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ABSTRACT

The results of a.program to study the analysis and design of composite
materials and structures is reported. Emphasis was placed upon three
major areas: The definition of design criteria for laminates including
studie‘s of basic failure mechanisms; the definition of. unique design concepts
tc; enhance the beneficia,l characteristics of composite materials and to utilize

them in structures; and the analysis of composite materials property test

techniques.



FOREWORD

Thié document, is the annual report on the program entitled "Study of
the Relationship of Properties of Composite Materi.al's to Properties of
'I;he':ir Constituents', The pz'rogra_m was performed for the National Aero-
nautics and Space Administration under Contra.ct NASw-1377 and was
monitored by Dr. R. W. Le(;nard of the NASA Structures Research Divi-

sion.
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INTRODUCTION

Development of -methods of analysis of the strength and stiffness of fib-
rous composites has advanced to the point where it is feasible to establish
rational initial design procedure; for composite structures., These pro;:edures
are naturally subject to revision as continuirig studies enhance the understanding
of composite failure mechanics. In conjunction with the theoretical develop-
ments, there is the unsatisfied need for definition of suitable techniques for
ma..terial property measurements. Accordingly, the program described here-
in treated the above problem areas and the present report presents the results
of investigations leading to: The definition of design criteria; the enhancement

of the understanding of failure mechanisms; the definition of unique design-con-

cepts for composites; and the development of improv’ed techniques for.com-
posite property measurement.

The section on "Design Criteria' describes the failure- criteria for lami-
nates, which have been computerized for structural efficiency ar?alysis. Fur-~
'ther studies of the laminae failure mechanisms upon which this is based are also
ciescribed, including some treatment of time dependent behavior. The applica-
tion of these criteria is treated in the "Design Concepts'' section, wherein the
utiliza.tio;l of the high uniaxial compressive strer.lgth of fibrous composites is
emphasized. Columns, plates and panels of combined composite and mefi.llic‘
construction are designed and their potential is assessed. Concepts for im-~

proved material performance including three phase and isotropic three dimen-~



sional materials are also defined. n the final section, .''Studies of Materials
Properties Tests" the,'reé\glts of the analysis of several current test tech-

" nigues are pre sented along with sugge sted new methods for unjaxial strength

measurements.

o be expecied to be cneo
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DESIGN CRITERIA

The parametric evaluations of fibrous composites for aerospace structures

{e. g. Refs.’1 and 2) havé indicated the attractive potential of corz;posite
structures which are configured .to achieve high stresses. When efficient
stiffening arrangements };ermi:t the use of the high modulus composite materials
high strength, .the resul.;.ir;g structures are shown- to be subst’antia.lly lighter
than metallic structures. ' T};e:se studiesAempha.sized tl:le ne.ed for better
definition of composite sti'é;lgth. The prediction of laminate strength fr(;m a
'knoﬁledée of constituent p:;'(;perties is a complex undertaking and, in general,
strength estimates most sltlJ.\ita..';:ole“for design are obtained experimentally.
However, ;}n analytical estimate is re(iuired' in the assessment of the potential
of candida.;,e composites which have not yet been brought to ﬁhe practical fab-’
rication stage. Indeed‘, the concept of analytically predicting composite pro-
perties for use in a structural application analysis, is a.'n essential part of the
search for guidelines for the developr\nent of improved composite materials.
The strengths of f‘ibrousvcomposites, perhaps to an e\}en greater deg‘ree
than their stiffnesses, are complex functions of the anisotropies' associated

v

with the uni-directional character of filame‘nts. For filaments in one (the

loaded) direction only,. strength in tension {(Ref,3), compression {(e. g. Ref. 4)
. : AY .

and shear {e. g. Refs. 5, 6) have been related to the properties of the consti-

tuents., Further study.of these problems is described subsequently, Exten-

sions to reinforcements in other directions have now been incorporated into

the computer programs for structural properties of anisotropic composite



elements (SPACE), The aim is to provide a strength assessment for prelimi-

1

nary design studies, ,
. «

Numerous strength theories have been proposed; the validity of which can
only be justified by experiments which are themselves complex and formidable.
A comprehensive tabulation of strength theories has been presented in
Reference 7. Among the theories proposed is the strength theory in References
8, 9. In this theory, the strength of a fiber-reinforced compogite, considered
as quasi-homogeneous and anisotropic, is governed by a continuous“ failure
surfa.ce of Hill (Ref. 10), Once the failure surface is determined, the strength
of the composite body under any type of surface loading \ca.n be determined in
a straight-forward manner. This appears to be a reasonable approach for
composites with elastic perfectly-plastic fibers and matrixy

For most éomp’osites there is a vast difference between the strength of
the filaments and the' strength of the binder, and failures in the binder may
be encountered as the maximﬁz;n stress direction varies from the filament
direction. In the simplest case, for exemple, of a unidirectionaily reinforced
composite in tension, if the angle between the tensile load and the reinforce-

.

ment direction is increased gradually from zero to ninety degrees, three
primary failure modes can be expected to be encountered: first, at small -
angles, tensile failure of the filaments; second, atintermediate angles,

- e L LA P A

shear fallure in the binder; third as the fxlaments Become oriented mostly

. el
W S 3o 3 - &

transverse to the load, tenslle fa.11ure in the blnder. These fa:tlure modes are

S LT <

essentially independent of one another. Particularly for the change from



tensile failure in the filaments to shear in the binder, there appears to be

little reason to expect a gradual transition of the type that leads to a smooth,
k4

"yield surface' for homogeneous materials.

When the various failure modes are independent of each other for a com-
posite having an oriented structure, the applicability of a continuous function,
like Hill's anisotropic yield condition for a homogeneous material (Ref. 10},
to represent a yield or strength critericn:l appears open to question. Accordingly, *
the approach utilized herein to determine strength criteria for composite
laminates has been to determine separately the strengths for all possible '
failure modes, Thus, to a degree, a family of failure‘surfaces representative
of the material will be generated, and the lowest of them for any 1$ading
condition will be the governing one. h

This approach is described in the following sub-section. This is followed
by a presentation of the recent studies of the strength properties of a uniaxial
laminate. Note that these latter quantities are required both for the dis- -
continuous and the continuous failure surface models. The anaiysis is developed
* first for composites where both fiber and matrix are elastic-plastic and a
continuous failure surface is/defined. These resfllts ;.re then specialized for
rigid brittle fib:;rs to generate strength values which can be used in a maximum

stress failure theory.

Laminate Strength

The strength analysis of a laminate of layers of uniaxial fibrous compo-=
sites utilizes the elastic analysis, under given surface loadings, of the state
eI iied bl
of stress in each laminate layer considered as quasi-homogeneous, i. e,

5.



. locally heterogeneous, but grossly homoéeneous. If the surface loadings
increase mo‘notonically and Iproportionally, there will be a s.tage at which

the stress in one (or r;lore) layers of the laminate is at a failure point and

the layer, being assumed to fail, is replaced by a new degraded layer having
‘an assumed mode of degradation. As successive failure of constituting
layers proceeds, a redistri'butior; of stress among the laminae occurs and

the slope of the load-deflection curve is d.iscon'cinuous. The ultimate strength
of the laminate is reached when all the constituting layers have failed.

In each layer, the stresses referred to the principal axes of anistropy
are computed. If the shear or transverse stress is equ,a.l to its corrcspondi’ng
yield stress, the lamina is considered fo hold that stress level for those com-
ponents and to have additional stiffness only in the fiber dircction. As
successive failure ot constituting layers occurs, the entirc load-deflection
history can be tr:aced until a failure in the‘ fiber direction occurs or until all
dlayets yield, at which point thle associated applied load is defined as the failure
load. An illustration of the application of this approach :'Es presented in Fig.

1 where (;a.lcula,ted stress-strain curves for two simple laminates of E-—glass
in epoxy are shown. ‘For more general laminate c\oﬁfiéurations there will be a
greater number of straight line sections in the stress-strain curve.

. \ .

For th;se applications where only the limiting stress levels - and not the

entire stress-strain curve - are required, a simpler approach to the de.fi.ni-

tion of failure criteria appears reasonable. This approach is based upon the

concept that the first'departure from elastic behavior is a most significant



point on a composite material stress-strain curve. It is desiret} to keep
actual stress levels éelow this point in a fashion analagous to th:a use of the
yield stress for metal construction. Similarly, at tllx_e ultimate stress level,.
the transverse properties of the individual layers have gener.jilly-;iéteriorated.
Thus this. level can be approximated by using al"netting”.ang.lysis Wit.h the
uniaxial strength properties of the indivi.dual layers. The application of these
principles in the definition of failure criteria is described below. - These
meth'Ods have been incorporated as a subroutine of the SPACE computer

program.

The basic stress strain relations for the laminate are given by;:

N a: H b €
o]
1
f - .
i
= —wmm et ——

1
.
3
H K —
i d K

M/ Lo

Where N, and Mi are the laminate stress and moment resultants, 50i are
5 5

the middle ‘surface strain components, Ki are the curvatures, and 2 b.. s

i
and dijlare the laminate elastic constants obtained by suitable-integration of

B 3 N .
the laminae elastic constants. For definition of laminate strength we desire

to treat the stresses arising from a set of a.pp‘l.ied stress resultants wher the

_curvatures are prevented., Thus we can consider above equation rewritten as:

- S T

eo a ! -a lb N
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et ———
= LS
i
; 1 X
1 1d-ba” \.

M ba



-1, . . .
where a  is the inverse of the matrix a.

For zero curvatures we have

OENRERH

“and
. - (k) - (k) -
A = C,. €.
i ij [e} ]
~ (k) : . th
where 0 . are the stress components in the k layer referred to the

laminate axes.

Ei.(k) are the elastic moduli of the same layer referred to the same axes.

B

(k)

From these equations we may find the stresses, 0‘i , referred to the lamina
principal axes from:

o-fk) = T, (Bk) &(k)' no sum on k
i 1 J

where T is the transformation matrix for rotation of coordinate axes.
B is the angle from larninate principal axes to lamina principal axes.

: k
To evaluate laminate strength, the stress components 0  are evaluated for a
laminate having its laminae thicknesses and the total load normalized. Thus,
the total thickness is unity and the load vector for axial load, for example, is

(1, 0, 0). With the stress components known, ‘and the maximum strengths,

O‘iék) defined for each of the stress components, (as in Refs. 3, 4, and 5)
the ratios . (k)
iu
(k) -
o,
iu



are formed. The lowest ratio of this set of 3n quantities (fqi' an n layer

laminate) is the material yield stress, ‘Gy.

'
»

The same analysis is now repeated for the case where the moduli E2 s
GlZ’ and V21 are set equal to zero for all layérs. Thus only El’ the modulus

* in the fiber direction is non-zero and we have (for El = vaf),a. "netting*'
analysis. Here there are only n stress ratios and the lowest one is taken as

the material ultirnate lstr,ess, O'u .

As an application, the yield stress of a symmetric biaxial laminate sub-
'jected to an axial tensile load W;as treated. Tl;e results for th‘ege laminates
are p‘:;'esented in Fig. 2. \.Ea.ch curveizh'epr'esents’ the results generated for o.ne-
of the three stress compo;lents and the lower envelope curve is the design’

yield stress curve.

Lamina Strength

It has/been postulated (Refs. 8 and 9) that the strength of a unidirectional’
fibrous composite, considered as quasi-homogeneous and anisotrc;pic, can be
represented by a surface haiviné the form of Hill's Genera.lized",von Mises'

_‘Yie?!.d Condition (Ref, 4), ﬁamely: ;

3
v '

el N Y 2 . 2 2 -
Zf(Tij) =F (1, 733> +G <733'711> *H (Tu Typ) *2LT, -
c2M7.2 +2NT Y =01
N 31 12.

»oa

where the coefficients F, G, H, L, M, N are parameters characterizing the

state of anisotropy and Tij ‘ate components of the stress tensor referred to the
. PRI A RY1 -



principal axes of anisotropy x x, where the x_ axis is para.j.lel to the

172 %3 1

fibers,* In Ageneral, thfe yie}d condition { 1) can be represented by a surface in
a stress space. A stress point within the yield surface represents a ''safe!!
stress state. Yielding can occur if the stress point is on the yield surface.
Since unidirectional fibrous composite layefs in laminates are thin éompared

with their lateral dimensions, only T and T1 are considered non-zero

117 T2 2
if the x3 axis is along the thickness of the layer. Furthermore, since uni-
directional fibers are randomly located in a composite layer, it can be assumed

to be transversely isotropic. Then the yield condition (1) reduces to

K T 2 T, 2 T 2 T, T

; 2 .

p 11\, [22 \ 1 _ 11222 = - (2)
X X, Z12 Xy

where X1 s X2 and Xl2 are the n(;rmal yield stress in the direction of the
fibers, the normal yield stress in the direction transverse to the fibers and
the yield stress in axial shear ;Of the composite, respectively. These are the
three basic strength characteristics of the unidirectional fibrous composites.
Once these are known, the yielc‘l condition (2) can be employed to .determine
'Whether a combined state of {plane) stress can cau;e fajlure of the composite.

In what follows, effort is made to evaluate the quantities, X X2 and

1°?

. \ .
X12 analytically in terms of the strength and geometry of the constituents,

% Henceforfh, unless otherwige specified, i, j = 1, 2, 3; Summation on
repeated indices is implied.

10



Limit Analysis of Unidirectional Fibrous Composites

The composite mat?ria'.l undexr considera:tion consists of a
relatively soft matri;: material in which stiffer fibers azl-e embedded. Initially
ioot}; materials are assumed to be elastic-perfectlvy plastic and satisfy the‘von‘.
Mises' yield criterion. As shown in Pigure 1, refexired to an orthogonal
Cartesian co-ordinate system; a typical unidirectional fibrous composite is
taken to be a'cylAi‘;lder with rectangular crloss-section. Circular fibers run-
ning from base to base of the specimen are in xl-directic;n. Limit analyses
of sﬁc}i a specimen with various arrangements of both elastic brittle and ela‘stic'
pgrfectly plastic fibers in an elastic-plastic matrix und-er varioujs types of

‘surface loading will be described.

Elastic-plastic Constituents
In this étudy only the "random array' geometryis considered:. circular
fibers of various diameters are randomly located in the specimen. Each of
them can be surrounded entirel§ by a concentric éylinder of mattix materia:l..

A cylinder consisting of a fiber of radius r, and the outer matrix-shell of

f

radius Ty is called a composite cylinder, It is 'aséume;i that a constant

B ,_:r_f_ can be chosen so that the composite cylinders are non-overlapping.
e

o

The = entire specimen can then be considered as an assemblage' of composite
“eylinders and the ramining matrix volume. The lateral boﬁndary of the spe-
cimen may touch or cut through some fibers, In both cases the associated

composite cylinders arée "incomplete'’., Since in practice fiber diameters are

very small compared with ‘the transverse dimensions of the specimen, the

11



total number of fibers in the interior of the specimen is much larger than the

total number of those poss.ibly on the lateral boundary. Hence, the total

'
»

volume of ”incompléte” composite cylinders is much smaller than that of the
"complete" cylinders.

¥V, V1 and V2 denote, respectively, the total volumes of the specimen,

the composite cylinders and the remaining matrix in the specimen, the

following obvious relation holds:

V=V +V, (3)

. In the case where the entire specimen is occupied by cornposite cylinders,

V2 =0, Fo%lgwing Hashin and Rosen (Ref.‘ il) this distribution is called the

"random array't.

The von Mises" yield criterion which the fiber and matrix materials are
assumed to obey has the following form (Ref. 12):

S..S. | ' (4)
__132__13_5 K2

where Sij are components of the stress deviator and k is the yield stress in
simple shear for the fiber material {denoted by k\f) or for the matrix material
(denoted by kb)°

-axis, von

Under the conditions of plane strain perpendicular to the x1

Mises' yield criterion (4) reduces to

2 2 2
<T22 -733> +4m 5 4K (5)

12



where 7‘22 R 733 and 7é3 are E:omponents of the stress tensor in the transverse
plane. .
In order to evalué,te the: three basic strength characteristics (Refs. 8, 9)

of the composite specimen shown in Figure 3, the specimen is subjected to

© axial shear stress ’le, transverse tensile stress T2 and longitudinal tensile
stress Tll’ respectively, The upper and lower bou;ld theorems of limit
analysis of plasticity (Refs.. 13, 14) will be used to obtain bounds for the limit
loads TI; , 1'1;:" and ‘rlji[" vs;hich represents the lamina strengths.
Case 1. Axial shear stress;s le applied on the boundary of the composite,

specimen., ‘ ’

According to the lower bound theorem, a uniform shear stress field le

can be chosen as the statically admissible stress field. Since T can nowhere

12

violate the yield condition (4) for both matrix and fibers, it follows that a .

lower bound for the limit load Tlg" is

!
(leL >L =5
For upper bound construction, a kinematically admissible velocity field
is chosen as follows:
(d) In VZ (and thus also on the boundary of the composite cylinders) and

on the entire lateral boundary of the specimen,

uy 0

u, = Y1 3} (6)
o

U3

where Y1 is a positive number,

13



(b) In any composite cylinder, referred to a local cylindrical

“polar coordinate system, %

u =Y. cos ©
= ]
ur Yl xl cos for 0=sr1 < rf
ug -lel sin 8
2
_ Ylﬁ r 2
b
5 (1- — r cos ©
1-8 r .
Y1 Xl cos 6 for T S Ts=Ty

The velocity field in any ''incomplete' composite cylinder is defined by
solving similar elasti;: aisplacement boun;iary value-problems for the
"incomplete'' composite cylinder., However, since the volume of the 'in-
complete' composite cylinder is small, the difference between their actual
contribution to the dissipation function and that obtained by treating all
cylinders as ""complete' is negligible. This approximation is impliediin

the subsequent analysis wherever a similar situation arises.
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The velocity field {7} 1;1 a composite cylinder is the elastic displacement
solution to the boundary value. problem with the bounda;cy condition (6) pre-
scribed. The prob{;m is the same as that which was formula.te‘d by Hashin
and Rosen (Ref. 11) with the modification that f'or [ =T, the velocity field
is associated wiﬂ"x rigid body motion.

'With‘ythis velocity fie]:d constructed for the entire specimen, 'the'dissipa-
tion density function and the rate of exte‘r;lal work done can be obtained to

yield an upper bound for Tl;" (Ref. 5).

=) ’ 1 27 ) i
<T—12> LS 1 j J R <1+ §i>+ 2 Ei cos 8d BdR (&)
S 7(1-8%) Y\ r* R

B )

The above expression is for '"random afra.y“ in which V2 = 0 and the fiber

® 2
volume fraction v, = B,

The integral in (7) is"integrated numerically for different fiber-volume

. L .
T
fractions. The result is shown in Figure 4 where ( 12 ) v _in (8) is plotted

2 R .
as a function of Vf(0'< ve < 1, v, = B"). Note that particularly in Figure 4,

ao(lz )u b

Fr_om the above result, it is concluded that XlZ is at most about '27% above

and at least the same as the yield stress in shear for the matrix.’

