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AERODYNAMIC HEATING IN THE V I C I N I T Y  O F  

CORNERS AT KYPERSONIC SPEEDS" 

By P. Calvin Stainback and Leonard M. Weinstein 
Langley Research Center 

SUMMARY 

A study of hypersonic flow i n  a corner based on pas t  experimental and 
theo re t i ca l  s tud ies  and recent experiments has revealed at l e a s t  th ree  flow 
phenomena which influence the  skin f r i c t i o n  and heat t r ans fe r  i n  the  v i c i n i t y  
of a corner. The mutual in te rac t ion  of t he  boundary layers  i n  the corner 
results i n  a decrease i n  t h e  local. skin f r i c t i o n  and heat t r ans fe r  very near 
t he  corner. 
of shock-induced separation r e s u l t  i n  an increase i n  heating outboard of t he  
mutual boundary-layer i n t e rac t ion  region. 
laminar heating i n  the  v i c i n i t y  of a corner and the locat ion of t h i s  peak, i n  
terms of l o c a l  f l u i d  propert ies ,  were p a r t l y  successful f o r  the  simple models 
t e s t ed .  It w a s  found from l imited data  t h a t  the  e f fec t  of the  corner on the  
maximum increase i n  heating w a s  less f o r  a turbulent  boundary layer  than f o r  
a laminar boundary l aye r .  

A vortex system and reattachment of the  boundary layer  downstream 

A t t e m p t s  t o  cor re la te  t he  peak 

INTRODUCTION 

The flow of a f l u i d  i n  the  v i c i n i t y  of a corner formed by two in te rsec t ing  
surfaces is  of i n t e r e s t  s ince several  types of corner configurations a re  
encountered i n  the  design of high-performance hypersonic a i r c r a f t .  For example, 
they occur where the  wing and cont ro l  surfaces in t e r sec t  t he  fuselage,  where 
control. surfaces in t e r sec t  a wing, and i n  i n l e t s .  These corner-flow f i e l d s  can 
influence the  l o c a l  skin f r i c t i o n  and heat t r a n s f e r  t o  a i r c r a f t  components and 
possibly a l t e r  t he  effect iveness  of control  surfaces .  Because of these pos- 
s i b l e  influences, the  cha rac t e r i s t i c s  of these corner-flow regions should be 
invest igated i n  order t o  determine t h e i r  influence on ove ra l l  vehicle 
performance. 

Since most of the  boundary l aye r  over a high-performance hypersonic-cruise 
vehicle w i l l  probably be turbulent ,  it would be desirable  t o  have data  with 
f u l l y  developed turbulent  flow i n  t h e  corner region. Unfortunately, very f e w  
turbulent-flow data  a r e  ava i lab le  i n  corner regions a t  high Mach numbers s ince 
past  i n t e r e s t s  w e r e  focused on high-alt i tude g l ide  vehicles  at conditions where 

*Presented as Paper no. 17 a t  the  c l a s s i f i e d  "Conference on Hypersonic A i r -  
c r a f t  Technology," Ames Research Center, May 16-18, 1967, and published i n  
NASA SP-148. 



laminar flow could be expected. A l s o ,  high Mach number f a c i l i t i e s  of ten have 
a l imited maximum Reynolds number. 

The purpose of t he  present paper i s  t o  review laminar-flow data  obtained 
on various types of corner models, t o  present some recent laminar-flow heat-  
t r ans fe r  data  taken on simple corner models, and t o  present attempts t o  cor- 
relate peak laminar heating data  f o r  these simple models. Preliminary heat- 
t r ans fe r  data  will a l so  be presented where there  i s  a s igni f icant  length of 
turbulent flow over a corner model. The turbulent r e su l t s  w i l l  be compared 
with the  laminar r e s u l t s  t o  indicate  the  e f f ec t  of a turbulent boundary layer  
on peak heating i n  the  v i c i n i t y  of a corner. Although most of t he  results w i l l  
be l imited t o  heat- t ransfer  data, some surface-flow v isua l iza t ion  and flow- 
f i e l d  v isua l iza t ion  data will be presented. 

