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Preface

This is the fifth technical report covering the research work
under the project entitled "A Test Program to Determine the Mechanical
Behavior of Solid Propellants". The work reported here particularly
refers to experimental studies on a rubber-like material that has
been subjected to a uniaxial compression. The strains on the surface
of a cylindrical specimen under given loads were measured via the
moiré method of strain analysis. The boundary conditions on the
ends of the cylinders were varied by varying the friction between

the ends of the cylinders and the compression plates.



Abstract

Experiments were conducted by compressing, uniaxially, a series
of cylinders of length to diameter ratio of two. The boundary
conditions at the ends of the cylinders were varied with respect to
the amount of friction present. The cylinders were cast of Solithane
113, a rubber-like material. The compressive stresses applied varied
from 0 to 19.1 1b/in?, for stresses which were based on the original
cross-sectional area. Strains were measured on the surfaces of the
cylinders, which corresponded to ten different values of applied
stress. Strain was measured in the axial and circumferential
directions by using the moire? fringe method. A short series of
tension experiments were also conducted in order to verify the
accuracy of the moiré fringe method as employed for this presentation.

A theoretical analysis was performed. The classical elastic
solution to the problem of uniaxial compression of a cylinder has been
done and is presented here in detail. A short review of the finite
deformation of a cylinder of Neo-Hookean material under uniaxial com-
pression which produces bulging is given.

The theoretical strains as predicted by the classical theory are
compared to the experimentally determined strains. A comparison of
the strains obtained experimentally with different boundary conditions
is presented. Also, a comparison of the stress-strain curves for

Solithane in compression and tension is given.
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CHAPTER 4

INTRODUCTION

1.1 Statement of the Problem

In recent years much attention has been drawn to new classes of
materials. Orne important class, the rubber-like material, is already
in wide use. As an example, solid fuel propellants are placed in this
category. Certain rubber-like materials are also used as vibration
dampers. In order to construct reliable engineering structures, it is
important to know just how a class of materials will deform under a
given system of loads and with given boundary conditions.

The subject of this presentation is the study of a rubber-like
material subjected to a uniaxial compressive load. Experimentally, a
right, circular cylinder with length to diameter ratio of two is con-
sidered. The boundary conditions are with respect to the amount of
friction present at the plane ends of the cylinder where the load ap-
plication occurs. The axial and circumferential strains on the sur-
face of the cylinder at its axial center are measured as the load
varies from zero to sixty pounds, in increments of six pounds. The
end boundary conditions are also varied from one experiment to the
next, i.e. , the amount of friction between the end plates and the
specimen ends is varied by the application of a lubricant.

A relatively new method of strain measurement, the moiré method,
is employed, Therefore, tension experiments designed to measure modu-
lus were also conducted and the results, using the moire method, are
compared to the results of previously conducted tension experiments

where clip gages had been used for strain measurement. This comparison



is made in order to verify the accuracy of the moiré fringe method of
strain measurement, as used here.

An attempt to solve the problem, theoretically, of the large
deformation under uniaxial compression, of a right, circular cylinder
of incompressible material is made. It is assumed that there is no
slipping of the ends of the specimen with respect to the compression
plates during an application of load. Due to mathematical intracta-
bilities in the solution of the problem, no final solution is given

in this discussion.

1.2 Importance of the Investigation

A study of .the aforementioned problem is necessitated by several
things. As has been mentioned, many so-called rubber-like materials
are now in existence and, conceivably, many more will be developed in
the future. In order to design reliable structures with a minimum of
material and cost, and having a maximum of safety, the material proper-
ties of the design material must be known.

With regard to this specific problem, compression is surely one
of the important loading configurations to be considered in most de-
sign problems. For instance, the solid fuel propellant in a rocket
sometimes has the shape of a thick-walled cylindrical tube. The burn-
ing of the fuel proceeds from the inner wall to the outer wall. With
this burning, there exists high temperatures and pressures. These
high temperatures and pressures exert compressive forces on the wall
of the cylindrical tube. As can be seen by this example, compression
is an important loading configuration and this importance warrants

further study of the problem.



1.3 Scope and Limitations

The work presented here delves into one aspect of the problem of
compression of materials. The geometrical shape of the body being
considered, the manner in which the load is being applied, the
boundary conditions being imposed, and the type of material being
considered all contribute to the limitations of the scope of the
problem, both experimentally and theoretically.

A right, circular cylinder, with the length being twice the
diameter, will be considered, both experimentally and theoretically.
This length to diameter ratio is chosen in order to facilitate good
bulging of the curved surface of the cylinder. A cylindrical shape,
instead of a parallelepiped, is chosen solely for reasons of theo-
retical simplicity. A parallelepiped would yield infinite stresses
at its edges.

A uniaxial compressive load is applied to the terminal ends of
the cylinder in both the theoretical and experimental investigations.
In the theoretical case, the total load is assumed to be known, how-
ever, the manner in which this load is distributed over the end sur-
faces is unknown, except that at the edge of each surface the load
must be zero. Also, the total load applied is considered in the ex-
perimental investigation. The total load is varied from zero to sixty
pounds and the strains are determined experimentally and theoretically
at increments of six pounds.

For the theoretical case, the boundary conditions assumed are as
follows. A given total stress acts on the ends. No axial or cir-

cumferential stresses exist on the curved surface of the cylinder. A



shear stress of unknown distribution acts on each end in order to con-
strict the ends from axial movement as the load is applied. Also, the
ends are constrained to remain plane when the load is applied.

For the experimental case, one of the boundary conditions is
varied fromthat in the theoretical case. A given total stress is
applied to the ends as previously mentioned. Also, no axial or cir-
cumferential stresses exist on the curved surface. The ends are con-
strained to remain plane as the load is applied. But, the shear
stress on the end is not always the same as in the theoretical case.
Two cases are considered. The ends are constricted from axial move-
ment in one case. In the other case, there is some amount of axial
movement of the ends for a given load.

In the theoretical case, the material is considered to be Neo-
Hookean. A Neo-Hookean material is one that obeys a type of stress-
strain relationship that is shown to be a natural extension of the
Hooke's law used in the study of small elastic deformations. The
material is also assumed to be homogeneous, isotropic, and incom-
pressible.

Experimentally, the material considered is similar, in some

aspects, to that assumed for the theoretical treatment. e material

usedy; Solithane II3, is homogeneous and isotropic. As to whether
Solithane II3 is incompressible and a Neo-Hookean material is still
unknown.

Chapter Two deals with the theoretical investigation. Part Onre
is a study of the classical elasticity solution to the problem of a

cylinder of moderate length being compressed uniaxially with given



boundary conditions as derived by Filon (3). Section Two of Chapter
Two is a short review of the finite deformation theory as presented by
Rivlin (6). The basic equations of this theory are set forth and in-
clude the stress versus deformation equations, the incompressibility
condition, the equations of equilibrium, et al. Part Three of this
chapter is an application of the finite deformation theory to the
specific problem dealt with in this presentation. Part Four sets
forth the results of the calculations of the surface strains as pre-
dicted by the classical elasticity theory.

The experimental investigation is described in Chapter Three.

A chemical description of the material used in the experimental
program is given in Section One of Chapter Three. Part Two of this
chapter deals with the exact manner in which the specimens that were
used in the experimental investigations were made. The procedure
used in testing the specimens is described in Part Three of this
chapter. Also in this part, one will find a description of the
various apparatus used in the experimental program. Part Four de-
scribes the theory behind the moiré method of strain analysis. This
description includes a short review of three of the most common
methods of analyzing moiré fringes along with a comparative analysis
of the three different methods.

In Chapter Four the results of the experimental investigations
are set forth. Data for both tension and compression experiments are
presented. A comparison between the experimental results in com-
pression, with the proper boundary conditions, and the theoretical

results as given by the classical theory of elasticity is made. All



prevalent results of the experimental data are discussed in detail,

and conclusions are drawn.



CHAPTER 2

THEORETICAL INVESTIGATION

2.1 Solution of the Problem by Classical Elasticity Theory

The following was taken from parts of a paper by L.®.G. Filon (3).
The reasons for reproducing it here are two fold. First, as presented
here, the solution of the problem is in much greater detail than in the
original paper. Also, the problem, as solved by Filon, was studied in
order to obtain some insight into the problem of the compression of a
cylinder in general and the boundary conditions of that problem in
particular.

The problem discussed is that of a cylinder of moderate length,
when compared to the diameter, which is compressed between two rigid
planes in such a way that the terminal cross-sections are constrained
to remain plane. In this section of the theoretical development, the
general equations for the elastic case of a right, circular cylinder
of finite length are obtained. The method adopted has been to obtain
symnetrical solutions of the equations of elasticity in cylindrical
coordinates and to express the typical term in the form (cos kz)xf(r)
and (sin kz)xf(r).

Let us first consider the differential equations of equilibrium

in cylindrical coordinates as shown by Timoshenko (9).

Bcrr . 1 acm . acrz . Orr - 0¢¢ o
ar . r o¢ 9Z r
90 30 a0 o

rz L1 _¢z  __zz rZ _ g

or r 3¢ E}A r



90 90 90 20
r¢ 1 7"¢9 42 rd _
+3 3% t oot 0 (2.1.1)

ar .

Writing the stresses in terms of displacements and employing Lamé's

constants
- du ,u,,d
Opp = (a+ 2u).dr + A = + A O
S LN v, u
O22 ~ A dr a+2u) dz B T
u du dy
= — — + —
0¢¢ (+ 21D r + A dr A dz
(2.1.2)
o oy [a, aw
rz = M lar T dz
-V
¢z M dz

g = v _x
rd L dr r

Placing the stresses as written in equations (2.1.2) into the equili-
brium equations (2.1.1), we obtain after rearranging and assuming that

u, v, and w are independent of ¢,

42 2 2w
Oen) S+ (w2w) & @) v 22 ) B- 0 (a)
dr? dz? drdz
, 2
& [_ll; %(rrv)) R G A (b) (2.1.3)
dz?
d%u_ . 1 du d%w | 1 aw a%w
o) [+ 28 oy (B 280 ez oL (o)
drdz r dz ar2 r dr az2 -
Let us define the operators
22 = _d...._:];g:_ r
dr r dr
and ‘ .1.9

o
i
e



Differentiating (2.1.3.a) with respect to z and (2.1.3.c) with

respect to r.

(a+2u) %;-ﬁk h_(Wu)%;[%;(P-)] + u%;[%k (ntu .i—[izl—] = 0

_drz r dz dz|drdz
and.
a [a%u 1 du d [da%w 1 aw a [a%w
+u) — + === + y = = = =1+ {2+ - N .
() & drdz ~ r dz] M ar [drz T dr] O+ 2u). 7 {dzz 0

Rearranging and substituting equations (2.1.4).