'15'



Case 2. Transverse tensile stresses TZZ applied on the boundary of the
lcomposite specimen.
#
For lower bound construction, a uniform tensile sgress T22 throughout the
specimen is chosen as a statically admissible stress field. Since the von

Mises' yield condition (4) can nowhere be violated in the specimen, the lower

bound associated with the constructed statically admissible stress field is

<E;>L=J;H° - | ) “

‘For upper bound construction, a kinematically admissible velocity field is
chosen as follows:

(a) In VZ (and thus also on the boundazl'y of the composite cylinders) and

on the boundary of the specimen,

u1 0
AW
o =N _z2x {10)
z
g "V %
z

where Y, is any positive number,
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(b} In any composite cylinder, referred to the local coordinate system,

0
) 2 4 2 2 2,2 2
gl L |844, Xz’L3X3+A el ¥3x5) a4 T b - x
| %= P " 7
1,
2 < er r : 2r
fforr, sr-r
" 2 4.2 2 .2, 2. 2 5777
A _2/_2_X3[‘;1+A 322 +x3 +a, e (3%, - %) +A, re (ex, 4 %)
5 L 3 7 (11)
* 2r
.f -
f 0 3\
Y. x, + 3x
= ~2£ X2 B1+B2 2
2r .
< ' > for 0 =1 - Tf
L
Y2 x,B B, 2%
2 2
2r
. f J
where
. ’ 2‘
A= (l: {4(1-1\)(1%})154-3(1-7\)(1+n)6Z +»(~l—;—n~) }
. B .
1 2, 22
A, = e {4 (1-n) (14nm) (1-87) ﬁ}
_ 1 (1+'n)
a= 1 {(lm[(lmﬂ * 53 ]}
1 )]s
ERE: {4 (=n) [-2n+ (um) (1 =SE }
131:.(1_: fg (ln)B-é(l 1) 8% + 2(14m)
. )\ I
1 2, .2
B-z_ o {8 (-n) B* (1-8 )}
A 2
and G = (1”84 402om) (1) B% 6 (1om) (14m) B24 4 (1om (15 + )
. B
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4 The velocity field (11) in a composite cylinder is the incompressible

-elastic displacement solution to the boundary value problem with the boundary
) ) ; .

"’

‘cc;:diticn (10) presc'ribéé. The .problém wag formulated ?oy' Hashin and Resen
(Ref. il) i1;1 evalﬁating the effective élane strain shear modulus of elastic
fibezj-reinforced composites. The constant ’r.]in (11) considered as the displace-
ment solution to the elastic problem is the ratio of the elastic shear moc:luli
of the fiber and matrix materials. Hovvev'er,. it can be considered as mer-ely
a I;arameter when (11) i‘s used.as a kinematically admissible velocity.

.For. the case of the "random array', an application of the upper theorem
gives an upper bound

22 )u_ 't 1+, (12)

e 8 . 4 2z E2LM)- 2 2
- L ] 8(k-m) BT-6 (1-m) BT+ 2+ 12(1-m) (1-B) R-
I, =2 f R B ‘ «
1 - dr
c
. (o]
and ) !
L1 12w R 7 4
2 7 / C &, (M, B, R +8,(, B,R) cos § "d8dR
B Yo ’ . .
in which . . \

. 2
: , 2 :
8,(n,8R) = {4 (emrny 8% <3 (1-m) (aem) 8%+ L2 4 g1nyemi-gY) R }

' 28 o IRV
+ (1_-12 g {- 3_2_ [_(?*;n) +(1-n) BZJ * 282]:—2n+(1+n)(-1+ —16} } A
R R B B
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8,(n.8,R) = 2 {4(1—n)(1+n)~54-3(1-n)(1+n) 8% + “”‘) (L) (1) (1-8%)R 2}
. - 8

4 . Ty
{(1—2) ) - _3__2_ [(1 nl. (1-m) B }+ 28% [—'Zﬂ+(1+ﬂ)(1+ i{, )]}
R r® L g? - 8

Vfo

and BZ =

For any finite kf/k and for N = .« , (12) becomes

b
L : N N
T. . 1 27 .
<22 >V = 2 =3 Rﬁl (B, R} +¥, (B,R) cos 8 dOAR  (13) "
2k, 7(1 - 8) .
N ) B o
where . .2 2 . s ! N
oy . B 4, .2 3 g2, B (4B +B"+1) 252
‘k‘l(B,R) = ;1— {(B +_B +1)‘"'i (B “);z:' +[—-————2——-—+‘3§ R }
and ) A

2 2 ] 4. o2 2 2
YZ(B,R)=ZE—2[(B4+ B2+ 1) 2 (8%4n) %]'[‘J‘PM—.—*ZB t,38 R }
R R L

The right hand side of expression (13) was obtained in Ref, 5-fox
an upper bound of the limit load {normalized with respect to kb):for transversé
. .
shear stresses applied on composites Teinforced with rigid fibers, In Figure

L .
5, (TZZ }v ‘is plotted as a function of v, according to (13). It is a monotonically

f
2 Ly L
increasing function of Ve with il'nlo (TZZ ) U 21 and ]jm—q (TZZ ) U =é .,
£ 2 kb - f -2 kb
On the other hand, for any finite 1, 7‘2; u can be plotted as a function of
Zkb (r, 2
by evaluatmg numerically I and IZ in {12), For example, for n= 100, '22'U

2k,



. i I
is also a monoto‘nically increasing function of vf (i:m-'() (TZZ ) Uz 7 and
. ( Lz : £ I
lim 7‘22 U kf , " -
vl = —— |} ¥, which is shown in Figure 3, with f =10, Itis
f 2k, kb " —
b ’/ - kb

observeci that for fiber volume fractions smaller than about 75%, the upper

bound for the limit load TZ.’? is higher that for N~ » but.for higher fiber volume

fraction, the opposite is true. Therefore, for any fiber volume fraction between
0 and 1, the lower value of the bounds obtained from 1= 100 and n-e will give a
better estimate of TZZI.-’ and it is shown in Figure 5 in solid line as a function of

Vg o .
It is interesting to note that for n= 1, (12) reduces to the following
* '
simple form

,' ‘(’rL‘ k
_22_)=1+vf_£-1 (14)
Zkb kb .

which is commonly known as the 'rule of mixtures'. From Figul‘e 3, it is
. —— e

seen that the straight line represented by (14) will be higher than the chosen

L . .
curve for (TZZ )U for O <vf <i. Therefore, it is concluded that the "rule of
- 'thb B .

mixtures to be used in'this case would overestimate the composite strefxgth.

L
(T ) R :
In Figure 5, \22 / L. obtained from (9) is also shown. The difference
. o Zkb

between the upper and lower bounds for Ve -0 is due to the fact that in the

upper bound construction, a plane strain velocity field is used as a2 kinemati-

cally admissible velocity field. .

Case 3. Longitndinal tensile stresses T

11 applied on the boundary of the

composite speciren.,

20



The study of longitudinal étrength of unidirectional fibrous composites i§

extensive. Various models and failure mechanisms have been proposed in
. ¥ v ) .
the literature. Here, the yield strength in axial tension is obtained by the

¥
‘

. construction of very simple velocity and stress fields, for composites having
elastic-plastic fibers of uniform strength. .

For upper bound construction, in the entire region of the composite spe~

cimen, a kinematically admiissible velocity field is chosen as

uy . ‘eoxl

. e

u .= ° x,.

2 5 2.
W e
u -

3 T2 x

5= 3

An application of the upper bound theorem gives

s L —
(1“)— 7‘fvf+'rbvV _ (15)_
or (1- L> .
__l_].“. ='l-}:'v.'fl-r——f-- 1
ES b

where 7% and Tb are the ﬁeld stresses in tension fon the fiber and matrix,

re‘spectwel}r and vy = 1 =V - )
Relation {15) is known as the '"rule of mixtures'' for the predication of the
. VAR
strez{gth of a composite, If Tf and Tb are given, (1'11 ) U is a linear function of
d A -
b

fiber-volume fraction Vi
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For lower bound construction, if the applied stress 7 i is‘assurned to be
uniformly distributed on the boxinda.ry of the composite specimen, then a
lower bound (‘lﬂ") L ;; equ.a.l to -Tb . However, if we assume ‘that the tensile
stress Tll is not uniformly distributed on the boundary surface and we are
only interested in the average stress intensity on the boundary surface that
causes failure, then a higher lower bound can be obtained.. In fact, a statically

admissible stress field can be chosen as follows:

In the region occupied by fibers

‘ . 0 0
T. =
ij .
0 0° © (16)
0 0 o0

b 0 0
T.. =
LY .
0" 0 0 (17)
0 0 0

It is obvious that the stress field exi)ressed in (16} and (17) satisfy the re-

quirements to be statically admissible, B

The average traction corresponding to this stress field is therefore

‘1‘f \f + 'rb vy (18)

R L
which can be taken as (Tll )L .

According to (15) and (18), the upper and lower bounds for ‘rli" coincide.

Therefore, this strength can be determined from the "rule of mixt\.:tres", for

22



- this type of composite, (i. e. elastic~plastic fibers and matrix of uniform
vield strength).

From the above r?e%ult.s, it is observed that obunds for 7'2;" are far apart,
espécially for high volume fractions. Further effort should be made to im-
prove the bounds in order to have a better estim;ate of the limit load. For lower

.bound construction, uniform stress .distribution used as statically admissible
stress fields can only give lower bounds which are the corresponding matrix
yield stresses, In order to obtain higher lower bounds, one has to assume
applied tractions to be non-uniformly distributed on the boundary surface
according to the properties of the fibers and matrix., Equilibrium stres s fields
can then be constructed in equilibrium with thé applied tractions. Then the
lower bound theorem can be applied to obtain higher lower ?soundso To ;iecide

‘ 1':he distribution of the app]:ied tractions on the boundary and to construct an

‘ equilibrium stress field in the body is not at all easy in general. The’'success
in the construction of such a statically admissible stlless field_ for Case 3 is

. due to the simplicity of geometry and loading conditions.

Brittle Fibers
\

In :che previous section, the strength of unidirectional fibrous composites
has 'been evaluated by obtaining bounds for the b\asic streﬁgth cha.ra.ct-erist%cs.
The theory assumes the existence of a continuous failure surface, This hypo-
thesis appears reasonable fc;r compositeé ‘with elastic-perfectly plastic

fibers and matrix such as metal fibers and matrix. However, for contemporax
: P Y

high strength fibers embedded in epoxy resin matrix, this "elastic-perfectly

23



plastic‘mode,l” may seem inadequate. Instead, it éeems more suitable fo

assume elastic-brittle fibers and an elastic-perfectly plastic matrix which

) f
'r

6beys the von Mises' yield criterion. Upper and lower bounds have been ob-
tained for the following types of surface loadings:

1, Tractions equivalent to a uniform shear stress 7., applied on the en-

12

tire’boundary surface of the specimen.
2,. Tractions equivalent to a uniform shear stress ;7'23 appliéd on the
entire boundary surface under the conditions of plane strain.

3. ' Tractions equivalent to uniform uniaxial tension applied on the

T2
entire boundary surface under the conditions of plane strain,

and T

4, Tractions equivalent to biaxial uniform tension 7'22 33

(722 +# 733) applied on the entire boundary surface under the conditions
of plane strain,

5. Tractions equivalent to combined .in-plane shear T

12 and tr'a.nsverse

tension '1;22 (Tli = ® =0 ) applied on the entire boundary surface.

Since the method of analysis is similar to what has beeﬁ presented in the

preceeding pa.é’es in obtaining bounds for the basic str eng'th characteristics, the
3

details of analysis will be presented in Appehdix A, Howevér, results are

summarized as follows:

L (Tl;)L:k_b.

<TL - 1 27 e =
12 U.—._-l—--- §. g Rﬁ/ﬂé——)+2 E—cose.c’iedR
ky 7 (1-8%) ] ) R‘L~ . ®? b
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. L
T ) .
for the ''random array'' geomstry. - The above expression for ( 12 JU  is the

Ky

. , >
same as (8) which is shown in Figure 4 as a function of \ (0 < f <1, Ve = 87)

since the same velocity is used here.
For arbitrary geometry of arrangement of fibers, (TIZ )U =1+ <7T - > v
r b ) ’ o
which is higher than <A12 U given by (8),
L
2. (Tzs >L Y
. L ]
('%3 ) U 2 .

1, 27
s ff V¥ (6, R) + ¥, (B, R) cos 0 a&R
B Yo : -

K T o)
'Wi'lere ) . .
‘ et ([N s 2 2T o 2 27"
‘i’l(B,R)= —Z ’ -Z (8 )= |t AEBHB + 1), 5878
) R R 2 .
2nd L

. T 2 4 '
¥, (8, R)==5 84884 1 -g(sﬁ, 1)B _1 -.(_%?_iz_sz_"'—-l_)_~+3BZRZ,

<

o

. . e s L R Dilens vl osdl
for the "random array'' geometry. The above expression for (T ?) is the
. PlAL e . Lo, T The upper piwad c}'pres:,l%b:‘.z, .y e
same as (13) which is plotted inFigure 5.as gigp_g‘:‘ign:'gg Yfz'Y{iﬂl sirengla of the
L 3l .avoliad. Chis s duae w ke fdci thai r.gd Fudy motica ol Liwis
m (T lim -
& 23 /U - 23 /U
Y ——L JUs1 . and g C_L 00 e oo
s ROl :';kgu; 3 L€ 2 AR RIS L K E TNl CR, Yegiolos

ket o Fibens 2l T S e
since the velocifty field chosen here can be obtained from (10) and (11) through

an orthogonal transformation together with the limiting process of N~ «
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4 '(Tzéd)rj -<T3§:>U = 2.

! ’ L
and ‘ ‘ (le b

= 2 {19)
R L4 o
3 .
for =0,
. For the case of the ""random array' geometry,
L
T22.)u _ min 3 2
b T a0 7
2
. L .
and (2l _ min %%
K fof 17
+ow
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where

. 1 27 R
I = _L_2_3_ R JO (@B RITG,{w, B, R) cos B+ (B, R) cos 2 8
m(1-87)" - . 8
. B °
2 2
Qo (w, B k) = —B- (6 + 85+ 1) -—-(s +1)-_(52+1)_J
R
!1 84
+[3§2Rz_(43 +8 +1) 2 (1-8%) ( 4>
R
o L2
Q, (w, B, R)—Zw(l-B) -;

2 2 4
and 0, (6, R) =82 [(B4+BZ+1)_-§-(52+1)E_ [352R2_M

Numerical calculation is performed to obtain (TZIZ_J)U and (TIIZJ>U from
(20) for different values of B and 0. The results are summarized in Figure 6
in which B‘Z = 0.8 is the highest fiber volume fraction shown. The dotted line

s s L L
represents (19) which gives the lower bound for('rzz\land<1-12>for any B.
\
A)

It is worth mentioning that for this model of elastic-brittle fibers embedded
. in elastic-perfectly plastic matrix, in the upper bound expressions, only the
matrix strength and fiber -volume fraction appear — the brittle strength of the
fibers is not involved. This is due to the fact that rigid body motion of fibers is
always incorporated into the kinematically admissible fields. Hence, regions
occupied by fibers in the composite body contribute ‘nothing to the dissipation

fanction. The result is reasonable since in reality, elastic moduli and brittle

streﬁgth of fibers are much higher than the corresponding elastic moduli and
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strength of the matrix material. On the other hand, the longitudinal strength
along fiber-direction of fibrous f:omposites under tension or compression cannot
‘be obtained by limit analy;is of plasticity because ‘of the presence of the high
modulus, high strength elastic -brittle fibers. Instead, a statistical failure
theory was established for tensile strength [3] and a fiber-buckling model was
post;ulated for compressive stxjength of ﬁﬁrous composites‘ [4:] and [15], These failure
mechanisms are based on experimental observation. Furthermore, as men-’
tioned previously, for this mathematical model of composite material, the
existence of a smooth yield surface that governs the strength of the material is
still an open question. Based on experimental investigation, the failure mech-
anisms for individuai cases seem to be different a'nd independent of one another.
Accordingly, the approach to the detgrrriination of the strength criterion for uni-
directional fiber-reinforced composites as well as fibrous composite laminates
is as described earlier. Instead of using a continuous yield surface, 21l possible
fajlure modes are considered. To determine which one is dominant for a Parti-

cular type gf loading condition can sometimes become a tedious task especially
for fibrous laminates under various types of design loading. .Howeve;', this
approach has the advantage that the entire load-deflection history can be traced
until completevfailure occurs. With modern high speeti' digital computers avail -
able, a systematic strength analysis can be progran;med to obtain accurate
results.

For certain composites, it is possible to utilize, ds an altez‘-nat‘e approach,
the application of limit ar%alysis methods to the laminate as a whole. This is

treated in the following section.
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Application to Laminates

It is interesting to note that the kinematically admissible velocity fields °

P c.
constructed to evaluate the upper bound for the three basic scrength characteris-

tics can be used to obtain upper bounds of limit loads for in -plane loading applied

on laminates.

'I.‘o demonstrate the method, consider a laminate composed of uni-
directional fibrous laminae subjected to in-plane shear stress Ti2° The
problem is to find an ué.per bound for the limit load ’rL . A typir.;al constituting
layer, the kth layer, in which fibers are all running in ;{l(k) direction, is shown
in Figure 7. Depending on the orientation of fibers in the layer, the principal
axes }_cl(k) ;—cz(k) x, can be deﬁnedAb)‘r an a.n‘gle o(k) measured from the lami-

nate axes x_X_X_.
<123 . . =

For upper bound construction, a kinematically admissible velocity field
is constructed in the follov;'ing manner:

The velocity field s
e v y fi (lJ.l _HZ 2

of each layer,v referred to X, X, X, axes. In the KB layer referred to its prin-

s H3) = (0, ¥, x;, 0) is assignedinV

» cipal axes :El(k) iz(k) %, , the above velocity field is transformed into the
H)

following form:

El(k) Yy sin otk cos oK) xl(k) =\Yl sin2 ok %, (k)

Ez(k) = Yy cosz-(k) >.;l<k‘) = Y; sin o) cos 9.(k) xz(k) (1)
- (k) .

_1;13 , ‘ 0.

The right hand side of equation (21) can be decomposed into four parts

so that
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(k)

—k) _ 5 (K T (k) +0 +0 (k)
B BN,
where
0
E-lu;) _ v, cos? o, 0
' 0
0
L )Tl
p.z T sin cos xz_
-+
| (k) (k) _ (k)
— sin 6 cos 0 X4
Y, sin g (k) cos G.(k) x](k)
S . (T ek ()
33 = 5 in . 2
Yy ) ok, (X
5 sin © cos 6 'x3
and ' y |
' .2 a(k) (k)
-Yl sin .9 x,
= (k) _ B
v = 0
L4
0

Except for multiplicate factors and reference coordinate system, .

