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ABSTRACT 

The results of aprogiam to study the analysis and design of composite 

materials and structures is reported. Emphasis was placed upon three 

major areas: The definition of design criteria for laminates including 

studies of basic ,failure mechanisms; the definition of unique design-concepts 

to enhance the beneficial characteristics, of composite materials and to utilize 

them-in structures; and the analysis of composite materials property test 

te chnique s. 
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INTRODUCTION 

Development ofmeth6ds of analysis of the strength and stiffness of fib­

rous composites has advanced to the point where it is feasible to establish 

rational initial design procedures for composite structures. These procedures 

are naturally subject to revision as continuing studies enhance the understanding 

of composite failure mechanics. In conjunction with the theoretical develop­

ments, there is the unsatisfied need for definition of suitable techniques for 

material property measurements. Accordingly, the program described here­

in treated the above problem areas and the present report presents the results 

of investigations leading to: The definition of design criteria; the enhancement 

of the understanding of failure mechanisms; the definition of unique design con­

cepts for composites; and the development of improved techniques for com­

posite property measurement. 

The section on "Design Criteria" describes the failure criteria for lami­

nates, which have been computerized for structural efficiency analysis. Fur­

ther studies of the laminae failure mechanisms upon which this is based are also 

described, including some treatment of time dependent behavior. The applica­

tion of these criteria is treated in the "Design Concepts" section, wherein the 

utilization of the high uniaxial compressive strength of fibrous composites is 

emphasized. Columns, plates and panels of combined composite and metallic 

construction are designed and their potential is assessed. Concepts for im­

proved material performance including three phase and isotropic three dimen­



In the final section, -"Studies of Materials 
are also defined.sional.materials 

test tech-
Properties Tests" the/results of the analysis of several current 

uniaxial strength
suggested new methods for 

niques are presented along with 

measurements. 
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DESIGN CRITERIA 

The parametric evaluations of fibrous composites for aerospace structures 

(e. g. Refs. •1 and Z) have indicated the attractive potential of composite 

structures which are configured to achieve high stresses. When efficient 

stiffening arrangements permit the use of the high modulus composite materials 

high strength, the resulting structures are shown-to be substantially lighter 

than metallic structures. These studies emphasized the need for better 

definition of composite strength. The prediction of laminate strength from a 

knowvledge of constituent properties is a complex undertaking and, in general, 

strength estimates most suitable for design are obtained experimentally. 

However, an analytical estimate is required in the assessment of the potential 

of candidate composites which have not yet been brought to the practical fab­

rication stage. Indeed, the concept of analytically predicting composite pro­

perties for use in a str-uctural application analysis, is an essential part of the 

search for guidelines for the development of improved composite materials. 

The strengths of fibrous composites, perhaps to an even greater degree 

than their stiffnesses, are complex functions of the anisotropies associated 

with the uni-directional character of filaments. For filaments in one (the 

loaded) direction only,. strength in tension (Ref. 3), compression (e. g. Ref. 4) 

and shear, (e. g. Refs. 5, 6) have been related to. the properties of the consti­

tuents. Further study of these problems is described subsequently. Exten­

sions to reinforcements in other directions have now been incorporated into 

the computer programs for'structural properties of anisotropic composite 
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elements (SPACE). The aim is to provide a strength assessment for prelimi­

nary design studies. 

Numerous strength theories have been proposed; the validity of which can 

only be justified by experiments which are themselves complex and formidable. 

A comprehensive tabulation of strength theories has been presented in 

Reference 7. Among the theories proposed is the strength theory in References 

8, 9. In this theory, the strength of a fiber-reinforced composite, considered 

as quasi-homogeneous and anisotropic, is governed by a continuous failure 

surface of Hill (Ref. 10). Once the failure surface is determined, the strength 

of the composite body under any type of surface loading can be determined in 

a straight-forward manner. This appears to be a reasonjable approach for 

composites with elastic perfectly-plastic fibers and matrix' 

For most composites there is a vast difference between the strength of 

the filaments and the strength of the binder, and failures in the binder may 

be encountered a's the maximdm stress direction varies from the filament 

direction. In the simplest case, for example, of a unidirectionally reinforced 

composite in tension, if the angle between the tensile load and the reinforce­

ment direction is increased gradually from zero to ninety degrees, three 

primary failure modes can be expected to be encountered: first, at small 

angles,. tehsile fhilure of the filaments; second,' at intermediate angles, 

shear failure in the binder; third, as the filaments b'ecome oriented mostly 

transverse to the load, tensile failure in the binder. These failure modes are 

essentially independent of one another. Particularly for the change from 
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tensile failure in the filaments to shear in the binder, there appears to be 

little reason to expect a gradual transition of the type that leads to a smooth, 

"yield surface" for homogerheous materials. 

When the various failure modes are independent of each other for a com­

posite having an oriented structure, the applicability of a continuous function, 

like Hill's anisotropic yield condition for a homogeneous material (Ref. 10), 

to represent a yield or stiength criterion appears open to question. Accordingly, 

the approach utilized herein to determine strength criteria for composite 

laminates has been to 'determine separately the strengths for all possible 

failure modes. Thus, to a degree, a family of failure surfaces representative 

of the material will be generated, and the lowest of them for any loading 

condition will be the governing one. 

This approach is described in the following sub-section. This is followed 

by a presentation of the recent studies of the strength properties of a uniaxial 

laminate. Note that these'latter quantities are required both for the dis­

continuous and the continuous failure surface models. The analysis is developed 

first for composites where both fiber and matrix are elastic-plastic and a 

continuous failure surface is defined. These results are then specialized for 

rigid brittle fibers to generate strength values which can be used in a maximum 

stress failure theory. 

Laminate Strength 

The strength analysis of a laminate of layers of uniaxial fibrous compo­

sites utilizes the elastic analysis, under given surface loadings, of the state 

of stress in each laminate layer considered as quasi-homogeneous, i. e. 
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locally heterogeneous, but grossly homogeneous. If the surface loadings 

increase monotonically and proportionally, there will be a stage at which 

the stress in one (or more) layers of the laminate is at a failure point and 

the layer, being assumed to fail, is replaced by a new degraded layer having 

an assumed mode of degradation. As successive failure of constituting 

layers proceeds, a redistribution of stress among the laminae occurs and 

the slope of the load-deflection curve is discontinuous. The ultimate strength 

of the laminate is reached when all the constituting layers have failed. 

In each layer, the stresses referred to the principal axes of anistropy 

are computed. If the shear or transverse stress is equal to its corresponding 

yield stress, the lamina is considered to hold that stress level for those com­

ponents and to have additional stiffness only in the fiber. direction. As 

successive failure ot constituting layers occurs, the entire load-deflection 

history can be traced until a failure in the fiber direction occurs or until all 

,layers yield, at which point the associated applied load is deffned as the failure 

load. An illustration of the application of this approach is presented in Fig. 

1 where calculated 'stress-strain curves for two simple laminates of E-glass 

in epoxy are shown. For more general laminate configurations there will be a 

greater number of straight line sections in the stress-strain curve. 