SYMBOLS 
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kturb . th .  
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rn 
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xo 
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$ 

4f 
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aerodynamic heat- t ransfer  coef f ic ien t  

aerodynamic heat- t ransfer  coef f ic ien t  based on laminar theory 

aerodynamic heat- t ransfer  coef f ic ien t  based on turbulent theory 

free-stream Mach number 

Stanton number based on incl ined surface f l u i d  propert ies  

maximum Stanton number based on inclined surface f l u i d  propert ies  

Reynolds number based on incl ined surface f l u i d  propert ies  and on 
x, y, and z,  respect ively 

free-stream Reynolds number 

nose radius 

f ree-stream ve loc i ty  

coordinates 

i n i t i a l  length (see f ig .  1) 

angle of a t t ack  

leading-edge sweep angle 

cant or ro l lou t  angle 

yaw angle 



REVIEW O F  CORNER-FLOW P R O B h  

Corner flow has been a problem of in t e re s t  i n  aerodynamics since t h e  days 
of subsonic a i r c r a f t .  However, a t  hypersonic speeds the  corner-flow problem 
becomes much more complex as a r e s u l t  of t he  mutual in te rsec t ion  of shocks o r  
shock-boundary-layer in te rac t ions  o r  a combination of these phenomena. The 
corner-flow problem i s  not only complicated as a r e su l t  of increased speed, but 
t he  many d i f fe ren t  geometries possible make the  solut ion of t he  problem even 
more d i f f i c u l t .  
i s  shown i n  f igure  1. 

A n  example of some of t h e  possible corner-flow configurations 

Several t heo re t i ca l  and experimental s tudies  have been made by using one 
o r  a combination of t he  geometries shown i n  f igure  1. These s tudies  have 
revealed t h a t  a t  least three flow phenomena e x i s t  i n  and near corner regions. 
These phenomena a r e  i l l u s t r a t e d  i n  f igu re  2. 

From ea r ly  theo re t i ca l  s tudies  by Loiziansky ( r e f .  1) and Loi ts ianski i  and 
Bolshakov (ref.  2),  a low-shear region w a s  found t o  e x i s t  very close t o  t h e  
l i n e  of in te rsec t ion  between t h e  two surfaces forming a corner. Later theo- 
r e t i c a l  work by Bloom and Rubin ( r e f .  3) indicated tha t  t h i s  low-shear region 
resu l ted  i n  a low-heating region near t h e  corner. Experimental pressure tes ts  
made by Bogdonoff and V a s  (ref.  4) revealed a high-pressure region i n  t h e  cor- 
ner and a pressure d i s t r ibu t ion  which they a t t r i bu ted  t o  a vortex system gen- 
erated by the  leading edge of the corner. This high-pressure region w a s  found 
t o  result i n  a high-heating region that  was greater  than could be a t t r i bu ted  t o  
t h e  increase i n  pressure. (See ref. 5 . )  This increased heating tended t o  con- 
firm the  existence of the  vortex system proposed by Bogdonoff and V a s .  Flow 
surveys made by Cresci (ref.  6) using total-pressure and temperature probes 
probably give the  bes t  confirmation of the existence of  a vortex system i n  the  
v i c i n i t y  of the corner. Cresci states, however, t h a t  t h i s  vortex system e x i s t s  
within the boundary layer ,  a r e s u l t  which i s  i n  agreement w i t h  the  theore t ica l  
r e s u l t s  of  Car r ie r  ( r e f .  7).  Further t e s t s  have been conducted t o  study vortex 
formations i n  the  v i c i n i t y  of a corner and these r e s u l t s  w i l l  be presented 
sub sequent 1 y . 

Several invest igators  (Gulbran e t  a l .  ( r e f .  8)  and Thomas (ref.  g ) ,  f o r  
example) noted t h a t  a su f f i c i en t ly  strong shock produced by one s ide of t he  
corner or a blunt leading edge can cause the  boundary layer  t o  separate on the  
adjacent surface i n  t h e  v i c i n i t y  of t he  shock. This separation phenomenon 
could r e s u l t  i n  an increased heating at  the  point of reattachment. Therefore, 
it appears t h a t  there  a re  two mechanisms which a re  responsible f o r  increasing 
the  heating i n  the  v i c i n i t y  of a corner: A 
combination of these mechanisms is, of course, possible.  

a vortex system and reattachment. 