— (k) - (k) s (k) _ . . .
Uy Uy and Uy are the same as those velgczty fields constructed
-+ -5 -+ ’

in Vz for the three different cases of loading in the proceding section,

Furthermore.
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v, sin? o0y 0 » o sind o (00
.34(105 0 T O v, sin® e(k)vxlfk) + Yljinz o) xl(k) " 23).

0 ) 0 )

where the first .part of the decompositidn has the same form as '_\;l(k) while the

-

second part represents a rigid body motion of V, as a whole,

2

The velocity field chosen in Vl is also composed of four parts: The first

. = (k s
part is due to ul( ), which is the same as (7) with the modification that Yl
Y .

.2 -
cos G(k). The second part is due to u (k)
: s . -+
modification that YZ is now replaced by Yy sin e(k) cos e(k). The third part

(k) (k)

which is exactly the same as ug in VZ., The fourth part is due
-

which can be obtained in the same way as in Case 1 in the preceding sec~

which is the same as {11) with the

. d -
is due tlo u3
~- (K
tou (k)
o
tion. However, a moment's reflection reveals that the strain rate associated .

with ;4(k) 2 8 (k)

if Y. cos
5 1

is replaced by --Yl si1:12 B(k) since the additional rigid
body motion contributes hothing to the value of the strain rate. Now, after
the kinematically admissible velocity field is con;tructed as described above,
the as soc_iatedv;tra.in‘ rate and dissipation density function can l;e calculated
“;ithout difficulty. M;)reover, the rate of external w’ork done can also be cal-
culated so that an upper bound for 7

L : . R
12 can be o_b(tamed.

As an example, consider a laminate cognpqs‘ed of two unidirectional

. . 2 T
fibrous composite layers of equal thickness with 9(1~) =0 and 6( ) -5

In this simple geometry of lamination, the kinematically admissible
velocity field constructed above reduces to a very simple form.,

For lé.ye:r 1, the velocity field (21) reduces to,
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http:replaced.by

+Hy

;2(1) = (1) ;1(1) iV, (24)
= (1}, . ’

Mg 0

For layer 2, the velocity field (21) reduces to

= (2) = (2}

Hy ¥

EZ.(Z) © o= 0 d in V, {25)
= (2)

Mg Y

Then, following the principles described above, it is easy to obtain the velocity
fields and the associated.strain rate fields for both layers., After some mani-

pulation, it turns out that

v

(Tlg)Uu . 1 [ g* B
* = 5 f f R (1+T+27 cos 6 d6 dr
b T(1-B7)y B 0 R R

for the "random array" geometry.

The above equation is exactly (8), which means that the uppe‘r bound
(’rlg) is not hi.gh‘er for this type of cross-ply laminates than for the uni-
directional .fibrous composite.,

Similarly,' it is easy to show that the threg types of velocity fields con~

structed in the preceding section can be used to construct upper bounds for

limit loads for laminates subjected to any in-plane stresses.
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Tensile Streﬁgth

The high-strengt,}}, high modulus fibers whi'ch are of interest for
use in composite m.ateria.ls\:nafe generally brittle, having tensile ;strengths
that must be ch;:lracgteriz.ed statistically. Any theory for the tensile strength
of composites containing su_ch fibers must take into account t}.xe dispersion in
their failure stress levels i1:1 order to have any relevance,

Parratt noted the Qispersion in fiber .strength and suggested that
.failure of a fibrous composite subjected to tensile load occurs when the
fibers have broken up into lengths so short that any increase in applied load
canm;t be transmitted ;co thf? fibers because the limit of interface or matrix
shear has been reached. . . : h

A theory has been preser;ted (3)for the failure stress of composﬁtes
containipg continuous, uniaxially-oriented, brittle fibers in a ductile matrix
loaded parallel to the fiber direction. This theory predicts that due to the’
distribution of fiaws or imperfecti'ons in the fibers there occursi a series of
randomly-distributed fiber fractures as the a.ppli'éd stress level is incree;sed.

It is argued that a portion of the broken fiber in the vicinity of the
fracture is ineffective in resisting ‘the appl‘iec}\load; As suming‘ that the stress
in a broken fiber is uniformly distributed amox{g the unbroken fibers in the’

. cross-section and th‘at this overstress acts over a length equal to the "in-

effective' length, it is predicted that failure occurs when a weakened cross-

section cannot sustain an increase in load. In effect, the theory pre-
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dicté that the composi‘cé has a strength equal to that of a bundle of fil;ers
whose length is the "inegffective" length. '

The present study considers fibers having a statistical strength dis-
tribution resulting in fractures at various stress levels as the-applied load
increases.. It is assumed that the stress in the broken fiber is distributed
unevenly to the other fibers in the cross—se.ction which has a length equal to
the ineffective length. As a f.irst approxirnation the effect of this overstress
is presumed to affect c;nly those fibers adja;cent to a break. Failure is as~
sumed to occur due to an increasing probability of fracture in the fi.bers ad-

jacent to a prior break.

Description of the Model
The model consists of a t.wo-dimensior;al c'omposite of length L
consisting of a ductile matrix in which are imbeddec'i N continuous brittle
fibers whose orientation is parallel to the applied tensile load. The fibers
_are considered to-be composed of layers of length 8. The total number of
layers being M = L/8. (See Figure 8, )
+ The quantity'é represents some 1engtb‘ over w}'aic.:h the stress is per-
turbed in the area of a fracture. It is variously referred to as the ineffec-
tive length ox twice the trénsfer length and sevei’al‘_for'mulae have been.proposed

for its evaluation. Two of the definitions(3]}, (17)a‘re based on an elastic shear=

lag type of analysis, The axial stress in a broken fiber is found to be
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crf(x) = g, {1+ sinh Nx - cosh nx]A &)

where ,
nz . Z_C'i v, L/2 .
Ef 1-v 1z T 2
f £
Ef = Young's modulus of fi‘ber.
Gb = Shear modulus of binder (matrix)
rf = Fiber r.a\tdi't‘ls
v = Volum; fric‘tion of fibers
x = Distrance from epd of broken fiber
00 = Extensio(z.ma‘mll stress in the fiber at a large-distance from the,
fiber end.

s

It should be noted that in Reference 3 the factor of 2 in the expres-

sion for T was incorrectly omitted. The first author .defines § :as the value

of x for ,Which the stress in the fiber has reached 90% of 0 , the stress at a

long distance from the fiber break. On the other hand, Friedman defines the

ineffective length by means of an approximate step-function stress distri-

bution which has the same average stress as the distribution of Equation 1.

\

Furthermore, this author includes the ineffective portion on both sides of

the break whereas the first definition uses only one side.

The expressions for the two ineffective lengths discussed above

are, respectively
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5_ . E 1-v /2 (2)
- S s
4, s 2 G 1/2
2 : b v
f .
&) E 1-v 1/2 .
FE (L £ - £ (3)
- G, 2
’ 2 b Vf1/

If the shear stress between the matrix and fiber'is assumed to be
constant, as in the case of plastic flow or frictional shear stress due to inter-
face failure, the fiber tensile stress becomes constant at a finite distance

o :

from the fiber end. This distance is called the transfer length Lt by some

authors and is given by the expression

where T is the.: (constant) plastic shear stress of the matrix, or, if there is .
interface fa:'flure:, t};e frictional force betweeén the matrix and fiber!

The ineffective length can also be determined expe'rimenta-lly by a
photoelastic exainiriation of the stress patterns in the vic‘fur.xity of a fiber break.

.

In this investigation the experimentally determined ineffective length is used
. . \ '
where available. -
Statistical Analysis of the Model . A

It is assurned that the strength of the population of fiber elements of

length & can be characterized by a cumulative distribution function F(g). That
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is, the probability that an arbitrary element has a failure stress level less
than, or equalto © ];.s (o). |
The expected number of elements in the composite that will fail under

fiber stress o is

E=MNF(o) ..., (4)

This expression inclg:lies the possibility of further fractures of adjacent
fibers. If the composite does not fail, the stress in the broken fibers is dis-
tributed to the other fibers in the cross-section in a complex manner. As a
first approximatiori, Hedgepeth(ls)used a shear lag a;nalysis to determine the
average stresses in fibers adjacent to an ar'bitrary number of broken fibers.

He considers an infinite two-dimensional array of fibers subjected to

tensile load parallel to the fiber direction which is uniform at a great dis-

f

tance from the fracture area. The ratio of stress in the two fibers adjacent

to a run of r broken fibers to the uniform applied stress at infinity is, for a
static stress distribution

K =
Ey

46280 —-=2 (274+2)
305070 === {2141) ’ (5)

Hedgepeth calls Kr a stress-concentration,factor,( but in this paper it will be
referred to as an overstress-factor so that it will not be confused with stress
concentration factors found by an "exact" analysis of the stress distribution.

. For the case where r fibers break simultaneously the author demon-

strated that the ratio of the maximum dynamic stress to the static stress in
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fthe fibers adjacent to the break increases from 1.15 for r = 1to a limit of
N :

ps A b
1.27. The values for ,r = 2"and r = 3 are 1.19 and 1, 20 respectively.

Y In the present paper it— is ’a-ssumed that t‘he overstress in two fibers ad-
:jacent to the broken ones exists over the entiré ineffective length.. Therefore,
the prqbability that an element adjacent to v broken elements. will fail is,
approximately, the probability that its strength lies between 0 and KTG .

This probability is equal to
.F(K 0} - F(o) (6}

This approximation is justified, ;.s will be shown later, by the fact'that com- -
‘posite failure occurs for small vaiues of ¥(0) and therefore the probability of
'ha.ving adjacent fractures becaus§ both fibers have strength-less than 0, which
' probability is proporti.ona.l to F(O‘)%, and the probability of interaction of frac-

ture groups is relatively small.

Given that a single element is broken the probability that one of the two

.

adjacent fibers will break is

Py =2 [F(chr) - F(o)] -2 [F(,Klo) -(F(c)] 7)

Tl-'xe.proba.'bility that both adjacent fibers will break s-imultaneously is
A

Py [F(Klo) -F(o)]2 B (8)

-It should be noted that each of these expressions does not exclude the possi-

bility of further fractures.
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it is now assumed that only the two fibers imme'di;ately adjacent to a break
are s‘ubjected 1:0. an gyerstress and that a.li of the remaining fibers in the cross-
section have a str.e\ss level equal to the average stress 0. If one of the fibers
adjacent to a single fracture breaks the fibers adjacent to thg two broken
fibers are subjected to a stress level KZC. One of these overstressed fibers
was previously exposed to a stress level ~Ki(i while the other saw only the
average stress 0. The probability that one of the two fibers will break is

Pyyp ° [F(ch) - F(ch)] + [F(KZO') - F(U)] (9)

wl

-2 [F(ch) - F(Klo)] [Fx,0) - F(U)] .

The probé.bility that both fibers will break'simultaneously is

Py = [F(ch) - F(ch)] [F(Kzfr) - F(c)] (10)

If both fibers adjacent to an initial fracture break there will be thre;e-
broken fibers in a row and therefore the two fibers adjacent to t.his group,
which were previously at a stress level ¢, will be sub:je‘cted to a stress K_0.
Agé.in it is possible for-one or two of these fibers to break, and so on.

By now the process and Compl_exﬁty of the problem should be evident so .
that the expressions for further fracture probabilitie's‘ are prese:nted without

\

. discussion. Note that that there are two paths by which a state of three

broken fibers can be reached from a single break; A} by the simultaneous

39



breaking of both fibers‘adjacent to the initial break, B) by the succesEs_ive
breaking of tw;lo fibers. . t

The expression pi/jz represents the probability o;f having i fibcf.rs
broken given that j are already broken. The letter z represents the particular
path if there ‘is mozre than one. The letters A and B refer to the paths des-

cribed above.

Pysa = 2 [F(x,0) - Flo)] -2 [F(K3c) - F(a):lz

P5/3a " [Fix,0) - F(o).|? © (a-q)

Py/3p T [F(K3") - F(K20>] + [F(K3cfi - F(o)] -

2 [F(K30) - F(KZG)] [F(K3c) - F(o)]

Ps/3p [F£K3o) - F(Kzg)] [Fix,0) - Fo)].

Probability of Cumulative Fractures

Each of the E1 fracture sites distributed throughout the composite is a
nucleus .for further fiber breaks because of the overstress in adjacent fibers.

The probability that an element will break followed by the fracture of at least

one adjacent element is

p

2 = F{o) (pz/1 + 93/1)» (12)A

Therefore, for the composite as a whole the expected number of groups of

two or more broken fibers is
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M({N-1)p

E, =—5—, . (13)

and the associated pxobability of having at least one such group is

ooyl (M(N-2)
PZ = 1-Q1 5 pz) {(14)

where the factors of 1/2 are introduced to account for the independence of or-
der of two fractures.

The probability that an element will fracture followed by the breaking of
at least two other fibe;-s in a row is equal to the probability of at least two
fractures less the probability that two will break without further fractures

occurring. This probability is
Py =P, = FlO) oy, (1-py,,-p, ) (15)

The probability of having at least one group with three or more frac-

tures is
_ 1 MN-2) '
Py = 1-(1- 2 p3) (16)
and the expected number of such events is
E, = L M(N-2) (17)
3-2P3
The analogous expressions for groups of four or more {ractures is
= -Flo - - 8
Py =Py FIO) [y opyy 5)) +2 10y (1P )] 18)
1 M (N-3)
2l (le—
P, (1-5p,) (19)
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E M(N-3) o

=L
453 P 4

*
Although it has not been possible to obtain the general expression for the

probability of a group containing an’arbitrary number of bro:k.en elements it is
‘contended that tllﬁs expression is only of academic interest. It is argued that
once the probability of secondary bree;ks (i. e. the p.roba.bility of groups con-
taining two. or 'n-mre fr_actilres') becomés sinéiﬁcan‘c failure of the composite

N

can be expected. More will be said of this point later on.

Comparison with Experim.ents

The ultimate tést of any theory is its agreement with experimental re-
sults. The present theory has been compareci with the data obtained in Refer-
ences 17and 4 for glass-epoxy composites. -

The tests reported in Reference 4 were run on composites consisting of a
single layer of 3 1/2 mil E-glass fibers embedded in two resin systems (B and
- ;
C). Tests were run to determine the strengths of the fibers for several gage

lengths. As in Reference 4, it is assumed that the cumulative distribution

_function can be characterized sufficiently well by the Weibull distribution,

g

. —
F(G)‘:l-e,a o (21)

where L is the length of the fibers and & and B are parameters that character-
ize the distribution., Using this expression the variation of‘mean fiber strength’

with gage length is

c'rL = (aL)

w}—

T (1+1/8). (22)
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The fiber parame’cerg are found to be
B
8=9.40, a ® = 181. 5 ksi,

- From the photographs of the specimens under polarized light the inef-
fective lengths for series B and C were found to be 0,031" and 0. ngé", res-
pectively.

. Using this data the expected number of single broken elements were
calculated from Equation 4, and are represented by the dashed lines in
Figures 9 and 10, T'he number of fractures observed experimentally in the
various specimens in the two test ser::Les are presented for comparison. It can
be seen that for low stress levels there are generally more fractures than the
theory predicts.. However, the behavior is most important at the higher stress
levels in the area of failure loads, and here agreement is fairly good consider-
ing the statistical spread in fiber properties andthe experimental uncertainties
involved. ' The relatively large number of fractures™at low stress levels is
.possibly a result of damage to the fibers during fabrica.tion of the specimens
since glass is notoriously sensitive to handling as far as strength.is concerned.
However, since the observed fractures approach the expected number of higher
stress levels they are of little imp'ortan?e. If, on the other hand, failure .
occurs without a significant accumulation of frac\:tures the breaks at low stress
level may be of extreme importance. More will be said of this later on.

The quantities of El' E

2 E3 and E4 {where Ei represents the expected

number of groups of fractures having at least i broken fibers) obtained in
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Equations 4, 13, 17 and 20 are plotted for test series B and C in Figures 11 and
:'12. It can be seen that t}}qe expected number of multipl.e fracture groups (EZ,

E3 and E4) rise sharply in the observed range of composite failure. .The fail-
ure predictions of Reference 3 are presented for comparison.

In order to assess the validity of the expressions for multiple frac.tures
the number of groups of r;xultiple fractures were counted o.n films of the tests.
The results are plotted in Figures 13 and 14. The dashed curves in the figures
.a.re c'alm‘lla.ted values of EZ. It can be seen that, in general, multiple breaks
begin to appear in the stress range predicted by the theory. Furthermore,
the composites fail withoil't the occurrence of a large number of mulltiple—
break groups compared to the number of isolated singlé fractures.

There are several factors that could account for this pilenomer;on. One
possibility is illustrated by Figure 15, This graph shows the relative behavior
of the sum pZ/l + p3/1 for static and dynamic overstress factors. It will be
recalled that this sum represents the probability of the'fracturin‘g“o’f at Ie‘é,s't‘;
one Sleiasi SHiEcbal A A TR e P R R g

. R s
thu fivet fioer ITACLAYE iz founs

the dynamic curve is markedly h;gher than the static curve indicating that

-.there is a definite possibil,-itty of a failure crack beiné caused by the dynamic
. ¢

e‘ffects of fiber fracture rather than by cumulative static probability of

failure. It should also be noted that the use of ove'rstress—factors is just an

approximation and that the actual stress concentrations caused by multiple

breaks may ‘be, and probably are, much more severe than those of single

fractures. {(As an analbgy, the stress concentration factor for an’ellipse

44



increases with the aspect ratio) Whatever the mechanism, experimental ob-

servations seem to indicate that multiple breaks tend to occur shortly before

~composite failure.

1

The present theory was also compared with two tests on continuous

. : (17) .
glass fibers in epoxy run by Friedman . The Weibull parameters for the

strength distribution of fibers used are

L
=40, o P=137.1.

‘Since B is an inverse measure of dispersion, these fibers had a m{Jch wid_er
spread in failure stress levels than did those of Reference 4, This large disper-

_ sion is reflécted in the wi'd.e spread of the curves of EI’A EZ’ E.3 and E4 pre-

sented in Figure 16 H;)wever, failure in both specimens occurred quite

‘near the stress level for ;/vhich the first multiple fracture is predicted.
Onithe basis of the experimental evidence cited it is proposed that the

failure stress of a .continuous fi't;rou_s composite loaded in tension parallel

to the fibers can be reasonably wéll predictedbe that load for which the first

'multigle fracture is expécted to occur. That is,

MN- =
£, =40 ‘%(o)(pz/1+p3/1) 1., (23)

‘Anai;‘rsis of Non-Clﬂn;nulative‘ Fracture Mode
Although a large number of isolated, fractures are observed in glass-
epoxy composites, ‘this is not the case for other fiber-resin systems such as

boron-epoxy and boron aluminum. For these composites failure-usually
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foccurs catastrophically, without an accumulation of isolated fractures. How-

¥ N
- 1
"y"}ayer. Lenoe( 9)ha_s demonstrated scattered fractures in a boron-aluminum

‘tomposite containing 5% volume fraction of fibers, which is quite small.

ki
i

The absence of a significant number of iéolated fractures seems to indi-
éate‘ that the entire composite is failing at the load at .;;vhich the weakest
f;ber breaks. This would mean that the matrix is actually defrimental since
the stArength of a bundle of fibers, without a matrix, ;vvould be stronge-r‘ It
was, therefore, decided to determine the theoretical value at which a first
fiber fracture is expected-and comparethe results with experimental evidence.

