVIOR OF THE EIGENVALUES

Apart from some special analytical solutions which we gave in the previous
section, equation (13) has to be treated by numerical methods. A convenient
program available in the SHARE Program Catalog is SAD 3099 (EIG 4) which
solves eigenvalues of complex matrices and is coded for the IBM 7090/94. This
program has been used for the following calculations.

The atmospheric model is again the Harris-Priester model 5 at 1200 Jocal
time and 200 km height (CIRA, 1965) which has the data

H=43.3km i k =8.64x 103 erg/cm sec K
T =1100°K ; ©,=7.23x 10% erg/g X

p=271x 103 g/em3; ¥ = 1.5
Moreover the following additional numerical values have been used:

»=10"% sec™? ;i 8 =90°
0=7.23x 10~ sec™ ; A,=90° 180°
n%4.78 x 107¢ g/cm sec

In figures 5 and 6 the calculated real parts of the eigenvalues a,, a,, a,,
ag of the downward going four wave modes at the equator (¢ = 90°) have been
plotted versus the sine of the angle of incidence S, = sin 6, for the different
frequencies w = 10~% sec™! to 10% sec™'. The full lines give the modes propa-
gating from west to east (A = 90°), the dashed lines are due to the propagation
from south to north (A, = 180°). Again for convenience the ordinates in figure 5
have different scales divided by the dash-dotted lines. Apart from the acoustic-
gravity mode the difference in the behavior between the downgoing and the up-
going waves is rather small. Therefore

azm—a4
a,sfxa—c’l.6
a7~-a8
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within less than 10% accuracy, and the a,, a,, o, and o, are plotted as negative
values in order to compare them directly with the values a, and a, in figure 3.

Likewise the east-west propagation and the west-east propagation on the
one hand and the north-south and the south-north propagation on the other hand
show nearly the same propagation characteristics. Thus we confine ourselves
to downgoing waves propagating from west to east (full lines) and from south
to north (dashed lines).

Comparing figure 5 with figure 2 we do not see large differences in the be-
havior of the acoustic-gravity mode at east-west propagation within the low
frequency range (w < 1072 sec'l) and in the whole frequency range of the heat
conduction modes. This shows that the Reynolds number R which is rather large
there (R > 242 for w < 1072 sec-1) does not influence very much these
waves. On the other hand at frequencies @ > 1 sec™! (R < 0.242) the acoustic-
gravity mode differs strongly from the R-free type in figure 2 giving evidence
that in this frequency range the approximation R - 0, treated in section 3(a), be-
gins to be valid. The acoustic wave becomes an evanescent one there.

The striking feature of figure 5a is, however, the behavior of the waves
propagating from south to north (the dashed lines in figure 5). Now the gravity
modes at © < 1077 sec ™' have lost their abnormal propagation characteristics
and behave in the normal sense with phase and group velocity going in the same
vertical direction at angles of incidence S, < 0.9. This is essentially due to the
Coriolis force which is not reduced in its influence by the ion drag at this azimuth
of propagation (see equation (37)) as was the case for west to east propagation.

The phase velocity of the heat conduction mode (figure 5b) increases with
approach to the north-south propagation at low frequencies. In a ray optics
treatment a heat conduction wave travelling downward will shift therefore its
direction towards a predominantly north to south direction. This is illustrated in
figure 7 where the refractive index surface of the upgoing heat conduction wave

_ 2 2
n, = So+a3

has been drawn in a (S, A )-plane. The vector of the ray direction is perpen-
dicular to this surface (see equation (23)) and generally is bent out of the plane
of incidence. The ray will laterally deviate during its propagation till it reaches
the stable north-south plane where the lateral deviation out of the plane of in-
cidence is zero.
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The real parts of the eigenvalues of the ordinary and the extraordinary
viscosity waves in figure 6 behave very similar to the heat conduction waves
apart from the lowest frequency range.

Figures 8 and 9 show the imaginary parts k3, (the attenuation factors) of
the downgoing waves at the equator again plotted as negative values in order to
compare them with the values in figure 4. Here the azimuth of propagation has
no striking influence on the attenuation factors. Thus only the east-west propa-
gation is shown.

While the attenuation factors of the heat conduction waves in figure 8b only
slightly differ from the viscosity free mode in figure 4b the acoustic-gravity
waves (figure 8a) are heavily attenuated in the high frequency range (v > 1 sec™ 1
contrary to the viscosity free case. The reason is that in this frequency range
R < 1, and the approximation R — 0 treated in section 3a can be used which
leads to equation (34) and shows that the acoustic waves become evanescent
ones.