The influence of several  f ac to r s  on t h e  peak heating found i n  the  v i c i n i t y  
of a corner has been investigated.  (For example, see r e f .  10.) The r e su l t s  
have indicated that some of t h e  f ac to r s  which increase peak heating i n  a corner 
region are increased Mach number, angle of a t tack,  and nose radius; those fac- 
t o r s  which decrease peak heating are increased leading-edge sweep, cant o r  roll- 
out angle, and f i l l e t s  . 
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From t h i s  review, it appears t h a t  previous invest igat ions have resul ted i n  
a reasonable understanding of t h e  laminar-flow mechanisms ex is t ing  i n  a corner. 
Hopefully, f o r  t he  present., t h i s  experience w i l l  be useful  i n  gross predictions 
of surface heating and skin f r i c t i o n  t h a t  w i l l  be encountered i n  a corner when 
the  flow is  turbulent .  However, t he  l e v e l  and possibly the  extent of influences 
of corner phenomena on l o c a l  surface conditions f o r  t h e  turbulent boundary layer  
would probably be d i f fe ren t  from those f o r  t h e  laminar boundary layer  as a 
r e s u l t  of turbulent mixing. 

RESULTS AND DISCUSSION 

Laminar Corner-Flow D a t a  and Correlation 

Surface-flow visual izat ion and heat- t ransfer  data  have been obtained on a 
simple corner model a t  a free-stream &ch number of 8 and a free-stream un i t  
Reynolds number t h a t  ranged from 0.42 X lo6 t o  10 X lo6 per foot .  Flow-field 
v isua l iza t ion  t e s t s  have a l so  been conducted a t  a Mach number of  20 i n  helium 
with t h e  use of t he  electron-beam technique. 

Examples of t h e  surface-flow v isua l iza t ion  r e s u l t s  a r e  shown i n  f igure  3 .  
The m d e l  had an asymmetric angle of a t tack  with one surface a t  an angle of 
a t t ack  of 5 O  and the  other  surface al ined with the free-stream velocity.  
data  presented a re  f o r  t h e  a l ined  surface. In  the  photograph showing the  
temperature-sensitive-paint resu l t s ,  t he  dark areas  represent regions with 
higher heating r a t e s  than the  l i g h t  areas.  The pa in t  results indicate  a se r i e s  
of low- and high-heating regions as the  distance from the  corner i s  increased. 
The low- and high-heating regions a re  seen t o  correspond t o  low- and high- 
shear regions as revealed by the  oil-smear-technique results, a l so  shown i n  
the  f igure.  The low- and high-shear regions revealed by the  oil-flow r e s u l t s  
indicate  the possible existence of separation (where o i l  accumulates) and 
reattachment (very l i g h t  regions) i n  t h e  regions o f  shock impingement. 
l a rge  cross-flow component of  some of t he  oil-flow l i n e s  revealed by t h e  o i l -  
dot technique a l s o  suggests t h e  existence of a strong vortex system near the  
corner. Since it i s  d i f f i c u l t  t o  dis t inguish between the  influences of separa- 
t i o n  and reattachment and those of  a vortex system by t h e  use of surface-flow 
visual izat ion techniques, an electron-beam technique has been used i n  a helium 
wind tunnel  t o  visual ize  the  f l o w  f i e l d  far from the  surface.  The electron 
beam in j ec t s  a small beam of high-energy electrons in to  the t e s t  sect ion flow 
which exc i tes  the  helium atoms. The decay of these excited atoms produces a 
v i s i b l e  l i g h t  i n  the  f l o w  f i e l d  downstream of the  beam. The l i g h t  i n t ens i ty  
i s  re la ted  t o  the  l o c a l  density of t he  flow f i e l d .  An example of t he  r e su l t s  
i s  shown i n  f igure  4 where both surfaces a re  incl ined loo with respect t o  the  
free-stream veloci ty .  The sketch i n  the  upper left-hand sect ion of  the  f igure 
indicates the  general  locat ion of the  model i n  the tunnel, and the  schematic 
drawing in  the  upper right-hand section indicates  a pa r t  of the  resu l tan t  flow 
f i e l d .  

The 

The 

The photographs i n  the  lower portion of figure 4 illustrate some of  t he  
preliminary r e su l t s  obtained up t o  the  present time. The left-hand photograph 
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is  a view from the  rear of t h e  model and below the  l e v e l  of the  model surface; 
t h a t  is ,  t he  flow appears t o  be passing over t he  head of t he  observer. The 
electron beam reveals two types of flow s t ruc ture  i n  the  left-hand photograph. 
F i r s t ,  a tear-drop-shaped dark region indicates  the  existence of one branch of 
a vortex system. The other  s t ruc ture ,  indicated by a l i g h t  area extending from 
t h e  corner at about 45O from e i t h e r  surface,  is  believed t o  be the  resul tant  
shock formed by the  in te rsec t ion  of t he  two undisturbed wedge shocks. This 
type of in te rsec t ion  has been suggested by the  low Mach number r e su l t s  of 
Charwat and Redekopp ( ref .  11). In  the  right-hand photograph, the  view i s  from 
the  r ea r  of t he  model and is  directed p a r a l l e l  t o  t he  l i n e  of intersect ion of 
t h e  two surfaces forming the  corner. Note the  s m a l l  dark region which i s  again 
in te rpre ted  as being the  core of one branch of a vortex system. 
t h i s  i s  addi t ional  evidence t h a t  a vortex system e x i s t s  i n  t h e  v i c in i ty  of a 
corner f o r  t he  present geometry. 