For those applications where only the limiting stress levels - and not the 

entire stress-strain curve - are required, a simpler approach to the defini­

tion of failure criteria appears reasonable. This approach is based upon the 

concept that the first'departure from elastic behavior is a most significant 
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point on a composite material stress-strain curve. It is desired to keep 

actual stress levels below this point in a fashion analagpus to the use of the 

yield stress for metal construction. Similarly, at the ultimate stress level,. 

the transverse properties of the individual layers have generally deteriorated. 

Thus this level can be approximated by using a "netting" analysis with the 

uniaxial strength properties of the individual layers. The application of these 

principles in the definition of failure criteria is described below. -These 

methods have been incorporated as a subroutine of the SPACE computer 

program. 

The basic stress strain relations for the laminate are given by: 

-bb d 

Where N. and Mi are the laminate stress and moment resultants, e are 
1 11 

the middle surface strain components, C. are the curvatures, and ai, bij 

and d.. are the laminate elastic constants obtained by-suitable -integration of13­

the laminae elastic constants. For definition of laminate strength we desire
 

to treat the stresses arising from a set of applied stress resultants wheri the
 

- curvatures are prevented. Thus we can consider above equation rewritten as:
 

1 

- b1" 
S-ab5;
Ijdbajb 
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-1 
where a is the inverse of. the matrix a. 

For zero curvatures We have 

1 
,LaK 

and 

i = ij
(k) 

oj(k) 

-(k) th 
where a . are the stress components in the k layer referred to the 

laminate axe s. 

.k) are the elastic moduli of the same layer referred to the same axes.13 

(k )
From these equations we may find the stresses, , referred to the lamina 

principal axes from: 

; TTk) ( k)a(k) no sum on k 

where T is the transformation matrix for rotation of coordinate axes. 

k is the angle from laminate principal axes to lamina principal axes. 

To evaluate laminate strength, the stress components U 
k 

are evaluated for a 

laminate having its- laminae thicknesses and the total load normalized. Thus, 

the total thickness is unity and the load vector for axial load, 'for example, is 

(1, 0, 0). With the stress components known, 'and the maximum strengths, 

a. (k)
lU 

defined for each of the stress components, (as in Refs. 3, 4, and 5) 

the ratios a. (k) 
iu 

(k) 
0". 
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are formed. The lowest ratio of this set of 3n quantities (for an n layer 

laminate) is the material yield stress, Or 
y 

The same analysis is now repeated for the case where the moduli E. 

GIZ, and V2 1 are set equal to zero for all layirs. Thus only El, the modulus 

in the fiber direction is non 7 zero and we have (for El = vfE ),a "netting" 

analysis. Here there are only n stress ratios and the lowest one is taken as 

the material ultimate stress, a 
u 

As an application, the yield stress of a symmetric biaxial'laminate sub­

jected to an axial tensile load was treated. The results for these laminates 

are presented in Fig. Z. .Each curve. represents the results generated for one 

of the three' stress components and the lower envelope curve is the design' 

yield stress curve. 

Lamina Strength 

It has,'been postulated (R6fs. 8 and 9) that the strength of a unidirectional, 

fibrous composite, considered as quasi-homogeneous and anisotropic, can be 

represented by a surface having the fbrm of Hill's Generalized von Mises' 

Yield Condition (Ref. 4), iamely: 

) 2
Zf(T:.) 'F (7?7)Z G (T 3 r 1 + H (-' + ZLrz? 32 

-IZ
 

+ ZM 7 +ZNr7 =1
31 12 

where the coefficients F, G, H, L, M, N are parameters characterizing the 

state of anisotropy and T..'ai'e components of the stress tensor referred to the 
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principal axes of anisotropy x1 x2 where the axis is parallel to thex 3 x I 

fibers. * In general, the yield condition (1) can be represented by a surface in 

a stress space. A stress point within the yield surface represents a "safe" 

stress state. Yielding can occur if the stress point is on the yield surface. 

Since unidirectional fibrous composite layers in laminates are thin compared 

with their lateral dimensions, only 'll'T2 2 and Tl, are considered non-zero 

if the x 3 axis is along the thickness of the layer. Furthermore, since uni­

directional fibers are randomly located in a composite layer, it can be assumed 

to be transversely isotropic'. Then the yield condition (1) reduces to 

)-ZXX ()Z 

where X 1 , and XI 2 are the normal yield stress in the direction of theX 2 

fibers, the normal yield stress in the direction transverse to the fibers and 

the yield stress in axial shear of the composite, respectively. These are the 

three basic strength characteristics of the unidirectional fib rous composites. 

Once these are known, the yield condition (2) can be employed to determine 

whether a combined state of (plane) stress can cause failure of the composite. 

In what follows, effort is made to evaluate the quantities, , andX1 X 2 

XI12 analytically in terms of the strength and geometry of the constituents. 

* 	 Henceforth, unless otherwise specified, i, j = 1, 2, 3; Summation on 
repeated indices is implied. 
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Limit Analysis of Unidirectional Fibrous Composites 

The composite material under consideration consists of a 

relatively soft matrix material in which stiffer fibers are embedded. Initially 

both materials are assumed to be elastic-perfectly plastic and satisfy the.von 

Mises' yield 'riterion. As shown in Figure I, referred to an orthogonal 

Cartesian co-ordinate system, a typical unidirectional fibrous composite is 

taken to be a cylinder with rectangular cross-section. Circular fibers run­

ning from base to base of the specimen are in x -direction. Limit analyses 

of such a specimen with various arrangements of both elastic brittle and elastic, 

perfectly plastic fibers in an elastic-plastic matrix under various types of 

surface loading will be described. 

Elastic-plastic Constituents 

In this study only the "random array" geometry is considered:, circular 

fibers of various diameters are randomly located in the specimen. Each of 

them can be surrounded entirely by a concentric cylinder of matrix material. 

A cylinder consisting of a fiber of radius rf and the outer matrix shell of 

radius rb is called a composite cylinder. It is assumed that a constant 

rf
rf can be chosen so that the composite cylinders are non-overlapping. 

The entire specimen can then be considered as an assemblage of compogite 

'cylinders and the ramining matrix volume. The lateral boundary of the spe­

cimen may touch or cut through some fibers. In both cases the associated 

composite cylinders are "incomplete". Since in practice fiber diameters are 

very small compared with the transverse dimensions of the specimen, the 
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total number of fibers in the interior of the specimen is much larger than the 

total number of those possibly on the lateral boundary. Hence, the total 

volume of "incomplete" composite cylinders is much smaller than that of the 

"complete" cylinders. 

If V, and V 2 denote, respectively, the total volumes of the specimen,V 1 

the composite cylinders and the remaining matrix in the specimen, the 

following obvious relation holds-

V = + V (3)V 1 

In the case where the entire specimen is occupied by composite cylinders, 

= 0. Following Hashin and Rosen (Ref. 11) this distribution is called theV 2 

"random array". 