[(A+ 2p) 22 + DZ] %‘;-+ (A+yu) D2 %= 0 (2.1.5)
(M) 22 %*[“ 22 + (A+ 211) DZ] %}: 0 (2.1.6)
and from equation (2.1.3.b)
(22 +D2) v = 0. (2.1.7)

From equations (2.1.5) and (2.1.6) eliminate % and rearrange

dw

{—(}"*'“)29’2])2]% +{()\+2u)u 2% + (A+2p)ud* + 22202 + (}.+2u)222D2]'a}" =0

[[(A+ 2m)ule® + 2u(x+ 2p)22D2 + (A+ 2u)un‘*1 % =0

[2% + 222D2 + DY) gy =0

(22 +02)2 & _ 0= (g2 + DZ)Zy
dr ' 1

Similarly, by eliminating dv

2
(.2 + p2)2 —2—5: 0= (22 + D2)
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The solution of this differential equation determines the elastic
equilibrium of the circular cylinder under any symmetrical system of
stresses.

The above differential equation can be solved by the separation

of variables method. Consider first the equation (22 + D2)y = 0. Let
¥y = Rl(r)Zl(z) .

(22 + DZ)Rl(r)Zl(z) =0

a2 14 1 a2
e o -I—'-a—;—-—"l'_—Rl(l”)Zl(Z) =0
ar2 r dz?
2
a?R, 1 B K2y Aoz,
1 4 T I TR = 0
dr” ~ dz

Dividing by ZlRl to separate the variables.

2 2
}—de+1de_}—+-1——<121=0
R1 ar? er dr P2 Zl an2
Rearranging
2 2
, @Ry ; 4’ 1 a2z, o,
R, *Rrar T 5, Tz =tk
1 dr? 1 r2 1 dz?2
Separating the equation
2
1 @R Ry 4 ,
= + - ==+ k
Rl dr2 er dr I‘2
2
7 .



Rearranging

whose solution is

Ry = All(xr) + BKl(kr)

3%z
1

dz2

+ kzZ‘1 =0

Since y, is the solution of the equation

(82 +D%)y =0 ,
pick ¥, SO that it is a solution of the equation

(22 + Dz)y = Y3 .
Multiplying both sides by (&2 + D?)

2
(22 +D2) vy :ys(ﬁl,2 +D2) =0 .

So that, ¥, is also a solution of the equation

2
(22 +D2) vy

=0 .
Solve the equation
(22 + D?) F, =V,
Let ¥y = R3(r)Z3(z) and y, = RL}(r)Zu(z).
(22 + D2)RL+ZL* =R,Z,

(2.1.8)

(2.1.9)
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Rearrange
2 2
L Rq D Zq R323

R, Zy R,2,

(2.1.10

This is a function of r plus a function of z equal to a product
function of ¢ and z. If “equation (2.1.10) is to be satisfied identi-
cally, the product function must be a function of either r or z only.
(Case i)

Let ZL+ = a%.,, where a = constant.

33
R Z
22 4 D2 = B. S
Rq a.Z3
1
2 2) = =
Rl+ (22 +D2) a R
3
From equation (2.1.9)
(P2 +¥2) 2, = 0
and.
D2 = - k2 .,
Therefore,

2 = %2y =
R“(!L k%) = AR, -
Multiply both sides by (&2 - kx2).
2 - 12)2 = %R (82 - k2) =0
Rq(z k2) : 3( )
Therefore, R, is a solution of
2
(22 - x?) R =0 .

From equation (2.1.4)
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The method of solution of this equation is presented in Appendix A

The solutions of this equation are

I (kr), K (kr), =1 0er), S K (r).

Since

4| (kr) = o1 (kr) = :

= h kr) =rI;' (kr) = rI (kr) - ¥ T1(kr)
and

;:I(l(kr) = rKO(kr) - i‘Kl(kr),

the four independent integrals are
Il(kr), Kl(kr), rId(kr), rKo(kr).
(Case ii)
Let Rq= bR3-
From equation (2.1.9), ;
(p2 +x2) 2, =0 (2.1.11)

2
le

dz?

+ kzzl =0

D2 = - k2

D =¢% ik.
Therefore,

Z, = B]§inkz + B,coskz (2.1.11.a)

where ?B1 and B2~ are constants.
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Let R, = bR, in equation (2.1.10) where b equals a constant.

2 2 ,
(22 +D )zh Z3/b

From equation (2.1.8)

n
o

(22 = x2)R or %2 = k2,

1

Or, substituting in the above equation
(p2 +x )2, = Z,/b.
Multiply both sides by (D% + k2).
2
(p?2 + x2) 2 = é%(DZ +k%)z, = 0

Assume the solution

Z, = A coskz.

Z

. . . . 3
Substitute in the following equation where el Bcoskz from the above

solution (2.1.11.8).
(D% +§2)z, = Beoskz

Since

[N
|

= Acoskz,

Dzzq - x2Acoskz,

and

th(-.- k2Acoskz + K2Acoskz) = Bcoskz

cannot be solved this way, therefore use the fact that

ikz . =ikz
elk e

coskz =
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in the equation

ZQ:—l— coskz.
D% + x?
_ 1 [elkz + ¢ 2
ZL+ _ >
D2+k2|_
_ 1 eIkZ " 1 ~ikz
7 = X 5 X >
g2 4+ 2 D2 + k2

ikz 41ikz
e 1 e

1l + x
4 (D+ik) (b-i1k) 2 (D+ik) (D-ik) 2

1 elkz 1 e—lkz

v = Doik ~ Lki - Dwir < TEL

ikz -ikz
BIEZ e ]

oy [D-ik T D+ik

B
I

Similarly, it can be shown that

- L
Zq = 5 2 coskz.

Therefore, the possible sets of product functions that satisfy

2
(22 + p%2) y = O are:
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y = A cos (kz + a) Il(kr)
y =B cos (kz + B) K, (kr)
y=Ccos (kz+vy)r Io(kr)
(2.1.12)
y =D cos (kz +6) r Kd(kr)
y = Ezcos (kz + E) Il(kr)
y = Fzcos (kz + 98) Ki(kr)

where a, 8, vy, 6, E, 8 are constants.
Let us consider the general case of the following system of stresses:

a given even fctn of z over the curved surface » = a.

(1.) Opp/¥
(i

) o, /u = agiven odd fctn of z over the curved surface r = a.
Giii) cZZ# 0 over the plane ends z = ¢ c.

rz

2
Since du/az and dw/dr are both solutions of (22 + D?) y = 0 we may

express them by a series of terms as follows:

dr ) {Alcos(kz + o)1, (kr) + C cos(kz + v )rI (k) (2.1.13)

+ E,z cos(kz + el)Il(kr)}
dw |
ar =) { A cos(kz + a,)I (kr) + Ccos(kz + y2)eI (kr) (2.1.1k)

+ Ezz cos(kz + ez)Il(kr)} .

No K-functions have been ihtroduced, as they lead to infinite terms at
r = 0.

It can be reasoned that, for a cylinder u should be an even function
of z and that w should be an odd function of z (u is symmetric about

the z-axis and w is skew-symmetric about the z-axis).
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4y TGy =Y Y, = om/2 5 e =y =0

The reason for this will be seen upon integration of equations (2,1.13)

and (2.1.14) as follows,

%§»= Z { A,cos(kz - n/2)I;(kr) + C cos(kz - n/2)rIy(kr)

+ Ez cos(kz)Il(kr)}

o = Z {‘Azcos(kz - n/2)11(kr) + Czcos(kz - n/2)rIO(kr)
dr

+ E,z cos(kz)ll(kr)}

Expanding the trigonometric functions 1IN equations (2.1.13) and

(2.1.1k)
) {Al[coskz cws(- 7/2) + sinka sia(n/2)]T_(kr) +
Cl[Coskz cos(- w/2) + sinkz sin(ﬂ/2)]rIo(kr) +
E [z cos(kz)Il(kr)]}
%%‘= z {.Az[coskz cos(-n/2) + sinkz sin(w/E)]Il(kr) +
Cz[coskz cos{- w/2) + sinkz-sin(n/2)]rlo(kr) +
E, z cos(kz)Il(kr)}
Redu¢ Ing

dor = ) {+ Alsin(kz)ll(kr) + Cysin(kz)rIy(kr) + Elzcos(kz)ll(kr)}
dz

(2.1,15)
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& - Z{*‘ 4,sin(kz)I, (kr) + C,sin(ke)rl (kr) + E,zzcos(kz)zl(kr)}
(2.1.16)
Integrating (2.1.15) with respect to z and (2.1.16) with respect to r

A C
u = z {- L COS(kZ)Il(kr) -1 COS(kZ)I‘IO(kr) +

k k
El cos(kz)
= [z sin(kz) + -——k——--J Il(kr)} + x(r) (2.1.17)

w = Z{ ﬁ-g-"sin(kz)lo(kr) + ﬁZ' sin(kz)rI,(kz)

E
+ §& 2 cos(kz)Io(kr)} +0(z) (2.1.18)

To evaluate the constants, substitute the proper derivatives of
(2,1,17) and (2.1.18) into equations (2.1.1) and (2,1,3),
(>\+2u)[z {-Alk cos(kz)I,"(kr) = Ck cos(kz)rI "(kr) -

Clcos(kz)Io‘(kr) - Clcos(kz)Io'(kr) +

-2
E, [z sin(kz) + c_oi(_liz_)J kIl"(kr) + Alcos(kz) %—-— Il(kr)

- A cos(kz) r-lll' (kr) = ¢ cos(ka)I," (kr)

-2
+ E; {z sin(ka) + — [r"lll'(kr)- — Il(kr))}+ izrxﬁ-r—)-

+ %.@X__]E'_)_ & X(?)] + u[z { + kAlcos(kz)Il(kr)

+ kClcos(kz)rIo(]fcr) + El(_-_k z sin(kz) + cos(kz) Il(kr)” +

+ (>\+u)[z {Azcos(kz)klo'(kr) + Czcos(kz)(kr)Il' (kr) +
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+ Czcos(kz)Il(kr) - B,z sin(kz)klo'(kr) +

Ezcos(kz)lo'(krj}‘ = 0 (2.1.3.a)

(k+u)[z&+ Alsih(kz)kII'(kr)4-Clsin(kz)(rk)lo‘(kr)

A
+ ¢ sin(kz)I(ke) + Elll'(kr)[(kz)cos(kz)] + o+ sin(k2)I (kr)

=

+ C;sin(kz)I (kr) + ;l (z cos(kz))Il(kri}] + q [
) { KA,sin(kz)Iy"(kr) + Coksin(kz)rI,"(kr) + C,sin(kz)I," (kr)

A
+ Czsin(kz)Il‘(kr) t B,z cos(kz)klo"(kr) + rz-sin(kz)lo’(kr)

E

Cc .
+ Czsin(kz)Il'(kr) + R sin(kz)I;(kr) + rz 2 cos(kz)IO'(kr)}}

+ (x+2u)[Z{:-Azsin(kz)klo(kr) - C,rksin(kz)I) (kr)
- Eyz coS(kz)ho(kr) - Ezsin(kz)lo(kr) - Ezsin(kz)Io(kr)

. d_zﬂzl} ] -0 (2.1.3.c)

az?