Therefore, 

Some typ ica l  heat- t ransfer  results obtained with a corner model a t  an asym- 
metric angle of a t tack  of a = loo and an angle of yaw of $ = Oo i s  shown i n  
figure 5. The data  f o r  t h e  incl ined surface ind ica te  tha t  there  i s  a r e l a t ive ly  
l o w  heating region near t he  corner caused by the  mutual in te rac t ion  of the.  
boundary layers  f rom adjacent surfaces. The heating r a t e  increases a s  the  d i s -  
tance from the  corner i s  increased, reaches a peak, and ult imately decreases 
t o  the  theo re t i ca l  f l a t - p l a t e  value. 
dis tances  from the  leading edge do not appear t o  be a function of x; therefore,  
t h e  Stanton number f o r  t h e  peak heating would be expected t o  cor re la te  as sug- 
gested by conventional f l a t - p l a t e  theory. Also, t he  peak values of N S t S  a r e  
located a t  a given value of 
peak heating i s  proportional t o  x. 

The peak values of N s t E  f o r  various 

y/x. This f a c t  ind ica tes  t h a t  t he  location of t he  

The data for t he  a l ined  surface (p lo t ted  on left-hand pa r t  of f i g .  3) a l so  
ind ica te  a low heating r a t e  i n  the  v i c i n i t y  of t he  corner. The heating r a t e  
increases t o  a primary peak f a r t h e r  outboard and t h i s  loca t ion  i s  nearer the  
corner than the  project ion of t he  shock from t h e  incl ined surface. Outboard of 
t h e  primary peak, the  heating decreases u n t i l  a secondary increase i n  heating 
i s  formed outboard of t h e  projected shock. Far ther  outboard of t h e  secondary 
peak, t h e  heating decreases t o  the  theore t ica l  f l a t - p l a t e  value. The Stanton 
and Reynolds numbers are based on propert ies  f o r  the inclined surface and result 
i n  t h e  apparent low value of f a r  from t h e  corner on the  al ined surface. 

Nst& 

N s t E  

It i s  in t e re s t ing  t o  note t h a t  f o r  t he  a l ined  surface the  value of 
increases with increasing x; therefore,  t h e  peak heating data  w i l l  probably 
not cor re la te  i n  terms of 
by the  results f o r  t h e  incl ined surface. 
appears t o  be a t  about a constant value of 
z f o r  t he  peak heating locat ion i s  proportional t o  x. 

Nst as a function of Reynolds number as suggested 
The loca t ion  of t he  peaks, however, 

and t h i s  f a c t  indicates  t h a t  z/x 

Along the  y/x and Z/X axes of f igure  5 ,  t he  dark areas indicate regions 
i n  which o i l  remained on the  model a f t e r  t he  oil-flow tests, whereas the  l i g h t  
areas  indicate  regions i n  which the  o i l  w a s  removed from the  model by high 
shearing s t resses .  The peak heating rates are  seen t o  occur where the  shearing 
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s t r e s ses  were a l so  high. The combined oil-flow and heat- t ransfer  r e su l t s  indi-  
ca te  t he  existence of a vortex system as shown by the  curved arrows i n  f igure  5 .  

Correlation of Laminar Peak Heating Data 

Sample hea t - t ransfer  data  have indicated t h e  existence of peak heating 
r a t e s  on both of t he  surfaces t h a t  form a corner model. It would be desirable  
t o  cor re la te  t h e  magnitude of these peak heating rates and the  location of t h e i r  
peaks. This information would be useful  t o  design engineers i f  they encounter 
s i m i l a r  configurations i n  the  design of p r a c t i c a l  high-performance hypersonic 
a i r c r a f t .  