The von Mises'"yield criterion which the fiber and matrix materials are 

assumed to.obey has the following form (Ref. 12): 

S.. S.. (4)
:ij 13 k2 
2 k
 

where S.. are components of the stress deviator and k is the yield stress in 

simple shear for the fiber material (denoted by kj) or for the matrix material 

(denoted by kb). 

Under the conditions of plane strain perpendicular to the xl-axis, von 

Mises' yield criterion (4) reduces to 

(5)S 733) + 4T3 4k 
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where TZZ , and 73 are components of the stress tensor in the transverseT3 3 

plane. 

In order to evaluate the three basic strength, characteristics (Refs. 8, 9) 

of the composite specimen shown in Figure 3, the specimen is subjected to 

axial shear stress TIZ, transverse tensile stress T2 2 and longitudinal tensile 

stress T1, respectively. The upper and lower bound theorems of limit 

analysis of plasticity (Refs. 13, 14) will be used to obtain bounds for the limit 

loads T12 , T and T 1 which represents the lamina strengths'. 

Case 1. Axial shear stresses rI 2 applied on the boundary of the composite. 

specimen. 

According to the lower bound theorem, a uniform shear stress field T12 

can be chosen as the statically admissible stress field. Since TI 2 can nowhere 

violate the yield condition (4) for both matrix and fibers, it follows that a 

L . 
lower bound for the limit load TI is 

For upper bound construction, a kinematically admi~sible velocity field
 

is chosen as follows:
 

(d) 	 In V 2 (and thus also on the boundary of the composite cylinders) and 

on the entire lateral boundary of the specimen, 

u2 = ¥i l 	 (6) 

0*u3 


where YI is a positive number. 
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(b) In any composite cylinder, referred to a local cylindrical 

polar coordinate system, * 

U I - r cos e 

Ur Yl Xl cos for O r s rf 

u Yl x sin e 

¥I_Pz rz( _z (i ---r rcose b 

Y1 Xl cos r
2 

for rf -5r _ rb 

- sineYXi 

The velocity field in any "incomplete" composite cylinder is defined by 

solving similar elastic displacement boundary value -problems for the 

"incomplete" composite cylinder. However, since the volume of the "in­

complete" composite cylinder is small, the difference between their actual 

contribution to the dissipation function and that obtained by treating all 

cylinders as "complete" is negligible. This approximation is implied in 

the subsequent analysis wherever a similar situation arises. 
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The velocity field (7) in a composite cylinder is the elastic displacement 

solution to the boundary value, problem with the boundary condition (6) pre­

scribed. The problem is the same as that which was formulated by Hashin 

and Rosen (Ref. 11) with the modification that for 0 < r -r , the velocity field 

is associated with rigid body motion. 

'Withthis velocity field constructed for the entire specimen, the dissipa­

tion density function and the rate of external work done can be obtained to 

yield an upper bound for TIL (Ref. 5). 

1 Z1I 

122 

The above expression is for "random array" in which V = 0 and the fiber 

volume fraction vf = . 

Z 


The integral in (7) is-integrated numerically for different fiber-volume 

fractions. The result is shown in Figure 4 vwhere v in (8) is plotted 
kb 

as a function of vf(0< vf i1, vf =" )o Note that particularl=ir Figure 4b 

volumef a t o " f I 


lima L ,[ = i,
 

vz 

lir (Ti2) .4 

From the above result, it is concluded that Xl is at most about27% above 

and at least the same as the yield stress in shear for the matrixp, 
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Case 2 Transverse tensile stresses T22 applied on the boundary of the 

composite specimen. 

For lower bound construction, a uniform tensile stress 72' throughout the 

specimen is chosen as a statically admissible stress field. Since the von 

Mises' yield condition (4) can nowhere be violated in the specimen, the lower 

bound associated with the constructed statically admissible stress field is 

( 2 z ) L= 3k 

For upper bound construction, a kinematically admissible velocity field is 

chosen as follows: 

(a) In (and thus also on the boundary of the composite cylinders) andV2 

on the boundary of the specimen, 

U11 

u2 - Z x2 (10 

u3 "¥2?x3 

2 

wchere Y2 is any-positivre numnber. 
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(b) In any composite cylinder, referred to the local coordinate system, 
S 0 

.2 *2 4( 2 2 2 2 2i u
 
AI+A
. A2 x +3x 3 + A + 3x 3 ) +3A 

2rz 

J
6 4 r4~ 
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S2 x 
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B1+B 

f 

2r 2 
2x +3 

"Y3 
-

2 

I + z 3xz
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2 2 

Zr
2 

rf 

for 0 r r 

where 

A 1 4 (1-O )(1+) 4-3(l- )(l+ r) 

A2 = 4(-r)(li')(i2 2 

A 3 = -( -1) [(1-) + P2 

A.,~{(l~1 

B (l-) 

[-ZT+ (l+Tl) 

p 6 (1-n) 

(1+ -~ 

+ 2(1+ 

4} 

= (1-r) 6(1-P2) 

and C = ( 0-6)+ 4(1-i) (1+i) P4 
_ 6 (I-7) (1+71) 2z+ 4 

(1-) (1+I) + 
1
z 
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The velocity field (11) in a composite cylinder is the incompressible 

,plastic displacement solution to the boundary value problem with the boundary 

Qgndition (10) preo cribod. The problor was formulated by Haohtn and Rosen 

(Ref. i) in evaluating the effective plane strain shear modulus of elastic 

fiber-reinforced composites. The constant Tin (1) considered as the displace­

ment solution to the elastic problem is the ratio of the elastic shear moduli 

of*,the fiber and matrix materials. However, it can be considered as merely 

a parameter when (i1) is used as a kinematically admissible velocity, 

For the case of the "random array", an application of the upper theorem 

gives an upper bound 

L 
 k 
Z k =bkfb + 1 (IZ) 

where 

( - T)P4 -_6 (1-TI) + 2 

2 	 R0dR 
f 	 C 

0 

and 

ff b
2 1 ° !i (Ti, , R) + ? (ni, P,R) c s a "dOdR 

Z 

i, R) {4 (p4 +Ti) -3-)( (1-Ti) ( ) P + -(+T)X 

in which ,.+T 	 ­

I I+T 6(I'7];(l+J)(1 'Z)R 

[ 	 +(lTi)1+2+ 
+ 	 (1- ) {- l 


,R
4 RR2 1 P
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.Z ) 2 {4(l-TI)(1+n)- 4-3(-)(l+1)P2 + ( +6(l-T)(l+T)(1- 2)R2 

L___ -
-

_+ (l-n) Pz]+ 2z Pz 2T+(l±n)(l+ 6 

and = Vf. 