Ciqns'ider a population of fibers of length'L whose strength is character-

ized by the probability density g(c)'. For a sample of N‘.fib'ers fr-om this group

the distribution function for the strength of the weakest fiber has the following °

form

p (9) = Ng(o) [1-G(o)] N-1 . (24)

Assuming a Weibull distribution for G(0) the expected value (mode) for

the first fiber fracture is found to be

L
B-11\B
= [ —=)" . 25
Ue (NLO’. B> (25)
Friedman'  ran two tests on boron-epoxy specimens 2 inches long which

contained about 90 fibers. The Weibull parameters for the fibers were found

to be
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L

B =70, a P =368
The fiber stress levels, at failure for the test specimens were 193 and 215 ksi
The expected value for the first fracture computed from Equation 26 is 171.5
ksi which is about 16% lower than.the average failure stress of the two speci-
mens. ‘On the other hand, the first multiple fracture is predicted (AE2 = 1) to
.occur at 300 ksi while the .theory of Reference 3 predicts a failure stress of
428 ksi. In the last two cases Friedman's definition of ineffective length was
used. ‘
Grinius(zo)a.lso ran tests on boron fibers in an epoxy matrix. " These
specimens were 2.5 inches long ax:ld contained 25 fibers. The Weibull para-
meters for the fibers were found to be

. 1 . -

g =11, o - 433,

Unfortunately only one \indamaged specimen was tes’cec\i. This specimen
failed at 304 ksi fiber stress. The expected value of stress for the first frac-
ture is 296 ksi while the first multiple fracture is predi'cted at 33Q ksi and the
failure stress prgdicted by the theory of Reference 3is 340 ksi. ;[t should be
noted that to obtain the last two values, the defi'_nition of the ineffective length
presented in Reference 3 was used.

From the experimental observation of the absence of cumulative fractures
and the good correlation between the observed failure stress levels and‘

" those predicted for the first fiber break a good case can be made for the

hypothesis that composites e:&hibiting this type of failure are only as strong
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11;1 tension as their weakest fiber. If this is also the case for the three dimen-
’
s%ional composites, the matrix'must be designed so that it will prevent this type
; . . K
oé failure from occurring. This can possibly be accomplished by using a ductile
matrix or by allowing ﬂ.’lle matrix to partfially debond from a broken fiber.
Conclusions.

A statistical model including the effect§ of stress concentrations for planar
arrays of fibers in a matrix has been presented which provides a good descrip-
tion of corﬂposi'ce behavior up to the failure load. The stress level for which the
first multiple fracture is expected to occur has been proposed as a predicted fail-
ure stress,

The model predicts that the composite itself is a ''brittle" material in that

v -

its strength decreases as the length' or width of the specimen increases, This is

illustrated in Figure 17 where the variation of E_ with length is presented for the

2
composite system used in test series B of Reference 4. This is ir} contrast wi-tﬂ
the theory in that paper which predicts a composite strength' that is independent

of length for large values of M,

Finally, it has been shown that the failure stress level in tests of-three ‘com-
posites th’e;.t did not exhibit cumulativg damage occurred at about the expected value
of stress at which the first fracture was predicted, This failure stress is lower
than that for a bundle of _fiberL'S of the same length and number in&icating that the
matrix may have a detrimental effect in composites exhibiting this type of failure.

The present study demonstrates that the understanding of composite be-

havior is a continually evolving process and that even in the case.of such a simple
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loading condition as pure tension the failure mechanisms are not completely
understood, More work must be done, for example, to explain the apparent

difference in failure modes observed in glass and boron fibers, and to extend

the analysis of stress concentration effects to three-dimensional composites.
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The Steady-State Viscoelastic Response

¥ ! .

; A systematic study 'of viscoelastic behavior of fiber-reinforced compo-
_sites was initiated b}; Hashin (Ref. 21). Such analyses are motivated by both
theoretical and practical points of view. Fibrous composites consisting of
linear viscoelastic phases are a nai:'urail extension of the linear elastic model
in which phase matferials are assumed to be. Hoockean Solids. On the other hand,
phase materials in composites do exhibit very strong time dependent properties
espfciélly in a high temperature environment. A basic understanding of the
viscoelastic behavior of composites is important before such materials are
utilized in pract‘ical applications.

Has.hin (’llKef. 21) related the effective viscoelastic properties of a compo-
site Wl}ich is composed of linear viscoelastic phases to those of its constituents
by a correspondence principle. This same model used by Hashin is used: to
study the steady state :;esponsei to some simple types of sinusoidal 'Suljface
tractions or surface displacements. It should be noted that in Hasin's approach.
to viscoelastic theory of composites, inertia forcegs are-neglected s':) that onls;
quasi-static motion is treated. The present study is based on Hashin's work
(Ref. 21) and the same assumption is implicit so t}';at wave propagation phenome-
na will not be considered her\e. . x

Following Rgference 21, the general macroscopic viscoelastic behavior of

a composite can be described by the following constitutive equations:

.t = .

¥ 5 * de - {r

Lt o) = j G 18 -7) AR (1)
. ° ar
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or

. £ ag. , (m
<L # 1w ar
o Syt = j- Vi &~ @)
(o]

where 5‘ij(t) and Eij(t) are, respectively, the average stress and average strain
in the composite at time t; G;}kL(t) ar:fd J;ijL(t) are the effective rel‘axafcion
moduli and effective creep compliances, respectively.

‘By the symmetry of the average stress and average strain tensors, the

following symmetry relations hold:

&
%

Gjipet (8= G ypql® = Gy ®

Cfortz 0 (3)

o

ittt = Tigeaft) = Ty

In order to establish the correspondence principle between viscoelasticity

and elasticity, it is assumed in Reference 21

Gigpa (8 = g5 ®

and ’ for t =0 (4)

Tit® = Tyt

7
2

which are the Onsager Reciprocal Relations (Ref. 22)

_The one-sided Laplace transform of (1) and (2) gives

o Av L
Oyl =P Gijut ®) ek{,(p)‘, (5
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A,

A A
35P) .= P I a(P) Gy () (6)

2 o

where p is the transform variable and the circumflgx " A " above a function_
denotes its Laplace Transforn.'x which is assumed to exist. Because of the
fo?mal resemblance of‘{5) and (6) to the generalizéd Hook;‘s Law in _elasticity,

A T A
P G;:jkfﬁ(.P) and P;:{jk&(p) are termed transform domain (TD) effective moduli and
compliances; respectively. l

Now for uniciirectional fiber~reinforced compoéites, transverse iso;cropy

will be considered (Ref, 21, 11}. Consequently, only five ;ffective relaxation moduli
{or five effective creei) compliances) are independent so tha.f; {5} and (6} can be
much simplified, For example, (5) can be written down in terms of the following

five independent TD effective relaxation moduli:

A

P K23(p) - the plane strain TD effective bulk modulus; __.
P G§3(p) -— the TD effective transverse shear modulus;
P Gl (p} =-- the TD effective in-plane shear modulus;
A;’: - ‘
P El (p) -- - the TD effective Young's modulus;
A ) ! o
) Cll(p)-- to be associated with uniaxial stress in fiber direction

AY
with transverse deformation prevented by a rigid

enclosure.
p

" On the other hand, the TD effective creep compliances are the 'reciprocals

£y

of the corresponding TD effective relaxation moduli. For example
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: 1
Pk23(P) =
P K, (p)
A
Pg,, )= 1

pG,7 (p)

etc. .

After the effective characteristic functions {relaxation moduli and creep
compliances) are defined, Hashin(Ref.2l) used a correspon;ience principle to relate
the effective viscoelastic characteristic functions to the effective elastic moduli
of a duplicate composite body with elastic phases.

On the other hand, the; effective elastic.moduli of unidirectional fiber-
reinforced composites have been obtaiéxed by Hashin and Rosen{Ref. 11). Closed-form

expressions for four effective elastic moduli and bounds for the fifth a.re ob-

e

tained for the "random array' geometry. In applying the corresponding prin-~
4 3

ciple, Hashin (Ref.2l) {used these expressions and went through a replacement
<

scheme to obtain the Laplace Transforms of the corresponding effective visco-
. .

elastic characteristic functions. Therefore, the entire problem of finding the
1] . +

quasi-static viscoelastic re'sponse reduces to Laplace Transform inversion
i
which is not always easy. However, for cases where inversion is formidable,
R ) N .
Abel-Tauber theorems can be used to draw important conclusions on the be-
havior of the effective moduli and compliances without the operation of inversion.

Refs, 21 andll ave referred for details,

Now, for a unidirectional fiber-reinforced composite body under special
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@oundary‘displacement or traction conditions(Ref,2l), (1) and (2) can be reduced to

B

.t

6"(1;) = -g G (t T) ..d;f__(‘r_). ar (7N
o—-
= - £ Y ag (T) &
eft) = g J (t-.-T) —a 0 (8)
0 .

where 5"(1:) (5 (t))"‘ is a component of the stres§ (st-ra,in.) tensor &ij {t) (Eij(t)>
whereas ch({:)<J*(t)> represents one of the five effective relaxation moduli
(effective c;'eep compliances) of physical importance as defined previously.
Henceforth, {(7) (or (8) .) will be used as the re.presentative average stress-strain
relation that defines a p-articular viscoelastic chara.cteristicfunction.

In the course of obtaining tht;. steady-state response by making use specifi-
cally of the results of Ref 21, we shall fi;:s\t develop certain relationships a.nd" '
investigate their validity. Then the general results will be applied specifically
to the unidirectional fiber-reinforced co'rnposite to obtain explicit expressions
which c}%aracterize .thé response. Since we ;;re interested in steady-state re=-
sponse to sinusoidal input, \;r_e ca.r; assume that the inpu‘t ‘has be‘én aipplie‘d on the

. . N ) A
body for an indefinitely long time and'that all initial disturbances have died out.

Under this circumstance, it is convenient to put the beginning of motion at
time -»(Ref,23). Hence (7) and {8) are modified to the following forms:

de (7‘) dT

Gt) = j GMe-my 224 (9)
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and

. i} .
5 () = S 55 (- d—ZT(—T-)- ar (10)

»

-0

By changing the integration variable from Tto £ where t - 7= &, (9) and

{(10) become, respectively,

]

5(t) = S G (&) &' (t-£)ak (11)
Q

(1) = j T¥(E) 5 (t-8) a& (12)
(o]

where prime denotes differentiation with respect to the argument of the function.
Using complex representation for sinusoidal oscillation, 'we put
- 10y )
S(=e el . (13)

where €o is in general a complex number and W, a real number, is the angular
frequency of the oscillation,

Substituting (13) into (11) we obtain

Gt = iwsoeiwt ’E}A*(w) (14)
where‘ N
) X GTE) e T at (15)
[¢]
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is the one-sided Fourier Transform of G (t) if it exists.
, Let 3‘(1:) = G‘Oe lwt, whete 0‘0 is in general a complex number, then by (14),
< ' N -

o (16)

where M” is called the effective complex modulus associated with G (t).

Equation {16) can also be written as

- P{wt+ b
G(r) = |1 eoel( t+0) (17)
- 3
where & = tan Imf[{M ]
Re [M*]
which reveals the fact that 0 (t) is not in phase with € (t) .«
N ie 2 iwt- ’
Similarly, if O (t) = er then (12) becomes
. N
e(t) =iwge LW ¥ w) (18)
where .
~ @ .
i’ ® ~itw
T¥(w) = S P gye @y (19)
) °
is the one-sided Fourier Transform of J*¥ (t) if it exists.
Let &{t) = eoelwt then by (18),
" e ~ 1
eft) . 0 - iwI¥wE (20)
g (t) % ’ M
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or

3 1 Dl & - ,
CR v o et {wt - 9) (1)

which again shows that € (t)} lags behind & (t) with a phase lag 0.
From both (16) and (20), it follows that

2 7% ~x
S wGH{w) THw =1

~

i both GH(w) and J (W) exist,

The physical significance of Im[ M*] and Re [M*] is now discussed.
First of all, it can be shown that the rate of work done by surface traction at time t
on a body can be expressed in terms of an integral over the entire body as Afollows:‘

f T,u,dS= _ga.
1 1

L6, dvV
S v Hy

where S cienotes thde bour;aary surface and V, the volume of the body. The above
equality is vali‘d only under the assumptio-n of quasi-static motion.
Furthermore, under special boundary conditions on the boundary surface
'8 (displécerpent boundary condition ui(s) = eij(t) xj or traction boundary condition
Ti(S) = O‘ij(t) nj,(Ref. 21)), it is easy to show thati

LG
[ o 0t e oavedwi @y
v

Therefore, the total work done from time t, to time ty. is:

1

t Y

§ [jg TluidS]dt=V g G, 5, 0 a
S

ty t
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If't2 - tl is the period of motion, then
bW
W=V, o, e, (t) dt (22)
Pay ! g ij ij

del:lotes the total work done on the system in a cycle. According to the First
i..aw of Thérmoéynamics, f’o1_‘ isothe_:rmal steady state deformation, W is the
total energy dissipated and transferred to the surrbundings in the.forltn of heat
in a .bycle. {Jnder the special boux%)dary conditions by which (7) and (8) a.r-e ob-

tai:ned, W in (22) can be reduced to the following simple form:

o
W= VF g LT E (1) at 3)
.1.:1
- where the factor F is either 1 or 2 depending on the boundary condition.
- 1w - . % ts
Therefore, if & (t) = Re [ eogl ¢ Jand o(t) = Re[M eoel_wt] , then for
a cycle with angular frequency of motion W, after some manipulation, (23)
becomes 2m
. T+ —J . 2 N »
W=VFE 5' ) C & dt= ’n‘e,o,Im[M]VF‘ (eoisassuméd
. r .

N H

to be real without loss of generality ) where T is any time during the motion.
) AN

This gives the amount of energy dissipated in a cycle.

. Furthermore, it can be shown that a fraction of the amount of energy
2 ’ ’
e

_° (Re [M*]> VF is twice in.every cycle alternately sto:i't_ad and expended in
5 :
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" the system. Therefore, Im [M*] is related to the energy dissipatéd while
Re [M*]is related to the .ene‘rgy stored,
Fro1;n the above ;esults, it :{s clear that in the steady state, the
responding average stress (or average strain) will va.r;f sinusoidaily with the
same angula.r frequency @ as that of the input average strain (or average stress

with a phase difference 6 which is a function of W, Moreover, the amplitude

O : .
ratio _° is also a function of W only,
B
o

According to (16) and (20), the knowledge' of M" hinges on the knowledge ’
ot ~e g %
of G (w) or T {w) . However, G (®w) and J (w) are formally related

P “%
to the Laplace Transforms G (p) and J"(p) by.the following relations:

G (@) = G¥aw) 24)
and '

e T3

ITHw) =T (i w) ’ (25)

Therefore, if expressions for /G\*(p) and ;'\*(p) are known, /G*(w) and ;‘f’*(w) ‘
.can be obtainec‘; immedia.t.ely by the replacement of variable p in C;#(p) and
./T\*(p) by iw, However, there~still exists the problém of convergeiqce -
given a function of time t, the existenge of i'ts Laplace Transform does not im-
ply the existence of its Fouri;ar Transfm:r;o. Thus, given-a Lapl;;tce Transform
of a viscoelastic characteristic function, it is necessary to examine the~locatior;
of its singularities ina (lzomplex plane of comple# variable p. Accordiz}g to the

definitions of the one-sided Laplace and Fourier Transforms, it is observed

that if the singularities of the Laplace Transform are all located in a region to

59 -



the left of imaginary axis of the complex plane, /'en the corresponding Fourier
. 3 -
Transform exists. ’ i

t
1

3
. Hashin (Ref.21} has obtained closed~form exsressions for some effective

relagation moduli and ‘creep compliances for the 'random array' model. Then,
by making use of (24) and (25), the corresponding effective complex moduli can
be obi;ained in a straight-forward manner. For example, for elastic fibers
embedded in a viscoelastic. matrix, the effectivé relaxation moduli K23 {t)
charactezjizing the plane strain dilatation has the following form in the Laplace

Transform domain:

N 1 1 . m -1
p K, .(p) = [km(P) + g'rm(P) I+ Ve { 1

1 + )
K +3 G- k() - grm(P) km(P) t3 L@

where km(p) s I‘m(p) are matrix TD moduli; Kf and Gf are fiber elastic bulk ~

and shear moduli; vf and vm are the fiber and matrix volume fractions, respec-

tively., All these quantities are considered known if the composite body is

given. Then according to (24), formally we have:

A\

1

iw K:3(w) = [km(iw.).+% l“m(iw) I+ Ve { K, *

£
. and the complex moduli associated with K23 (t) is, according to (16},
M23 = 1wKZ3 {w)
Furthermore, it follows from Ref, 21 tha;t for rigid fibers,

. v

~ M ~ ~ . £
Ko (Wy=K (W) +GCGpm (W) 2 4 G_(w) e
23 w® *Gm UK )+ § W] T
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whe.re /Kvm(w) and a/m(w) are the one-sided Fourier Transforms of the matrix
bulk and shear relaxation nlxoduli, respectively, On thé other haild, if fibers
are rigid and the mat;ix is elastic in dilatation and Maxwellian in shear, -
Hashin(Ref,21)has obtained simple expression for the effective creep compliance
k=;3(t) of which the one-sided Fourier Transform does ‘not exist, Similarly,
other steady-state responses such as in-plane shear, etc. can be obtained in a
straight-forward ;’na.m;er.