F i r s t ,  consider t he  data fo r  t he  asymmetric corner where one surface is  
always al ined with t h e  free-stream veloci ty  and the  other  surface has some i n c l i -  
nation angle. The attempt t o  cor re la te  these r e s u l t s  f o r  a = Oo, 5 O ,  and loo 
i s  shown i n  figure 6. Rx, over a 
wide range of un i t  Reynolds numbers, u n t i l  t r a n s i t i o n  becomes apparent a t  high 
values of R,. 
t o  define peak heating adequately as a result of t h e  l imited number of thermo- 
couples near t he  leading edge of t he  model where peak heating i s  inboard o f  t h e  
thermocouples nearest  t h e  l i n e  of intersect ion.  I n  general, the  increase i n  
heating ranges from about 50 t o  65 percent above t h e  laminar f l a t - p l a t e  theory 
of reference 12. 

Most of  the data  cor re la te  f a i r l y  wel l  with 

Some of t he  s c a t t e r  present i n  the  figure i s  due t o  t h e  i n a b i l i t y  

Since the  data  could be correlated i n  terms of t h e  conventional viscous 
parameters, Stanton and Reynolds nmbers,  t h e  peak heating r a t e  on the  incl ined 
surface i s  apparently governed by viscous forces.  This assumption appears 
reasonable s ince t h e  shock produced by the  a l ined  surface i s  weak and probably 
would have negl igible  e f f ec t  on t h e  magnitude of t h e  heating. 

Although the  present results f o r  a Mach number of  8 and previous r e s u l t s  
from reference 5 f o r  a Mach number of 3 ind ica te  only a 50- t o  65-percent 
increase i n  heating above theo re t i ca l  f l a t - p l a t e  values f o r  the  @ = Oo 
a t t i t ude ,  data  taken a t  higher Mach numbers ( M  = 12 t o  16, refs .  6 and 13) indi-  
ca te  a greater  increase i n  the  value of  the  peak heating - about 300 percent 
above laminar f l a t - p l a t e  theory. Therefore, it appears t h a t  the  present corre- 
l a t i o n s  w i l l  probably be l imited i n  usefulness up t o  a Mach number of about 8. 
However, when data become available a t  higher Mach numbers, the  correlat ion 
parameters used herein might be applicable t o  the  higher Mach number data.  

a = W ,  

The f irst  attempt t o  cor re la te  the data  f o r  t he  al ined surface i n  terms of 
maximum Stanton number and Reynolds number i s  shown i n  f igure 7. In  t h i s  form, 
a sa t i s fac tory  correlat ion was not obtained. O f  course, t h i s  r e su l t  w a s  ant ic-  
ipated because of t he  r e su l t s  shown i n  f igure 5 f o r  the  al ined surface. It i s  
in te res t ing  t o  note tha t  t he  m a x i m u m  Stanton number, f o r  a given u n i t  Reynolds 
number, is  almost constant with Reynolds number f o r  t he  l imitat ions of t he  pres- 
ent  model. This r e s u l t  has been noted before i n  reference 14  and is a l so  i n  
agreement with the  data  of reference 8. It i s  not c l ea r  at the present t i m e  why 
the  Stanton number is  constant with increasing Reynolds number. However, t he  
peak-heating r e s u l t  is  probably due t o  a combination of vortex system and 



separation and reattachment. The invariance of t he  Stanton number with Reynolds 
number indicates  t h a t  a s t rong invisc id  phenomenon i s  probably control l ing the  
peak heating on t h e  al ined surface.  

Since the  data  did not cor re la te  wel l  with Stanton and Reynolds numbers, 
other  parameters w e r e  t r i e d  i n  an attempt t o  obtain a b e t t e r  correlat ion.  
such attempt i s  presented i n  f igure  8. 
appear t o  cor re la te  t he  data  f a i r l y  well. The use of the  dimensional quant i ty  
x again indicates  t h a t  inv isc id  flow mechanisms are important f o r  t h i s  case 
where x would be t h e  only sca le  parameter for purely inv isc id  flow. 

One 
These parameters, Nst,"/6 and R,, 

The model w a s  a l s o  t e s t e d  with both surfaces having equal and pos i t ive  
inc l ina t ion  angles with respect t o  t h e  free-stream ve loc i ty .  For these data  it 
w a s  again found necessary t o  cor re la te  t h e  peak heating i n  terms of the  param- 
e t e r s  NSt ,max /c  and Rx. This cor re la t ion  i s  shown i n  f igure  9. Here again 
the  cor re la t ion  i s  fair, with much of the  s c a t t e r  due t o  i n a b i l i t y  t o  define 
adequately the  peak heating near t he  leading edge. Transi t ion appears t o  occur 
f o r  t h i s  configuration a t  Reynolds numbers of about t he  same magnitude as f o r  
the incl ined surface of f igure  6. 

