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STATIC LONGITUDINAL AERODYNAMIC CHARACTERISTICS OF A
HAMMERHEAD-SHAPED LITTLE JOE II — LUNAR MODULE
MODEL AT MACH 0.30 TO 1.20

By Arvo A. Luoma and Charles D. Harris
Langley Research Center

SUMMARY

An investigation of the static longitudinal aerodynamic characteristics of a
0.03-scale model of a proposed Little Joe II — lunar module suborbital space vehicle
was made in the Langley 8-foot transonic pressure tunnel at Mach numbers from 0.30 to
1.20 and at angles of attack from approximately -12° to 12°. This configuration was of
the hammerhead type, in that the diameter of the lunar module shroud was larger than
the diameter of the Little Joe II launch vehicle. Three sizes of stabilizing fins, three
nose shapes on the lunar module aerodynamic shroud, and two shroud skirts, which
extended over the converging juncture between the shroud and the launch vehicle, were
investigated. Flap-type trailing-edge controls on the stabilizing fins were uniformly
deflected for pitch control. Control hinge moments were measured on the small fins.
Limited transition-strip studies were made on one of the configurations.

All configurations investigated had static longitudinal instability at all test condi-
tions about a moment reference center 1.3 base diameters forward of the base. Severe
model buffeting occurred at a Mach number of 0.90 in two narrow ranges of angles of
attack near -7° and 79 for the configuration with a shroud nose consisting of a blunt-
nosed cone of 300 half-angle and a frustum of a cone of 150 half-angle. Associated with
the severe model buffeting were abrupt changes in the magnitudes of the aerodynamic
forces and moments as the angle of attack was increased through the critical range. . The
addition of transition strips extended the Mach number range in which model buffeting and
abrupt changes in aerodynamic forces and moments occurred to a Mach number of 1.00.
The additien of a boattailed shroud skirt to the smooth configuration substantially reduced
the model buffeting and the extent of the abrupt changes in forces and moments at a Mach
number of 0.90. The trailing-edge controls on all three sizes of stabilizing fins were
effective for pitch control at all test conditions, although reductions in control effective-
ness occurred at high control deflections and also at the highest angles of attack at Mach
numbers of 0.95 and 1.00.



INTRODUCTION

The National Aeronautics and Space Administration at the Langley Research Center
has investigated several configurations of the Little Joe II launch vehicle in combination
with an aerodynamic shroud which will house the lunar module (LM) during the boost
phase of suborbital flights for LM systems testing. The main objective of the investiga-
tions was to determine the longitudinal stability and aerodynamic control characteristics
of the Little Joe II — LM space vehicle and the effect of fin size and shape of the LM
aerodynamic shroud on these characteristics. The attitude control system of the Little
Joe II launch vehicle consists of a combination of aerodynamic control from trailing-edge
flap-type controls on the four stabilizing fins and reaction control with fixed nozzles at

the roots of the fins.

The results of an investigation in the Langley 8-foot transonic pressure tunnel of
the static longitudinal stability, longitudinal aerodynamic control, and trailing-edge con-
trol hinge moments of a 0.03-scale model of a proposed Little Joe II — LM suborbital
space vehicle are presented herein. Three sizes of stabilizing fins (with full-scale plan-
form areas per fin of 4.65, 7.33, and 9.30 square meters), three nose shapes on the LM
aerodynamic shroud, and two LLM shroud skirts, which extended over the converging
juncture between the shroud and the launch vehicle, were tested. The investigation was
made at Mach numbers from 0.30 to 1.20, at angles of attack from approximately -12°
to 129, and with the trailing-edge controls uniformly deflected from 0° to -30° for pitch
control. Control-surface hinge moments were investigated for deflections of 00 and -10°
on one of the small fins. Test Reynolds numbers based on the diameter of the base of
the model varied over the Mach number range from approximately 0.70 x 106 to
1.60 x 108.

The most promising of the three nose shapes on the LM aerodynamic shroud has
been investigated with the intermediate and the large stabilizing fins at supersonic
speeds also; these results are reported in reference 1. References 2 to 4 report the
results of similar tests of the Little Joe II launch vehicle in combination with the Apollo
spacecraft at Mach numbers from low subsonic to supersonic.

SYMBOLS

The aerodynamic force and moment data are referred to both the body and wind
axes, the origin being on the model reference line and 1.3 reference diameters forward
of the model base as shown in figure 1. The hinge-moment data (obtained only with
4.65-square-meter fins) are referred to the hinge line of the trailing-edge control.



Cp,b,1

Cp,b,2

axial-force coefficient corrected for base pressure,

Axial force uncorrected for base pressure c
aS T vADb

A A
base axial-force coefficient, -~ (Cp,b,1>< 2’1> + (Cp,b,2)<%’2>

drag coefficient corrected for base pressure, (CA cos o + Cy sin a)

hinge-moment coefficient of trailing-edge control on fin 2 (see fig. 1(a)),
Hinge moment

qScCe

lift coefficient corrected for base pressure, (CN cos o - Cp sin a)

Pitching moment
qSdref

pitching-moment coefficient,

Normal force

normal-force coefficient, S
q

pb 1° p
pressure coefficient in balance chamber, —2——

p -p
pressure coefficient at rim of model base, ‘b2 7

area of sting hole in booster airframe
area of rim at base of booster airframe

mean aerodynamic chord (rearward of hinge line) of single trailing-edge
control

diameter
reference length (base diameter)
lift-drag ratio, Cp,[Cp

Mach number of undisturbed stream



P static pressure of undisturbed stream

static pressure in balance chamber

Pp,1

Pp,2 static pressure at rim of model base

q dynamic pressure of undisturbed stream

R Reynolds number, based on reference length dpef

r radius

S reference area, %(dref)z

Sc area rearward of hinge line of single trailing-edge control

Xep longitudinal distance of center of pressure (point on model reference line

through which line of action of resultant of normal and axial forces passes)
from model base; positive direction forward

ch/dref center-of-pressure parameter
a angle of attack, based on model reference line
o) deflection of trailing-edge control measured in plane perpendicular to hinge