Combine like terms in (2,1.3,s) and (2.1.3.¢)

-2

(A+2n)[Z{A1cos(kZ)[+ ; I,(kr) - kI, "(kr) - r_lIl'(kr)]

_,Clcos(kz){(kr)lv"(kr) + BIl(kr)J + El[z sin(kz)

-2
+ EQE%EEl)[k I,"(kr)- %—— I, (kr) + r“lIl'(kr)]} + zzx(r)]

+ u[Z'{+K Alcos(kz)ll(kr) + (rk)Clcos(kz)Io(kr)

+ El[-(kz)sin(kz) + cos(kz)}lr(kr)} + (A+u)x




L
+ Il(kr)) - E?_{z sin(kz)ikil(kr) - cos(kz)Il(kr)H

= 0

{(A+n) [z { + Alsin(kz) {kll‘ (xr) + r—lll(kr)] + Clsin(kz)

[(kr)l’l(kr) + QIo(kr)] + Elcos(kz)[(kz)li'(kr)

Z{A;zcos(kz)kll(kr) + Czcos(kz){(kr)ll'(kr)'

20

+ (r—lz)Il(kr)] ” + u{z {Azsin(kz){kll'(kr) + r_lll(kr))

+ Czsin(kz)[(kr)ll”(kr) + 31, ' (kr) + (kr)_ll_l(kr)] +

B 000 (ka) | ()1, (i) + (™) Io‘(kr)]} |+ teen 1

{' A,sin(kz)kIy(kr) = Cpsin(kz)(kr)I,(kr) - By

(kz)oos (k2T (kr) + Qsin(kz)lo(kr))}] +D%g(z) = 0

In (2.1.3.a) and (2.1.3.¢) the recurrence relation IO'(kr) = Il(kr)

has been used.

It can be showmn that we can reduce (2.1.3.a) and (2.1.3.¢) to

the following four equations.

22x(r) = 0

D28(z)

0

(A-4,) () * + 2k{e, (+2u)-u B - (A+p)E,} = 0

(A,-8,) Q)8 + 2k{C (A+u) +uC, - (A+2u)E,}

=0

(2.1.19)
(2.1.20)
(2.1.21)

(2.1.22)

Ifwe let C, =¢, = Cand E, = E, = E, then equations (2.1.21) and

(2.1.22) become one equation, as shown



(A A)(+p)k? + 2x{c(x+2u) - (2u)E} = O

or
(Ax’ Az)(x+u)k + 2 (x+2p)(C-E) = 0 .

By integrating equations (2.1.19) and (2.1.20) we obtain

x(r) =uwor and e(z) = woz .

From equations (2.1.2)

- du u daz
Opr ~ (a+2u) ar ¥ A r A
or,
0. = (A+2p)[2~{—A1 cos(kz)Il'(kr) -C cos(kz)(r)IO‘(kr)

- C cos(kz)(k'l)loekr) + E[z sin(kz) + k‘lcos(kz)]llf(kr)}

21

.1.23)

+ dx(r)/dr] + A[z {—ATcos(kz)(kr)_lll(kr) - C cos(kz)k‘llo(kr)

+ E_[z sin(kz) + k'lcos(km] ()73 )} o+ 27 )]

+ A[Z{Azcos(kz)lo(kr} + C cos(kz)(r)Il(kr) - E{z sin(kzﬂ

I,(kr) - k-lcos(kz)Io(kr) } + dé(z)/dz}

g = (2x+2u)u_ +Aw + Z[—2u C cos(kz)(r)Il(kr) =2(a+p)
rr o o

C cos(kz)(k_l)IO(kr) + A Ez sin(kz)Il'(kr) + AE k“lcos(kz)Il'(kr)

+ 211Ez sin(kz)Il'(kr) +2u E k"lcos(kz)ll'(kr) +

+ A Ez sin(kz)(kr)~1I1(kr)

+ A E X cos(kz) (k)™ I, (kr) - A Ez sin(kz)I (kr) +

+ AE k_lcos(kz)Io(kr)

- 2A Alcos(kz)IO(kr) + 2u[—A1cos(kz)Ilf(kr)]+ A Azcos(kz)Io(kr)]



This reduces to

orr = 2(A+u)uo + A W o+ Z{— %{(2)&3}1)1&.1 + qu} Io(kr)coskz
Il(kr) Il(kr) 1

+ 2u{ {Al - E/k} - coskz + Ez sinkz[Io(kr) - ]j

- CrIl(kr)coskz } (2.1.24)
Likewise,
o =2\ + (A+2u)w +X[ (A+2u)A, = A A - 2
27 o ° 2 ! L

+ 2(A+u) Io(kr)coskz + 2u { CrIl(kr)coskz

- E Io(kr)z sinkz} ] 2.1.25)
and l

6 =y Zg(A +A,)1 L (kr)sinkz + 2CrI o(kr)sinkz
rz

+ 281 (kr)z coskz} : (2.1.26)

For the displacements let E; = E, = Oand C, = C, = C and substitute

1

x(r) = u r and 8(z) = v_z into equations (2.1.17) and (2.1.18). Then

with kr = ¢
u=ur+2(—il(p)-g—rl (p)}coskz
o k 71 i D
(.117,a)
w=wZ+Z{ iz-I(p)+§-rl (p)}sinkz.
o k.0 k 1

{2.1,18,a)

Let us consider our cylinder so that the coordinate system may be
defined and that the boundary conditions may be established. The co-

ordinate system iIs as defined in Figure 1.
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The boundary conditions are as follows:

(i) A total pressure n1a%Q exists over the plane ends, the

distribution of this pressure being, however, unknown.

(i) W = constant when z = % c.
(iii) u=oOwhenr =a, z = ¥ c.
(iv) o..*= 0 when r = a,

c = 0 tthen r = a.

rz

Filon has shown that a solution of the form shown in eguaticn
(2.1.17.a) and (2.1.18.a) plus a finite power series inr and z will
satisfy the boundary conditions, incompressibility condition, and
equilibrium equations which have been specified. This assumed

solution is given below.
A u.rd Drz?
-1 C 1l +
u= Z{ " Il(kr) -k I‘Io(kr)} coskz + Ugr + 3+ 7o

Erd3z2 Frz®
s+ (2.1.27)

w. z3 w25

A
v = Z{Eg' I, (ke) + %rzl(kr)} sinkz + vz +—4— 2+

Dlriyz Elp2z3  plply
+ > + > m (2.1.28)

These sums of series have been restricted by the conditions that u
must be odd in r and even in z, and that w must be even in r and odd
in z.

The method of solving for the unknown constants, that wes en-
ployed by Filon, cannot be used in the problem that is ultimately

considered here. Filon was dealing with linear equations and the


http://equa;ti.cn
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equations to be considered here are non-linear because this study in-
volves a rubber-like material which has the characteristic of large
deformations. For this reason Filon's method of solution will not be
given here because it would not contribute anything toward a better
understanding of the problem, Instead, the constants of equations
(2.1.27) and (2.1.28), as found by Filon, will be presented.

(2y-1)
o ulh + (EQ%%)fY+ 2g(ky-1)]

=3 [amer - et

e
1l

\JF

(1-y)E

Yo T T2k
D = % (1-v)c? - a2} E

E = 'Q(2Y-l)
p[h + (2y-1)f + 2g(4y-1)]

F =- % (14y)E
(2.1.29)

_ Gh(l-y) + 2gy
ulh + (2y-1)f + 2g(by-1)]

= [ - e

5
1]

5
N
1
Wl
-2
td

(w)
—
I
F
W
0
=t
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ny

k=B am1,2,3,0.0 (2,1.30)

where

1

gt 1
£ = (2y-1) T t3 a2c2- T (2y+1)c*

1 1 i 4
g=1; v(l'?'Y-'C)&L* - z a%e? + 3 [l+v -1 [2Y+l])c"’

__ b et 2a2c2y
h=-I5 ety - 5 (2yHl) + =5 (2.1.31)
°z° oy [(2y+l)a + —g* (8y+1)112 - (By+M)I T,
g =) = ,
10> YaZI% - Ii (1+ya?2)
Aty
Y= A+2u
o = ka = ara
[
In the above,
L
® [(2y+1)a + — (8y+1)]I2 - (8y+4)I I
C=Z_2_£3t a T T (2.1.32)
1a yaZI% - I% (1+ya?)
We also have,
v 4(8y+1)| 2 _
(_l)n+l yEha? [’(27+;)a+ S ]Ir 'hIOII(nylY)
- s - , (2.1.33)
1 YQZI% - (l+ya2)If
2al
_(=1)" 16ac3 L 0
A, = 2 (2y+1) E + C.. E - (2.1.34)
n3n 1
and
Ch
A=A - L1534 . (2.1.35)
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2.2 Review of Finite Deformation Theory

The basic equations of the finite deformation theory were derived
by E. and F. Cosserat in 1896. The following equations were set forth
by Rivlin (6) in 1948. They are set forth here as a foundation upon
which the theoretical portion of this present work rests. Rivlin has
introduced the concept of a neo-Hookean material. This material is
assumed to be incompressible and isotropic in its undeformed state
and is capable of large, elastic deformations. Rivlin has defined the
stress-strain relationships for this neo-Hookean material and using
these relationships has developed a mathematical theory for the ma-
terial. The principal results obtained have been expressed with
reference to a cylindrical polar coordinate system (r,6,z) and have
been set forth in the following.

The strain components are defined as being at the point which is

at (r,9,z) in the undeformed state, as shown in Figure 1.

vhzen - [ 2t B0 )"
1+2eeex=1;[—g—3_ ]2+ [1+g +%'%]2*.1_5[%‘é’-)2 a

re r
I+ €y = (%121}2 {%}2 * {l +§§_J2 ? (2.2.1)
e R Rl RERE R A LR
LS RS - RS -2 R - R

re=
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The incompkessibility condition, using a cylindrical polar co-

ordinate system, is

az.

= LA u, 1w v | -
T = s 1+2+253 5 | =1 (2.2.2)
ki A 13w oW
ar - r 98 1+ 92z

Since, in the deformation, the point (r,8,z) moves to (r+s, 6+¢,
z4w)

u = (r+s) cos$-r, and v = (r+s)sing. (2.2.3)

Therefore, 1t has been shown that the stresses in terms of displace-

ments can be written as,

_ 1 9s)2 . 1 [es)2 , (es)?
%rr T 3 E[[l * ar) * 22 [39] * [az]. N

=1 2|[2¢)2, 1 3)? , [2¢)?