It i s  in t e re s t ing  t o  note t h a t  when a strong shock crosses the  instrumented 
surface it appears necessary t o  cor re la te  t he  data  i n  terms of t h e  parameters 
NSt,"/E and Rx. As  mentioned before, the  use of the dimensional quant i ty  
x suggests t ha t  t h e  peak heating i s  control led by an invisc id  flow phenomenon 
which i s  probably associated with the  strong shock system. As  pointed out 
previously, t h i s  phenomenon could be e i t h e r  a vortex system o r  separation and 
reattachment, o r  possibly both. Whether t h i s  type of cor re la t ion  w i l l  be 
applicable f o r  a l l  geometries where strong shocks a re  generated must a w a i t  
f u r the r  t e s t ing .  

Correlation of the data f o r  t e s t s  a t  negative angles of a t t ack  has been 
attempted, as shown i n  f igures  10 t o  14. For a = - 5 O  the  correlat ions a re  
fair, but f o r  
ex i s t s  f o r  t he  parameters used. This s ca t t e r ing  of t he  data  could be due i n  
par t  t o  the  low heating r a t e s  experienced a t  negative angles of a t tack .  A l s o ,  
f o r  t he  a = - 5 O ,  
not successful.  

a = -loo t he  data  s c a t t e r  t o  such an extent t h a t  no cor re la t ion  

$ = -50 case ( f i g .  14) t he  attempt t o  cor re la te  t he  data w a s  

Correlation of the  Location of Laminar Peak Heating 

The locat ions of laminar peak heating were correlated i n  the  form of Ry 
o r  RZ as a function of R,. These r e s u l t s  are shown i n  f igures  15 t o  22. 
The cor re la t ions  are fa i r  f o r  both surfaces of t he  model when any surface has 
a pos i t ive  angle of a t tack ,  except at  high Reynolds numbers where t r a n s i t i o n  
sometimes occurs. The slope of t he  cor re la t ion  curves on log-log paper is  
about 1, which ind ica tes  t h a t  y o r  z is  almost proportional t o  x f o r  most 
of the  range of t h e  data.  This predict ion w a s  indicated i n  f igure  5.  
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m e  correlat ions w e r e  less successful at  negative angles of a t tack  
( f igs .  18, 19, and 2 2 ) ,  and at  
great  t h a t  no correlat ion existed.  

a = -100 ( f ig s .  20 and 21) the  s c a t t e r  w a s  so 

Effect  of Cant Angle on Laminar Peak Heating 

A s  pointed out i n  reference 10, several fac tors  can reduce peak heating i n  
t h e  v i c in i ty  of a corner. Among these fac tors  are increased leading-edge sweep, 
cant o r  ro l lou t  angle, and f i l l e t s .  A second heat- t ransfer  model w a s  t e s t ed  at 
a Mach number of 8 t o  invest igate  the  e f f ec t  of cant angle on peak heating i n  a 
corner. The instrumentation on t h i s  model w a s  not as extensive as t h a t  on the  
model used t o  obtain the  data previously discussed. The results of these t e s t s  
f o r  var ia t ion  of t he  cant angle only a re  shown i n  f igure  23. This f igure  reveals 
a subs tan t ia l  increase i n  peak heating resu l t ing  from reducing the  angle between 
the  p la tes  from goo t o  600. For example, t he  increase i n  peak heating for 
# = 90° 
theory whereas the  increase f o r  # = 60° i s  about 80 percent greater .  O f  
course, increasing the  cant angle above 90° r e su l t s  i n  a decrease i n  peak heating 
u n t i l  the  angle reaches 180° (a f la t  p l a t e ) .  Further increase i n  @ t o  2700 
(an ex ter ior  corner) r e su l t s  i n  l i t t l e  or no increase i n  heating above laminar 
f l a t -p l a t e  theory. The increase i n  peak heating with increasing x seen i n  
f igure  23 i s  apparently due t o  the  l imited number of thermocouples i n  t h i s  
model. This f a c t  makes it d i f f i c u l t  t o  define peak heating near t he  leading 
edge of the  model. 

is  about 40 percent greater  than t h a t  obtained from laminar f l a t -p l a t e  

If the  data  obtained with the  second model, f o r  a l l  cant angles except goo, 
a re  compared with those obtained with the  more completely instrumented first 
model (#  = goo) ,  it can be seen ( f i g .  24) t h a t  there  i s  l i t t l e  or no increase i n  
peak heating fo r  # = 60° when compared with the heating for # = 90'. How- 
ever, the  two l a rge r  values of (#  = 120' and 270°) indicate  a decrease i n  
the  l e v e l  of peak heating when compared with the  90' case. 