line; positive direction when trailing edge is down; all four controls had

same deflection

dc
Cha = h,Z, per deg
dc
Ch5 =——};?2, per deg
dCpy
C =
MCy dCy

dacC
Cmy, = d_o:n’ per deg



dC

_%%m
Cm5 =35’ per deg
Cm6 _dCpyp

dCy
CNQ = -—d—(2=', per deg

dC

_ N
CNG = —CTG——, per deg

APPARATUS

Tunnel

The investigation was made in the Langley 8-foot transonic pressure tunnel. The
test section in this tunnel is square in cross section with the upper and lower walls
axially slotted to permit changing the test section Mach number continuously from O to
over 1.20 with negligible effects of choking and blockage. The total pressure of the tun-
nel air can be varied from a minimum value of about 0.25 atmosphere (0.25 X 109 N/m2)
at all test Mach numbers to a maximum value of about 1.5 atmospheres (1.52 X 109 N/mz)
at transonic Mach number and about 2.0 atmospheres (2.03 x 109 N/m2) at Mach numbers
of 0.40 or less. The stagnation temperature of the tunnel air is automatically controlled
and is usually held constant at 1200 F (49° C). The tunnel air is dried until the dewpoint
temperature in the test section is reduced sufficiently to avoid condensation effects.

Model

The model used in the present investigation was a 0.03-scale model of a proposed
Little Joe II — LM suborbital space vehicle which consisted of the Little Joe II launch
vehicle and an aerodynamic shroud to house the LM. Four stabilizing fins with trailing-
edge controls were spaced 90° apart at the base of the launch vehicle. The model was
supported in the tunnel by a sting which had a ratio of sting diameter to model base
diameter of 0.30. A drawing of the model is given in figure 1, and photographs of several
of the configurations are shown as figure 2. Peripheral corrugations, evident in the
photographs of the Little Joe II launch vehicle, have been left off the drawing in figure 1(a)
for simplicity; the dimensions of the corrugations are given in reference 3. Geometric
characteristics of the model are given in table I.



Three sizes of stabilizing fin with planform areas (full scale) per fin of 4.65, 7.33,
and 9.30 square meters (identified herein as small, intermediate, and large, respec-
tively) were investigated. The fins had wedge-shaped sections with blunt trailing edges
and 45° sweepback of the leading edge. Aerodynamic control on the Little Joe II launch
vehicle is achieved by the use of a flap-type control surface at the trailing edge of each
fin. Various deflections of the trailing-edge controls were obtained by the use of
deflection-setting plates bent to the proper angles. Details of the fins are given in fig~
ure 3. For part of the investigation, a trailing-edge control with a hinge-moment beam
for hinge-moment measurements was used on fin 2 of the small fins. (See fig. 3(b).)
Hydraulic actuator fairings near the midspan of the fins and reaction control fairings at
the roots of the fins as shown in figures 1(a), 2, and 3 were included on the configurations.

Three nose shapes on the LM aerodynamic shroud, identified herein as shroud
noses 1, 2, and 3, were investigated. Photographs and drawings of the shroud noses are
given in figures 2 and 4, respectively. Shroud nose 1 was a blunt-nosed cone of 15°
half-angle. Shroud nose 2 was a combination of a blunt-nosed cone of 30° half-angle and
a frustum of a cone of 150 half-angle. Shroud nose 3 was a combination of a blunt-nosed
cone of 60° half-angle and a frustum of a cone of 150 half-angle. All shroud noses were
attached to the cylindrical portion of the LM shroud as shown by the drawings.

The cylindrical portion of the LM shroud was extended rearward 1.905 meters
(full scale) over the launch vehicle in several tests by two types of shroud skirt in an
attempt to improve the static longitudinal stability characteristics: a 4° boattailed
shroud skirt and a cylindrical (0° boattail) shroud skirt as shown in figure 5.

Instrumentation

Aerodynamic forces and moments were measured with a six-component internal
strain-gage balance housed in the model launch vehicle airframe. The model and balance
were supported by a 3.49-centimeter-diameter sting which, in turn, was attached to the
remotely operated tunnel central support system. A one-component strain gage mounted
in the trailing-edge control of fin 2 of the small fins (see figs. 1(a) and 3(b)) was used for
determining the hinge moment of the trailing-~edge control.

A static-pressure orifice, located within the chamber surrounding the six-
component strain-gage balance, and eight static-pressure orifices, located around the
rim of the model base and manifolded to a single tube, were connected to pressure-
sensitive electrical pickups. These static pressures were used in the base-pressure

corrections.

The overall forces and moments on the model, the hinge moment of the trailing-
edge control of fin 2 of the small fins, the angle of attack, and the static pressure in the



chamber surrounding the strain-gage balance and that on the rim of the model base were
recorded electronically on punch cards.

TESTS, CORRECTIONS, AND ACCURACY

Tests

The model investigated consisted of the Little Joe II launch vehicle in combination
with the LM aerodynamic shroud. Three nose shapes on the LM aerodynamic shroud,
two shroud skirts, and three sizes of stabilizing fins were investigated. The model was
also tested with the fins off. The configurations with the fins on always included the
reaction control fairings and, except for one test, always included the hydraulic actuator
fairings. Usually, the tests were made with the shroud skirts off.

The various configurations of the Little Joe I — LM space vehicle were investi-
gated at Mach numbers from 0.30 to 1.20 and at angles of attack from approximately -12°
to 120. The stagnation temperature was 120° F (49° C) except at the two lowest Mach
numbers where it was usually a few degrees less. The total pressure of the investiga-
tion was 1 atmosphere at Mach numbers up to 0.95 for most of the configurations; how-
ever, at high subsonic Mach numbers for configurations with large control-surface
deflections, and at Mach numbers of 1.00 and 1.20 for all configurations, the total pres-
sure was maintained at less than 1 atniosphere in order to stay within balance load
limits. Table II gives the variation of Reynolds number with Mach number for the
various configurations.