It is emphasized he.r.e that the method developed here is also valid for
othef models than the composite-cylinder-assemblage model used in Ref. 21; the
latter is only a case in which bo.unds of some of the characteristic functions in
transform domain coincide to yield closed-f;n-m expressions. If other ex-
pressions can be obtained by oth‘;sr models, the corresponding effective cc;m-
plex moduli can be o};tainecl by the replacement scheme definedey (24) and (25).
On the other hand, vibration expe:t"iments can be performed on cor}xposites to
determine experimentally their respective effectix;e complex moduli from

which information on their corresponding effective viscoelastic characteristic
H . P

functions can be obtained through Fourier transformations.
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Evaluation of Transverse Effectiveness Factors for Use in Flastic Analysis

of Three Dimensional Filamentary Composites

Thé method of ana.,lysis developed in Reference 1 for the elastic consta..nts
of composites having filamentary reinforcements at various angles to the three
principal orthogonal axes of the material employed factors /@og Qp‘» /@-G »
etc. to define the transverse effectiveness of the filaments for resisting stretching,
shearing, etc. For simplicity the as sumpjcion was made that the transverse
effectivenesses were t]:;e same for all strains due to stretching ~ regardless of
whether the strains were induced by Poisson's ratio effects, or were simply
those in the direction of an applied extension, (Different values of transverse
effectivenesses in shear from those in stretching were, however, allowed for.)
This approximation led to generally satisfactory results for stiffnesses, with
the possible exception of EL’ that'is tl;e stiffness along the f;la.m'ents, for uni-
directional reinforcement - a somewhat disturbing exception in view of the

. simplicity of calculation of this stiffness by the rule of mixtures. Even more
disturbing was the fact that the values of Poisson's ratios .ca.lcula.ted with this
simplifying assumption of equal transverse effectiveness factors \x;ere not con-
sistent with those found by other methods of qalculé.tion. <

Guidelines for the extension of the analysis of Reference 1 to provide for
various values of /@ for direct and Poisson str‘ains‘were included with the

/
analysis, but within the time available no evaluation could be made to determine

whether or not the extension would be justified. A brief series of calculations

has now been made to evaluate the differences among the various transverse

effectivenesses for the extended analysis. The results are shown in Figure 18,
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and the equations relating tl}ereto are reproduced as Tables 1to 3,
In Figure 19,curvesl of K‘%L s /30? . /%L‘i‘ , and /996 are plotted as
derived from the uppe;: limit values of the elastic constants of Reference 1l for
a typica} glass/ époxy combi;mtion employing the as sur;nption tha;‘,
'ﬁ% Sﬁoyﬂ fjo&'{"fﬁo@ = 4’ « As can be see.n, differe.nces among ﬁo.r»
ﬁe s and /30 are found, of increasing relative magnitude with in~
creasing volume fraction of binder (the a.bsc1ssa. on the Figure), Also /@e
dlffers from the value unity; this is the variation which is to be antlclpa.ted
from the pr’eviously' noted inconsistent ca.l“cula.tiox? of EL for uni- directional
reinforcement with the simplified transverse effectiveness assumption. The
differences in the various f@ - values shown are, of course, just those consistent
with the elastic constants as found from Referencell, The use of the ’@3‘ of
‘Tables 2 and 3 thus reProduce properly all the elastic constants
of a unidirectional reinforcement configuration, and hence prgvide a
self-consistent basis from Whi\.ch the effects of multi-angular reinforcement,
may be determined via extensions to equations lil;e those of Reference 1,
These extensions have been made and the general equations for tl:xe compliances
. s
incorporating the various ﬁfg are presenté&:in_Tébler;é.\:':,.-“__ sedied £0L {hick,
As prosently written,, the equations; of. ’%achlasgzz.f 3, andiéd conceal.some .
internal inter-relationships,amopg-the various: expressmnﬁ, oFoiiegample, the
trigonometric expressions of Table 4 are for convenience written in terms of

the three angles , f// » and w@u which the reinforcing filaments make

with the coroposite orthogonal axes of symmetry (1, 2, and 3). Only two
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’gngles are needed, however, to define the filamentary directions; ¢ s % )
F

:?.nd ,@;, are related by the We}l known formula

'@@s% # @@5‘2?’2 +cosdfL = (1)

Similarly, for convenience six transverse effectivenesses have been
defi d(ﬁ 7 - @ tables 1, 2 d 3)
efine - see tables an
iy 2 oo B3 o 5 55 oo 2 ana 3),
2 op2 [Tyl T2 400
where only five /3‘?{5 are needed for consistency with the five elastic constant:
used in’ eva.luziing the transverse effectivenesses. Accordingly the equations

of Table 3 may be combined, as for example to yield the relation

& -
) j - ( /-2 )
o
ﬁaﬂo?f,fﬁ - & "
- .
&
Vf
where v, = the Poisson's ratio of the filamentary material,

Thus simplifications of the equations as given in Table 4 are undoubtedly

possible by the employment of the trigonometric expressions, and ﬁ values

which lead to the least complex algebra.
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DESIGN CONCEPTS

:Study of Composite Structures

Efficient application of composite materials to aerospace siructures

requires proper selecéion of reinforcement pattern and material as well as
;};Jverall structural arrangement. To a large degree gu.idelines for optimum
" de sign of such composite str;lcturles have been lacking, nor have they been ob-
.vious a priori to the designer.

Some clues about possible directions toward efficient configuration have
recently become available. Reference 24 explored effects of material and rein-
forcement pattern on thé structural efficiency of boost vehicle shells. Reference
2 investigated similar effects for a number of aircraft structural elements.
While these studies revealed a number of spe.c'ific factors of importance for
efficiency of application of composites, three general cox;cl_usions also evolved
which served as a basis for\the studies to be reported here. These conclusions
were: ,

1. For a wide range of shell type applications the isotropic (00, ﬂ:600_)

reinforcement configuration is most efficient.

2. The high .(mulil:i-directional) stiffness-to~density ratio of be'ryllium

makes it more efficient than most near-future composites for many
-
shell and plate type structures, = pa,rficula.rly if the load intensities

\
encountered are low, or if stiffness requirements are important.

3. Filamentary composites appear most attractive when used as

unidirectionally reinforced elements to carry unidirectional loads.
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The further question that seems to arise from these conclusions is

H

quether some combination of the biaxial properties of beryllium {or isotropic

< .
@

composite) with the uniaxial properties of one-directional filamentary rein~
forcement may possibly be the best configuration of all, .
C%rcula.r Tube -Columns

To explore this possibility on.an orderly basis, a simple round-tube
column was selected as a first model for stu&y. This model was chosen for
simplicity; for an isotropic material optimization of the thin-walled tube in
compression has perhaps achieved the status of being a classic example .of
balancing proportions between local buckling and column bending to achieve
minimum weight.,' Thus its use to explore effects of combinations of unidirectional
and multidirectional properties is uncomplicated by complexities of the optimiza-
tion procedure itself.

Accordingly beginning with the model of Reference 25, modifications were
assumed of increasing complexity, and the effects on efficiency evaluated. As.
a first step, unidirectionally reinforced composite stiffeners were assumed added
to the tube at three equally spaced points around the circumfere_znce.‘ These
stiffeners were assumed to contribute nothing t-o the local stability,~or instability,~

of the tube walls, but were assumed to add effective areas for column bending

. N AY
so that the effective radius of gyration of the tube is given by the expression
' <

: &y
e 4 (@R{Eo@w?@/ + % Ry =
{@»‘yﬁj, = £y . W
; EfF Yy mE;@
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,where

@.Gyr Eif «'radius of gyration of stiffened tube

R - outside radius of tube

t . thicknesé of tube

EB : Young's modulus of unidirectional {boron) composite
Eo .Young‘s modulus of tube mat.terial

VZ'B " volume fraction of composite stiffeners
Ve volume fraction of tube material (vB + v, E 1)

With equation (1) incorporated into the procedure of Reference 25, the

efficiencies of the reinforced tubes were calculated from the formulas that

e (éiﬁi N@E@ }{ %E@mj
ey G

follow

@@Qﬂé E,

W ppsst] G
£ YA
1+25% ) 0.3E, ec{},g}

% &

(9
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ior axial load

1 ’a

£ L . column length

., W : - overall weight

. PB dénsity of stiffening material
ﬁo density; of tube material

and the subscripts Sec and Tan refer to the secant and tangent moduli of the
tube material, respectively,

. As indicated in the formulas, the reduced moduli used for plastic buckling
were the tangent modulus for column bending, and the secant modulus for local
buckling. The use of the tangent modulus for column bending is well founded.

- The use of the secant modulus for local buckling is used here as slightly more
optimistic than the root mean square of the tangent and secant moduli as pro-
posed in Reference 26, Thus:the efficiency curves resulting are perhaps slightly
too high in the plastic region, representing a kind of upper bound. (Most
affected are the curves for beryllium which should be accordingly solinewhat
discounted at the upper end.) In any event the ‘utse of this possibly optimistic

" reduced buk‘:‘kling modulus changes none of the colnclusions drawn from the
results,

Results of the calculations are given in Figures 19 to 24, In Figure 19 are
given basic resulis for unstiffened aluminum-alloy and geryllium circular-tube

columns, Hére,the beryllium tubing is found to vary from 25% of the weight of

theﬁluminum-a.lloy tubing in the elaétic range ( %@{ F.R+3 % [0.@ ﬁé’l‘] }
({ .
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to 80% of the aluminum-alloy weight at hlgh stresses | /é r,r?}’é f@pmﬁ,}

The addition of the boron/epoxy three~point reinforcement permits the

Qo e

luminum=-alloy tubing to be made substantially lighter both at high and low

et DR

oadmgs (Fig. 20).- In the elastic stress range there is a:pparently an optimum
z:eln.forcement ratio [m a8 6, @57} beyond which h1gher percentages of
reinforcement do not further increase the efficiency. At the high stresses,
however, the very great strength and stiffness of the unidirectional reinforced.

'

composite provide increases in efficiency up to the maximum reinforcement
Y8
ratio considered o= R 4
Y%
The beryllium round tubing is not improved by the boron composite rein-
forcement at low stresses; rather the efficiency is decreased as the reinforce-
ment ratio increases. This trend is just barely reversed, as might be expected,

at high loadings (see Fig. 21),

Comparisons between Figures 20 and 21 reveal that at low ‘loadings the
unreinforced beryllium is always the lightest of the combinati;ns considered,-
being approximately one-third the weight of the best boron/epoxy- aluminum.
At the high stresses on the other hand the reinforced aluminum is ;)etter than
any beryllium ’cu.'be, being about one-half the v;/eight of the beryllium construc-
tion at the n'%aximum loading considered. Thus it appgars that the low propor-
tional limit strain of the beryllium together with ;:he flat top to the beryllit;.m
stress-strain curve beyond the proportional limit preveats it from acting

zffectively in conjunction with high-strength uni-directional reinforcement.

In this range a better combination of materials is an isotropic boron/epoxy
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configuration for the tube walls. This configuration should still be elastic at
the values of P/LZ covered in Figures 19 - 21, and at the maximum values of
1 i ! ’ ° ’

Pi/LZ considered the isotropic boron/epoxy tube is calculated from equations

(1) and (2) to weigh very nearly one-half as much as the best reinforced

aluminum tube,
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; Scalloped, Tube Columns

One of the pitfalls .of efficien;:y studies like the foregoing is the possibility

'tha.t a poor geometrical shape has been chosen, and as a result misleading con-~
clusions are derived about the effects of various materials of construction.
fdeally an oﬁtimum shape should be used (if need be the optimum for each
material cc;mbination) so that shape effects may be divorced from material
effects in the evaluations of the ca}culatiorfs.

In order to assess the shape effect':, the efficiencies of scalloped tubes
were also investigated., First, ‘a three-lobed scalloped round shape was used
(Figure.ZZ). The objectives of the scalloped shape are enhanced local buckling
resistance due to decreased radius of curvature of the tube wall together with
increased column bending resistance because the scalloped tube approximates

_an equilateral triangle, and the equilateral triangle has a 21% greater cross-
sectional moment of inertia for the same area than a circle. Because the
’
scalloped round tube does not substantially enhance the moment of inertia,
“however, it was abandoned in favor of a scalloped triangular tube. The charac-
teristics of these two shapes are summarized in Figure 22,
In Figure 22 are plotted the percentage increa{ses from a simple thin-walled

round tube section attained by scalloped-round and scalloped-triangle sections
. \ .

having the same cross-sectional area and radius of curvature-to-thickness

ratios as the reference round tube. As indicated by the curves of the Figure,

the "scalloped triangle" has substantially greater potential for enhancing the

column strength (at a constant l:{/t so that in first approximation the local
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bu;ckling strength is constant).than the ''scalloped circle. ! Furthermore, the

apexes of the triangular S},la.pe provide a greater radius of gyration for added
v ki -

st::‘gffening as in the form ;)f concentrated boron/epoxy elements than the crests;

of E§:he scallops of the ”sca.llo;;ed circle. "

: "While clearly the extreme limit of 21% ix;crease in section properties

repr'e;ented by the "infinitely scalloped® triangle fzg@. =3 @) of Figure 4 surely
cannot be attained, the development of a reas.onable fracti_on of that azr;ount may
be anticipated for '"reasonable' proportions. Here ''reasonable' is taken to
mean‘that the cusps between scallops are of sufficient-depth to establish stable
corners not ‘prone' to local buckling at the stresses encountered by the tubes.
The assumption was made .that the proportions so labelled on Figure 22 are
reasonable, and likely perform?.nce gains through their use fo¥ reinforced com-

posite columns was calculated with the results given in Figures 23 and 24, For ~

~

these calculations, equation ( 2) was replaced by

/?__ﬁ./f %%j;, | .

=009z =
¢

8 6088
?m % e?@ £y [oesti > (3
iy
A@ % e %A@
where
‘z@ ‘ wnoment of ix;ertiaf of scalloped triangle section
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area of tI:ilarAlgle'section (equal to area of circular
section ofu.eq‘v.'xi\}alent R/t )
<4 ipsige raéiiv‘.x‘“s .of scallops.
{ % } equivalex'qt“t};icknless-ra.dius ratio of ;cube
R g R _
In Figures 23 and 24 comparisons-of the efficiencies of the reinforced
‘scalloped triangle tubes with enveiope curves representing the lightest reinforc;d
- round tubes (the dottea curyes on Figures 23 and 24, derived from Figures 20 and 21)
s.how. the expected gains for, the triangular shape. With the triangular shape
higher reinforcement ratips for the aluminum alloy tubing are effective (Fig. 23)
, Yz
and a reinforcement ratio == = 4 produces a tube column competitive with
beryllium even in the elastic@range (see Fig. 21), Further, the‘boron/epoxy re-
inforcement of beryllium in the plastic range is more effec;;ive with the scalloped-
triangle shape. The general trends established in the studies of the reinforced_-ﬂ ‘
round tube columns, however, are no1; c¢hanged by the more-efficient tria.ngle.
shape. Thus the scailoped—triangle b'ery'lli}lm tube is the most efficient of ;11 at
low loadings and the reinforced aluminum-allpy becomes more efficient when the '
stresses would cause yielding of the beryllium,

The g;.ins in efficiency shown on Figures 23 and 24 for the sca.]:loped-triang;.e
shape ap;;ear great enough so that experiments.to determine their validity appear
desirable. 'I‘ha‘t is, experimental definition is needed of the stability of a
scalloped-wall tube to establish the degree of scalloping beyond whick{ corners

of cusps will no longer remain fixed as straight lines along the tube to provide

edges as restraints against local buckling distortions.
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P].;gte Efficiencies
o : .
; The efficiencies of composite materials for plate applications, already

3

investigated for a variety of material combinations in Reference 25, have

exhibited similar Cha.ra,cte.risi;ics to t_hosé already discussed above for tube-

) columns. Indeed combinations of beryllium and 0° boron/epoxy plates made

up as sandwiches with the beryllium a‘s the faces and the 0° boron/epoxy as

the core demonstrate rather clearly the probiems encountered in the develop-~

ment of combination metal composite structures, as is shown in Figure 25,

In Figure are 'plotted the results of calculations {(made as in Reference
2?) of the efficiencies of sandwich plates which have 0° reinforced boron/eéoxy

cores and faces of beryllium, isotropic boron/epoxy, and (at the very top end of

the curve) no faces at all. The solid curve represents the beryllium-faced

2y A
sandwiches; up to the discontinuity (at Eﬁgl‘is fﬁ%‘z [EJ ksf_? ) the plates
&R .

are totally elastic (to achieve this elasticity at such high values of _1:153_4_ a com-
pressive pre-stress is assumed in éhe boroz}/epoxy core just sufficient to stress
the faces to the proportional limit in tension at zero eiternal load). The rapid
increase in weight of sandwich above the &iscontinuity'aris es from the continuing
decrease in stiffness of the beryllium faces as they are stressed further and
further beyond their proportional limit. The dotted curve repres ents.‘the higher
N
efficiency that would be attained with beryllium with a higher elastic limit {(or
pre-stress). Inasmuch as neither of these improvements in the beryllium
response appear possible of attainment in practice, éhe solid curve is the

.

realistic one for the sandwich, and, as indicated, it can be surpassed in
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efficiency — as by sandwiches utilizing isotropic boron/epoxy faces at the higher

load intensities. Indeed as the loads become high enough, only the 0° boron/

.

¢
epoxy retains enough stiffness to be effective, and no faces at all become most

efficient.

To a degree, the curves of Figure 25 may be considered to depict in

general the yarious characteristics which must be balanced in composite plate

construction for maximum efficiency, as follows:

(1)

(2)

(3

0° reinforced material should be used as the strength element,
if possible pre-stressed to provide the maximum possible
elastic range to the material used to provide transverse
stiffness or plate buckling resistance.

The material used to provide the plate buckling resistance

(the facg n}mterial in a sandwich) should be selected on' the
basis of the stresses to be carried, — at'low stre;ses‘ beryl-

lium is most attractive, at higher stresses composite con-

figurations approaching closer and closer to the' 0° config-

‘ uration should be used.

While the example shown (Figure 25)is for a solid sandwich,
f

so that the average stress is simply ;’Jg =2 %& ;fé , the
2

same rules as (1) and (2) apply for hollowed out constructions

Ny where T is the aver-

T
age. thickness and T < t. Thus, in general, any hollowing

which raise the average stress to

out {light weight core sandwich construction, etc.) which

15



(il

does not introduce new instabilities or failure modes is

like an increase in the structural index value on Figure 25,

ar
-
.

- i.e., it tends to make optimum constructions utilizing
hi'gher percentages of 0° reinforcement and lower

perc entage.s of beryllium.

-t Ta md g S - e R T L:":‘- = '. = = . -
aelincidicies of tae =45 B/ 0pdxy aad boryllasisokd Zezai 2l Cov

nese cuvip. risons are preseatad in Fig, -~ 24
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Panel Efficiencies

The plate efficiencies just discussed were considered on the basis of
.initial buckling stresses only. Particularly at low stresses, as is well known,
;plates of most materials can continue to carry compression load without failing

pt stresses substantially above the initial buckling stress.
H

For plate assemblies incorporating 0° reinforced composites as stiffeners,
initial buckling of the plates may be expected to cause the major part of any
‘subsequent load increase to be borne by these stiffeners. This load transfer
into the 0° reinforcement is precisely the mechanismn noted desirable above for
‘increased structural efficiency. Accordingly, for example, compression
panels 'incorpora.ting 0° reinforced stiffeners should be expected to achieve
high structural efficiencies.

High structural efficiencies were indeed found for Oo,b;ron/époxy Z-section
stiffeners on %45° reinforced boron/ epoxy skin in Reference 2. Part of this
high efficiency arose from the high shear stiffness of the skin material
‘(allowing the use of thin skins and hence allowirng most of the material to be
incorporated in the stiffeners.)