Ogg = 3 E (r+s) [[ar) + 2 {1.+ sl * |5 + p,
1 [faw)? , 1 [3w)? aw) 2

RS E (Il IR O R

Z2Z 3 ar r2 ab 92 (2.2.1)
=1 30 3w 1 3w 3¢ ow| 3¢

"ez‘3E(r+S)[r,r+rza‘ [l+36}+[l+3zJ 3z °
_Lgfaw ;. 88) 1 aw 3s aw) 38

Ozr_3E{8r .[l+'ar]+rz 30 3 +(l'+ azJ Bz}’

oy = BE(ere)[[1 4 28] B4 L2 [y, 20, 20 2],
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The equations of motion are

u ., 12av aw| loow ov|ep . [ov ow v aw) 1Ll ap
= = == e I Dok T LA Sy & &=
o Hl r+rBJ(l+32J T 36 z]ar [az,ar 8r[l+az)]r 26 "
Lawav _ow(;,u,Ll3v] 2
* {r 36 ar.  ar [l trtr ae]] 3z
_ [1awau _ 1fsu _ aw)]ep aulf, , aw)_2uw]idp
g {r 36 oz r[ae v)(l+az]]ar*ul‘“ar”l*'az)‘ az‘a’r]r 36
Lou_ Y ow _Law(,, 2u)] o
|30 or T 36 or) | 3z
and
ifow _ Jaw. (; , 2, Lavlaulep , [awsv _ (;, swav]iep,
r|ob 9z r robjozjor 2z 9 orjaz|r 236
ou u 1 93v 1.ovidu ap.
= e = 2L L= -
+Hl+aer+r ae} rar[ae V”az
where (2.2.5)
32u 1. f%u 1o 1. 3%2u 2 v u 2y
o=p —=-p -"-E[ + = == 4 —-—-+-————————+—-2—},
° 442 ol 37 {52 T 302 1299 22 4y
32y 1 {82y . 19v 1 8%2v 2 du ¥ 3%y
B = p ——z——p@——E[m—-z—+——-+'—'———2*+—'-2——~*-—-—+———— .
° 3t L N A S I A T
. 1 a2w 3 2w
M-z --1-E[35‘§+-1- g+ '1;*3.%‘*‘?%] -
Yy =p 2 o1 3 r ar »Z an e
0 3t or r dg 3z
(2.2.6)

In the equations of motion, Py is the density of the material and

e

Ry, 0, and Z; are the componehts of any body forces on the material in
the r,8, and z directions respectively.
If the surface of the body considered has, in the undeformed

state, the shape of a cylinder with the z-axis as the axis of symmetry,
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the boundary conditions will be different on the plane and curved sur-

faces. Rivlin has shown the boundary conditions to be, for the curved

and plane surfaces respectively,

]
o
Qe

I - R

;a—_E{l' +

1.8v -
3 E 5y % 'p[

—

19w ou 1 fau _ v
r 38 3z r{ v][l+ H’ (2.2.7)

b o o B
and
T RENE R L I (2.2.8
i3 -n =l Bl 2o 1) - - )
These equations can be simplifiefi greatly, viz. |If, as in the

problem considered here, the deformation possesses cylindrical

symmetry about the z-axis!, then u,v,w, and p are independent of ¢,

i.e.,

Introducing this into equation (2.2.1) for the strains and witﬁ the

equation v = 0 for all points (r,e,z) because no rotation about the

Z-axis occurs,



1+

62

Zr

®re

2€
rr

2¢60

2¢ .
€iz

The incompressibility condition becomes,

The equations of equilibrium become, with R, = @

_lp[fu 1
3 arz r ar

and

I e A
3 arz r 9r

1+

ow
ar

L azu} _
r 9z2

( 2 2
_ au oW
=11 + + |o¥
\ "5;) {ar} ?
( 2
=. |1 + Eﬂ ’
{ r
- LS-E] " [l * 32)2
L) av) 3w
o) s ez
au au
or 0 EPA
1+ 2 0
aw
0 1+ '}

R

+ aw]
92

ar

®

p _
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(2.2.9)
(2.2.10)
=% =0 and
1
ﬁb+%ﬂ,
ar rijdz
(2.2,11)
ZISEES
r r{ 3z .

(2.2.12)
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The boundary conditions become, for the surface parallel to the z-axis

and cylindrical in shape,

1 oul _ _ ull,y . 9w
3 E [l + —3—;) = p[l + r] [l + BZ] (2.2.13)
and
- ul du
yers "p{' [l ¥ r] Bz] d (2.2.1h)

lgdu = pl- 2 ul]
SE- - R p[ - [1+r]- (2.2.15)
and
1 . Bu] ( (2.2.16)
= E1 + ##) _ B + =1 _ u)].
R RN A |

For the curved surface RV and Zv have been taken as zero because for

this specific problem that is the case.

2.3 Finite Deformation Theory Applied to the Problem

In the previous section the equations describing the stresses,
strains, etc. of a right circular cylinder under an arbitrary system
of loads have been presented. In this section an attempt to solve
these equations for prescribed boundary conditions and a prescribed
system of loading has been attempted. The body considered, along
with the coordinate system used in the solution, is shown in Figure
1. In this derivation 2¢ = L.

The displacement boundary conditions are

(i.) w(z; %) = K = constant,

(ii.) u(o,z) = 0,
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and
(iii.) u(a,%) = 0.
The third condition states that there is no displacement in the radial
direction at the edges (r=a) of the ends of the cylinder.
The stress boundary conditions are
(i.) no stresses exist on the curved surface,
(ii.) a shear stress due to friction exists on each of the plane
surfaces,
and -
(iii.) anormal compressive stress, with unknown distribution
with respect to r, exists on each of the plane surfaces.
Proceding from Filon's solution of displacements, the solution,
in terms of displacements, will be assumed to be some general function
of r times a sine or cosine series in z plus a finite power series in

r and z. It must also be assumed that u is odd in r and even in z and

that w is even in r and odd in z. The assumed solutions are then

1+
A r2n lZZm

u=1(r) coskz + ] ] A
0

O ~1 8

and
2n22m+l

=
i

o m
g(r) sinkz + z Z‘B r
0o ™

where £(r) must be odd in r and.g(r) must be even in r.

Apply the displacement boundary Conditions as follows:

G w(r;%) =K = glr) sin k =+

o~ 8
or~18

Qn[ L} 2m+l
B r =
mn 2

sin k =

N~
1
o



klz‘ =mv for m=121,2,34. ..
- enn
ko= 55
also
v v . 2nclyomkl _
I I B r7 @ =0
(4i.) u(o,z) = 0 = £(o) coskz + z‘z Amn(o)zem
00
f(o) =0
(iii.) u(a,éﬂ =0 =) f(a) cos(mm + :‘z Amna2n+l(% 2m
0. 0o 0
] (-10)%(a) + § ] A& @)% =0
[0} ) O 0
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(2.3.1)

(2.3.2)

(2.3.3)

(2.3.4)

Referring to equations (2.2.13) through (2.2.16), apply the

stress boundary conditions for the cylindrical surface where r=a and

z=7,
1 m m m 2n
§ E[l + ) f£'(a) cos +7) ) Amn(2n+l)a z2m] = - pla,z)

: 0 (ONe]

S £(a) N7 > 2n 2m iy i omnz
ST L SRS
+7) ) an(2m+1)a2nzgm1 (2.3.5)

0
and
-% E[ Jg'(a) sin 2ﬁfz * ) Zmen2n azn—lz?m%l]’= + pla,z) x

o]

0 0



[1 + gf(a) cos 2%3_1;_ . ggAmnaenzzm] [. rg_f(a)% sin'2m':;lr_z )

2 -2m-1
wtl,am 1 , (2.36)

géAmHEma

and for the plane surface where »r = r and z = L/2,

-J-é- [ Z f(r) -—TL sm(mn) + °z° Of A om 2n+l(L}2m— ] - RV =
=+ p(r, )[ Z cos(mvr) + Z ) Amren(g)em] E"g,(r) sin(mr) + '
0 0 0 o
+mmB opp2i=1 Ly 2m+1
BERCES 1 |
and
m 4 m m 2 a
%]-'E[l + % glxr) -2-%71 cos(mm) + % % an om+l)r n(e) ] fp(r,—z—) x
[1 + ) £'(r) cos(mmy + ] Amn(2n+1)r2”(f?')3“] {; +5 ) oo an) +
0 00 0
ve n Ly 2m
+1 7 a = z
(Z) g mnr (2) * v

These equations reduce to

m m

?_E[ % gAmn2m" r2n+l(-§) 2q—1] - R & p(r,2) [l +Z f(r (_l)m +

1 L@ L L 5y, 2 22, (2.3.7)

O ~18

and

m m

1 A 2n L, 1
-§-E[l + (z) gr) 5= (-1)" +§ g Bun (2m+1 )r ‘A‘Qm] = - p(r,.z_)

m m m

, 2n Ly T
[1 +§) £ () (-1)" + (Z) ;, A (2nt1)r n(-lé’-) Hl + g el (oym o+
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1] A R v 2, (2.3.8)
o 0

Letting r go to a in equations (2.3.7) ,and (2.3.8),

% E[z'zfAmn om a2n+1~(_21’:._) 2m—1} - (3,2)[ °§° o,

+ rg rg A a. ( )Zm] I:g g an 2n a2n—l(-j£_) 2m+l]
-g_E 1+ Z' Qmﬂ 0" +17 an(2m+l)a2n('§}2m} = p(a,%)

- m m f
10"+ Amn(2n+l)a (u) ][1 + @J;fl (-1)" +

T T an]

Eliminating p(a,lé'-)

[1 + (Z)_s(a) ?—%’1 (-1)" + g (Z)f,-an(zm+1)§a2n(-g-)2m] [E g anZnaZn—l(%) 2m+1]=
[Z gAmn 2m &) 2m-1] [l + z f'(a:)(—i)m + z z A_ (20412 (3) Qm]
(2.3.9)

Equation (2.3.9) is the condition at r = & and.2z = L/2. If in
equations (2:3.5) and (2.3.6), z -~ L/2 the same equation results,
therefore, the boundary cobnditions match at r = a and z = L/2.

Consider equation (2.3.2),

Differentiating equation (2.3.2) with respect to =,



z B 2nr2n-—l (_g_) 2m+l =0 .