For any finite k /k, and for 71-. .= , (1Z) becomes 

L1 

______ 2 
 1 21 R (PR) Y~ (PR) cos 8 ed (13) 

f l2 kb 
E )3 f 

where 
l(P, R)_ TL- (B'+ -,1+-l ( , 2 -,3. R2 .l+

12R4 r 2 

and R)B'=2 B4 ~l ] 1 _Zl"+13
S=2[(p4+ p (p 2 1 ,Z [ (j+p2 + 1) 32 R3+)_ + 

The right hand side of expression (13) was obtained in Ref. 5for 

an upper bound of the limit load (normalized with respect to kb)for transverse 

shear stresses applied on composites ieinforced with igid fibers. In Figure 

5, is plotted as a function of vf according to (13). It is a monotonically 

increasing function of vf with lim (. )U d Jir . 

vf kbf V 2kb 

On the other hand, (, 2Z) can be plotted as a function offor any finite TI. L 

by evaluating, numerically I1 and 12 in (12). For example, for 71 100, (zL)u 
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Llim 

is also a monotonically increasing function of Vf f - 20Z/ and 

l i ra L _ U kf ) Z 

yvf-I ta u
f kbhih 

whiachis shown in-Figure 3, with kf = 
kb 

It is 

observed that for fiber volume fractions smaller than about 75%, the upper 

bound for the limit load L is higher that for rv - but-for higher fiber volume 

fraction, the opposite is true. Therefore, for any-fiber volume fraction between 

0 and 1, the lower value of the bounds obtained from TI= 100 and 'n-- will give a 

L
better estimate of Tjz and it is shown in Figure 5 in solid line as a function of 

vfo 

It is interesting to note that for 11 1, (12) reduces to the following 

simple form 

L.k 
L 1+ v (14) 

2kb f
 

which is commonly known as the "rule of mixtures". From Figure 3, it is 

seen that the straight line represented by (14) will be higher than the chosen 

curve for U for 0 vf i. Therefore, it is concluded that the "rule of 

mixtures to be used in'this case would overestimate the composite strength. 
L 

in Figure 5 L obtained from (9) is also shown. The difference 
S
, 

Zkb
 

between the upper ahd lower bounds for vf -0 is due to the fact that in the 

upper bound construction, a plane strain velocity field is used as a kinemati­

cally admissible velocity field. 

Case 3. Longitudinal tensile stresses 7 1 applied on the boundary of the 

composite specimen. 
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The study of longitudinal strength of unidirectional fibrous composites is 

extensive. Various models and failure mechanisms have been proposed in 

the literature. Here, the yield strength in axial tension is obtained by the 

construction of very simple velocity and stress fields, for composites having 

elastic-plastic fibers of uniform strength. 

For upper bound construction, in the entire region of the composite spe­

cimen, a kinematically admirs'sible velocity field is chosen as 

u2 :- 'eo
 

u 
3 C- x 3 

An alplication of the upper bound theorem gives 

v (15)vf"+r 

orL 

) 1 f_ 

where 7 and Tb are the yield stresses in tension for, the fiber and matrix, 

respectively and vb = vf-. 

Relation (15)- is known as the "rule of mixtures" for the predication of the 

strength of a composite. If T and Tr are given, i U is a linear function of
f b 

Tb 

fiber-volume fraction v. 
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For lower bound construction, if the applied stress T is assumed to be 

uniformly distributed on the boundary of the composite specimen, then a 

lower bound (ri ') L is equal to .b . However,. if we assume 'that the tensile 

stress 11 is not uniformly distributed on the boundary surface and we are 

only interested in the average stress intensity on the boundary surface that 

causes failure, then a higher lower bound can be obtained. In fact, a statically 

admissible stress field can be chosen as follows: 

In the region occupied by fibers 

r.iJ Tf 0 0 

0. 0 0(16 

0 0 0 

In the region occupied by the .matrix, 

b 0 0 (17) 

-0 0 0 

It is obvious ' hat the stress field expressed in (16) and (17) satisfy the re­

quirements to be statically admissible. 

The average traction corresponding to this stress field is therefore 

7f vf+ rb ('18)vb 

" 
which can be taken as (r L 

L 
According to (15) and (18), the upper and lower bounds for T coincide. 

Therefore, this strength can be determined from the "rule of mixtures", for 

zz
 



this type of composite, (i. e. elastic-plastic fibers and matrix of uniform 

yield strength). 

From the above results, it is observed that obunds for Tz are far apart, 

especially for high volume fractions. Further effort should be made to im­

prove the bounds in order to have a better estimate of the limit load. For lower 

.bound construction, uniform stress distribution used as statically admissible 

stress fields can only give lower bounds which are the corresponding matrix 

yield stresses. In order to obtain higher lower bounds, one has to assume 

applied tractions to be non-uniformly distributed on the boundary surface 

according to the properties of the fibers and matrix. Equilibrium stress fields 

can then be constructed in equilibrium with the applied tractions. Then the 

lower bound theorem can be applied to obtain higher lower bounds. To decide 

the distribution of the applied tractions on the boundary and to construct, an 

equilibrium stress field in the body is not at all easy in general. The success 

in the construction of such a statically admissible stress field for Case 3 is 

due to the simplicity of geometry and loading conditions. 

Brittle Fibers
 

In the previous section, the strength of unidirectional fibrous composites 

has been evaluated by obtaining bounds for the basic strength characteristics. 

The theory assumes the existence of a continuous failure surface. This hypo­

thesis appears reasonable for composites with elastic-perfectly plastic 

fibers and matrix such as metal fibers, and matrix. However, for contemporary 

high strength fibers embedded in epoxy resin matrix, this "elastic-perfectly 
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plastic model" may seem inadequate. Instead, it seems more suitable to 

assume elastic-brittle fibers and an elastic-perfectly plastic matrix which 

obeys the von Mises' yield criterion. Upper and lower bounds have been ob­

tained for the following types of'surface loadings: 

1. 	 Tractions equivalent to a uniform shear stress TI, applied on the en­

tire'boundary surface of the specimen. 

2. 	 Tractions equivalent to a uniform shear stress r 2 3 applied on the 

entire boundary surface under the conditions of plane strain. 

3. 	 Tractions equivalent to uniform uniaxial tension v2 2 applied on the 

entire boundary surface under the conditions of plane strain. 

4. 	 Tractions equivalent to biaxial uniform tension T22 and T3 3 

(TZ2 733 ) applied on the entire boundary surface under the conditions 

of plane strain. 

5. 	 Tractions equivalent to combined in-plane shear T12 and transverse 

-
tension (Z 1 0 ) applied on the entire boundary surface. 

Since the method of analysis is similar to what has been presented in the 

preceeding pages in obtaining bounds for the basic strength characteristics, the 

details of analysis will be presented in Appendix A. However, results are 

summarized as follows: 

&12 	 )L b. 

I +	 )V 	 i + 2 cos 6 dldR-i 

kbb V (l-P) R . o 
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for the "random array" geometry. - The above expressibn for t i s the 
kb 

same as (8) which is shown in Figure 4 as a function of vf (0 <, vf 

since the same velocity is used here. 

For arbitrary geometry of arrangement of fibers, U.1 - ) vf• , kb 

2, 
which is higher than V1 given by (8), 

kb 

(T 23 L kb? 