Reviews of the properties of +45° boronLepoxy and comparisons with the
properties of beryllium suggest that repldcement of the £45° boron/epoxy skin
on the panels of Reference 2 with beryllium should result-in even higher effi-

ciencies than those calculated therein. For example, pertinent properties of

these two materials are compared in the following table:
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+45°B/Epoxy * Be

Density M%— 2,19 1.86
- m? 0.079 0.067
o (0.079 . (0.067)
. MN - o
Y1'e1d Stress 2 138 400 -
(kesi) (20) - (58)
Shear Modulus 9_1\21_ 72,5 145
. m
i {10, 500) (21, 000)
Young's Modulus GN 25.5 304
mz (3700)- (44, 000)
(ksi)
Yield Strain 0.0054 " 0.0013

Thus, éxcept for its low yield strain, berylliuz;x appears vastly sgperior to the
:‘:45°B/Epoxy. _The low yield strain, however, raises unce.rt\ainties, and a
detailed evaluation is req.uired to d'etermine whether the beryllium/composite
panells are as superior as Wéuld at first appear.

Such an evaluation was made as a part of the study of Reference 27 The
results are reproduced here a.nd extended to make possible direct c:)mparlsons
of the efficiencies of the +45° B/Epoxy and beryllium-skin Z-panel constructions.
These comparisons are presented in Figure 26, \

3
'.Figure 26 plots curvés of weights of ‘box-blé"a‘m compression covers (plus‘
supporting ribs) for optimized Z-stiffened panels: ) Optimi;ation includes the
selection of rib spacing and stlffener size and spacmg for minimum weight to

carry a de s1gn bending moment M with a box beam of w1dth b and depth d.-

Further the skm thickness. is required to be adequate, in terms of the box.depth,
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; to provide a specified torsional stiffness; - according'l;} the beryllium and

s

ﬂ:450 B/Epoxy are compared at "equivalent' values of skin thickness t
€ Eq
vsuch that

.
1

s

5 = [ = ez
8/Epex

8e \ Cafepory %

The curves of .Figure 2:6>.‘sh0\;v .s:;zbstantiai weight ‘sa.vings for the beryllium
skin on 0° B/Epoxy stiffeners, These weight savings are depicted by the cross-
hatch‘ing between the curves for the +45° B/Epoxy-skin panels (the dashed
curves) and the beryllium-skin panels {the solid curves) at the equivalept tor-
sional stiffness measures .(e:’qua‘zl values.of g;%% ).

Several factors accumulate to produce the weight sa‘vings shown in Figure

26 for the beryllium-skin composite construction: (1) the favorable shear stiffness

of the beryllium permits an even higher percent of ‘stringer material-with its
high-strength, high column-bending stiffness charécteristics, - than for the.

" x45° Boron/Epoxy skin; (2) the beryllium is of lower ‘density than the boron/
epoxy; (3) the high strength of the 0° reinforcement {as noted in tile opening dis-

cussion for. this section) permits it to carry the load long after initial buckling
- N 2

of the beryllium skin,
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Studies of Composite Materials

';F:‘hree-Dimensionally Isotropic Materials

'“ S The form of t}‘xe mg}trix of elastic constants relating stress to strain Ain a
generalized Hooke's law has been studied for various conditions of structural
symmetry. For two dimensions, it is known that a material is isot:}opic ina
plane for which there exis;:s a normal axis of at least six-fold symmetry. Thus,
as a practical example, a fibrous composite plate is effectively isotropic in

its plane when one n)‘:h of the fibers are oriented every —5 radians for n .>—_. 3.

(By effe.ctive.ly isotropic, 11: is meant that the average stress, average strain
relations are isotropic.), Similar conditions to obtain three dimensional iso-
tropy appear to be unavailable in the literature.  Several configurations having
multiple symmetry conditions'which might yield at least an approximation to

an elastically isotropic material hai;e been studied. The first\material treated
has.two three-fold axes of symmetry separated by the angle. for which the cosine
is-1/3. Such a material can be obtained with a fibrous compo.site harving‘ one
fourth of the fibers oriented Iin each of the four directions defined by the altitud;as
of a regular tetrahedron.

The stress-strain relations for a general elastic body may be written as:

Ti~=cijej . i,j=12...6 (1)

whexe 7.+ are the stress components
i

¢ are the strain components
J

)

cij are the 21 independent elastic constants (cji = cij
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We treat a material having two axes of three-fold symmetry at an angle 6

.éuch that

Kd

cos @ = -'—;—

As a consequence of this, there must exist two additional axes of three-fold

symmetry; the four axes being oriented along the directions of the four alti-

tudes of a regular tetrahedron. (This fodr-legged array is called a caltrop.)

3
We select the vertices of the tetrahedron at the points: (0, 0, %IJ/Z; ¥,

(\71? 0,

1

1

.

1

{

2/

This is a tetrahedron with centroid at the origin. This body has elastic symme-

. try with respect to a rotation of

RIS W) SRS NS SU Sy T
2’ 4N 37 2/35 27 4 37

3

ki .
—2— about the z axis.

Thus for the following

transformation of coordinates, the stress-strain relations remain unchanged:

x y | z

x! cos B | sin 6- 0
y' | -sinb | cos 6 0
! 0 0 . 1

This reduces the elastic constant matrix to the following form {Ref.28)

Ty &

[+3

11

12

C
“1a
%15

0

13.

%2

4

C,

13

-l

14

-G,

15
0

%13

%13

33

0

‘14

14
]

Caq

0

=-C.

15

15

O,

—2*(

b

e

N2

(2)



This array has seven independent constants.
The stress-strain relations will also be invarient for a rotation about

one of the other axes of three-fold rotational symmetry. In particular, we

i
copsider a 120° (counter-clockwise) rotation about the axis passing through

: i (= Lo, L ,l Z followed by a 120° {clockwise) rotation about
the point -273- e P 3 .
The direction cosines

K 1 112
the axis passing through the point 73 6, - Z"l; .

for this transformation are

% y 2
1 272
1 —

x 3 0 3
¥ 0 -1 0
272 1

H — - —
2 3 g 3

It can be shown that the elastic constant matrix must therefore be of the

form
n 1z “ntCr%s 0 V2loymess) 30
‘n “n*127%s3 0 V2leyesy) -0
34 0 ) 0 0
e = | 3 12
Ry . 2 Cll— 2 -c33 0 - -/2((:11 C33)
ic _C_lé-c 0
z ‘u" "2 %s3
1
=z (onCr)

This material has only three independent elastic constants and is a

material with the symmetry of the cubic crystal. Indeed, a transformation
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- of the principal axes of a cubic crystal given by:

" X" YH Z".
% Lo L
V2 V2 0
1 1 2
RS 45
2 1 1 1
VERR VO 73

followed by a transformation of axes given by -

x' y! z'

x 0 | -1 0

v y | Y} o 0
z o o | 1

brings the principal axe_s‘of a cubic crystal in coincidence with the x y z axes
which are the reference axes for egs. (5). This transforms the array of elas-

tic moduli of a cubic crystal to the following form:

1 L, 1, o 1 -
1 1 2E) & -2 0 C-D-2E 0
(GtD#2E) % (C+5D-2E) 5 (C2D-2E) K el )
LicipizE) L(C#2D-2E) . .0 =z (C-D-2E) 0
2 3 oo 32
A 1 : g
5 (CH2DHE) 0 S0 0
. ,
! (c-DiE) 0 =1 (c-D-2¥
5 (- . B
1
+(C-DiE) 0
1 ,
) —-(C-D+4E
5 =
(4)
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‘

where C, D and E are the three independent galastic moduli for the cubic

'
f H

system. £

The array (4) has the same form as the array (3). - In fact, if we let

C=doy - 3eq,

: =ec. +6

D 9 c12+ 6c33

po. lnterd
and - 2 33

then (3) and (4) are identical. This shows that the material with the elastic
moduli of the form ;)f (3) is elastically cubic.

Although this material is not isotropic, th.e properties for a particular
fibrous composite prove inte‘resting, as will be shown in the following sec-
tion,

‘Another configuration of interest is that of Reference 1 which is construc-
ted by taking three pairs of reinfdrcing filaments, oriented with reference to

. ol i
an orthogonal Cartesian coordinate system, Xy z, as follows: one "pair in
the xy plane making angles of +8 with the x axis; one pair invthe y;z plane
making ang_lgs of +8 with the y axis; and one pair in the zx plane making
angles of +0 with the z axis. It was shown in Referencel that when 8is ap-
proximately 300, the shear modulus, Poisson's }atio, and Young's rno’dulus

satisfy the relation:

o= B

2{1+v)
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It can be shown that when
~1 U Co o
8 =tan (2sinl18) =~ 31 43'
’/
the twelve rays ( 6 lines) from the origin pass through the vertices of a
regular icosahedron with centroid at the origin. These six lines are there-
fore axes of five~fold symmetry, The possibility that a body having six
axes of five-fold symmetry.as isotropic is suggested. This result is per-

haps of academic interest.only, as it does not appear possible to construct

a continuous space lattice.having five-fold axes of symmetry,
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Evaluation of Moduli of Caltrop Reinforced Materials
The equations derived for the elastic constants of three-dimensionally

ireim’orced composites were used to compute properties of the caltropic re-

iip.forcem'ent configuration. Calculations were made using both the equations

o¥ Reference 1 (for which ‘Bo =B . =B , etc.) and the equations of Table
: S % %ur - %

"4 herein. The following material constants were empioyed.'

E£ (Young's modulus of filaments) 10 -
: 1
| . —
Eb - (Young s‘modulus of binder) 51 x E{
Y (Poisson's ratio of filaments). . 0.2
])'b (Poisson's ratio of binder) 0. 35

-
.

. These vla.lu.es correspond to those for E-Glass in epoxy. Values of B were
found for these material constar;ts by derivation of the upp.er boun;i Hashin- .
Rosen (Ref. ',2) elastic constants of unidirectional reinforcement at values of
volume fraction filament of 0. 2, 0.4, 0,6, and 0, 8.

Resuhlts of the calculations are given in F.igure 27 for the filament orien-
tation shown. Both methods of calculation yield different compiiances in the

_é-—am_i 3-directions (values of A4 and A6} from that in the l-direction. "Differ- |

ths two methods ane not substantial; ;a8 was 3nticipated, nor

Lng Do PO i £

g
0
o

‘0

R=2

>
€

to

‘o

are the com jances, fo&r‘;_d‘_gqt_z__stqm_}a,l‘ly. at; yariance dnsthe ggrae__? iq%}'xetctxonsd }

(Ve in Su [ e A e i 3 S TR
L

g Fax engineering pirposes, the compliances in the three dxrf‘:ct:ons are pros<

bably so neérly equal that differences among them can be neglected.
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Three PhaséCompésite Compression Members
In the foregoing studies of the efficiency of combin;tion metal/composite

* structures the effica.cy*;)f 0°‘ reinforced composite.material to provide strength

to the structure while some other material or configuration provided adequate
‘transverse stiffness'or continuity W;s evaluated. 6n the presumption that such‘

0" reinforcement would truly be an extremely high compressive strength material,
these eva.luatiqns were indeed favorable. Because of the relative weakness‘ and’
lack of stiffness of available resin binder systems, however, it is novt obvious

that the 0° configuration necessarily has the maximum compressive strength.
Rather, as this'section will demonstrate, some transverse reinforcement may

be desirable.
Reference 4 described the mechanics of stabilization of uni-directional

filaments in compression.  As noted there, three failure modes may be encoun-

tered: ' . }
s \
(1) a mode.in which the shear stiffness of the binder material governs,

described by the equation
N Gé
j“’V§

=3
-

€

where

) X
ultimate compressive stress in filament direction
@@ shear modulus of binder
5%2‘ volume fraction filament

(2) a mode in which the strength of the binder is criticﬁl, described by

the equation
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I1-1)

where
@‘by yield stress for binder

Ef " Young's modulus for filament

and (3) a mode in which the stiffnesses of both filaments and bindelr are

operative, described by the equation

%EsEp
&?f/“&ff) ’

The lowest value of ¢, found from the foregoing equations is, of course, the

) (2
failure stress.

In all three modes of failure the binder properties are important. Accord-
ingly, increases in binder properties may be expected to be reflected in increases
in compressive strength of uni-directionally reinforced 'composites. -One method
for increasing effective binder properties would appear to be to ta.ke:some of the
uni:—directional, load-car.rying filaments and distribute them uniformly through-
out the binder. Thus, while for everyifailure model the value of % would
tend to be red1.1ced by the reduced volume fraction of load-car¥ying filament
(v¢ in above equations), the net effeqt should be expected to be an increase in

6“@ due to the improvement in binder stiffnesses and strengths,

In order to assess the potential magnitude of compressive strength
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increase available by this approach, the as sumptiorl was rr;ade that the binder
properties attained by tl.qe uti{.lizati'on of some fraction vfb of the-filamentary
'mate.ria.l {the original :rolume fraction filaments v.fo was assumed to be O.‘ 5
fhroughqut) for binder re:lnforcementI would be given by simple, rule-of -mixture-

like, expressions such as

Ey = ﬁ’%fﬁ “’"ﬁ‘f%)%
‘. E;éa
(1Y

where
Ly ’ is the Poisson's ratio found by the rule of mixtures

for filaments and binder

and ’

%y 4%’0@ %ﬁfj g@)

\;s/ith the primes denoting the properties a.fter.bmder reinforcement.

Using the foregoing equations, three possible composite combinations .were.
evaluated: (1) boron binder reinforcem;ant for uni-directionally reinforced boron/
epoxy; (2) glass binder reinfo‘rcement for uni-directionally reinforced glass/

epoxy; and (3) glass binder reinforcement for uni-directionally reinforced boron/

epoxy. In the first two cases the total amount of reinforcing material in the

composite was held constant, so ve + ve = 0.5. In the last case Ve was held
b .
constant and the total amount of reinforcement therefore increased as ‘ff was
: b
increased.
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The results of the calculations for these three combinations are plotted

in Figures 28, 29, and 30. In Figure 28, curves for the boron-boron com-~
3 ’ ' '

posite are prese‘n.ted for the following nominal constituent properties:

'Ef = 414 GN (60,000 ksi)
= .3,45 GN . (500 ksi)

oy - 2.76 GN (400 ksi)

Y 2
%y; 0.1 GN (15 ki)
m
0 = 0.2
W)= 0.35

In Figure 29 the glass-glass’'combination is considered for the same binder

properties and the following nominal glass properties

E, = 72.45 GN (10,500 ksi)
2
G = 2.76 GN {400 ksi)
3 =
7 2
@;g = 0.2

The boron~glaés combination of Figure 30 uses the same nominal properties
for each of the materials as those gi{rep above.
For properties like those of the boron/epoxy composites of Figure 28,

the conversion of a small percentage of the axial filaments into transverse
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filaments which effectively stiffen the binder should be advantageous, raising’
the compressive strength from 2.75 Eﬂz (392 ksi) to 3.8 9_1;‘ (550 ksi),

> m m
approximately (see Figure 28). If the properties are more like those of the
.glass/epoxy composites of Figure 29, however, the sar;ne gain is not to be
expected (see Figure 29). If glass is added to vboron/epoxy, on the other hand,
as in Figure 30, substantial gains are to be anticipat;ed.

Because of the gain‘s found in the calculations ‘for Figure 28, a series of
uni-directional boz;on/epoxy compression specimens having vari'ous percentages
of chopped-gla:ss filaments added to the binder were fabriéated and tested. The
results are shown as the points in Figure 31, with the large and small circles
repl:esenting nominal glass-filament lengths of 0.16 cm. (1/16 in.) and 0.08 cm.
(1/32 in:. ), respectively. Despite the large scatter, strengthening appeare& to
be achieved in two cases. . :

Both the scatter in the test data, and the sensitivﬁty of strength of the
boron/epoxy cqmpositeq of Fig;lre 28 to the srr\xa.ll amounts of binder reinforce-
ment point to the critical natur; of the role played by the binder in the composites
for the development of high compressive stresses. The marked d~iffer'ence'be—
tween the curves of Figures 28 and 2‘; suggests that this criticality is substan-
tially greater for boron th;:m for glass reinforcement.

To explore the sensitivity of boron compo;ites to biiu;er properties
somewhat further, the calculations represented by the curves of Figure 31were

also made. These curves show the effects of changes in binder strengths

and binder-filament-reinforcement strengths on the compressive
@, “éé? g P
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rength of the three-constituent composite when the '"binder strength’ mode is

ritical. The compressive stxength is found to def)end most critically on the
i «'

Bj.nder strengtd at the low ratios of binder reinforcement,
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STUDIES OF MATERIALS-PROPERTIES TESTS

The testing of filafpentary composites to determine their mechanical
propexties haa prwed. to be more difficult than the testing of homogenaous
materials like metals. The.difficulties take several forms; they may derive
from discontinuities encountered in s.pecimens designed to provide a diminish;d
cross-section, as is often done to avoid failures at points of load introduc-
tion; they may be associated with the shea;r weakness of the binder leading
to undesired modes of failure; or they may arise because a type of test
kﬁown to be inadequate is used‘for economy or other reasons. In this section
some of the aspects of mechanical-property testing of composi;:es are
examined both é.na.lytically and experimentally to help establish guidelines for
improved techniques.

The NOL Ring Split-Dee Tensile Test

The N. O. L. ring "split-dee' tensile test, shown schematically in )

Figure 32, has the adva:ntages that the specimen may be readily fabricated by
winding, and the test ;:nay be performed in a conventional univers:al testing
rﬁachine without special fixtures (other than the split dees themselves). The
test has the disadvantages, however, tila.t (El) no test section is available at
which strain gages may l;e mounted to measure \the» stress-strain properties,
and (2) moxre seriously, the test i.ntroduces‘ sﬁbstantia.l bending moments in
the ring where the split océurs between the two dees. These beni:ling moments

extend above and below the split, .as shown in Figure 33, Because the mem-

brahe stress in the ring causes it to increase in diameter as the load increases,
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" the ying tends to pull away from the corners of the dee, and the maximum
'-ben’crling moment is that associated with the load times the deflection to the
A ;

center of the ring cross-section near the corners of the dees. The magnitude

of the bending ma.y be found from the following equations {developed in Appendix B).

of~g)
¢ " /Z@ = ) cwﬁ(% /)

where 17 may be evaluated by the trial and error solution of the equations

_ ET é.‘_ L2 (ﬁh( /)
@%?’%ﬁﬁq /éé @fé A7 /Er 7k

\ R, ++

o

and
< " =t P
@i R@ v g; 2 5} A
such that

(3)

(4)



# Mc;_, _ bending mor'ner‘lt at center line of ring, at split in dees
]5:1 Young"'.s modulus in direction of filaments
! 1 moment of inertia of ring cross-sectién
Ro initial inside 1'a,dius- of ring
t ring thickness
I load acting in each half of ring {one-half of a.pﬁlied load) )
A ring cross-sectional area
ﬁ unsupported semi-span between dees
§ and 0 \

slope at point of departure of ring from dee, measured

relative to direction of load application.