9
[

Substituting this into equation (2.3.7)

4 Er Ia_ 2mr2h+l('g:)2m—l]— R = p(r,2) [1 + czo £lr) (= 4

2-
3 5 o o ¥
T e 2n (Ly 2t
11 ay, 22 B [o]
(N0}
or
1. Jv ¢ 2n+1 Ly 2m-1
L - EE[Z T - ] (2.3.10)
v OO0 .
Consider equation (2.3.4),
£(a) z (—l)m . z Z Amna2n+l(_2]:i)2m =0
0 OO0
v, 2ntlly 2
o Dl
fla) = w (2-3.1D)
z (_l>m+l

(0]

The differential equations of equilibrium, from equations

(2.2.11) and (2.2.12) of the previous section, become,

- 1 E[f“(r)COSkZ + z Z A gn(2n+l)r2n—1 sz . £'(r) ok +
3 OO0 mn 7
+ 1 ] Ay (2ne1)e®07h 50 Jﬁ‘frr) coskz - | } Amnr2n22m
0P o 0

- £(r)x° coskz + DDA r2n+l2m(2m-l)zgm_2] = [l + £lr) coskz
mn r

) % % Amnr n, m} [1 + g(r)k coskz + (z) g an(2m+l)r n, m] '55- _
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-]

- [g'(r)sinkz + Z‘ ZB 2nr2n—-lz2m+l} [l + f(r)’ coskz + z 2 2n Em]gp_ .
o o I r o o 9z
(2.3.12)
and
-3 E[g"(r) sinkz + ) | B . 2n(2n-1)ren-2 2ml . 5‘1(-r) sinkz -
00
z Z an(Zn)rgn-222m+l - g(r)kZSinkZ +z z Bﬁnr2n(2m)(2m+l)z,2m_l]
=11 +_____f(rr) coskz + ) ) Amnren Zm] [F(r)x sinkz +
00
¢ on+l,  2m-
+ (Z)% A T 2ms ]—2 +
+ [l + £'(r)coskz + ) ) Amn(2n+l)r2n22m} [l-l* _S___f x) coskz +
00
o ([ g2 (2.3.13)
00

The incompressibility condition, equation (2.2.10 of the

previous section, becomes

[l + £'(r)coskz + z Z A (2n+l)r2nz2m] [l + —é— coskz + z z Amnrznzzm].’
0 0
[1 + g(r)k coskz + ] J Bm(2m+l)r2nz2m}—[l + IR, coskz t
00 '
+ Z z Amnr2nz2m]
00
[g'(r) sinkz +z ) B 2nr2n_122m*l] [' f(r) k sinkz +
00
77 Amn(2m)r2n+lzgmbl] (2.3.14)
00
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Now, there are nine unknowns, Rv(r,,%, zv(r,L}, A £(x), glr),
o(r,z), B> -:‘f- , and %lz)' and there are nine algebraic equations which
can be used to solve for these unknowns, equations 2.3.2, .%, .5, .6,
.8, .10, .12, .13, and .1hk. Unfortunately, some of these equations,
as can be easily seen, are non-linear algebraic equations and are also
quite long. Therefore, due to the magnitude of work involved in the
solution of these nine equations being much larger than the time

available in which to devote to this solution, work on this aspect

has ceased.

2.4 Theoretical Predictions of Strains

The strains on the surface (r = a= 1in.) of the cylinder, for a
given load, will be calculated from the deformations as predicted by
Filon's theory. The deformations are given in equations (2.1.27)
and (2.1.28) of section 2.1. The constants in these equations must be
determined and can be found from equations (2.1.29) through (2.1.35).
It has been found that Poisson's ratio for Solithane is 0.4 and in the
following section on experimental results it has been determined from
Table 4.1.1 that the modulus of elasticity of Solithane is 172.1
lb/inz.

The constants have been found to be

245.8 lb/in2

A =

_ , 2
u = 6146 1b/in
y = .83331
o =1571n
n

I,(a;) =1.035



Io(e,) = 1.701
|1(a2) = 4.34
Io(az) = 5.31h

I (aa) = 18.56

Io(ag) = 20.95
I,(a,) = 81.46
Io(a4) = 88.84
£ = 17.12, with calculations ton =k
£ = - 11.9556

g = - 1.573

h = - 10,k4k2

u, = .000663Q
u, = .0008169
u, = .0000129

D = - .003696Q
E = - .0004212Q
F = .00103Q

Wy = - .002757Q
W, = .003399

wo = = .000L68Q
p! = - .00187Q
E' = .000L66q
Fl =0

C, = - .001069¢
C, = .0008498q

- .000139Q

. Q
1
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(@]
H

, = .00002617Q

Azi = .0036785Q
A,, = - .0010038q
A,3 = .00020785Q
A,, = - .00005995Q
Ay, = .00531kQ
Aj, = - .00165kq
A5 = .0002788Q
A, =- .00016015Q

Using the above constants, the deformation in the radial
direction at the center of the surface of the cylinder, u(1,0), was

found to be, with Q = ULs= %‘ s

Ta,

u(1,0) = 6.744 x 107% &

k)

U
= therefore,

Fromthe classical theory of elasticty Egp ;

€gg(1,0) = 3Llf92-= u(1,0).

Using the values for applied load, Q', that were used in the experi-

ments, the following values for e 6 shown in Table 2.4.1 can be found.

0

Using the above constants, the derivative of the deformation in

the axial direction with respect to z at r=1 and z=0 was found to be .

w'(1,0) =.—- 9.802 X 10'71L %'— . From the classical theory of elasticity

€ e
27 2z
Table 2.4.2, can be found.

Using the proper values for Q' as above , €,0" shown in
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Q' (1bs) eee(x 1o’u)

0 0]

6 12.88
12 25.76
18 33B.64
24 51.52
30 64.40
D T77.28
4 90. 16
48 103.04
A 115.92
60 128.80

Circumferential Strain for Various Values of Load
Table 2.4.1
L
Q' (1bs) - (x 1077)

0 0]

6 30. 48
12 60.96
18 91.44
24 121.92
30 152,40
b 182.88
42 213. 35
48 243.84
5% 2Th. 32
60 304. 80

Axial Strain for Various Values of Load

Table 2.4.2
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CHAPTER 3

EXPERIMENTAL INVESTIGATION

3.1 Description of the Material

Solithane resin 113 is a urethane prepolymer which upon curing
produces solid materials. Depending upon the selection and proportion-
ing of the catalyst employed, cured materials can be formed which vary
from soft, rubbery compounds, through a range of intermediate states,
to products of a hard, extremely rigid nature.

DB castor oil was chosen as the catalyst in the preparation of
specimens used in the experimental program here, DB castor oil is
approximately 90% triglyceride of ricinoleic acid. This catalyst wgs
mixed with the Solithane 113 in the manner described in the following
section and the final product was a rubbery material of intermediate
hardness.

Zak (10) has described the chemical aspects of Solithane resin

113 in detail.

3.2 Specimen Preparation

The repeatability of test results from one test specimen to
another depends, to a large extent, on the modus operandi employed in
the preparation of the specimens. Great care was taken, therefore,
in the preparation of test specimens. The specimens utilized in this
testing program were produced by the followimg method.

The molds were of cylindrical shape, as shown in Figure 2. All
parts of each mold were made of aluminum. The plate on the bottom of

each mold was machined out so that the cylindrical portion of the mold
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would fit into it. The upper plate was machined with a piston-like
projection that would fit into the top of the cylindrical portion of
the mold. The upper and lower end plates were attached together with
three springs. These springs caused a force which pulled the upper
piston-like plate down against the upper surface of the liquid. This
was done in order to compensate for the contraction of the liquid ma-
terial during curing. W.ithout an end plate on the upper surface,
shrinkage of the material during curing would have caused the surface
of the cured material to be somewhat concave. Also, the texture of
the upper surface compared with the texture of the lower surface will
differ unless a plate is used on both ends. For studies where
friction is involved, the surface textures must be the same.

Four molds were used for each batch of specimens prepared. The
molds were cleaned thoroughly with a solvent. They were then sprayed
with two mold releases, Slipicone, a product of Dov Chemical Company,
and Fluoroglide, a Chemplast Company product. Preheating each mold
was accomplished by placing them in an oven set at 185°F. for about
three hours. The molds were preheated so that their temperature would
equal that of the mixture which was going to be poured into them.

While the molds were preheating, the basic materials used in the
specimen preparation were mixed in the following manner. Of the total
weight of mixture needed for one particular batch, four parts by
weight of castor oil were vacuumed for two hours in order to remove
as much air as possible from the liquid. The air was removed in order
that no bubbles would form in the final solid specimens. Three parts,

by weight, of Solithane 113 were added to the castor oil and the



mixture of Solithane and castor oil was heated on a hot plate at a
temperature of 130°F and simultaneously vacuumed for a period of ten
minutes. At the end of the ten minute time lapse, a magnetically
operated stirring device was activated and the heating, vacuuming, and
stirring were continued for another ten minutes. At the end of the
second ten minutes, the heat was reduced to 120°F and the vacuuming
and stirring were continued for a third ten minute period. The object
of the heating and vacuuming was to remove the air bubbles and the ob-
ject of the stirring was to thoroughly mix the Solithane and castor
oil.

The preheated molds, without their tops, were removed from the
oven and the mixture was poured into them to a predetermined level.
The filled molds were then placed in a vacuum chamber and the chamber
was evacuated for twenty minutes in order to remove air that might
have entered the mixture during the pouring process. The tops were
placed on the molds properly and the molds were placed into an oven
of special design, set at 250°F.

The design of this oven, which is shown in Figure 3, was such
that the molds could be rotated continually during the curing time.
This was done by attaching an electric motor, whose original 1725 rpms
were reduced appropriately to about ten rpms, to the protrusion of a
one-inch aluminum rod fromthe inside of the oven. The molds were af-
fixed to this rotating rod and were therefore rotated also. This
simultaneous rotation and heating was continued for two hours.

The molds were removed from the oven and their tops and bottoms

removed. The specimens were pressed out of the cylindrical portions
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of their molds. The mold release that had adhered to the specimens
was removed by rubbing with a soft cloth saturated with solvent. The
specimens were then labeled appropriately as to batch and aged for at
least three days before being used in experiments.

Ore precautionary measure was taken throughout the entire prepara-
tion of specimens and also during storage of the final products. Since
Solithane 113 and castor oil are very hygroscopic, the time that the
liquids were exposed to the atmosphere, during specimen preparation,
was reduced to a minimum. For instance, in draining the liguids from
their storage containers, nitrogen gas wes used as a forcing pressure
in the drums. Also, the final specimens were stored at &ll times be-
fore experimentation in dessicators where the dessicant used was
calcium sulfate (Ca 8)4). In addition, the experimental testing
laboratory had a controlled atmosphere, i.e. , constant temperature at
Th°F and constant relative humidity at 45%. Therefore, any change
that might take place in the material due to temperature or humidity

while the experiments were being conducted was equal in magnitude.

3.3 Experimental Apparatus and Procedure

Because Solithane 113 is a very soft, rubber-like material, a
method of strain measurement in which there is no physical contact
between the specimen and the measuring device must be utilized.
Should a device, i.e. , bonded electrical strain gages, be used where
such physical contact occurs, the material properties of the specimen
in the region of contact, and therefore, in the region of strain

measurement may be altered.
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"he strain, as yielded by the imposed testing conditions, may be.
non-uniform, although 1t is assumed to be uniform for simplicity of
theoretical derivations of the strains on the surface. This non-
uniformity is due to the bulging of the curved portion of the specimen
when the axial load is applied. Local strain measurements are there-
fore needed so that a suitable strain analysis can be performed.