L~) U Z _ 

2 3 
2I __ __ __ 

k o_ ". (h"0l f f ( (,R)cos dedRo R)o + 8 

-where 

30 Rj

1'R) = D+ ±1 -3 (Pz+++ 

4 
(P, = 'P) )+ 3O 

and zo zP 4 2 3 24 ____322 

R + 1 ( +
LZ R iLz% 

for the'random array gemty h bv xpre'ssion for- Lh 

same as (13) which is pqtte.in'ikgure5.as tionRty,..... r h, 

since the velocity field chosen here can be obtained from (10) and (11) through
 

an orthogonal transformation together with the limiting process, of -Q­
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2 k 

3U 

4. (T Z u -(U3) 

S (r3L)U 

= 

= 

kb. 

(T2L)U 

.(T1. 

• 2 L _ 

and (TaZnLO~(9 

kb 
4 

1 
3 

Z 

for O~aO 

For the case of the "random~ array" geomnetry, 

k = ra 1 (ZO) 

and L 

= "2 

ae 
z 
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where 1 7 

0 
i3 (l- Z)

3 f j R OI(fWP,R)+2(w 0,,R) cos e+a 3 (,R) cos z 

a (w, ,k) = 4 Z [(p I++ l)- (p2+l)(l 

(4+p1+ 2 )]Z + (i-0Z)4 (1 + 
+ [35Y~ - .2Z4 2

) 4l 
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Z Z l 
and n (P, R-) 8z (P4 + + 1)_ ( + 1) [3 (4 + 

Numerical calculation is performed to obtain and (7-12 from 

(Z0) for different values of P and M. The results are summarized in Figure 6 

2in which P = 0.8 is the highest fiber volume fraction shown. The dotted line 

represents (19) which gives the lower bound for (r 2 2 and 1I )for any P. 

It is worth mentioning that for this model of elastic -brittle fibers embedded 

in elastic-perfectly plastic matrix, in the upper bound expressions, only the 

matrix strength and fiber-volume fraction appear - the brittle strength of the 

fibers is not involved. This is due to the fact that rigid body motion of fibers is 

always incorporated into the kinematically admissible fields-. Hence, regions 

occupied by fibers in the composite body contribute nothing to the dissipation 

fanction. The result is reasonable since in reality, elastic moduli and brittle 

strength of fibers are much higher than the corresponding elastic moduli and 
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strength of the matrix material. On the other hand, the longitudinal strength 

along fiber-direction of fibrous composites under tension or compression cannot 

be obtained by limit analysis of plasticity because of the presence of the high 

modulus, high strength elastic -brittle fibers. Instead, a statistical failure 

theory was established for tensile strength [3] and a fiber-buckling model was 

postulated for compressive strength of fibrous composites [4] and [15]. These failure 

mechanisms are based on experimental observation. Furthermore, as men-' 

tioned previously, for this mathematical model of composite material, the 

existence of a smooth yield surface that governs the strength of the material is 

still an open question. Based on experimental investigation, the failure mech­

anisms for individual cases seem to be different and independent of one another. 

Accordingly, the approach to the deternination of the strength criterion for uni­

directional fiber-reinforced composites as well as fibrous composite laminates 

is as described earlier. Instead of using a continuous yield surface, all possible 

failure modes are considered. To determine which one is dominant for a parti­

cular type of loading condition can sometimes become a tedious task especially 

for fibrous laminates under various types of design loading. However, this 

approach has the advantage that the entire load-deflection history can be traced 

until complete failure occurs. With modern high speed- digital computers avail­

able, a systematic strength analysis can be programmed to obtain accurate 

results. 

For certain composites, it is possible to utilize, as an alternate approach, 

the application of limit analysis methods to the laminate as a whole. This is 

treated in the following section. 
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Application to Laminates 

It is interesting to note that the kinematically admissible velocity fields 

constructed to evaluate the upper bound for the three basid scrength characteris­

tics can be used to obtain upper bounds of limit loads for in-plane loading applied 

on laminates. 

To demonstrate the method, consider a laminate composed of uni­

directional fibrous laminae subjected to in-plane shear stress The 

L
 
problem is to find an upper bound for the limit load T . A typical constituting 

12
 

layer, the layer, in which fibers are all running in x I direction, is. shown 

in Figure 7. Depending on, the orientation of fibers in the layer, the principal 

axes S(k)(k) x cana be defined by an angle e(k)xi x measured from the lami­

nate axes x .x x 3 

For upper bound construction, a kinematically admissible velocity field 

is constructed in the following manner: 

= The velocity field (1 1 P P3 ) (01 Yl '1, 0) is assigned in V , 

th 
of each layer,*referred to x 1 x.x 3 axes. In the k layer referred to its prin­

cipal axes (k) (k) ,the above velocity field is transformed into thex 31 2 3 

following form: 

jk) Y1 sin e(k) cos 9 (k) x(k) Y sin2 e(k) x (k) 

Co s ( k) (k )P(k) = (k) (k) isn cos (2) 

Yc cs 0. 

The right hand side of equation (21) can be decomposed into four parts 

so that 

Z9
 



S 	 = (k) + (k) (k) + ZZ(k)) 

4 143 44 

where 
0
 

- s (k) (
 

0
 

0 
¥
-
(k ) I.'--sin 8 (k) co 8 (k) X (k) 

1kin s (k) cos 8 (k) X (k) 

O k) (k) " =--5'~l (k 2
 

iiY sn8 x
 

'-3.u"(k "3 sin Cos x 

co a0 (k) c3(k)(I)=sin 

k))((k)X1)

-­

and 

.Ysn2(k) X(kc)8 

(k) 	 . x 
40 

5*, ) 
* 	 0) 

Except for rnuitiplicate factors and reference coordinate system,
 

u 1 ,u 2 and u3 are the same as those velocity fields constructed
 

in V for the three different cases of loading in the proceding section.
 

Furthermore.
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0 Ysi x(), sinkkx ( 
(k) Z (k) (k) n °W (3)u4 - Y sinZ ~)x(k + Yls i k Xl): 

0 0 0
 

has ame orm s (k) 

where the first part of the decompositidon has the same form as -u while the 

second part represents a rigid body motion of V Z as a whole. 

The velocity field chosen in V 1 is also composed of four parts: The first 

part is due to u 
-(k) 

which is the same as (7.)with the modification that YY1
 , 


G(k) - (k) h
 
cos . The second part is due to u2 ich is the same as (11) with the
 

42 

modification that Y2 is now replaced.by -Yl sin 6 (k) cos 6 (k) The third part 

is due to;(k)•.43 which is exactly the same as 4 3 (k) in V2 o The fourth part isu due 

to u4 which can he obtained in the same way as in Case 1 in the preceding seca_4
 

tion. However' a moment's reflection reveals that the strain rate associated-(k) 2 0(k) i k 
with uk if Y cos ( is replaced by "YI sin 6(k) since the additional rigid_4 1 

body motion contributes nothing to the value of the strain rate. Now, after 

the kinematically adrhissible velocity field is constructed as described above, 

the associated strain rate and dissipation density function can be calculated 

without difficulty. Moreover, the rate of external work done can also be cal­

culated so that an upper bound for TIcan be obtained. 