GlZ - shear modulus along filaments

Evaluation of equation (1} for a typical E-glass reinforced epoxy ring
'

for Ro =7.30 cm, {2.875 in,) yields the curve of maximum bending stress
vs. ring thickness_given in Figure 34, Obviously these bending stresses are
of sufficient magnitude to raise guestions about the engineering me:rit of the
tensile strength values measured as the P/A stress at the ;naximum load on the
zing, N

' (Curiously, the magnitude of the bending m\oment is relatively insensi-
tive to t};e composite properties. For example-, the stress increment.‘due to
bending in an hypothetical boron/epoxy ring with E; = 4:14~ GN/ 12 (}'60, 000, 000

psi) is essentially the same as that in a glass~-epoxy ring with E1 = 51.75 9112-
: m
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" (7,500, 000 psi) at the same load. The increased bending stiffness of the boron/
.epoxy is compensated for b?' the decreased diametral expansion of the ring
under load, so that the benéing stresses remain,essentiall;r. constant as E1
varies. )
Variations of the Split-Dee Test

The high bend::.ng stresses encounte:;'ed in the split-dee test are rather
disappointing in view of the many attractive feaf;ures of the test. Accordingly
the question naturally arises as to whether minor changes may be made in

specimen or fixture design which will reduce or eliminate the bending, Some

possible variations of this nature are considered below.

The ''racetrack’ spec'imen - The provision of a straightaway section adjacent
to the split in the dees is a first logical step toward the improyer;lent gf the
N. O. L. ring split-dee tensiie test. éuch a .specimen is shown s\chemat»ically
in Figure 35. .

The analysis of the bending of the critical section of i:he racetrack is

similar to that of the ring, and is described in the following equationss

s
”

cesh )
%

M., = ' : “(5)

(a,+1) @M%g/} (E/TZ/)MW
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where now j is evaluated from

4 Iy
ff} {mg@mmﬁ 2
..1 4 A ﬁ}%

”Q@‘?LZ?

g*[ /% {;'?E)M{@)

R, + ¥

6, =

and
§
' 4% - }
o@ﬁ%' 2 & A '

again with
@ ¢
ws?
) = 6
‘where s = length of straightaway, and the other symﬁols are as before,

R.esults from the analysis 'of this racetrack specimen compared to those
from the N. é. L, ring are compared in Figure \36. Figure 36 shows that while
bending is not e".liminated'by the straightaway, it is substantially reduced, =~
even by a felatively short straight section. For example, justa 1 cm (0.4 in.)
straightaway reduces the bending moment to less than one~half that of the

circular ring.
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The mechanics of the reduction of maximum bending moment are
suggested in the_(exaggera‘ted) sketch of Figure 37. Under load ti1e mid-point
A :
of the straightaway deflegts inward toward the center of the track, so that
even thou'gh the curved portions pull away from the dees the eccentri;:itir of
‘the tensilé 1‘oad at mid-span is small and hence the moment as sociated. with
.it is small,. - iz/ e. th; max:.mum mozﬁent is still that near the corners of
!:hé dees, not that‘at mid-'span. The fact ’chat‘thé moment in the s’traight
portion is small, however, is advantageous for the use of strain gages in that
‘region. .
Experimental confirmation of a qualitative'nai;ure of the foregoin.g
analyses of split-dee tests were obtained by photoelastic tests (Figu;'e 33
and 38),and .by strain meagurements onan enlarge&, aluminum=alloy ring
(Figure 39). Even with the enlarged ring the stress gradients were so steep
around the circumierence that the gages couid not be located a::curai:ely enough
to'make a quantitative chec‘k of the analyses. Indeed, the strain gaging
problems pointed up the merits of some such approach as the foilowi_ng for

further improving the split-dee test.
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Compression Tests of N, O.L. Rings

A simple compression test for an N,O.L. ring-type specimen (analogous’
to the split-dee test for?lcension) wou]:d be useful for the evaluation of the com-
pressive properties of filament-wound composites. Efforts to develop such a
test under this contract were not succes‘sful. The specimen tried is shown
scl;ematically in Figure40,consisting of two short segments cut from an N,O,L,
ring and moupted back to back as shown.

* Application of tangential end loads to the segments of ring in Figure 40 and
preséuré-like forces from the supporting, hour-glass-like core ideally would
reproduce the compression induced in an entire ring by éxternal p:c:éss:ure.

That is, moment equilibrium at any station @ along fhe segment is represented

7

by the equation . o ‘ _
P@ﬁ‘“@@s(@-@)jg jf&a’/ [@@w}af@-@y)]d@
| &

where
© = 1/2 total load
= vring radius

1/2 angle included hy segment

%&w’ﬁ

* = intensity of normal load on ring at station @3 ’

thatis & & zy(@) )

As might be expected, this equation is compatible with.a simple pressure

load. Thus, if & & %
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Tests of sPec{mens fabricated as sketched in Figure 40,. however, were not
successful in maintaining the compatibility go readily expressible in equ;tion
form.  Attempts were made to replace the resin filler of Figure 40 with alux:ninum-
leading to a nice test of the aluminum (Fig.4l); attempts were made to test
specimens of larger ra.dms of curvature in this fashion, and a maximum failure -

stress of 59.1\_/1_1;_ {

86 ksi) was so achieved in a glass/epoxy composite.' Despite
m - .
the-fact that failure in this case app‘eaxed to be by s'hea1_-ing at the quarter point
of the specimen wii:h no evidence of overall column instabilit};'(Fig. V'42,), the
’ stJ;-ess is less than can be achieved with well collimated, straight compression
specimens‘ and is probably not representative of the material strength.

Some evidence of ”bz"ooming" of the ends of the specimens wa;é apparent
even in this.best test. A number of further tests of like specimens :vith endls
cast in cerrobend \x.lere made to try to avoid such end failures, Stresses inmo

i ’ N

case were higher than the foregoing value.

Initially straight specimens appear to be required for compression testing'.
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iLow—Melting Alloy Casting Fixture of Compression Tests

Tl;le use of a fixture in which the specimen ends can be cast in a low-
melting poirt alloy has?Aproved successful in preventing premature "brooming"
type failure in tests of straight compression bars. Su(;h a fixture is shown in
Figure 42, The fixture incorpora;“.es end plates having holes, — of the same
shape as the specimen cross-section, — but approximately 0.6 cm. (1/4 in. )
oversilze so that .3 cm. of the low-melting alloy can be cast all around between
the hole wall and the specimen.

‘Conventional 3 to 1 aspect ratio, uni-directionally reinforced compres-
sion specimens have been tested in this type of fixture with consistently high

stresses at failure. Consistency and modes of failure both suggest that these

. high stresses are representative of the compressive properties of the material,
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.Elastic Moduli

The desire to measure the elastic constants of a uniaxial fibrous com=-
posite by using specimens which represent the filament.winding fabrication
process has led to the use of thin-walled circumferentially wound tubes
(e.g. Ref 29), Axi;,l load and internal or external pressure tests of such tubés
can be used to measure four of the five independent effective elaétic con-
stants of the composite material. (See Ref. 11 for a discussion of independent .
effective moduli of composites.) The use of these thin cylindrical tubes to
measure the elastic moduli of a composite laminate appears to be a most
suitable ap‘proach.' However, it is not without problems; the first of which )
is that of definition of the moduli. When a laminate is to be used as a plate

or shell structure, the desired eldstic relations may be written with respect

to the principal geometric axes, denoted as the 1 and 2 direetions, as:

- - e 8
Ny ‘11 (8).
Noz €n (9)
N € (10)
12
- c 12
% (11
My : Ky (11
' g s
# 12
M22 A %2 ( )
1 ’ 7 13
M L 400 M2 (13)
where: .5 are the three middle surface strain components

x1

are the three curvature components
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N are the three stress resultants

M are the three moment resultants.
In this form, for an arbitrary laminate, the Cij matrix is a 6 x 6 ‘array of e~
lastic constants which must be determined experimentally, Because the lami-
nate is non-homogeneous there may be coupling between extension and bend-
ing. l The existance of certain non-zero terms in the C matrix complicates
the réiationsh’ips among these elastic constants and the so called engineer-
_ing constants: Young's moduli and Poisson's ratios.‘ This is best illustrated

by considering alternate forms of Equations (8) - (13). These Equations may

be written as (e.g. Ref, 2):

(14)

M, =b e +d #n
i Y J 13 ] -
These Equations are represented by:
N a | b &
= . (15)
. . ! -
M b 1 d m
Equation (15) can be manipulated to yield:
€ e ' f N
- = wem——— - (16)
M gt h] §n

© and
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€ A, ' B (N
- R P LT BT . 17
% o] 1D M/

As an example we now consider the Young's modulus in the 1 direction
which can be defined as the ratio of average stress to strain and is therefore

given by:

iwz

(18}

o
m1

where t is the laminate thickness.

This modulus can be evaluated from Equation (17) for N2 =N, =M, =0,

as
E = ’ (19)

Or it can be evaluated from Equation (16) for N2 = N3 = Ki =0 as: -

E = —— (20)

The definition of Equation (19) is consistent with the usual practice of havix;g
all but one of the stress components vanish. HoweverZ the restrictiox;s assoc-
iat.ed with the definition of Equatign (26) are representative of the loading con-
ditions ‘on the shell specimen. That is, Ki =0, becawlu.se.: of symmetry, These

two definitions are not the same unless b_j = 0; in which event, it follows that
: i
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f,58.,=B_=C =0andA =e
iy ij i ij ki

- It is suggested that the rational approach to this problem is to de- |
emphasize the calculation of Young's moduli, etc. .a.nd to utilize a six by six
matrix definition of the eléstic constants of a laminate. W.hen a particular
extensional or bending stiffness is Irequired, the definition thereof should be

“explicitly stated.

A second aspect of the modulus problem is the influence of the form of

?he material aniisotropy and the specimen 'configuratior.l upon measured .va.luesA
The filament wounci cylindrical tube under consideration is a material possess-
ing cylindrical anisotropy. .In the case of a 'circumfez.'ential or other winéing
~pattern symmetric with respect to the principal geometric axes, the material
may be considered to be cylindrically orthotropic. ‘An a,na‘lysis of the stress
dis?:,ribution in sug;h a medium for various applieé loads is available in Refer-
ence 30, which shows that the stress distribu’cic;n even for simple applied loads
is non uniform. For examf;le the axial s‘c‘ress , GZ , ina cylindr?cal tube su-.b—
jected to an axial load is not constant unless ¥ = V . This condition i; gen-

rz 0z

erally not satisfied in a filament wound shell, and for a circumferentially
. i B .

"wound shell, the two Poisson ratios are definitely u.nequal. In fhis ca:se, the
modulﬁs defined by Equation 18 is an average value and can be related to‘the
true value l?y using.th.e expression for the axial s’;:ress, o‘z. This result is
presented on page 25;4 of Reference 30, However, there is evidently a typo-

graphica.l error in Equation (40.4) which is not d‘iemsnionally correct as pre-

sented. The desired result was therefore rederived for the particular-type
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of material symmetry represented by the circumferentially wound tube. The

extensional stresses and, sirains for a cylindrically orthotropic tube are
*

‘giw}en by:
e 1 . Y.g rz 7 -
T E E E T
T 3] z
. 7] 14
or 1 0z o
ee = -5 _— SF ) {21)
T [¢] z
14
c zZTr - Vz9 1 ag
z E E E z
r ] z

The shear strains and stresses a.;re simply related by:

/G

Y'Sz L PR P

Y = Tzr/Gz (22)

zr T

Yre = Trelcre

These relations can be further specialized for the circumferentially
o - - ’

wound tube inasmuch as the material plane normal to the local fiber direction

can be assumed to be a plane of elastic isotropy. Thus

E =E
] T

0~ Yap (23)

Gor = Yrp
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Equations {21) and (22) are also applicable to filament wound tubes which
are symmetric with respect to ti—xe longitudinal and circumferential direc~

« : .
tions and which have a sufficient number of laminae §uch that coupling between
extension and shear is negligible. To take advantage of this wider applicabiii-
ty the a.naly;sis will rlot ufcili_ze/the simplifications offered by Equation (23)'::,
Since the applied loads are symmetric, there will be no shear stresses or
strains and the cons‘ci‘.c;ltix;e. relations for.this problem are those of Equation
(21)., By syrr.xmetry, all variables will be functions or;ly of the radial coordi-
'nat;. " Thus the equilibljium equations simplify to:

dg g -g
ro, X -0 (24)
3 r

which can be satisfied by selecting a stress function,@, such that

o =i d0

T r dr (25)
2. .

Ge=—-—-9d2
dr

. The only compatibility equation which is not satisfied automatically
- - ?

is: de ' de ‘
T d 2 8]
- il — —t = 0 26
. i + dr <r dr > (6)

Substitution of Equations (21) and (25) into (26) yiélds a fourth order differen-

tial equation on ¢ given by:

1 .
r4cpIV +‘2r3cpIH - rZBcpII + rB_Zcp =0 {27}
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1-v_ v
rZ ZTr
< Er >
—<——7—‘ (28)

¢ 9 I-Uez z8>
E
0
For B#1 the solution is:
- 148 .
cp:Arl ?+Br * i e?ip (29)

The stresses resulting from this are:

0; = a-pyr B L paaeyr Bl 2c
(30)

% = Aﬁ(B-l)r-(B+1) + BB(B +1)rB -1 +2C
The cylinder is considered-to be subjected to an axial \shortening re-
sulting in'a uniform strain, ¢ = and internal and external pressures, pi.

and p , respectively. This train displacement relations simplify to
. o

e = Su
r dr
{31)
u
e =
4] r

Substitution of Equation (30) into Equation (21) defines the strains, er-’ and ee.
Equation (31) offer fwo methbds’ Gt fifiding us -For ‘a Unique determination:’
{32)

Trws To faldoe el

Use of the boundayy conditions:
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http:considered.to

cr(r=ri) =-p;

A (33)
CTr(r=ro) R
defines the remaining two constants in Equation (30). This yields:
T - F 2
e [1-(5) B-1 1‘(?)
o = p. __> 2 -p (.E.) —i
T i :n‘:_L ]\.-C B o ro 1-¢C B
(34)
o L. (_r->B-1 1- CB +1 - (_r—->(8 +1) 1. CB-l
- 7/ 1-c%P ¥ [1-c*P
T,
where C = —1-
. r
o
28 ' - -2
T
) T -(B+) L o (r)B-l ' +<—;1->
o =p8 (L) |—=—|-p8(%) - |—
g i \=z, i . o \r )
it I-CZB o 1-C
(35)
PR S s
z B 1-¢2P T - l-c .
6 =Ee+v, 0. +V 0O ' (36)
zZ 2z 8z 6 rz ¥
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:Axial Compression Test
It is now pos sible,::,o compare thg results obtained by the tube tests with
the actual elastic n:mdulli. F.irst, ;:pnsider.thevtube in axial compression. The
measured modulus is given by!
E = % (37)
N z e .
cz is the average axial stress (total load divided by

tube cross-sectional area)

Thus:

- 1
Uz b A-gaz da
- 1
g = ——a———. 00 rdr (38)
A 2 Z

a{r =-1,)

o i

Sub:stituting Equations (36), (34) and (35) with p; = po = 0, into Equation (3¢,

and the-result into Equation (37) yields, after much manipulation:

—_ 2

EE % Fde L. 28 (1+_<:2§3)(1+cz)'-4=cs+1
Ez (1-Vrzvzr) (/Bz-l)2 ) "1+]32 (I-CZB) (1-C2) ' (39)
h y

For a thin shell we find by taking the limitvof Equation (39) as C»1 that

'I;hus the thin-walled circumferentially wound tube appears to be a suitable test

technique for measuring the transverse Young's modulus; * The .magnitude of the
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, error associated with this technique is indicated by computing the guantity ¥

in the following equation as a function of B:

= 2
Ez-Ez - (vaz_vrz) v (40)
E 1-y

14
zZ Trz 2T

where the correction factor, ¥, is determined by comparison of Equations (39)
1 :
and (40),

-The factor ¥ was evaluated for a radius ratio of C = 0.9 which is a rela-

tively thick shell for this purpése. Correction factors, ¥, for smaller radius

ratios, C, will be smaller. It was found that}

¥ <0.01 2,<B=<éb

¥ < 0.1 2<pBg=10

e

It seems safe to conclude that the circumferentially wound tube in axial
compression is a valid test for the Young's modulus transverse to the fibers of

a uniaxial composite.
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Internal Pressure Test
An internal pressure test has been used (e.g. Ref. 29) to determine the

£ « . -

Young's modulus in the fiber direction and the Poisson's ratio. Strains are

measured on the inner and outer surface. For this loading we may examine
: :

H
¥

%he ‘equations for strain by substituting Equations (34) - (36) into Equation (21).

For zero longitudinal strain and zero external pressure this yields:

i
-(B+1) 28] v 28
8
wonl) ()t hE) =[] (@

i l-c

.The measured surface.strains will then be given by:

‘ P; 28] Yo 28
¢q (7 =z—;'§'{sje [HF J"‘G—L(l'° ) (42)
-C rz
CB-i-l
solrg) =28 for, — (43)

As in the preceding'section, we choose to examine the error associated
with the use of equations. developed for isotropic materials. The élternativp:
is to write the simultaneous equations relating all the measured strains. to all
the elastic moduli and solving for the latter. However,. this alternative pro-
cedure is complex and perhaps not possible as there is no apparent direct

‘measurement to define the transverse she‘ar stiffnes;, -Gzr. Thus, we con~

sider

= . _0
EG -q- (44)

,._..
[N
[



where Ee is the effective circumferential thickness for
zero axial strain.

ae- is average circumferential stress.

For equilibrium:

3 = pi( 15 c) (45)

The stiffness defined by Equation (44) can be evaluated by the use of e. g. (45)

and either Equation (42) or (43), We denote the results Eel and Eoe respec-
tively. Treating the thin shell we write:
c=1.86 . (46)

where 8 is the shell thickness to'radius ratio. The results are:

o . .
= 1 5
By ® 5, [”21 “n
; 2v, 8
=-=i _ 1 N Bz .
I*:e = = !:1 5t a5 ] {48)
R 8 rz O

4

Equation (47) shows that the use of the external surface strain éneasprement
yields a result for the extensional stiffness which Has an error measured by

' half the thickness to radius ratio, e. g. 5%‘error for a radius to t;ickness
ratio of 10, On the other hand, the inner sur:‘.ace measurement involves many
other ‘mé.terial rmoduli and is therefore -Ezpsuitablg for simple use in the circum-

ferential modulus determination.

" Note also that there is a significant difference between internal and ex-



ternal strains, Thus:

eofry) meg=g) - W \[ s )
ee (r;)) . C}rZSS 1-(B+1)8
%/5{0‘1
W Test

Reference to Section 43 of Reference 30 shows that the stress distribu-

tion in a cylindrically anisotropic hollow sheéll for which there exists at each
point a plane of elastic symmetry normal to the axis is obtained in the same
way as in an isotropic rod. That is, ce z is the only non-vanishing stress

component and

”®

o =M
6z I

The c1rcumferent1a11y wound circular shell satisfies these symmetry require-
ments and therefore provides an-exact measure of the m-plane shea? stiffness,

Gez. :
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CONCLUDING REMARKS

-The a.pplication,‘o;‘. existing analyses of strength and stiffness of fibrous
composites to-the analysis and design of composite structures has been treat-
ed.’ It l?a,s been shown that, although the present undefstanding ?f failure
mechanisnis is incomplete, it is possible to construct a rational set of fail-
ure criteria for fibrous composite 1‘amin.ates. Additional studies of the fail~
ure mechanisms of a uniaxial composite have been performed by using limit
analysis techniques. ' Also the effect of stress g:oncentrations upon tensile
strength has been explored and initial studies were made of the complex
moduli of fibrous composites having viscoelastic‘matrices.