All configurations were investigated in pitch at a sideslip angle of 0°. Uniform
deflections only of the four trailing-edge controls were investigated. The small fins
were investigated at control deflections of 0° and -10°, the intermediate fins at control
deflections of 0°, -10°, and -20°, and the large fins at control deflections of 0°, -5°, -10°,
-20°, and -30°. The hinge moment of the trailing-edge control on fin 2 of the small fins
was measured at deflections of 0° and -10° on the configurations with shroud noses 1
and 2 and shroud skirt off.

All configurations were tested with natural transition on the model. The configura-
tion with shroud nose 2, shroud skirt off, and fins off was also tested with three
0.16-centimeter-wide strips of No. 60 carborundum grains located immediately aft of the
surface junctures on the LM shroud as indicated in figure 1(b).

Corrections

The axial-force coefficient C A includes the correction for the base axial-force
coefficient Cp p; the coefficients Cp and Cj,, which are based on Cp and Cy,



are therefore also corrected for base pressure. The aerodynamic force and moment
data presented herein are considered to be free of tunnel-boundary interference. No
sting-interference corrections have been made to the data except to the extent of the
partial correction for sting interference inherent in the base-pressure correction. The
angle of attack has been corrected for the deflection of the balance and sting support
under aerodynamic load.

Accuracy

The accuracy of the data, based primarily on the static calibrations and the
repeatability of the data, is estimated to be as follows:

L +0.02
CA o o e e e e e e e e e e e e e e e e +0.008
Cm v v o e e e e e e e e e e e e e e e e e e e e e e e e +0.01
L +0.02
L 1 +0.008
Ch2 vt e e e e e e e e e e e e e e e e e e e e e e e e e e e +0.007

At Mach numbers less than 0.70, where the dynamic pressures were substantially
less, the accuracy of the data expressed in aerodynamic-coefficient form was corre-
spondingly poorer than that listed.

During the tests, the aerodynamic loading on the trailing-edge controls modified
the no-load (M = 0) values of the control deflection. The actual values of the control
deflection of the control instrumented for hinge-moment measurements (on fin 2 of small
fins) are given by the following empirical equations for the two control deflections

investigated:
- 00 - 2
5=0 (KOO)OI_M
5= -100 + (K_loo)(lzo - a)M?2

where a is in degrees, 0° and -10° are the no-load (M = 0) values of the control deflec-
tion, and the empirical constants Kgo and K_;,o0 are as follows:



B 1™

M - Kpo | Kqp0

0 to 1.00 0.010 0.014
1.20 .008 .010

The trailing-edge controls which were not instrumented for hinge-moment measurements
had a deflection flexibility which was estimated to be about one-half that of the instru-
mented trailing-edge control. In several of the figures presented herein, the no-load
values of control deflection are used in identifying the data.

PRESENTATION OF RESULTS

The basic longitudinal aerodynamic data are presented in figures 6 to 14 as plots
of aerodynamic coefficients against angle of attack. Hinge-moment characteristics are
included in figures 11 and 14. The results have been arranged into groupings which make
possible a more direct comparison of the effects of model components and control deflec-
tions; this arrangement necessitated the presentation of the results for some of the con-
figurations more than once.

Center-of-pressure results are presented herein for the configurations with fins
on and controls undeflected and with fins off. The value of the center-of-pressure
parameter X¢p /dref shown herein at an angle of attack of 0° was taken as the value of
the average slope ACH /ACN between angles of attack from approximately -1° to 19;
at angles of attack other than 0° the value of Xcp /dref shown was obtained by using the
following equation:

Xcp _ Cm,a=aq - Cm,Cn=0

dI‘Ef - CN,CY=CY1

In this equation, Cm’%a1 and CN,o=qq are the values of Cm and Cy, respectively,

corresponding to a given value o of angle of attack, and Cm,CN=0 is the value of
Cm when Cy =0. The center-of-pressure location is referenced to the base of the
model.

Summary longitudinal aerodynamic characteristics are shown plotted against Mach
number in figures 15 to 24. Schlieren photographs are presented in figure 25. The
slopes CnNgp» Cm o Cch, and Cha shown herein are average values between angles



o o
of attack from approximately -1% to 1% . The slopes Cp 5’ CN 5 and Cy 5 shown

herein are average values between control deflections from approximately 0° to approx-
imately -10°. The results of this investigation are presented in the following figures:

Figure
Basic longitudinal aerodynamic characteristics:
Effect of shroud nose (fins off; shroud skirt off) . . . . . . . .. ... .. ... 6
Effect of shroud skirts (shroud nose 1;finsoff) . . . . .. ... .. .. .... 7
Effect of boattailed shroud skirt (shroud nose 1; small fins, 6=0°9. ... .. 8
Effect of boattailed shroud skirt (shroud nose 1; large fins, 6=0° ... ... 9
Effect of boattailed shroud skirt (shroud nose 2; small fins, §=09). ... .. 10
Effect of control deflection (shroud nose 1; small fins) . . . .. .. ... ... 11
Effect of control deflection (shroud nose 1; intermediate fins) . . . . ... .. 12
Effect of control deflection (shroud nose 1; large fins) . . ... ... ... .. 13
Effect of control deflection and transition strips (shroud nose 2;
small fins) . . . . . . .. .. o o e 14
Summary longitudinal aerodynamic characteristics:
Effect of shroud nose (fins off; shroud skirt off) . . . . . . . . .. .. .. ... 15
Effect of shroud skirts (shroud nose 1;finsoff) . . . . .. ... .. ... ... 16
Effect of boattailed shroud skirt (shroud nose 1; small fins, 6=0°9 ... ... 17
Effect of boattailed shroud skirt (shroud nose 1; large fins, 6=00) . . .. .. 18
Effect of boattailed shroud skirt (shroud nose 2; small fins, =09 . ... .. 19
Effect of fin size (shroudnose 1; 6=0°) . . . . . . v v v v v v v v v v v .. 20
Effect of control deflection (shroud nose 1; smallfins) . . ... ... .. ... 21
Effect of control deflection (shroud nose 1; intermediate fins) . .. ... ... 22
Effect of control deflection (shroud nose 1; large fins) . . . . . ... .. ... 23
Effect of control deflection and transition strips (shroud nose 2;
small fins) . . . . L L L. e e e e e e e e e e e e e e e e e 24
Schlieren photographs of flow about LM shroud with shroud noses 1 and 2,
shroud skirt off . . . . . . . . . ¢ L. e e e e e e e e e e e 25
DISCUSSION