As an example, consider a laminate composed of two unidirectional 

fibrous composite layers of equal thickness with e(l) = 0 and O(Z) = 27"-7

In this simple geometry of lamination, the kinematically admissible 

velocity field constructed above reduces to a very simple 'form. 

For layer 1, the velocity field (21) reduces to 
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L 

•X in V (24)z 

. .(1) 0 
P30 

For layer 2, the velocity field (Z) reduces to
 

l(2)(
 

121*, 0 in (25)V 2 

P 30 

Then, following the principles described above, it is easy to obtain the velocity 

fields and the associated strain rate fields for: both layers. After some mani­

pulation, it turns out that 

(L 1 2ir p4 2 
1 = I f( +- + - cos Ode dR 

kb 2.(i-02) 0 R
4 R 

for the "random array" geometry. 

The above equation is exactly (8), which means that the upper bound 

(T L) is not higher for this type of cross-ply laminates than for the uni­

directional fibrous composite. 

Similarly, it is easy to show that the thre! types of velocity fields con­

structed in the preceding section can be used to construct upper bounds for 

limit loads for laminates subjected to any in-plane stresses. 
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Tensile Strength 

The high-strength, high modulus fibers which are of interest for 

use in composite materials are generally brittle, having tensile strengths 

that must be characterized statistically. Any theory for the tensile strength 

of composites containing such fibers must take into account the dispersion in 

their failure stress levels in order to have any relevance. 

(16)
Parratt noted the dispersion in fiber strength and suggested that 

failure of a fibrous composite subjected to tensile load occurs when the 

fibers have broken up into lengths so short that any increase in applied load 

cannot be transmitted to the fibers because the limit'of interface or matrix 

shear has been reached. 

A theory has been presented (3)for the failure stress of composltes
 

containing continuous, uniaxially-oriented, brittle fibers in a ductile matrix
 

loaded parallel to the fiber direction. This theory predicts that due to the 

distribution of flaws or imperfections in the fibers there occurs a series of 

randomly-distributed fiber fractures as the applied stress level is increased. 

It is argued that a portion of the broken fiber in the vicinity of the 

fracture is ineffective in resisting the applied load,. Assuming that the stress 

in a broken fiber is uniformly -distributed among the unbroken fibers in the' 

cross-section and that this overstress acts over a length equal to the. "in­

effective" length, it is predicted that failure occurs when a weakened'cross­

section cannot sustain an increase in load. In effect, the theory pre­

33 



dicts that the composite has a strength equal to that of a bundle of fibers 

whose length is the "ineffective" length. 

The present study considers fibers having a statistical strength dis­

tribution resulting in fractures at various stress levels as the-applied load 

increases.. It is assumed that the stress in the broken fiber is distributed 

unei'enly to the other fibers in the cross-section which has a length equal to 

the ineffective length. As a first approxination the effect of this overstress 

is presumed to affect only "thosefibers adjacent to a break. Failure is as­

sumed to occur due to an increasing probability of fracture in the fibers ad­

jacent to a prior break. 

Description of the Model 

The model consists of a two-dimensional composite of length L 

consisting of a ductile matrix in which are imbedded N continuous brittle 

fibers whose orientation is parallel to the applied tensile load. The fibers 

are considered tobe composed of layers of length 8. The total number of 

layers being M = L/6. (See Figure 8. 

The quantity 6 represents some length over which the stress is per­

turbed in the area of a fracture. It is variously referred to as the ineffec­

tive length or twice the transfer length and sevetal formulae have been.proposed 

for its evaluation. Two of the definitions(3, (17)are based on an elastic shear­

lag type of analysis. The axial stress in a broken fiber is found to be 
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f(x) = q0 [i +,'sinh qx - cosh ix] (1) 

where 

1./2 
0

2 b vf 1 
2f- 1-v" r 

f1vf r£ 

F = Young's modulus of fiberf 

= Shear modulus of binder (matrix)
 

r = Fiber radius
 

Gb 

f
 

vf = Volume fraction of fibers
 

x = Distrance from end of brokei fiber 

a = Extensional stress in the fiber at a large-distance from the, 
0 

-fiber end. 

It should be noted that in Reference 3 the factor of 2 in the expres­

sion for 71was incorrectly omitted. The first author -defines 6 ;as the value 

of x for which the stress in the fiber has reached 90% of a , the stress at a 
1 0 ­

long distance from the fiber break. On the other hand, Friedman defines the 

ineffective length by means of an approximate step-function stress distri­

bution which has the same average stress as the distribution of Equation 1. 

Furthermore, this author includes the ineffective portion on both sides of 

the break whereas the first definition uses only one side. 

The expressions for the two ineffective lengths discussed above 

are, r'espectively 
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SR . Ef 1-vfl/27(P) 

df .15[. b v 1/()
f 

1/2 

*6 l, G 1/2]* f b. fv . 3 

If the shear stress between the matrix and fiber'is assumed to be 

constant, as in the case of plastic flow or frictional shear stress due to inter­

face failure, the fiber tensile stress becomes constant at a finite distanice 

from the fiber end. This distance is called the transfer length 't by some 
t 

authors and is given by the expression 

'GO 0 f
 
t 27
 

where 7 is the (constant) plastic shear stress of the matrix, or, if there is 

interface failure, the frictional force between the matrix and fiber." 

The ineffective length can also be determined expe'rimentally by a 

photoelastic examination of the stress patterns in the vicinity of a fiber break. 

In this investigationi the experimentally determined ineffective length is used 

where available. 

Statistical Analysis of the Model 

It is assumed that the strength of the population. of fiber elements of 

length 6 can be characterized by a cumulative distribution function 1(9). That 
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is, the probability that an arbitrary element has a failure stress level less 

than, or equal to a is F(a,). 

The expected number of elements in the composite that will fail under 

fiber stress a is 

E = MNF(o).... (4) 

This expression includes the possibility of further fractures of adjacent 

fibers. If the composite does not fail, the stress in the broken fibers is dis­

tributed to the other fibers in the cross-section in a complex manner. As a 

first approximation, Hedgepeth(
18 

)used a shear lag analysis to determine the 

average stresses in fibers adjacent to an arbitrary number of broken fibers. 

He considers an infinite two-dimensional array of fibers subjected to 

tensile load parallel to the fiber directi'on which is uniform at a great dis'­

tance from the fracture area. The ratio of stress in the two fibers adjacent 

to a run of r broken fibers to the uniform applied stress at infinity is, for a 

static stress distribution 

4.6.8. (Z-r+Z) (5)
r 3" 5" 7- (Zr+l) 

Hedgepeth calls K a stress-concentration factor, but in this paper it will ber 

referred to as an overstress-factor so that it will not be confused with stress 

concentration factors found by an "exact" analysis of the stress distribution. 