A method of measuring strains that will eliminate the two above
mentioned experimental difficulties is the moiré fringe method. The
moire method measures strains by using the principle of mechanical
interference of light. Two superposed grids of alternate light and
dark lines will cause interference patterns or fringes when there is
a relative rotation of the grids, a difference in pitch of the grids,
a displacement between the grids or any combination of relative ro-
tation, pitch difference, or displacement. The name, moiré, is the
French word meaning watered-silk which describes the appearance of the
fringes. The proper analysis, at a desired point, of the fringe
pattern will yield the strain at that point. Nb physical contact is
necessary when using the moiré method.

The grids used in the testing were obtained by photographic and
diazo printing techniques. A Ronchi ruling on a one inch by two inch
by one-quarter of an inch, piece of'glass was used as the original
grid. Ronchi rulings are unique ih that the width of the dark lines
are equal to the width of the light lines. The Ronchi ruling was
used to contact print alternate light and dark lines onto Kodak, Con-
trast Process Ortho film sheets, a high contrast, fine grain ortho-

chromatic, antihalation film. The original grid had a pitch of 500



47

lines per inch and consequently all of the grids produced from it
were of the same pitch.

As noted, there are two grids employed in the moire method. One
grid, the model grid, is affixed to the surface of the specimen to be
tested in the desired area of strain measurement. The second grid is
superposed on the model grid during testing and is called the master
grid.

The master grid, in this case, is simply a photographic negative
of the Ronchi ruling. A photographic negative was used as a master
grid because its flexibility was essential when the grid was super-
posed on the curved surface of the cylindrical specimens.

For most materials and specimen shapes, the model grid can be
printed directly onto the specimen surface at the desired location of
strain analysis. Unfortunately, Solithane 113 reacts chemically with
the solutions usually employed in printing processes. Therefore, a
diazo printing technique had to be used, A formula for making diazo
solution and a description of the diazo printing process can be found
in Appendix B.

Since the diazo technique involves contact printing and to con-
tact print directly onto the surface of a cylindrical specimen would
be difficult, a bonded type gage wes developed. Solithane was molded,
by the method described previously, into a sheet 0.03 inches thick.
The sheet was cut into smaller two inch by two inch squares. In order
to provide contrast with the dark lines resulting fromthe diazo
process, a ten to one mixture of white latex paint and liquid latex

rubber was sprayed onto the surface of the small thin sheet with an
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artist's air brush. The liquid latex rubber was added to the latex
paint to give the paint sufficient elasticity in order to prevent
cracking during elongation of the model grid. Immediately after the
paint and latex mixture was applied, the diazo solution was sprayed
onto the sheet with the air brush. The diazo and paint-latex mixture
was then allowed to dry, usually two to three days. Drying was done

in a dessicator where no light could penetrate in order that the ultra-
violet light present in the sunlight could not react with the diazo
solution on the thin sheet.

When dried, the coated thin sheet wes placed in a vacuum printing
frame with a photographic negative of the Ronchi ruling superposed on
the thin sheet. A vacuum printing frame was used to ensure intimate
contact between the thin sheet and the superposed negative during ex-
posure. With the printing frame in operation, the diazo coating on the
thin sheet was exposed, throught the negative, to the ultra-violet
light source. The development process then took place as described in
Appendix B.

After development, the thin sheet was cut to the proper size and
was glued to the surface of the cylindrical specimen in the area of
desired strain measurement and with proper orientation with respect to
the grid lines. The glue used was General Electric #108 silicone
cement., It is a low modulus cement as was needed because a cement
with a modulus higher than that of the specimen would influence the
deformation of the grid adversely. The silicone rubber cement was

cured for at least one day before the specimen was tested.
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Both tension and compression specimens were tested in a Tinius
Olsen universal testing machine. This machine is shown in Figure k4.
The maximum load available is twelve thousand pounds. Altogether,
twelve load ranges are available for use. Tension experiments were
conducted using the twelve pound range and compression experiments
were run using the 120 pound range. The maximum crosshead speed is
twenty inches per minute and is continuously variable. Both com-
pression and tension experiments were carried out using a crosshead
speed of one-quarter of one inch per minute. The load being applied
to the specimen is registered on a moving strip chart that is cali-
brated from zero to one hundred percent of the load range being
utilized.

The tension specimen used was of the flat type, as shown in
Figure 5. Its dimensions, also noted in Figure 5, conform to the
JANAF standards. On the tension specimens the thin sheet with print-
ed grid lines was glued to the test section. The thin sheet was
glued with the grid lines perpendicular to the direction of the ap-
plied load. The tension specimen was held in the testing machine by
two grips like the one shown in Figure 6. The compression specimen
used was cylindrical in shape. As shown in Figure 7, its length is
twice its diameter. These dimensions were chosen because a specimen
of this size exhibits bulging when compressed but is not difficult to
handle experimentally.

The thin sheet was oriented on the cylindrical surface in two
ways. For measuring axial strain the grid lines were oriented with

the direction of the lines perpendicular to the direction of the
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applied load. For measuring circumferential strain the grid lines
were oriented with the direction of the lines parallel to the direction
of the applied load.

A cage-like apparatus, shown in Figure 4, was constructed so
that compression could be applied to the specimen by operating the
testing machine as though a tension experiment were being conducted.

The following parts of the discussion on experimental procedure
apply to tension and compression experiments alike.

The thin sheeted area of the specimen was coated with a thin
layer of petroleum jelly. The purpose of the jelly was to hold the
master grid in place during the experiment. In the case of the cy-
lindrical specimens, the master grid was held to the cylindrical sur-—
face by a girdle-Ilike arrangement of three elastic bands. The master
grid being affixed to the specimen, the air bubbles that had formed in
the jelly between the grid and the thin sheet were removed by pressing
the master grid with a soft cloth.

The tension or compression specimen was placed in the appropriate
grips or apparatus and the proper testing machine variables, as speci-
fied above, were set. A Nikon F camera on a tripod, loaded with
Kodak Tri X Pan thirty five millimeter film and equipped with exten-
sion tubes for close up photogrephy, was positioned properly. The
camera was used to photograph the moiré fringes that had formed during
experiments so that an analysis of the fringes could be performed.

For proper illumination of the fringes during experiments, two photo-

graphic flood lamps were used.
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With the testing machine in operation, pictures of the fringes
formed during deformations at specific applied loads were taken. The
film of the fringe patterns was developed. The film negatives were
then enlarged onto Kodak F5 or F4 Kodabromide photographic paper.

Each enlargement was labeled properly according to test number and the
load corresponding to the fringe pattern.

The method of analysis of each fringe pattern is discussed in the

following section.

3.4 Moiré Fringe Theory

The moire fringe method of strain analysis is relatively new. Al-
though the theory of diffraction gratings and of their manufacture date
back to Lord Rayleigh (5), 1874, the application of diffraction grat-
ings to strain measurement began with M. Dantu (2) in 1940. Since
then, the theory involved in the analysis of the fringes formed in the
moiré method as well as the experimental techniques involved have ad-
vanced rapidly.

The formation of moire fringes is a mechanical phenomenon that
consists of alternating light and dark regions. The fringes formed
are not an optical phenomenon in the sense that no basic laws of
optics are involved in their formation. Fringes result when one array
of dots or solid lines is superposed on a second somewhat similar
array of dots or solid lines, hereafter referred to as grids. The
fringes are caused by a difference in the pitch of the two grids, a
relative rotation of the grids, paralax caused by a displacement be-
tween the grids, or any combination of a difference in pitch, a rela-

tive rotation, or paralax. Since fringes can result from relative
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differences in pitch and rotation, this phenomenon can be employed to
measure strain,

Two grids are used in the moiré method of strain analysis, a
master grid and a model grid. The master grid is a fixed array of
straight, parallel, alternate light and dark lines with pitch, p, de-
fined as the distance between adjacent light or dark lines of the
grid. The model grid, a similar array of lines, is affixed to the
specimen being tested so that as the specimen deforms under a load,
the grid will deform with it and, therefore, will have a distorted
pitch, p'. With the master grid superposed on the model grid, fringes
will be formed as the model grid distorts along with the specimen.
Although the analysis is not necessarily limited to straight, parallel
lines, this analysis will be because straight, parallel lined grids
were used in the experimental part of this work.

Figure 8 shows a close up of the formation of moiré fringes by a
relative rotation and a difference in‘pitch of two grids that are com-
posed of straight, parallel lines. The r,s coordinate system is taken
to be coincident with the master grid as shown.

The acute angle between the master and model grid lines is denoted
by 6. The angle ¢ is between the master grid lines and the fringe and
is measured in the same direction as 6 and may be acute or obtuse.

Tre distance between the centers of the adjacent fringes is 6. The
pitch of the master grid is p and the pitch of the model grid is p'.
Then, from geometrical considerations and by assuming either a

homogeneous deformation or a sufficiently small element of a
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nonhomogeneous deformation field, the equations for strain can be de-

rived (4). True strain in the r-axis direction is

[er]t = 8,8, (3.4.1)

and conventional or nominal strain in the r-axis direction is

(B @)

¢ 4 _vﬂBGp,.

[e,]

(3.4.2)

where

8 D)2
o= L1 /@ 2@ coss 42 (3.4.3)

It should be noted that the strain determined is in the direction
perpendicular to the direction of the grid lines of the master grid.
As can be seen from equations (3.4%.1), (3.4.2), and (3.4.3), we
need to know 6, p, and the magnitude and direction of ¢ in order to
determine the strain and to find if the strain is compressive or ten-
sile. In the problem in this discussion, ¢ % 180° and, therefore,

equation (3.4.3) becomes

86=%L1-/(§-)2+2(1§-]+1 }

J

ol /(e q)?
66 o 1 /(5-.-1}
-6 [, -E-1
Bs = b |1 3 ]

B, =~ 1
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Therefore, equations (3.4.1) and (3.4%.2) become

[e,] =% (3.4.4)

and

] = — (3.4.5)

In equations (3.4.4) and (3.4.5), p, the pitch of the master grid
is known and, therefore, all that must be determined in order to find
the strain is the distance between the centers of the fringes. In
order to find 6 from photographs of moiré fringes, a graphical ap-
proach is taken. A line is drawn, in the proper direction, across a
series of fringes whic‘h includes the point'at which strain is to be
measured. A plot of the accumulated fringe distances, from any con-
venient point, versus the fringe number is made. Fringes are numbered
consecutively with zero fringe as the point at which the accumulated
fringe distance measurements are originated. A smooth curve is drawn
through the plotted points. The slope of this curve at any point
gives the value of 6, in inches per fringe, at that point, With the
known value of & at any point, the value of the strain at that point
can be found by using equations (3.4.4) and (3.4.5).

Equations for true strain in terms of ¢ and the distance between
adjacent fringe centers, measured along the coordinate axes, r and s,

can also be derived (4), and are

[]. = er[g—] - es[g—} (3.1.6)

where
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r cot2¢ r
for
o < ¢ < TZL
. = (3.4.7)
-1, 121'-‘< $ < 7
and
8 3 2
Bs = i)i 1l - m [%—) 4+ %‘ sin2¢ + sin2¢ (3-)4.8)

It is sometimes more accurate to measure accumulated fringe distances
in one of the coordinate axis directions rather than to measure direct-
ly. When this is true, equations (3.4.6), (3.4.7), and (3.4.8) are
used to calculate strain.