Longitudinal Stability

All configurations tested had static longitudinal instability at all test conditions
about 2 moment reference center 1.3 base diameters forward of the base. (For example,
see fig. 13(d).) The longitudinal-stability parameter Cma increased (configuration

became more unstable) as the Mach number was increased to about 0.95, then decreased
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(configuration became less unstable) with further increase in Mach number to 1.00, and
then either remained essentially constant (configuration instability remained same) or
decreased (configuration became less unstable), depending on configuration, with further
increase in Mach number above 1.00. (See figs. 20 and 24.)

Fin size.- Adding stabilizing fins to the configuration or increasing the size of the
fins reduced the amount of static longitudinal instability as might be expected, but not
enough to make the configuration stable. (See figs. 11(d), 12(d), 13(d), and 20.) The
center-of-pressure location varied somewhat with change in angle of attack and Mach
number, the location being farthest forward of the base usually at angles of attack near 0°
and at Mach numbers near 0.95. For configurations with shroud nose 1, the center of
pressure was forward of the model base by 3.5 to 5.3 base diameters for the fins-off
configuration (fig. 11(h)), by 2.0 to 2.6 base diameters for the configuration with the small
fins (fig. 11(h)), by 1.6 to 2.2 base diameters for the configuration with the intermediate
fins (fig. 12(h)), and by 1.4 to 1.9 base diameters for the configuration with the large
fins (fig. 13(h)).

Shroud-nose modifications.- The effect on the static longitudinal stability of

changing the shape of the shroud nose was usually quite small. Shroud nose 2 reduced
the static longitudinal instability at Mach numbers less than approximately 0.86 and at a
Mach number of 1.20. Shroud nose 3 reduced somewhat more the static longitudinal
instability at Mach numbers less than approximately 0.92. At the other Mach numbers,
however, shroud noses 2 and 3 generally increased the static longitudinal instability.
(See fig. 15 and compare figs. 17 and 19.) Shroud nose 2 caused a large shift in the
pitching-moment curves and, in general, a reduction in the amount of static longitudinal
instability at the higher angles of attack at a Mach number of 0.90 for the configuration
with the transition strips both on and off, and at Mach numbers of 0.95 and 1.00 for the
configuration with the transition strips on (fig. 14(d)). The effect of shroud nose 2 on
the aerodynamic characteristics at these test conditions is discussed more fully in the
section "Unsteady Flow."

Shroud skirts.- The effect of the shroud skirts on the static longitudinal stability
was generally small, usually reducing the amount of static longitudinal instability at
Mach numbers near 0.90, but increasing the amount of static longitudinal instability at
the other Mach numbers. (See figs. 16 to 19.) However, the shroud skirts had a favor-
able effect on the undesirable aerodynamic characteristics observed for the configura-
tion with shroud nose 2 at the higher angles of attack at a Mach number of 0.90
(fig. 10(d)); this effect is discussed further in the section "Unsteady Flow."

11



Unsteady Flow

Hammerhead-shaped configurations.~ As figure 1 shows, the Little Joe I — LM
space vehicle was of the hammerhead type, in that the diameter of the LM aerodynamic
shroud was larger than the diameter of the Little Joe II launch vehicle. The ratio of
these diameters was 1.38. As noted in references 5 to 7, pressure fluctuations exist in
two types of flow regions on hammerhead-shaped configurations. First, at high subsonic
free-stream Mach numbers there are the regions of flow expansions followed by shock
waves (for example, at cone-cylinder junctures) in which there are extremely local but
relatively high pressure fluctuations. Second, there are the regions of separated flow in
which large areas may be subjected to unsteady flow and, hence, to pressure fluctuations.
Flow separation due to the hammerhead configuration, particularly at subsonic Mach
numbers, can result in the significant pressure fluctuations associated with buffeting.
References 6 and 7 also point out that an abrupt body convergence angle between the
shroud and the launch vehicle can extend the separation effects and pressure fluctuations
to supersonic Mach numbers. In the present investigation, the body convergence was a
frustum of a cone of 58.9° half-angle. This body convergence angle was abrupt, and
schlieren photographs indicate that separation off the shroud occurred at all Mach num-
bers including 1.20.

Model buffeting and abrupt changes in forces and moments.- Severe model buffeting
(visually observed) occurred at a Mach number of 0.90 for the configuration with shroud
nose 2 and shroud skirt off in two narrow ranges of angles of attack near 70 and -7°,
This buffeting occurred with the fins both on and off. The configurations with shroud
noses 1 and 3, however, did not exhibit this severe buffeting.

Associated with the severe model buffeting were abrupt changes in the magnitudes
of the aerodynamic forces and moments as the angle of attack was increased through the
critical range (fig. 14). These abrupt changes included a large decrease in the magnitude
of the pitching moment, a rearward movement of the center of pressure of about 1.2dyef
when the fins were on and about 2.5dyef When the fins were off, an increase in normal
force of about 25 percent when the fins were on and an insignificant amount when the fins
were off, and an increase in axial force of about 25 percent.

Effect of transition strips.- Three transition strips of No. 60 carborundum grains
were added to the configuration with shroud nose 2, fins off, and shroud skirt off, as
indicated in figure 1(b). Brief tests of this configuration were made at Mach numbers
from 0.80 to 1.00 to determine primarily the effect of the transition strips on the model
buffeting and on the abrupt changes in the forces and moments observed at a Mach num-
ber of 0.90 for the configuration without the transition strips. Direct comparisons of
the effect of the transition strips are available at test Mach numbers of 0.80, 0.90, and
1.00, where tests were made both with and without the transition strips. Tests were also

12



made at Mach numbers of 0.85 and 0.95 of the configuration with the transition strips on.
(See fig. 14.)