. For the case where r fibers break simultaneously the author demon­

strated that the ratio of the maximum dynamic stress to the static stress in 
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tthe fibers adjacent to the break increases from 1.15 for r = 1 to a limit of 

1 .. 27. The values for , 1r = 2'and r = 3 are 1. 19 and 1. 20 respectively. 

In the present paper it is assumed that the overstress in two fibers ad­

-jacent to the broken ones exists over the entire ineffective length. Therefore, 

the probability that an element adjacent to r broken elements, will fail is, 

approximately, the probability that its strength lies between a and K a. 

This probability is equal to 

F(K a) - F(a) (6) 
r 

This approximation is justified, as will be shown later, by the fact that corn­

posite failure occurs for small values of F(C) and therefore the probability of 

having adjacent fractures because both fibers have strength-less than a, which 

probability is proportional to F(a) ., and the probability of interaction of frac­

ture groups is relatively small. 

Given that a single element is broken the probability that one of the two 

adjacent fibers will break is 

p2 /1 = 2 [nKla) - F(o)] -Za [rciy. -,F(. (7) 

The. probability that both adjacent fibers will break simultaneously is 

2 
p 3 / 1.= [F(K1 a) - F(a)] " (8) 

It should be noted that each of these expressions does not exclude the possi­

bility of further fractures.
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It is now assumed that only the two fibers immediately adjacent to a break 

are subjected to an overstress and that all of the remaining fibers in the cross­

section hav/e a stress level equal to the average stress c. If one of the fibers 

adjacent to a single fracture breaks the fibers adjacent to the two broken 

fibers are subjected to a stress level K 2a. One of these overstressed fibers 

was previously exposed to a stress level K a while the other saw only the 

average stress a. The probability that one of the two fibers will break is 

= [F(K a)- F(K a)] + [F(Ka() - F(a)] (9) 

-2 [F(Ko2 ) -F (N1)] [i(Kou - F(a,)] 

The probability that both fibers will break simultaneously is 

= 
P4/Z F(K a) - F(KIa)] [F(K.-) - F( )] (10) 
4/Z L 2 i L - j(0 

If both fibers adjacent to an initial fracture break there will be three 

broken fibers in a row and therefore the two fibers adjacent to this group, 

which were previously at a stress level a, will be subje'cted to a stress K3 a. 

Again it is possible for-one or two of these fibers to break, and so on. 

By now the process and domplexity of th! problem should be evident so 

that the expressions for further fracture probabilities are presented without 

discussion. Note that that there are two paths by which a state of three 

broken fibers can be reached from a single break; A) by the simultaneous 
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breaking of both fibers adjacent to the initial break, B) by the successive 

breaking of two fibers. 

The expression pi/jz represents the probability of having i fibers 

broken given that j are already broken. The letter z represents the particular 

path if there is more than one. The letters A and B refer to the paths des­

cribed above. 

p4/3KA - [F= U - F(a)] -2 [F(K 3 o) - F 

P5/3A = 	 [F(K3 q) " F(G).]
2 (lla-d) 

p4/ 3B IF	F(K 3 a) - F(l 2 o}] + [F(K 3aj F(o')]­

2 [F(K3 a) F(K 2 o)] [F(K3 a) F(a) 

F(K 2 a)] [F(K 3 o) - F(a)P5/3B IFFK3 a) 

Probability of Cumulative Fractures 

Each of the E fracture sites distributed throughout the composite is a 

nucleus for further fiber breaks because of the overstress in adjacent fibers. 

The probability that an element will break followed by the fracture of at least 

one adjacent element is 

P2 =F() (P2 11 +p 3 ) (12) 

Therefore, for the composite as a whole the expected number of groups of 

two or more -broken fibers is 
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M(N-I)p2 (zz
 

and the associated pr obability of having at least one such group is 

M(N-2) ( 1 4 )z = 1-(-+-I I P-z) 

where the factors of 1/2 are introduced to account for the independence of or­

der of two fractures. 

The probability that an element will fracture followed by the breaking of 

at least two other fibers in a row is equal to the probability of at least two 

fractures less the probability that two will break without further fractures 

occurring. This probability is 

= 

P3 P - F(a) pZ/1 (I-P3/zp4/2 ) (15) 

The probability of having at least one group with three or more frac­

tures is 

-Z
 
= 1-(1-- p3)M(N ) (1"6)P3 


and the expected number of such events is 

E3 = -& P3M(N-2) (17) 

The analogous expressions for groups of fouror more fractures is 

P3 F() [P31 (l-P54/3A) + Plpl3/2 (l.P541 3 B)] (18)p 4 

P,= 1- -p )M(N3) (19) 
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1 M(N-3) (20) 

4 8 3 

Although it has not been possible to obtain the general expression for the 

probability of a group containing an' arbitrary number of broken elements it is 

contended that this expression is only of academic interest. It is argued that 

once the probability of secondary breaks (i. e. the probability of groups con­

taining two. or more fractures.) becomes singificant failure of the composite 

can be expected. More will be said of this point later on. 

Comparison with Experiments 

The ultimate test df any theory is its agreement with experimental re­

sults. The present theory-has been compared with the data obtained in Refer­

ences 17 and 4 for glass-epoxy composites. 

The tests repofted in Reference 4 were run on composites consisting of a 

single layer of 3 1/2 mil E-glass fibers embedded in two resin systems (B and 

C). Tests were run to determine the strengths of the fiber.s for several gage 

lengths. As in Reference 4, it is assumed that the cumulative distribution 

function-can be characterized sufficiently well by the Weibull distribution. 

F()'=1-e. (21) 

where L is the length of the fibers and a and are parameters that character­

ize the distribution. Using this expression the variation of'-mean fiber strength' 

with gage length is 

=(a L) r(l+l/). (22) 

42 



The fiber parameters are found to be 

'I
 

=9.40, a -181.5 ksi. 

From the photographs of the specimens under polarized light the inef­

fective lengths for series B and C were found to be 0.031" and 0.086", res­

pectively. 

Using this data the expected number of single broken elements were 

calculated from Equation 4, and are represented by the dashed lines in 

Figures 9 and 10. The number of fractures observed experimentally in the 

various specimens in the two test series are presented for comparison. It can 

be seen that for low stress levels there are generally' more fractures than the 

theory predicts.. However, the behavior is most important at the higher stress 

levels in the area of failure loads, and here agreement is fairly good consider­

ing the statistical spread in fiber properties andthe experimental uncertainties 

involved. ' The relatively large number of fractures-at low stress levels is 

.possibly a result of damage to the fibers during fabrication of the specimens 

since glass is notoriously sensitive to handling as far as strength is concerned. 

However, since the observed fractures approach the expected number of higher 

stress levels they are of little importance. If, on the other hand, failure 

occurs without a significant accumulation of fractures the breaks at low stress 

level may be of extreme importance. Morie will be said of this later on. 