The attenuation factors of the ordinary viscosity waves in figure 9 look
similar to the attenuation factors of the heat conduction waves. But the extra-
ordinary viscosity waves have even positive values of k8, at < 10-*4 sec™!.
This results from the fact that according to equation (32) the effective attenua-
tion factor of this wave mode is

-Bg+A~:F(1/-§iA> +A-+t ‘/—R;

and does not depend on the earth's gravitation field. If A > YR /2 which occurs
at w=10"" sec” B¢ becomes negative.

Figure 10 shows the real part of the eigenvalue o, of the upgoing acoustic
gravity mode at the equator. We see that again west-east and north-south
propagation differ remarkably in the lowest frequency range though there is
not such striking reversal in the propagation characteristics as for the down-
going waves in figure 5. The ray bending as illustrated in figure 7 leads to a
predc;minantly west-east propagation for frequencies between « = 10 -4 and 1072
sec” .

The same calculations have been repeated for the values ¢ = 45° and 135°
equivalent to the geographical latitudes of +45°. The results have essentially
the same features as figures 5 to 10 but with, of course, different numerical
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values. A big difference occurs in the acoustic-gravity mode where the reversal
to a normal behavior of the downgoing wave now appears at the west-east propa-
gation path while the north-south propagation acts in the usual way. There exists
no large difference in the propagation characteristics between 45° and -45° lati-
tude. The equatorial ray deviation of the heat conduction waves toward a north-
south propagation as illustrated in figure 7 is diminished in +45° latitude. Like-
wise at heights greater than 200 km the situation does not change completely
apart from the fact that with increasing height the Reynolds number decreases.
Thus the range where the approximation R ~ 0 (equation 34) is valid shifts to
smaller frequencies and the heat conduction mode tends to remain the only car-
rier of energy.

V. CONCLUDING REMARKS

It has been shown that eight obliquely incident plane characteristic waves
can propagate through a horizontally stratified atmosphere, four of them travelling
upwards and the other four travelling downward. The four pairs of characteristic
waves are the well known acoustic-gravity waves, the heat conduction waves and
ordinary and extraordinary viscosity waves. The heat conduction waves and the
viscosity waves are named according to their relation to finite heat conductivity
and finite molecular viscosity. Under the influence of the Coriolis force the
atmosphere behaves like an anistropic medium with respect to atmospheric
waves. Ion drag tends to decrease the influence of the .Coriolis force in such a
manner that at the equator the west to east propagation path is less effected by
the Coriolis force than the north to south propagation path.

Real and imaginary parts of the eigenvalues of the characteristic wave
modes have been calculated numerically. With the help of these eigenvalues the
general behavior of the different wave modes has been discussed in detail. The
main results are the following:

(a) Under the influence of heat conduction there exists a continuous transi-
tion from the low frequency range of the acoustic-gravity waves (the
so called internal gravity waves) to the real acoustic waves at all angles
of incidence. The internal gravity waves are attenuated transferring
part of their energy into internal energy of the surrounding air in such
a manner that the amplitude of an upgoing wave remains nearly constant.

A new mode — heat conduction waves — is created which shows small
dispersion within the low frequency range and which transports its
energy mainly vertically. Group and phase velocity have the same
direction.
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(b) Taking into account molecular viscosity two additional modes — ordinary
and extraordinary viscosity waves — exist. Their propagation charac-
teristics are similar to the heat conduction waves.

Molecular viscosity does not change very much the general behavior of
the internal gravity waves and of the heat conduction waves but alters
the acoustic waves within the high frequency range into evanescent ones.

(c) Coriolis force andion drag makethe atmosphere anisotropic with respect
to the characteristic wave modes. At the equator within the low fre-
quency range heat conduction ‘'rays' are laterally deviated out of their
plane of incidence toward a predominately north to south direction while
internal gravity waves prefer a predominately east to west direction.
Travelling ionospheric disturbances show some preferred horizontal
directions of propagation depending on season and latitude (Heisler,
1963). This might be due to the influence of the Coriolis force in an
atmosphere varying with geographic latitude and season. If this is true
it should be possible to decide from the different behavior of the in-
ternal gravity waves and of the heat conduction waves in a rotating at-
mosphere whether upgoing acoustic-gravity waves (Hines, 1960) or
downgoing heat conduction waves (Volland, 1967) are responsible for
these travelling disturbances.

Downgoing internal gravity waves travelling north to south lose their
abnormal behavior under the influence of the Coriolis force and have

phase and group velocities the vertical component of which go in the
same direction.

The relative importance of the different wave modes for energy trans-
port remains an open question. Because of the coupling of the different modes
within a realistic atmosphere this problem can only be solved by a numerical
calculation using full wave theory.