The transition strips had no effect on the force and moment characteristics at a
Mach number of 0.80. At a Mach number of 0.90, the transition strips had only a small
effect on the magnitudes of the abrupt changes in pitching moment, center of pressure,
and axial force, but did lower (by somewhat less than 10) the angle-of-attack range in
which the abrupt changes occurred. At a Mach number of 1.00, the transition strips
caused flow changes at angles of attack near 9° which resulted in model buffeting and
abrupt changes in pitching moment, center of pressure, normal force, and axial force.
These characteristics were not observed at a Mach number of 1.00 for the configuration
with the transition strips off. Addition of the transition strips also reduced the axial
force and the base axial force at all angles of attack at a Mach number of 1.00.

At a Mach number of 0.95, the configuration with the transition strips experienced
severe buffeting and the characteristic abrupt changes in pitching moment and center of
pressure associated with the buffeting. These characteristics occurred at angles of
attack near 6° at a Mach number of 0.95. At a Mach number of 0.85, the configuration
with the transition strips was not affected by buffeting or abrupt changes in forces and
moments.

The results of reference 8 show that at Mach numbers less than 0.95 the flow rear-
ward of the juncture on a 30° half-angle cone-cylinder configuration was markedly
affected by the presence of a transition strip located immediately aft of the juncture (the
flow was attached when the transition strip was on, separated when the transition strip
was off). A relative scarcity of roughness particles in a part of the transition strip due
either to erosion or a lack of care in the application of the transition strip also was found
to have an important effect on the separation characteristics. The flow on a 15° half-
angle cone-cylinder configuration, however, was essentially the same (that is, attached)
whether the transition strip was on or off. In the present investigation, shroud nose 2
consisted of a blunt-nosed cone of 30° half-angle and a frustum of a cone of 15° half-
angle followed by a cylinder. The sensitivity of the flow on the configuration with shroud
nose 2 to transition-strip effects would be expected to be somewhat less than that of the
flow on a 30° half-angle cone-cylinder configuration but more than that of the flow on a
159 half-angle cone-cylinder configuration.

Effect of shroud skirt.- Addition of the boattailed shroud skirt to the smooth con-
figuration with shroud nose 2 and fins on (fig. 10) substantially reduced the model
buffeting and the extent of the large abrupt changes in aerodynamic forces and moments
at a Mach number of 0.90, and delayed the occurrence of these abrupt changes to some-
what higher angles of attack. At a Mach number of 0.95, the configuration with the boat-
tailed shroud skirt did not buffet or show the abrupt changes in forces and moments

13



evident at a Mach number of 0.90. The cylindrical shroud skirt was not tested with
shroud nose 2.

Schlieren photographs.- Schlieren photographs are shown in figure 25(a) for the
configuration with shroud nose 1 and shroud skirt off at Mach numbers of 0.80 and 0.90
for angles of attack from 00 to 4° and in figure 25(b) for the configuration with shroud
nose 2 and shroud skirt off at a Mach number of 0.90 for angles of attack from -7° to 89.
Typical regions of flow expansions followed by shock waves are evident at the sphere-
cone juncture of shroud nose 1 (fig. 25(a)), the cone-cone juncture of shroud nose 2
(fig. 25(b)), and the cone~cylinder junctures of both shroud noses 1 and 2. At a Mach
number of 0.90, a shock-wave system was located in the region of the converging juncture
between the shroud and the launch vehicle for the configurations with both shroud noses 1
and 2. The schlieren photographs show that for the configuration with shroud nose 2
(fig. 25(b)) the shock-wave system on the windward surface of the shroud moved upstream
and away from the converging juncture as the angle of attack was increased through the
critical range. (Compare the schlieren photographs for angles of attack of -6° and -7°
and for 60 and 89.) Also evident in the schlieren photographs at an angle of attack of 8°
is a small region of flow expansion at the beginning of the converging juncture. This
region of flow expansion is evident to a lesser extent at an angle of attack of -79, but not
at lower angles of attack. Schlieren photographs were not obtained for the configuration
with shroud nose 1 at these higher angles of attack or for the configurations with shroud

skirt.

An explanation for the severe model buffeting at a Mach number of 0.90 is suggested
by the observed facts that the buffeting was eliminated by the addition of the boattailed
shroud skirt and that the buffeting did not occur for the configuration with shroud nose 1,
and by a study of the schlieren photographs. The buffeting is possibly explained by the
unsteady flow in the region of the converging juncture, the unsteadiness of this flow
having been aggravated or intensified by the adverse effects of the interactions with the
boundary layer of the shock waves in the regions of the converging juncture, the cone-
cylinder juncture, and the cone~cone juncture. The strength and type of the shock waves
in the regions of the cone-cylinder and the cone-cone junctures are dependent, of course,
on the extent and degree of the flow expansions and the nature of the boundary layer pre-
ceding these shock waves.

Longitudinal Control

Longitudinal aerodynamic control on the Little Joe II — LM space vehicle is
obtained from flap-type trailing-edge controls on the stabilizing fins. As figure 3 shows,
the planforms of the controls used on the three sizes of fins tested in this investigation
were dissimilar and, whereas full-span controls were used on the small and intermediate
fins, only partial-span controls were used on the large fins.
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The intermediate fins were approximately 50 percent larger than the small fins in
both the total area of the fins and in the area of the control. The large fins were 100 per-
cent larger than the small fins in the total area of the fins, but the area of the control on
the large fins was actually less than the area of the control on the small fins.

The controls on all three sizes of stabilizing fins were found to be effective for
pitch control at all test conditions. (See figs. 11(d), 12(d), 13(d), and 14(d).) However,
there were reductions in control effectiveness at control deflections greater than -10°
for the controls on the intermediate fins (fig. 12(d)) and on the large fins (fig. 13(d)) at
all angles of attack and Mach numbers. The controls on the small fins were not investi-
gated at deflections greater than -10° (figs. 11(d) and 14(d)). There were also losses in
control effectiveness Cmé at all control deflections at the highest angles of attack at
Mach numbers of 0.95 and 1.00 for the controls on the intermediate fins (fig. 12(d)) and
on the large fins (fig. 13(d)), but not for the controls on the small fins (figs. 11(d) and
14(d)).