If rotation at a point is to be determined, the equations

8ind = o P&J
s(6 :
s
and
sine = a [P——J
ri{d
r
where 5
8
- e A
aS - / rl5g
1+ [—-— + cot+]2
P
5]
and
.Gr.
P
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1, 0< ¢ <

HVIE |

can be used.

Moiré patterns may also be interpreted as a function of dis-
placements as shown by Sciammarella and Durelli (7) and in an earlier
work by J.D.C. Crisp (). This interpretation of moir€ fringes is
based on the fact that the fringes are the loci of points presenting
the same relative displacement in the direction normal to the master
grid lines.

In this method, a Cartesian system of axes, X and y, is used as
a reference system, as shown in Figure 9. The component of displace-
ment in the x-axis direction is u and the component of displacement
in the y-axis direction is V.

A function of two variables, ¢i(x,y), is the component of dis-
placement of a point in a two-dimensional continuous medium parallel
to a reference direction. The subscript, i, is 1if the reference
direction is the x-axis and subscript, i, is 2 if the reference
direction is the y-axis. The function z = ¢.1(x,y), in Cartesian co~
ordinates, represents a surface.

To determine strains from displacements, it 1S necessary to com-
pute the derivatives of the displacements. To compute the partial
derivatives of ¢i(x,y), the curves of intersection of the surface

with planes of equations x = Cq and y = c, can be drawn, where Cq and

2
c, are constants. The procedure used to obtain a partial derivative

is illustrated in Figure 9. The horizontal position of each point of
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intersection of the moire' fringes with the line AB (trace of the inter-
secting plane) is first projected on the base line CD. The orders of
fringes are read from the moire' fringes and distances equal to np are
scaled up from the base line. A line drawn through the points, thus
plotted, defines the cross-section. The slope of this curve, at a

point, gives the derivative

If the preceding data are plotted directly fromthe moiré pattern,
the results obtained correspordto the Eulerian description of strain.
For the Lagrangian description, there are two possible solutions.
Assume that the patterns corresponding to two orthogonal directions
have been determined. A point, Py» of initial coordinates X, and Yo
moves, after deformation, to point p, with coordinates x and y. If
the components of the displacements experienced by the point P, areu

and v,

and

By using these equations, it is possible to obtain the necessary data

to replot the moire fringes referred to the initial configuration.
Another possibility is that the derivative of u with respect to

X, can be expressed as a function of the derivative of u with respect

to X, as follows,

. _ atu/axl_ |
Sxo 1 - au/ax1
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All of the partial derivatives of the displacements with respect to the
initial coordinates can be put into the above form. Since the partial
derivatives of the displacements with respect to the final coordinates
can be found, au/axo, etc. can be found and the Lagrangian strains can
therefore be found.

A third method for analyzing strains from moiré fringes has been
developed recently by Sciammarelle (8). This method of analysis uti-
lizes the light intensity variations of the moiré fringes. The new
theory generalizes the optical law that relates the displacement field
to the moire' fringe pattern. This yields a continuous relationship be-
tween displacements and light intensity. Until this theory was de-
veloped, a discontinuous relationship existed. Because of the con-
tinuous aspect of the light intensity variation method, the precision
of moire' fringe analysis has been increased.

The relationship between the displacement at a point and its

light intensity has been shown by Sciammarella to be

= |& arc cos =1
u 2% =

ol P (3.4.9)

——

where
p is the master grid bitch,
I is the light intensity at a point,
IO is the image average background light intensity, and
I1 is the light intensity amplitude of the image first harmonic,

The equipment used to measure the light intensity variations con-

sists of a photocell mounted behind a small circular hole in the focal

plane of a projecting system. The photocell must also be mounted on a
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traveling carriage. A film of the fringes to be analyzed is then in-
serted between the photocell and a lens system. The photocell is then
moved over the section of the fringes that are of interest and the re-
sulting output is recorded on an X-y plotter. A sample output is shown
in Figure 10.

In order to compute the displacement corresponding to a point, P,
as shown in Figure 10, it is necessary first to determine the integral
number of fringes prior to point P. The fractional displacement is
then determined by using equation (3.4.9) with I,=1,-= 2B and

2
I

cp. The fractional displacement is then,

= |1 2CF _
Au = {21r arc cos [AB al.
The theoretical minimum displacement sensitivity for the light

intensity variation method as calculated by Sciammarella (8) is
AU = 0.0012 p.

The minimum strain measurable when using the geometrical approach
= or the displacement function method is a function of the gage length
employed and the number of lines per inch on the master grid. Frolpl
Figure 5 of the paper by Crisp (), the minimum measurable strain can
be seen to be approximately 0.002 inches per inch for a gage length of
one inch and a master grid with 500 lines per inch as was used in the
experiments in this work.

The errors involved in the three moire strain analysis methods
have been set down by Sciammarella. For the geometrical and displace-

ment function methods, a bound in the error involved in strain
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measurement when using a times 10 magnifying glass to read distances

will be
de

L% .

The error due to the measuring apparatus used in the light intensity
variation method will be

del - 204 ,

These errors are for measurements only and do not include errors in
grid spacing, et cetera.

It is apparent that the light intensity variation method is far
superior in both sensitivity and minimum error in measurements. In
addition, as was previously mentioned, the light intensity variation
method yields a continuous quantity to be measured where the two other
methods yield discontinuous measurable quantities. However, the ex-
pensive equipment used and the time involved in perfecting the method
precluded the use of the light intensity variation method in this
work. The geometrical method of moir& fringe analysis was chosen for
use here and the light intensity variation method and the displacement
function method were included in this discussion for informative and
comparative reasons.

A sample calculation of the strain from a moiré pattern can be

found in Appendix C.
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CHAPTER 4

EXPERIMENTAL RESULTS AND DISCUSSION

4.1 Tension Experiments

Tension experiments were conducted with several objectives in
mind:  (i.) to gain experience with the moire fringe method of strain
measurement, (ii.) to verify experimental results obtained with the
moire method with results obtained when using another method of analy-
sis, and (iii.) to obtain a modulus of elasticity that could be used
in the theoretical analysis.

The third objective was reached by measuring the strain in the di-
rection of the load application at various intervals of load. Graphs

of the true stress, o, = E}A, versus extension ratio, X, were plotted

t
and the slope of the curve was taken as the modulus of elasticity, as
shown in Appendix C. The moduli obtained by testing eight different
specimens are shown in Table 4.1.1 below. As can be seen there is a
large variation in moduli from one specimen to another, therefore, an
average value was found. This value of these eight moduli was found
to be 172.1 1v/in? and this is the value that was used in the theo-
retical predictions of strains found in Chapter Two, Section Four.
The second objective was met by comparing the moduli obtained
above with the moduli that was found by clip-gage measurements. The
modulus obtained in the second fashion is 175.0 1b/in? as shown in an

unpublished work completed here. The percent difference between the

two is found to be 1.65%.
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Specimen No. Modulus (1b/in?)
165 E 190.5
166 E 210.0
167 E 143.0
231 ¥ 162.5
232 ¥ 141.2
233 y 211.0
236 ¢ 153.3
237 ¢ 165.0

Experimentally Determined Values of Moduli
for Different Specimens

Table 4.1.1.

4.2 Compression Experiments

Uniaxial compression tests were performed on right, circular
cylinders of moderate length which were made of cured Solithane 113.
The axial and circumferential strains that existed on the surfaces of
the cylinder at the axial center were measured by means of the moiré
method. The range of straihs measured wes determined by the charac-
teristics of the moird grids used. The range of strains measured was
approximately .00l in/in to .06 in/in.

Two types of boundary conditions were imposed on the ends of the
cylinders. The first type imposed was such that the radial deforma-
tions of: the end surfaces was zero. The second type imposed wes such
that the radial deformation of the end surfaces was not zero, i.e.,
lubricant was applied to the ends in order that the friction between

the compression plates and the ends of the cylinders was nearly zero.



4.3 Conclusions

1. For relatively small compressive loads, the axial and circum-
ferential strains are equal in magnitude for lubricated and non-lubri-
cated ends, as shown in Figures 11, 12, 13, and 14.

2. With lubricated ends, the axial strain is smaller than for
non-lubricated ends when relatively large compressive loads are applied
to the specimens. Also, as the magnitude of the compressive load is
increased, the difference in strains increases, as shown in Figures 13
and 14.

3. For a given, relatively large compressive load, the circum-
ferential strain on a cylinder with lubricated ends is less than on a
cylinder with non-lubricated ends, as shown in Figures 11 and 12.

4. Strains in the axial direction are larger than strains in the
circumferential direction, as shown in Figures 11,12, 13, and 14.

5. A smooth curve fromtension to compression seems to exist al-
though further study is needed to verify this, as shown in Figure 15.

6. The experimental results did not agree at all with the theo-
retical results as derived by Filon (3), as shown in Figures 11 and 13.
This was, however, expected because in the theoretical derivations the
assumption of small strains was made and in the experimental work the
strains were relatively large.

7. The Poisson ratio was found to be 0.4773 for a strain rate of
.25 in/min and at a load of 30 Ibs. This agrees well with the as-
sumption of incompressibility, where Poisson ratio is taken to be 0.5,
used in the derivation of the equations describing large elastic

deformations.
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4.4 Suggestions for Further Research

On the basis of the research conducted and the results obtained
the author makes the following suggestions for further research:

1. That a study be made of the small strains that exist when
small loads are applied to the specimen.

2. That a study be made of the large strains that exist when
large loads are applied to the specimen.

3. That a study be made of the strains that exist at various
points on the surface of the cylinder.

4, That a solution to the equations describing the strain at

any point in the cylinder for a given load be found.
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APPENDIX A
MATHEMATICAL CALCULATIONS

The equation to be solved is

a%r, " . dR 2
2,31 2 _ |1 2 -
[ 2l - [ > + k ]Rz} = 0

dr dr T
Let
= M + + 2
R2 r {ao alr a2r + }

Then

1 By u 2 1

T T {aour~ +oa (ul)r™ + a,(ut2) + a (ut3)r +

+a, (pth)r? + ...}
d2R2
5 = ru{a (p=)ur™2 + a_u(p+l)r~! + a_(p+l)(p+2) +
ar 0 1 2

+ a (w2) (ut3)r + a, (w3) (url)r2+ ..}

First let us solve the following equation.