In a ray opticstreatment one should expect that the time averaged energy
transport of each wave mode could be calculated from equation (26). But un-
fortunately equation (26) is only valid under adiabatic conditions. In a dissipa-
tive atmosphere where heat conduction and molecular viscosity must be taken
into account the ray direction derived from the wave packet method (equation
(28)) differs substantially from the direction of the energy flux vector p v (of
which equation (26) is the vertical component). This situation is equivalent to
electromagnetic wave propagation where the Poynting vector shows the
same discrepancy with respect to the ray direction (Hines, 1951). The reason
for this difference is the fact that the energy flux vector of the atmospheric
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waves contains the gravitational potential (Volland, 1967) which is uncertain by a
constant factor. The treatment of this problem will be the subject of a forthcom-
ing paper.
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FIGURE CAPTIONS

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

The upgoing (a) and the downgoing (b) characteristic waves at the
boundaries of an atmospheric model.

Real part a of the eigenvalues of the upgoing acoustic-gravity waves
(figure 2a) and of the heat conduction waves (figure 2b) versus the sine
of the angle of incidence &, taking into account heat conduction. The pa-
rameter is the angular frequency « (in sec ). The dash-dotted lines
separate different scales.

Illustration of the vector of the real refractive index n (which goes
in the direction of the wave normal) and the vector of ray direction
(which is perpendicular to the refractive index surface) for an in-
ternal gravity wave (w= 10"* sec‘l), for an acoustic wave type (¥ =
10-2 sec ’1) (figure 3a) and for a heat conduction wave (figure 3b).
The dashed lines in figure 3a are the equivalent adiabatic acoustic-
gravity waves.

Imaginary part k 3 (attenuation factor) of the eigenvalues of the up-
going acoustic-gravity waves (figure 4a) and of the heat conduction
waves (figure 4b). The parameter isthe angular frequency « (in sec-1!),
Waves with values k, ,6’(§ )1 /2H have decreasing (increasing) amplitudes
with height.

Negative real part -o of the eigenvalues of the downgoing acoustic-
gravity waves (figure 5a) and of the downgoing heat conduction waves
(figure 5b) versusthe sine of the angle of incidence 6, taking into ac-
count heat conduction, molecular viscosity, Coriolis force and ion drag.
The parameter isthe angular frequency « (in sec~1). The propagation
conditions are: West to east propagation (full lines) and south to
north propagation (dashed lines) at the equator. The dash-dotted lines
separate different scales.

Negative real part -« of the eigenvalues of the downgoing ordinary
and extraordinary waves. For details see text of figure 5.

Ray refractive index n; = Vag + Sg of the upgoing heat conduction

wave in a (S, A )-plane illustrating the bending of the ray out of the
plane of incidence.
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Figure 8.

Figure 9.

Figure 10.

Negative imaginary part —k S (attenuation factor) of the downgoing
acoustic-gravity waves (figure 8a) and of the heat conduction waves
(figure 8b) versus sinus of angle of incidence 0, taking into account
heat conduction, molecular viscosity, Coriolis force and ion drag.

The parameter is the angular frequency « (in sec-!), The propagation
conditions are: West to east propagation at the equator.

Negative imaginary part -k 8 (attenuation factor) of the downgoing
ordinary and extraordinary waves. For details see text of figure 8.

Real part a of the eigenvalue of the upgoing acoustic-gravity waves
versus the sine of the angle of incidence 6_ taking into account heat
conduction, molecular viscosity, Coriolis Porce and ion drag. The
parameter is the angular frequency « (in sec~!). The propagation
conditions are: West to east propagation (full lines) and south to
north propagation (dashed lines) at the equator. The dash-dotted
lines separate different scales.
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ATMOSPHERE

a, bo

Figure 1~ The upgoing (a) and the downgoing (b) characteristic
waves at the boundaries of an atmospheric model.
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RAY DIRECTION

VECTOR

OF
REFRACTIVE
INDEX n

Figure 7-Ray refractive index ny = }/a—g + 5(2) of the upgoing heat conduction wave in a
(Sg, Ag)-plane illustrating the bending of the ray out of the plane of incidence.
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ACOUSTIC-GRAVITY MODE

1

REAL PART OF EIGENVALUE «

2
-10 | | ===

| ~.L
0 0z 04 06 08 1.0
ANGLE OF INCIDENCE sing,

Figure 10-Rea! part a of the eigenvalue of the upgoing acoustic-gravity waves versus
the sine of the angle of incidence 6, taking into account heat conduction, molecular
viscosity, Coriolis force and ion drag. The parameter is the angular frequency w
(in sec™'). The propagation conditions are: West to east propagation (full lines) and
south to north propagation(dashed lines) at the equator. The dash-dotted lines sepa-
rate different scales.
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