The variation with Mach number of the control-effectiveness parameter Cm6 is
shown in figure 20(b) for the controls on the three sizes of fins, and this variation is
seen to be similar for all three sizes of fins. There was first a slight increase in con-
trol effectiveness as the Mach number was increased to about 0.85, then a more rapid
increase in control effectiveness as the Mach number was further increased to about
0.90, and then a uniform reduction in control effectiveness as the Mach number was
increased above 0.90, so that at a Mach number of 1.20 the control effectiveness was less
than that at the lowest Mach numbers.

Figure 20(b) shows that the control effectiveness was greatest for the controls on
the intermediate fins. This greater control effectiveness was due, of course, primarily
to the fact that the area of the control on the intermediate fins was substantially larger
than the area of the control on the large fins (56 percent larger) or the area of the con-
trol on the small fins (50 percent larger).

Control Hinge Moments

Hinge-moment data were obtained only for the control on fin 2 (fig, 1(a)) of the
small fins. The variation of hinge-moment coefficient Ch,2 with angle of attack was
approximately linear at subsonic Mach numbers for the two control deflections of 0° and
-100 investigated. (See figs. 11(i) and 14(i).) The divergence from a linear variation of
Ch o Wwith angle of attack was greater at a Mach number of 1.00 than at the lower Mach
nur’nbers , and this divergence was still greater at a Mach number of 1.20.

The hinge-moment coeificient Cj 5 and the hinge-moment parameters Chy
b
and Cp 5 are shown plotted against Mach number at an angle of attack of 0° in
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figures 21(b), 21(c), 24(b), and 24(c). The magnitude of the parameter Cy 5 is seen to

be substantially greater at Mach numbers of 0.90 and above than at the lower Mach

numbers.

The magnitudes of the hinge~-moment results of the present investigation and the
trends with angle of attack, control deflection, and Mach number check well with the
corresponding results obtained in the investigation of reference 3 on the same fin-control
configuration on the Little Joe II launch vehicle when tested in combination with the
Apollo spacecraft. In the investigation of reference 3 the diameter of the Apollo space-
craft was the same as that of the Little Joe II launch vehicle, and the Apollo spacecraft,
which was essentially conical of 330 half-angle, included the launch escape system.

The control-effectiveness hinge-moment parameter Cp, 5 /Ch 5 shown plotted

against Mach number in figures 21(c) and 24(c) is a measure of the effectiveness of the
control in producing a pitching moment in terms of the hinge moment developed on the
control while producing this pitching moment. A large value of this parameter is desir-
able since such a value would tend to indicate good pitch effectiveness and low control
hinge moments. It is seen in figures 21(c) and 24(c) that the control effectiveness
parameter Cyy 5 /C}1 5 Was,on the average, essentially invariant as the Mach number

was increased to 0.80, but then decreased substantially with further increase in Mach
number to 1.20.

CONCLUSIONS

An investigation of the static longitudinal aerodynamic characteristics of a
0.03-scale model of a proposed Little Joe II — lunar module suborbital space vehicle
was made in the Langley 8-foot transonic pressure tunnel at Mach numbers from 0.30
to 1.20 and at angles of attack from approximately -12° to 129, This configuration was
of the hammerhead type, in that the diameter of the lunar module aerodynamic shroud
was larger than the diameter of the Little Joe II launch vehicle. Three sizes of stabi-
lizing fins, three nose shapes on the lunar module aerodynamic shroud, and two shroud
skirts, which extended over the converging juncture between the shroud and the launch
vehicle, were investigated. Flap-type trailing-edge controls on the stabilizing fins were
uniformly deflected for pitch control from 0° to -10° on the small fins, from 0° to -20°
on the intermediate fins, and from 0° to -30° on the large fins. Control hinge moments
were measured on the small fins. Limited transition-strip studies were made on one of
the configurations. The following conclusions are indicated:

1. All configurations investigated had static longitudinal instability at all test con-
ditions about a moment reference center 1.3 base diameters forward of the base.
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2. Depending on angle of attack and Mach number, the center of pressure was for-
ward of the model base by 3.5 to 5.3 base diameters for the fins-off configuration, by 2.0
to 2.6 base diameters for the configuration with the small fins, by 1.6 to 2.2 base diam-~
eters for the configuration with the intermediate fins, and by 1.4 to 1.9 base diameters
for the configuration with the large fins.

3. Shroud-nose changes or the addition of shroud skirts to the configuration usually
had a small and variable effect on the static longitudinal stability. At a Mach number of
0.90, however, the flow on the configuration with one of the shroud noses was very criti-
cal to model attitude.

4. Severe model buffeting occurred at a Mach number of 0.90 in two narrow ranges
of angles of attack near -7° and 7° for the configuration with a shroud nose consisting of
a blunt-nosed cone of 30° half-angle and a frustum of a cone of 15° half-angle. Associ-
ated with the severe model buffeting were abrupt changes in the magnitudes of the aero-
dynamic forces and moments as the angle of attack was increased through the critical
range.

5. The addition of transition strips to the surface junctures on the lunar module
shroud had no beneficial effect on the severe model buffeting or the abrupt changes in
forces and moments which occurred at a Mach number of 0.90, and actually precipitated
model buffeting and abrupt changes in forces and moments at a Mach number of 1.00.
Severe model buffeting and abrupt changes in forces and moments also occurred at a
Mach number of 0.95 for the configuration with the transition strips on.

6. The addition of a boattailed shroud skirt to the smooth configuration substantially
reduced the model buffeting and the extent of the abrupt changes in the aerodynamic
forces and moments which occurred at a Mach number of 0.90 and delayed the occurrence
of these abrupt changes to somewhat higher angles of attack. No model buffeting or
abrupt changes in forces and moments occurred at a Mach number of 0.95 for the con-
figuration with the shroud skirt.