§+%?;7——[;;5+k2)3‘=0 (1)
Let

R = r“{ao + ar ¥ a2r2 + a3r3 + aqr“ +... 1 (2)
Then

-i:-g% = r"{u a r 2+ a, (wl)r! + az(u+2) + a (ut3)r +

+ &, (u+h)r2+ oo} (3)
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2
é—% = ru{ao(u—l)ur‘2 + agu(pl)r ! + a,(prl) (wH2) + ag(u2) (u3)r
dr

+ o, (w3) (e + L) | (4)
Substitute (2), (3), and (4) into egn. (1)

Moy (n-1ur? + e u(uel)r ! + e, () (2) + ag(wke) (u3)r
+ au(“+3)(“+h)r2 + oo tnagr? e al(u+l)r'1 + &, (u2) +

+ a (ut3)e + au(u+h)r2 + e ar?-art-a, -anx

0 1

a2 = o ® = n2p2 = 32 - T
- - ak® T oark a,r?k? = a ik a,rtk

Equate coefficients Of equal powered r's.

B

2
* ao(u-l)u +au=-a =0

0 0

2 _ - - .
agh agh +aw ~a; =0 (5)

ao(uz - l) =0

i alu(u+l) + al(“+l) -a =0

2 - _
a U + a1 + a M ta Tay = 0 (6)

&lu(u+2) =0

¥ W

v az(u+l)(u+2) + az(u+2) &, aok‘ 0
azuz ta,3u t a2 +tauta,2 e - aokz =0

a, (u+3) (utl) - aokz =0 AT




68

r > a3(u+2)(u+3) + as(p+3) - Ay T alkﬂ = 0
2 _ - 2 =
G + a5y + a36 tauta3-a; - ak 0

ag(wHh) (p+2) - a;x? = 0 | (8)

r?> g, (wr3)(url) + 8, (pHh) - s - ak®=0
2 - - 2 =
B, U + 8, Ty + a,12 ta.n + a“h R 0
a, (u3) (u+5) - azk? =0 (9)

Or, looking at (5), (6), (7), (8), and (9) tpgether

0

a u(u+2)
a,(wr3)(utl) - a k% =0

&y (url) (ur2)

1
o
h_‘.
S
I
o

a, (w3)(u+5) - a,k? = 0,

If &# 0, u = * 1 from equation (9); &, = 0; a; = a, = a, = ...
= 0, and from equation (7)
K2

82 = %0 Tu3)(u+l)

and equation (9)

K
O (3)2(pe1) (ut5)

a = a

Substituting these values of a,, s, etc. into equation (2)

4

R = r“{& P~ RIS & —+ ...
0 T0(u+3) (u+l) 0 (u+1) (1#3)2 (p+5)
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Now, let u =1, 8, = k/2

= L 1.3,3 1l .55
R = 5 kr + iz-k re * §§H-k r°> + ...

‘ R, = Il(kr)

The solution is invalid for u = -1 because R then blows up.

Instead of showing how to solve for the second solution of the
differential equation, R, = Kl(kr.), let us prove, by using the
Wronskian determihant, that Kl(kr)is a linearly independent solution
of the differential equation.

It is known that, if ¥, and y, are two solutions of a linear
differential equation of the second order, and if yi and yé denote
their derivations with respect to the independent variable, then the

solutions are linearly independent if the Wronskian determinant

1 ¥

! '
Yl yz

does not vanish identically.

V¢ have that

=
[}
o
[}
=

—

7

<
ro
I
=
I
=
—
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Therefore,
Il(kr) Kl(kr)

k I'(kr) k K'(kxr)
1 1

k II(kr) Ki(kr) - k Ii(kr) Kl(kr) =

k (Ii(kr) K;(kr)— Ii(kr) Kl(kr) .

But it is known that

Il(kr) Ki(kr) - Ii(kr) Ki(kr) = - %+
so that
il _
<|a)--#

Then Il(kr) and Kl,(kr) are linearly independert solutions of the
original differential equations.

Returning to the original equation to be solved,

2 14 1 2
2 4 = g - {— + kz} R, = 0. (10)

Let
(_d_%;g__[_l_,,sz R, = ¢(r)
_d-',l‘z r dr r2 2
Then
i?:__*.;_d___ _J:_+k2 ¢(r)=0
2 r dr 2
dr r




where

or

Then

Let

Then

and

o(r) = A Il(kr) + B Kl(kr)
¢(r) = A I (kr); ¢(r) = B K (kr).
a2r
—2+328a - | 2R | = AT (kp).
2 r dr 2 2 1
dr r
R, = {8y T a;r ta,r?2 a3 taph +ar’+...)
1 .dR_ 2 1 2 3
— F3 = + + + + + 'R
s alr 2a, * 3a,r lt:a.qr 5a..T
d%R , 5
= + + + + L BN B
= 2a, 6a3r lZaL’r 20a5r

Substitute equations (12), (13), (14)into equation (11)

+ 2 4 3 + -l + 2a_+ 3a.r + ba r?2 +
2a2 + 6a.3r 12a.qr 20a5r ar a, 3 3 "

3 . -2 . -1 - - 2 . 3 _ 2 . 2
Sasr a,r a.r a a,r - ar a.r aok a.lrk

1 2 3

- 2p2 _ 253 _ 2p o ., = ‘
azkr aakr a.qk_r AIl(kr)

Il(kr) =

[

= kr +—,_-I—_6]=k3r3 +—3é—£k5r5 + ...

N

T1

(11)

(12)

(13)

(1k)

(15)



T2

+ + 2 + 3 -1 + 2 3

2a, 6a3r 12a, 20a,r3 + a r~t + 2a, + 3a3r ha“r + Sasr
-2 -1 _ - - 2 - 3 - 2 _ 2

- aor - alr &, a3r a,r asr aok alk T

o 1292 = 3 K2p3 — ... = AR Kr - A =% k3p3 - A L—x5p5 - ..
a2k r a3k r A > kr = A T kr A 382 k°r

1

=0 (16)

Equate coefficients in equation (16)

-1 _ -
r 1> a, - a =0 (18)
0 - - w2 =
rY - 2a, * 2a, - a, - agk 0 (19)

- 2 _
3&2 aok =0

a, = 0
rl > ba, + 3a, - a. - a. k? - A L k =0 (20)
3 3 3 1 2
- 2 - pa L, =
8a3 alk A 5 kr 0
alkz + A-% k
a; = 8
2 - - 2 -
rZ - 12a, + hau &, ~ 8k 0 (21)
lSa“ =0
a4 = 0
3 - _ 2 - 1.3 _
r° - 206.5 + Sa, ~ ag ask A ig-k =0 (22)

= g k2 L .3
2148.5—&3}{ + A -Ek
A 3
fFakt+ATER+A ;L_gk.g,
1

1
&g - 24




Place equations (17) through (22) into equation (12)

a_ k2 . a.kt
_ 1 Akl 3 1 AkS
= + + 8% + | AR 54,
Ry = oy [8 16] £ [192 192) *
Let
-1
&, 5
21 k2 Ak} g (kP 28K3) g
R2_2r+tl6+ié-)r +{—3'8-E+§8-&‘—r+...
Let
A =2k
Then
=+ + 3> kor3 + =5~ 4.5
RZ 2 16 38)41{.1“".-.
or

R, = 31 Il(kr) .

It can also be shown that

R. =

d
2 I Kl(kr)
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(23)

(2k)

(25)

(26)

(27)
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APPENDIX B

DIAZO SOLUTION AND PRINTING PROCESS

Initially a thin sheet was molded. Its thickness was approxi-
mately 0.03 inches. It was made of Solithane 113 according to the
description given in Section 3.2. The surfaces of the sheet were
cleaned thoroughly with a solvent.

A very thin layer of white latex paint, mixed with liquid rubber
latex, was sprayed on one surface of the thin sheet. The rubber
latex was mixed with the paint in order to give the paint extensibili-
ty without cracking when the thin sheet was stretched. The purpose of
the mixture was to provide a good contrasting background for the dark
lines of the grid.

Diazo printing, though not good for general photographic purposes,
is, however, very good when reproduction of lines is needed. There-
fore, the diazo process is readily adaptable for the application of
grid lines to the surface of solid fuel propellants. Also, the diazo ,
process was chosen because the solutions used in more conventional
printing processes react chemically with Solithane.

The painted surface of the thin sheet was coated with a diazo-
type photosensitive solution which contained the following proportion

of chemicals (for a 100 c.c. water solution):

Glycol . + + . .. . 3.0 c.c.
Thiourea . . . . . . 45 g.
Citric Acid. . .. . 4.0 g.
Recorcinol . . . . . 0.3 g.
Zinc Chloride. . . . 4.5 g.
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Coupler III*, , .. 2.0 g.
Diazo #8%* ., .., . 1.0 g.
DiaZO #9*** L) ° " 1.'0 g.

After sufficient drying time, approximately three days, the sheet was
placed in a vacuum printing frame with a photographic negative super-
posed on it. The photographic negative was of the desired grid pattern.
The printing frame was used in order to insure intimate contact be-
tween the sheet and the negative. Illumination of the thin sheet with
an ultra-violet light source for an appropriate amount of time destroy-
ed the diazo salt which was not covered by the lines of the photo-
graphic negative. Ammonia vapor was used to develop the unexposed

portions of the diazo salt on the sheet.

*These are trade names of the materials of the Andrews Paper and
Chemical Co., Port Washington, N.Y. Their chemical designations
follow.

Coupler III is 2,3 dyhydroxy naphthalene-6«sulfonic acid sodium
salt.

**Diazo #8 is para diazo NN dimethyl aniline 1/2 zinc chloride salt.

***Diazo #9 is para diazo NN diethyl aniline zinc chloride salt.
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APPENDIX C

Sample Analysis of Moiré Fringes

A example of the formation of moiré fringes is shown in Figure
16. The picture shown is a close-up of the fringes formed on a
tension specimen, photographed when a load of 0.6 pounds had been
applied to the specimen. The method of analysis of such a set of
fringes is presented in section 3.4, Moire Fringe Theory.

A plot of accumulated fringe distance versus fringe number is
presented in Figure 17. This plot was made, as directed in section
3.4, from the picture of the moiré fringes. Since the picture is a
magnification of the original fringes, a factor of reduction must be
included in the calculations of strains or extension ratios made from
the data acquired from the plot of accumulated fringe distance versus
fringe number.

The modulus of the material tested was determined from a plot of
true stress, op = (%)x, versus extension ratio, A. In the above
equations, P is the load applied to the specimen, A is the original

cross-sectional area of the specimen, and h is the extension ratio.

The slope of this plot was taken to be the modulus of the material.
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Fig. 1 Definition of Coordinate System used
in Theoretical Derivations,
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Fig. 2 Molds for Casting Cylindrical Specimens.
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Figure k4.

Tinius Olsen Testing Machine with
Compression Apparatus Installed.
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Fig. 6 Tension Specimen Grips.
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Fig. 5 Tension Specimen,
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Fig. 7 Compression Specimen.
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Light Fringes

Fig. 8 Close Up of.Formation of Moiré Fringes.
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Fig. 9 Moiré Fringe Analysis by Displacement Method.
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Fig. 10 Sample Output of Photocell Equipment of
Light Intensity Method.
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Figure 16.

Moiré Fringes.
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