’.i.‘he design criteria were\used in the evaluation of columns, plates and
panels 'in which uniaxial composites for high strength were combined with
isotropic metals or compc;sites for high stiffness. Designs offering substantial

N N
improveme'n’c ov'er those made of one material only were ‘demonstrated. Im-
proved composite materia‘ls were achieved through the use of a third phasé as
a local reinforcement of the matrix. Also approximately isotrci)pic three-
dimensional materials were designed.

Test methods were analyzed leading to a verifi'cation of the sui/tability of
thin-walled tubes for modulus measurements ;a.nd the unsuitability of tixe NOL
riné for tensile strength measurements. Improvemgnté in methods for measure

ment of tensile and compressive strength were demonstrated.

The studies emphasize the feasibility of using present methods for the
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thechanical analysis of composites in preliminary design studies. They also
# -

indica‘ce that our understdnding of composite failure mechanisms is a continual-

ly evolving one requiring additional theoretical and experimental study.
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ABRPENDIX A - Limit Analysis For Composites With Elastic-Brittle Fibers
l Five types of surface loadings are considered:

1.* Tractions equivalent to a uniform shear s1:ress~‘7‘12 are applied on
the entire boundary surface.

Use will be made of the theorems of limit analysis which will not be

stated here. For lower bound construction. a uniform stress field

0 T 0
[o]
T, = T -0 0
ij o
0 0 0

is chosen as a sta.t:ically admissible stress field where To is such that Von
Mises'yield criterion of the matrix is not violated. Then it can easily be

shown that

’

<TII;)L = kb (1

where kb is the yield stress of the matrix in simple shear.

For upper bound construction, a kinematically admissible velocity field
is chosen as follows:
(a) Inthe region of the composite specimen not occupied by composite

cylinders and on the boundary of the composite cylinders.

w, =0, u, =Y

1 2 ug =0 (2)

0 x1’ 3
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where YO is any real number."" "

(b) In any composite cylinder, the velocity field 4 is the elastic dis-
placement solution-to the displacement boundary value problem with displace~

ment boundary conditions (Eq. 2) prescribed as formulated in Appendix 2 of

(Ref. 11) with the modification that the fibrous core is rigid.

An application of the upper bound theorem gives an upper bound (‘rlL)

“as a function of B and v‘l the latter being the volume fraction of all the composite

cylinders embedded in the composite specimen:

L = A - . 3
("12)U =kth 1 (11 R ' 3

7/

where

1 2n

d 4 .
Il='1_2§ § R'].-I--BT + 2
m(1-8") 8 R

o]

cos 8d6dR

:UNl'w s

’

In the case of "random array" (Ref. 11) for which vl = 0 and the fiber

v

2 . .
volume fraction of the composite specimen v = B, Equation (3) becomes

= (4)
=1

© 2. Tractions equivalent to a uniform shear stress T, ar¢ applied on

the surface of the specimen.

The condition of plane strain is assumed. Then, the Von Mises' yield

"

criterion for the matrix reduces to a simple form
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'

: 2 2 2
- < 4
(T22 " "33 t 43 *p 15)
For lower bound construction, a uniform stress field

0 0 0

Tij = 0 0 To
0 T o]
[e]

is chosen as a statically admissible stress field where 7 is such that Eq. (54)

_ is nowhere violated. Ti1en it follows that the lower bound for the limit load

L
T, =k
<23>L b

which is‘indep'endent of fiber volume fraction.
.For upper bound coﬁstruction, the same principle is used here. A
kinematically a@mis sible velocity field is chosen as follows:
(a) In the region of the composite specimen nc.>t occupied by composite

cylinders and on the boundary of the composite cylinders,

. Yo' Yoo
WEO w =T oxy 8y =X (6)

\ .
(b) In any composite cylinder, the velocity field u is the elastic dis-
. .

placement solution to the displacement boundary value problem with displace-
ment boundary conditions {Eq.' (6) ) prescribed as formulated in Appgndixl

of Re_f. 11 with an additional condition that the fibrous core is rigid and the
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binder shell is incompressible.

. L
An application of the upper bound theorem gives an upper bound <TZ 3>

U
as a function of B and vlz

L ) ) .
<TZ3>U = kb +ka1 (12-1) (7)
1y where
) 1 e
L = RofU. (B, R) + ¥_(B, R) cos § dBdR
¢ n(1-52)3§8§o Jl 2
and
44 2\ 3 z' 522 " (agtefan N
RCR IR [(B +8741) - = (6 +1)—-—2-} ¥ [—Ezi—*—-+ 3R ]
R R’

.o 2 » 2 \ 4 2 ’
1,(8, R) =2—%—[(a4+52+1) -2 (8% 5—2} {(ﬂ%@—ﬂl + 33%1
: R : T R4 .

3. Tractions equivalent to uniform axial tension TZZ on the composite -

specimen under the conditions of plane strain.

Using the same principle, the lower bound for the limit load is

L>
T = 2k.
<22L b

For upper bound construction, a kinematically admissible velocity field
is chosen which is obtained from the one constructed for the preceeding case

through an orthogonal transformation such that
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0 0. o0

P 1 1

u, =d u' withd  =| 0 —_ =
i 0§ ij V2 2
oL L 1

2 /2

where u3 are the velocity components used in the preceeding case referred to

an x'-system. Then, after some manipulation, it turns out that

44,

Another kinematically admissible velocity field was constructed:

a. Inthe region of the composite specimen not occupied by composite

cylinders.and on the boundary of the composite cylinders,

Y o Y o
u =0, u=4—2x, u, = - —=x
1. 2 2 "2 3 2 73
or in polar coordinates,
Yo Yo
u1=0, ur-?rb cos 26, ug = -—i—rbsmze

b. Inany comp.osite cylinder, the velocity field in polar-coordinates

is assumed to have the following form:

<

u = —ze-p(r) cos 2

T
<r<zyr -
YO ‘ forrf r rb(
ug:--z—-'ﬁ(r)stSl.
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wherie p(r) and Q(r) are arbitrary functions and
£ - b
p(rb)v= Qfr) =z, : 7 (8)
In additioéx, we assume that p(rf) = f}(rf) = 0. Becuase of the assumed‘
incompres sibilit'y of velocity field, p{r) and Q(x) satisfy the following equatin;n:

dolr)  20(x) . pF) _ «
dr T r + r =0 9 -

2
Furthermore, let p{r) = Al(r-rf) + A2 (r—rf)3 where the constants

: rf+2rb

A = e D
e

b i

and-
) rf+rb
A = -

2w -y

b f

have been determined from (8) and (9).

Now the velocity field of the entire spécimen is constructed a.l:ld the
upper bound theorem is applied to obtain a new (TZIZJ)U in terms of :fi’ber..
volume fraction for the case of "random array'. Incidentally, this same vel-
ocity field, after an o;rthogonal transformation, can also be used to obtain a

new(’rzl:;> . Unfortunately, numerical calculations show that for all fiber-

U A

volume fractions between -0 and 1, both<'r2;j and <TZI3">U obtained here are
U . . .

slightly higher than their corresponding values obtained previously.
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. 4. Tractions equivalent to biaxial uniform tension T and Tas

(T,5.% T33) on the composite specimen.

For definiteness assume 7._ = 7T Then following the ideas used in’

22 33,

Gase 3, it can be shown that

<
Ny
£
H

; A\ : ‘<TzI§)1; - <T3132‘=2kb
6, (), -6

U
5. The type of surface loading considered here is for ‘7‘ij in the follow-

’

ing form: -
) 0
12
T =
ij 2 22 " {10)
0 0

vhere the constant stress components T and T, 3Te related in the following

way:

'rlz=a1'22 . 3(“)

vith & = 0. This amounts to a proportional loading of combined uniform shear

stresses 7., and uniform tensile stresses TZ'Z on the boundary surface S of
N Ay
he specimen.

Since both 7, and 7-'22 are assumed finite, it is obvious that a= 0’

12

:orresponds to the case where 6n1y uniform tensile stresses Toa are present.

)n the other hand, a- ® corresponds to the case where the specimen is sub-
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jected to uniform shear stresses 1
In lower bound’construction, a uniform stress field of the form (2)

supplemented by (3) is chosen as a statically admissible stress field to obtain

L sty
lower bounds for the limit loads 1'22 and 'rL , respectively. It turns out that,

12
“oz)
22/y, 1
-
= 40
b 3
and - i (12}
(%)
2, «
"
‘J% r ol
for a2 0.

‘

From Equation {12)it'is oBvious that for the special case where o = 0

{i. e. for uniform transverse ‘stress Tyo acting alone),
22
N L

In the case where 0 ©, corresponding to the case where the specimen

= /3 (13)

is subjected to the uniform in-plane shear stresses T2 alone,

L
lim "12)1,_1
) kb =
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For upper bound construction, a kinematically admissible velocity
f;ield u is chosen to be'a linear combination of the two kinematically ad-
i -+ : " :
e o £ 1 a . L Ly .
missible velocity fields used to obtam(r ) and('r ) ., respectively:
. < 12 22 R .
: U U
{a) In the région of the corﬁposite specimen not occupied by composite

cylinders and on the boundary of the composite cylinders:

B u = u(l) + u(z) (14)
-+ - -
where - -~ u('1)=(0, v, x., 0)
o - 11
v ¥
C I 2 s
and 3 =\ 3 "3),
with |
Y1_=_W Y, . (15)

where W is any real number,

(b} In’/a.ny composite cylinder, thé velocity field is the elastic diéplaée-
ment solution to the displacement boundary c'onditions(l‘!) together with (15)
Aprescrib‘ed.with an ad.ditiona.l condi'tion that the fibrous core is rigild and the
binder material is incompressible. In fact, the solution to this ciisplacerhent
'E‘ounda.ry value problem can be obtained fron;‘the associated solutipné. to the

individual problems connected with obtaining <'ri‘221 and <TZLZ)U by the prin~ :

ciple of supérposition.

' Then an application of the upper bound theorem gives, for'the case of

constant B throughout the specimen
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<2L2>u ity ()

¥

% L4 “e
b 5 w
where
. 1 oAl o2 }
L=—=—3 g § Rqf (W, B, RY+0, (0,7, R) cos 6+0, 1B, R) cos 28d8dR
. m(1-8") s o :

N o g* /e 2 3 .z 822

Ql(wj B, R) = 43;[(5 +B +1> -3 (B +1>R—2J'
2

+'\:3 6° R® i§454‘";B’2+ 1>}

rut gt (i f;)

a, (w, 8 R) = 20’ (1-52)4.—5—

and

o

¢ 2 4 2
SRR [(s4+sz+1) - %(B%)%J [mZ-RZ RNCLEY. {rn}

In the case of "random array', (16) reduces to
(22)
22, I
: - U . - 3 (17)
b 3 + oW
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Since w in (15) is arbitrary, -the lowest upper bound among the class

oﬁ upper bounds in (17) w111 be obtained by minimizing the right-hand side of

3

(X7) w1thre°pect to w.'
13

i

Thus,
. ( 15 a minA kbI3 .
" (), = Liow’ (18)
! 2
and ‘ (T L) ) rzn}n kbor. I3
- = w —
12 . -él- +ow

will be chosen as the upper bounds for 7'2:;' and TIZL’ respectively,

L
Numerical calculation is performed to obtain (1' and {1 from
22 o 12 U

(18) for. d1fferent values of B and a. It is interesting to note t}ia‘c in the num-

N !
erical calculation, for any given g, W which minimizes the right hand side of

Equation (18) is a monotoniz increasing function of o but w # a (except when

@ =0, thenw '=qa =0),



)
3.
3

APPENDIX B - Derivation of Equations for N.O, L. Ring Split-Dee Test Analysis

The assumptions are made that the N, O. L. ring exactly fits around.
H * -
. ’E}le two dees at zero load and that there i8 no friction between dees and ring, so
fha,t the portion of the ring that remains in contact with the dees is subjected

to essent1ally a rad1al pressure which 1nduces a hoop tensile force P in the

ring. This hoop tensmn produces a c1rcum£erent1a1 expansmn A of the ring,

equivalent to:

P ? ,
4, = Ea}‘ {29’}{4%*}:’ (1)

where
:
El Young's modulus in hoop direction of ring -
A cross-sectionalhar-ea. of ring
o initial inside radius of ring
t ~ ring thickness

This circumferential expansion is converted to a straight-line separation

AD between the dees, soAthat

4 TEA = (v)(R+2) @

very nearly, and the problem is that of the analysis of a‘beam at the split in the
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s

dees as sketchéd beloxl;v:

<
That is, the beam is tangent to the dee at some point at a distance
from the center line of the split between the Dees. At the centerline the beam
is subjected to the tensile force P and a moment ML . At the point of tangency

the force P is also acting and a fictitious moment Mo is hypothesized of the

£
> .

magnitude required to form the ring to.its initial radius of cuzvature Ro +

So

o P@;}%

In other words the analysis considers the beam as initially straight when un-

stresse&. , The desired bending moment at the center line ML will thus be found

by subtraction of the fictitious moment Mo from ML .
Selecting x~y coordinates as shown, we note\that the moment M at any

section of the beam is .

M= =P fs-y)+ M,
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or

Let
E1
By substitution (4) becomes
5,
K fo_’_ e ﬁ._/‘,&ér.;..ﬁg%
T J =

. - Ei‘z

The solution of (6) is

J"“"(g fgfﬁf?}(@ cosh &a:

Accordmgly the slope @ at the point of tangency of the beam to the dees is

(4)

.(5)

—

7}

= van™’ (é-ﬁ/}/ﬁ_z méﬁ) (8)

The deflection & is similarly found as |

. M, ) / |
e =2 -
p/j eosh m‘ﬁ j
. f“"g}%
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Combining (8) and ('9)

i
G = BVET W{/;Zfﬁ}'/j o

w

Because the beam is tangent to the dee at x = , the angle / subtended by
the arc of the dee between the split and the point of contact may be found by
.trigonometry-as
f-4 f@{z@ 5 j
o 2 EA

@=$!ﬁ
R+ E" |

(1)

@lrg;" : . (12)

Finally, from (3) for y =0

MaMgE%‘Pé )

~ Or by substitutior% of (9)
. M@ . .
My = 7
, cosh f}




" Shear deflections may be included in the analysis by re-writing equation (7) as

k

Ll ﬁ ,-@%/m/)

For a rectangular section.n = 1,2, and (15) becomes

.

. oM 12 B / )
=446~ 28 J A (16)
y=go- goli- 25 fmff;f

¢
. Analysis to include the effect of the straightaway on the racetrack specimen
follows the same form as above, leading directly to the equations given in the

text,
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Table 1. - Generalized equatlons for comphances of composites having uni-
directional reinforcidg fxlarnents in the 1 dlrectmn (from Ref, 1).
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/nférre/af‘/omhz,‘m among constants for
fransyerse isotropy

Ry
. AT E .
Y A
A=A = Yorbs
£ 9 Ity

; 5/’““@"1/)
A4=A6" 2 ¥

f- 2 =29, ‘iw,)p ‘;"éﬁ) :

Ag= Gy

Table 2, = Relationships among elastic constants and compliances for uni-direc~

tional reinforcement for use in evaluations of the various g's in
Table 1 (from Ref. 1),
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6 vy~ Zvﬁ){f)

pl= Gy = Co(1-%)
Gl)
'{3"= 6‘5,2-6@{/-?)

T Gl

Table 3. - Equations for the transverse effectiveness factors (,3) in terms of
" the elastic constants for uni-directional reinforcement (equations of
Table 2 solved in terms of g for B., Values equal to unity).
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Table 4, ~ Generalized equations for the compliances of three-dimensionally
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Figure I, Calculated Stress-strain Curves for E-Glass and Epoxy Composite .
Laminates. .

144 -



' J _ BORON/EPOXY
/ . V=050
] o= 150 ksi
' . op= 10ksi
150 “?,\L | 3= 10ksi

100 - o’y
o ¢
=72
Ly
% = O3
50—
o’ : ] 1 N
. 0 30 60 S0
g N 401-923
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Figuré 18, - . Typical Variations of Transverse Effectivenesses of Filamentary
Reinforcement with Volume Fraction, as Calculated for'an E-
Glass/Epoxy Composite,
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Calculated Compressive Strengths for Three Indicated Failure Modes

"for a Boron/Epoxy Composite of Nominal Constituent Properties witt

Constant Total Reinforcement Volume Fraction of 50% but Varying
Proportions of the Reinforcement Uni-directional and Randomly Dis~
persed in the Binder, '
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Figure 29. Calculated Compressive Strengths for Three Indicated Failure Modes
for Glass/Epoxy Composites of Nominal Constituent Properties .with
Constant Total Reinforcement Volume Fraction of 50%, but Varying
Proportions of the Reinforcement Uni-directional and Randomly Dis~
persed in the Bihder.‘ :
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Figure 31. Experimental Results for Tests of Glass~Boron/Epoxy Composites

having Uni-directional Boron Filamentary Reinforcement of Nominally-
" 50% by Volume, and Comparison with Calcula.t:.ons for Various
Glass~Filament and Binder Strengths.

173



N 402-093

Figure 32, Schematic of N. O. L. Ring, '"Split-Dee" Te1.1sile Test
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Figure 33.

Photoelastic Study of Stresses in the Vicinity of the Split between the Dees in an N.O, L.
Ring "Split-Dee'' Tensile Test.
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Figure 34, Results of Analysis of Maximum Bending Moment in the "Split -Dee"
Testof a Glass Filament Reinforced Epoxy N.O. L. Ring,
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N 402-094

Figure 35, ‘'Race-Track", Filament-Wound Tensile Specimen.

177 -



M

e -
Mgz, -5 \

Figure 36.. Ratios of Maximum Bending Moments Induced in Race~Track
and Circular 0.15 cm, (0.06 in.) Thick Split-Dee Specimens of

G
Glass/Epoxy at 0.69 - (100 ksi) Axial Stress,
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Figure 37. Schematic Representative of Mechanics of Deflection of "Race-~
Track' Specimen.
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Figure 38. Photoelastic Study of Stresses in the S’cralgh’caway of a2 "Race~
Track' Specimen,
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Figure 39. Strain Measurements Near the Split in the Dee in 'l‘l\'T.O. L. Ring
Type Split-Dee Tension Test, ’
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Figure 40. Proposed Compression Specimen Made from Segments of NOL
Ring. )
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Figure 41,

Aluminum Insert from Specimen Similar to that of Figure 40 after Test.
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Figure 42,

N, O.L. Ring Segment Compression Test Specimen Showing Shear Failure.
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Figure 43, Top and End Views of Comressi n Specimen Cast in Cerrobend
End Fixtures.