# 

Turbulent Heating in  the Corner Region 

There i s  very l i t t l e  f u l l y  developed turbulent-flow data  at  high Mach num- 
bers  avai lable  i n  the  l i t e r a t u r e  for corner flow. However, since most of the 
flow over a hypersonic-cruise vehicle w i l l  probably be turbulent,  a program has 
been undertaken t o  obtain f u l l y  developed turbulent-corner-flow data at a Mach 
number of 8. The models were constructed of glass-fused mica, and preliminary 
phase-change-paint data  have been obtained with the  model. 
of the  results obtained with t h i s  model are presented i n  f igures  25 and 26. 
(See ref. 15 f o r  discussion of phase-change pa in t .  ) 

Examples of some 

F i r s t  consider only the data f o r  the  model with the  sharp leading edges 
The laminar-flow data (upper p l o t )  reveal  t he  charac te r i s t ic  low ( f i g .  2 5 ) .  

heating rate i n  the  corner. The rate increases as the distance from the  corner 
i s  increased, reaches a peak, and subsequently approaches flat-plate-theory 
values. The phase-change paint  results at a Mach number of 8 indicate  tha t  f o r  
the  same type of model with turbulent flow i n  the  corner, there  i s  no increase 
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i n  heating i n  the  corner above turbulent theory. 
This w a s  a l so  true f o r  t he  Mach number 5 data  of reference 5 .  

(See lower p lo t  of f i g .  25.) 

When one of t h e  surfaces has a blunt leading edge of 0.25 inch and data  

For the  laminar-flow data  (upper p l o t ) ,  t h e  shock produced by t h e  
are recorded on the  adjacent surface, the  results shown i n  f igure 26 are 
obtained. 
blunt leading edge r e su l t s  i n  a very large increase i n  heating on the  adjacent 
surface. 
theory value. (This increase is  a function of x/rn.)  However, i f  t he  flow is  
turbulent outboard of t he  shock, t he  results shown i n  t h e  lower portion of f i g -  
ure 26 are  obtained. An increase i n  heating is  noted above the  turbulent-f la t -  
plate-theory value i n  the  turbulent-flow region as a result of shock impinge- 
ment; however, t h i s  increase i s  only about 2.5 t o  3 times the  theo re t i ca l  
value. 

This increase can be about 12 t o  13 t i m e s  the  laminar-flat-plate- 

From these preliminary r e su l t s ,  it appears t h a t  the  mechanisms which r e s u l t  
i n  an increased peak heating i n  t h e  v i c i n i t y  of a corner f o r  a laminar boundary 
layer  a re  absent or grea t ly  reduced i n  severi ty  when the  boundary layer  is  
turbulent.  This r e s u l t  i s  probably due t o  the  well-known f a c t  t h a t  a turbulent 
boundary layer  i s  less sens i t ive  t o  extraneous influences than a laminar bound- 
a ry  layer.  This reduced s e n s i t i v i t y  is ,  i n  turn,  due t o  the  turbulent mixing 
t h a t  f i l l s  out the  ve loc i ty  p ro f i l e  and thereby increases the average momentum 
of a turbulent boundary layer .  

SUMMARY O F  RFSULTS 

The r e su l t s  of the  present study of flow i n  a corner a t  hypersonic Mach 
numbers can be summarized as follows: 

1. A review of the  l i t e r a t u r e  and examination of the present data  have 
revealed a t  least three  flow phenomena ex is t ing  i n  a corner which influence 
laminar skin f r i c t i o n  and heat t r ans fe r  t o  adjacent surfaces.  The f i r s t  of 
these phenomena i s  the  mutual in te rac t ion  between the  two boundary layers  on 
the  surfaces forming the  corner and the  accompanying reduction of skin f r i c t i o n  
and heat t r ans fe r  as a r e s u l t  of t he  in te rac t ion .  The second i s  vortex systems 
generated by t h e  corner-flow f i e l d  and the  increase i n  heating caused by these 
systems. The t h i r d  is  t h e  separation and reattachment on one surface caused 
by strong shocks generated by the  adjacent surface with an increase i n  heating 
a t  reattachment. The l a t t e r  two phenomena of ten appear simultaneously. 

2. Correlation of laminar peak heating and the  locat ion of the  peak i n  
terms of l o c a l  f l u i d  propert ies  w e r e  p a r t l y  successful f o r  a l imited range of 
corner geometries. 