7. The trailing-edge controls on all three sizes of stabilizing fins were effective
for pitch control at all test conditions, although reductions in control effectiveness
occurred at control deflections greater than -10° at all angles of attack and Mach num-
bers and also occurred at all control deflections for the controls on the intermediate and
the large fins at the highest angles of attack at Mach numbers of 0.95 and 1.00.

8. The magnitude of the rate of change of hinge-moment coefficient with control
deflection was greater at Mach numbers of 0.90 and above than at the lower Mach
numbers.

1



9. The ratio of pitching moment produced by control deflection to hinge moment

developed by control deflection was less at Mach numbers of 1.00 and 1.20 than at low

subsonic Mach numbers.

Langley Research Center,

18

National Aeronautics and Space Administration,
Langley Station, Hampton, Va., May 2, 1967,
124-07-02-42-23.
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TABLE 1.- GEOMETRIC CHARACTERISTICS OF 0.03-SCALE MODEL OF PROPOSED
LITTLE JOE II — LM SUBORBITAL SPACE VEHICLE

Little Joe II launch vehicle:

Body:
Cross-sectional area (reference area, S), m2 ... 0.0108
Diameter (reference length, dpef),cm . . . . . . . . . . .. ... 11.73
Area of sting hole, Ap 1, m2 . e e e e e 0.0054
Area of rim, Ap 2, m2 . . ... ... 0.0055

Stabilizing fins (exposed, single-fin values given):
Small fins (4.65 m2 full scale):

Airfoil section (parallel to root chord) . . .. . .. .. .. Wedge, 100 total angle
Area (includes area of control), m2 . . . . . . . . . ..t u e e 0.0042
S 7= ¢ TR 5 ¢ 7.087
Rootchord, cm . . . . . . . . . . . ¢ v v i i v it e e e e e 6.688
Tipchord, cm . . . . . . . . . o e e e e e e e e e e e e e e e e e 3.360
Aspect ratio . . . . . . . L L e e e e e e e e e e e e e e e e e e e e e 1.20
Sweepback of leading edge, deg . . . . . . . . . 0. 000 e e 45
Trailing-edge control:
TYPE « v v v v e e e e e e e e e e e e e e e e e e e " Flap
Area, aft of hinge line, Sc:
M2 . L e e e e e e e e e e e e e e 0.0013
Percentof finarea . . . . . . . . .. . . 00 o o000 ool 30
Mean aerodynamic chord, Cc,ecm . . . . . . ..o ..o o0 . 2.428
Intermediate fins (7.33 m2 full scale):
Airfoil section (parallel to root chord) . . . . . .. . ... Wedge, 10° total angle
Area (includes area of control), m2 . . . . . . . . . ... ... ... ... 0.0066
0 B+ W ' o 8.659
Rootchord, cm. . . . . . . v v v v v v v v v et e e e e e e e e e 9.078
Tipchord,cm . . . . . . . . . oo v v oo e e e e e e e e e e 2.705
Aspect ratio . . . . . . L L e e e e e e e e e e e e e e e e e e e e e 1.141
Sweepback of leading edge, deg . . . . . 4 . et e e e e e e 45
Trailing-edge control:
= Flap
Area, aft of hinge line, Sg:
M2 . L e e e e e e 0.0019
Percentof finarea . . . . . . . . . v vt v i i i it e e e e e e 28.7
Mean aerodynamic chord, Ce,cm . . . . . . . . ... .00 2.913
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TABLE I.- GEOMETRIC CHARACTERISTICS OF 0.03-SCALE MODEL OF PROPOSED
LITTLE JOE II — LM SUBORBITAL SPACE VEHICLE — Concluded

Large fins (9.30 m2 full scale):

Airfoil section (paralleltorootchord) . . . . . .. . . .. Wedge, 10° total angle
Area (includes area of control), m2 . . . . . .. ... ... ... .. 0.0084
Span, CIM . . . . . . o i e e e e e e e e e e e e e e e e e e e e e e e 9.91
Rootchord,cm . . . . . . . . . . v o v v v v i i e e e 9.868
Tipchord, cm . . . . . . . . 0 0 v i e s e e e e e e e e e e e e e e 4.57
Aspect ratio . . . . . . L L L L e e e e e e e e e e e e e e e e 1.17
Sweepback of leading edge, deg . . . . . . . . 0000 e e w e e e . 45
Trailing-edge control:
TYDE . « v v v e v v e e e e e e e e e e e e e e e e e e e e e e e e e e e Flap
Area, aft of hinge line, S¢
M2 L L e e e e e e e e e e e e e e e 0.0012
Percentof finarea . .. . . . . . . . . e 0 e e e e e 14.3
Mean aerodynamic chord, Cc, €M . . . . o v v v v v v v et e e 2,743

LM aerodynamic shroud:
Cylindrical section:

Cross-sectional area, M2 . L e e e e e e 0.021

Diameter, CI . . . . & v v v v v bt e e e e e e e e e e e e e e e e e 16.15
Shroud nose length:

Shroud nose 1, Cm . . . . . . . v L vt ot e e e e e e e e e e e e e e 12.83

Shroud NOSE 2, CIML . . .+ & v v v v v v vt e v o e e e e e e e e e e e e 10.43

Shroud n0SE 3, CM . . . . v v v v v i v e e e e e v e e e e e e e e e e 9.91

Overall length from nose of LM shroud to base of launch vehicle:

Shroud nose 1, CmM . . « v v v v v i v vt e e e e e e e e e e e e e e e e e 52.98
Shroud NOSE 2, CIM . . . v v 4 v 4 v v v v o o s o v o e o ot e e e e e e e e 50.60
Shroud N0OSE 3, CIM . . . . & v v v v b v v v et e e e e e e e e e e e e e e e 50.06
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TABLE II.- VARIATION OF REYNOLDS NUMBER WITH MACH NUMBER