3 .  The l imited amount of turbulent-flow data  avai lable  indicates  t h a t  t he  
increase i n  peak heating i n  t h e  v i c i n i t y  of t h e  corner w i l l  be l e s s  when the  
boundary layer  is  turbulent  than when the  boundary layer  is  laminar. This 
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result is probably due t o  the  grea te r  average momentum of a turbulent boundary 
layer  so t h a t  it i s  less sens i t ive  t o  extraneous influences than a laminar 
boundary layer .  

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Stat ion,  Hmpton, Va. ,  May 17, 1967, 
126- 13 -03 41-23. 
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CANT ANGLE AND Q I N IT1 A L  BOUNDARY LAYER 
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Figure 1.- Corner-flow configuration. 
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Figure 2.- Flow phenomena in a corner. 
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Figure 3 . -  Surface-flow visualization in a corner. & = 8 ;  
%/rt = 3.15 x 106. 
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Figure 4.- Electron-beam corner-flow visualization. M, = 20 in helium; 
k/ft = 4.56 x 106; CL = 10'; $ = 10'; 9 = 90'. 
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Figure 6.- Laminar peak heating i n  corner-flow region. Inclined surface; 
a posi t ive;  M, = 8; 0.42 x 106 5 %,/ft 5 10 x lo6. 
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Figure 7.- Laminar peak heating i n  corner-flow region. Alined surface; 
a posi t ive;  & = 8. 
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Figure 8.- Laminar peak heating i n  corner-flow region. Alined surface; 
6 a posi t ive;  & = 8; 0.42 x 10 5 %/kt 6 10 x 106. 
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Figure 9.- Laminar peak heating i n  corner-flow region. a and $ equal 
and posi t ive;  & = 8; 0.42 x 106 5 &/ft 5 10 x 106. 

io-' 

N ~ + ,  max , 

10-2 

10-3 
lo4 

*=07 

0 

0.6 
0 1.0 

L 3.2 FLAT- PLATE 
D 10.0 

I 1 1 
106 107 

Figure 10.- Laminar peak heating i n  corner-flow region. Inclined sur- 
face; a = -50; % = 8 ;  0.42 x lo6 6 K/ft 6 10 x 106. 
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Figure 11.- Laminar peak heating i n  corner-flow region. Alined sur- 
face; a = -50; &, = 8;  0.42 x 106 5 &/ft 5 10 x 106. 
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Figure 12.- Laminar peak heating i n  corner-flow region. Inclined sur- 
face; a = -loo; &, = 8;  0.42 x 106 <= %,/ft d 10 x 106. 
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Figure 13.- Laminar peak heating i n  corner-flow region. Alined sur- 
face; a = -100; % = 8 ;  0.42 x 106 5 &/ft < 10 x 106. 
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Figure 14.- Laminar peak heating i n  corner-flow region. a and $ equal 
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Figure 15.- Location of laminar peak heating. Inclined surface; 
a posi t ive;  &, = 8; 0.42 x lo6 5 R,,,/ft 5 10 x lo6. 
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Figure 16.- Location of laminar peak heating. Mined surface; 
a posi t ive;  = 8;  0.42 x 106 5 Q/ft 4 10 x 106. 



J 

a 

Figure 17.- Location of laminar peak heating. a and $ equal and posi- 
t i ve ;  M, = 8; 0.42 x 106 5 &/ft 2 10 x 106. 
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Figure 18.- Location of laminar peak heating. Inclined surface; 
a = -50; M, = 8; 0.42 x lo6 5 k/ft 5 10 x 10 6 . 
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Figure 19.- Location of laminar peak heating. Alined surface; 
a = -50; M, = 8; 0.42 x 106 4 Q/ft 5 10 x 106. 
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Figure 20.- Location of laminar peak heating. Inclined surface; 
a = -100; M, = 8;  0.42 x 106 5 Q/ft 5 10 x 106. 
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Figure 21.- Location of laminar peak heating. Alined surface; 
a = - IOo;  M,,, = 8 ;  0.42 x 106 4 Q / f t  S 10 x lo6. 
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Figure 22.- Location of laminar peak heating. a and l r  equal 
and negative; &, = 8; 1.0 x lo6 5 %,/ft 6 10 x 106. 
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Figure 23.-  Effect  of cant angle on laminar peak heating. M, = 8; 
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Figure 24.- Effect  of cant angle on laminar peak heating. M, = 8 .  
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