Configuration Reynolds number at —
Shroud T
Fins 06, deg M =0.30 M=0.50 M=0.70 M=0.80 M=0.85 M=0.90 M=0.93 M=0.95 M=0.97 M=1.00 M= 120
Nose Skirt
1 off Small 0 0.71x108 1.09x108 1.35x106 1.46x106 1.49x106 1.53x106 1.54x108 1.55x108 1.56x106 1.27x108 1.05x108
1 off Small -10 .71 1.09  1.39 146  --meeee 10 B T e r— 127 105
1 off off 1 107 135 146 1.50 154 eoemee- 156  -mmmee- 127 1.06
1 Off  Intermediate 0 .70  1.08  1.36  1.47 149 154  -ecm--- 156  emmeee- 1.12 .96
1 Off Intermediate -10 ------- 1.08 1.35 1.46  ------- 1.53 —-emee 1.66  w=--me- 1.12 .96
1 Off  Intermediate -20 =------- 1.08 136 144  —eeee- 153 emmeee- 140 emmeee- .97 .82
1 off Large 0 .11 108 135 145 148  1.52  =cme-e- 1.56  —mmeee- 1.12 91
1 off Large -5 10 1.08  —meeee- 146 —--mo-e- 154 —mmeme- 157 emmeee- 1.12 .96
1 off Large  -10 .69 104  1.36 146 148  1.53  --cm-a- 156  -mmmeee 1.12 .96
1 off Large  -20 .70  1.07  1.36 146 149 154  --ome-- 141 emmeeee .97 81
1 Off Large  -30 .70  1.07  =—=----- 124 —eeeee- 130 emmmee- 129 —mmeee- .90 1
2 off Small 0 .70 1.07 132 143  —eeee- 151 eccmmem cmmmmme cmeeeee 127 1.05
2 off Small -10 .72 108 136 146  ~-e--- 153 memmemm mmmmmen e 127 1.05
2 off off 1 107 135 146 em----- 153 mmmemmms mmmmmen e 1.27 105
ag off Off  mmmmemm mmmmee e 146 151  1.53  —ee--- 1.56  mmmme-- 112 meeeee-
ag off o T e 127 emeeee-
3 off Oft 69  1.07 135 146  1.48 152  -mee--- 156 —m-m--- 127 1.0
1 Cylindrical ~ Off =~ =-mcmme cmmemen cmmmee cmmmmen e 154 emmmee- 156 mmmmee- 127 1.06
1 Boattailed Off | 71 1,08 1.36 146 151  1.53  -meeme- 1.56 | -==--m- 127 1.05
1 | Boattailed Small = 0 le-ecomm oo eI L R e et 1.55 | eeeoee- 1.12 .96
1 | Boattailed | Large 0 |=mmmmmn | mecomen 1.35  |1.45  |148  [1.52 | --eeeeo 1.56 | -m=m-n- 1.12 96
2 | Boattailed |  Small R I -------------- 122 |1.47 152 | =mmeeee 1.55 | =mm=-m- 112 96

12

AWith transition strips.
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-~ Moment reference center
- - —ef

d=16.15 d4=11.73 - - 15.25 -

‘ —~

Reaction control fairings

13.29 - -— - -~ 134

Hydraulic actuator faring
LM shroud nose LM shroud body Little JoeIL launch vehicle
12.83 14.63 25.53.
LM aerodynamic shroud
—27.46
- —52.99
(a) Drawing. Shroud nose 1; large fins; & = 00,
Figure 1.- Drawing of 0.03-scale model of Little Joe 11 — LM space vehicle and location of fransition strips on LM shroud. Shroud skirt off. Ail dimensions

are in centimeters unless otherwise noted.
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Tangency line

€2

7=

\ \ Transition strips

{b) Location of transition strips. Shroud nose 2; fins off.

Figure 1.- Concluded.



(a) Shroud nose 1; small fins; § = -10°, [-63-9533

(b) Shroud nose 2; small fins; &= -10°, L-63-9532

Figure 2.- Photographs of Little Joe 1 — LM model showing various configurations and model components.
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(c) Shroud nose 3; small fins; § = 09,

(d) Shroud nose 1; large fins: & = (0.

Figure 2.- Continued.

L-64-2703

L-64-2704
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(e) Shroud nose 1; cylindrical shroud skirt; small fins; & = 00. L-64-2702

Shroud nose 1

Shroud nose 2

{f) LM shroud noses.

Figure 2.- Concluded.

Shroud nose 3

L-64-2701




Hydraulic actuafor fairing

/—Hinge line
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=0.08
r=0.0 Section B—-B

ion - sethi late
Hydraulic actuator fairing Deflection -setting pl

Section A-A N l.22

6.69

10.45

(a} Small {4.65 m2) fin with uninstrumented trailing-edge control.

Figure 3.- Details of stabilizing fins. All dimensions are in cm unless otherwise noted.
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Figure 3.- Continued.
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{¢) Intermediate (7.33 m2) fin.

Figure 3.- Continued.
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Hydraulic actuator fairing

Section A—A

Hinge line
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(d) Large (9.30 m2) fin.

Figure 3.- Concluded.
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Tangency line

8.33
i2.83
! -y
b= --"—-dﬂeﬂs ----- -
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Shroud nose 3

Figure 4.- Details of LM shroud noses. All dimensions are in ¢cm unless otherwise noted.
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Figure 6.- Effect of shroud nose on longitudinal aerodynamic characteristics. Fins off; shroud skirt off.
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Figure 14.- Continued.
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Figure 20.- Summary information on effect of fin size on longitudinal aerodynamic parameters. Shroud nose 1
shroud skirt off; a = 09, (Flagged symbols indicate points from repeat run.)
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Figure 22.- Summary information on effect of deflection of trailing-edge controls on longitudinal aerodynamic parameters.
Shroud nose 1; intermediate fins; shroud skirt off; a = 00. (Flagged symbols indicate points from repeat run.)
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Figure 23.- Summary information on effect of deflection of trailing-edge controls on longitudinal aerodynamic parameters.
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