The quantities of El, E2 , E and E (where E, represents the expected3 4 


number of groups of fractures having at least i broken fibers) obtained in 
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Equations 4, 13, 17 and Z0 are plotted for test series B and C in Figures 11 and 

'12. It can be seen that the expected number of multiple fracture groups (E 2 , 

E and E ) rise sharply in the observed range of composite failure. The fail­
3 4 

ure predictions of Reference 3 are presented for comparison. 

In order to assess the validity of the expressions for multiple fractures 

the number of groups of multiple fractures were counted on films of the tests. 

The results are plotted in Figures 13 and 14. The dashed curves in the figures 

are calculated values of E. It can be seen that, in general, multiple breaks 

begin to appear in the stress range predicted by the theory. Furthermore, 

the composites fail withou-t the occurrence of a:large number of multiple­

break groups compared to the number of isolated single fractures. 

There are several factors that could account for this phenomenon. One 

possibility is illustrated by Figure 15. This graph shows the relative behavior 

+
of the sum p? 11 P3/ 1 for static and dynamic overstress factors. It will be 

recalled that this sum represents the probability of the'fracturin~aof bt lebtgt. 

one element adjacent to a single broken fiber, in the observed'faiure range 

the ir". fiber ractae t f",un to be 
the dynamic curve is markedly higher than the static curve indicating that 

-there is a definite possibility of a failure crack being caused by the dynamic 

effects of fiber fracture rather than by cumulativp static probability of 

failure. It should also be noted that the use of overstress-factors is just an 

approximation and that the actual stress concentrations caused by multiple 

breaks may be, and probably are, much more severe than those of single 

fractures. (As an analogy, the stress concentration factor for an'ellipse 
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increases with the aspect ratio) Whatever the mechanism, experimental ob­

servations seem to indicate' that multiple breaks tend to occur shortly before 

-composite failure. 

The present theory was also compared with two tests on continuous 

S- (17) 
glass fibers in epoxy run by Friedman . The Weibull parameters for the 

strengthdistribution of fibers used are 

4.0 =137.1. 

'Since 0 is an inverse measure of dispersion, these fibers had a much wider 

spread in failure stress levels than did those"of Reference 4. This large disper­

sion is reflected in the wide spread of the curves of El, E2 , E.3 and E 4 pre­

sented in Figure 16. However, failure in both specimens occurred quite 

near the stress level for which the first multiple fracture is predicted. 

On the basis of the experimentalevidence cited it is proposed that the
 

failure stress of a continuous fibrous composite loaded in tension parallel
 

to the fibers can be reasonably well predicted by that load for which the first
 

multiple fracture is exp4cted to occur. That is,
 

E = (a) (pz/+P3/1 ) =(23)
2 

'Analrsis of Non-Cumulative Fracture Mode 

Although a large number of isolat'ed, fractures are observed in glass­

epoxy composites, this is not the case for other fiber-resin systems such as
 

boron-epoxy and boron aluminum. For these composites failure-usually
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,occurs catastrophically, without an accumulation of isolated fractures. How­

(19)
"€ever, Lenoe has demonstiated scattered fractures in a 'boron-aluminum 

; omposite containing 5% volume fraction of fibers, which is quite small. 

The absence of a significant number of isolated fractures seems to indi­

date that the entire composite is failing at the load at which the weakest 

fiber breaks. This would mean that the matrix is actually detrimental since 

the strength of a bundle of fibers, without a matrix, would be stronger. It 

was, therefore, decided to determine the theoretical value at which a first 

fiber fracture is expected-and compare the results with experimental evidence. 

Consider a population of fibers of length'L whose strength is character­

ized by the probability density g(G). For a sample of N fibers from this group 

the distribution function for the stirength of the weakest fiber has the following 

form 

po(o) Ng(o) [1-G(a)] N- . (24) 

Assuming a Weibull distribution for G(U) the expected value (mode) for 

the first fiber fracture is found to be 

1 

e /(1% (25) 

(17) 
Friedman ran two tests on boron-epoxy specimens 2 inches long which 

contained about 90 fibers. The Weibull parameters for the fibers were found 

to be 
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1 

= 7.0, a = 368. 

The fiber stress levels, at failure for the test specimens were 193 and 215 ksi 

The expected value *forthe first fracture computed from Equation 26 is 171. 5 

ksi which is about 16% lower than the average failure stress of the two speci­

mens. ,On the other hand, the first multiple fracture is predicted (E 2 = 1) to 

occur at 300 ksi while the theory of Reference 3 predicts a failure stress of 

428 ksi. In the last two cases Friedman's definition of ineffective length was 

used. 

(20)
Grinius also ran tests on boron fibers in an epoxy matrix. These 

specimens were 2. 5 inches long and contained Z5 fibers. The Weibull para­

meters for the fibers were found to be 

1 

= 11.1, a = 433. 

Unfortunately only one undamaged specimen was tested. This specimen 

failed at 304 ksi fiber stress. The expected value of stress for the first frac­

ture is 296 ksi while the first multiple fracture is predicted at 330 ksi and the 

failure stress predicted by the theory of Reference 3 is 340 ksi. It should be 

noted that to obtain the last two values, the definition of the ineffective length 

presented in Reference 3 was used. 

From the experimental observation of the absence of cumulative fractures 

and the good correlation between the observed failure stress levels and 

*those predicted for the first fiber break a good case can be made for the 

hypothesis that composites exhibiting this type of failure are only as strong 
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in tension as their weakest fiber. If this is also the case for the three dimen­

s'ional composites, the matrix'must be designed so that it will prevent this type 

of failure from occurring. This can possibly be accomplished by using a ductile 

matrix or by allowing the matrix to partially debond from a broken fiber. 

Conclusions 

A statistical model including the effects of stress concentrations for planar 

arrays of fibers in a matrix has been presented which provides a good descrip­

tion of composite behavior up to the failure load. The stress level for which the 

first multiple fracture is expected to occur has been proposed as a predicted fail­

ure stress. 

The model predicts that the composite itself is a "brittle" material in that 

its strength decreases as the length or width of the specimen increases. This is 

illustrated in Figure 17 where the variation of E 2 with length is presented for the 

composite system used in test series B of Reference 4. This is in contrast with 

the theory in that paper which predicts a composite strength that is independent 

of length for large values of M. 

Finally, it hs been shown that the failure stress level in tests of three com­

posites that did not exhibit cumulative damage qccurred at about the expected value 

of stress at which the first fracture was predicted. This failure stress is lower 

than that for a bundle of fibers of the same length and number indicating that the 

matrix may have a detrimental effect in composites exhibiting this type of failure. 

The ptesent study demonstrates that the understanding of composite be­

havior is a continually evolving process and that even in the case of such a simple 
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loading condition as pure tension the failure mechanisms are not completely 

understood. More work must be done, for example, to explain the apparent 

difference in failure modes observed in glass and boron fibers, and to extend 

the analysis of stress concentration effects to three-dimensional composites. 
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The Steady-State Viscoelastic Response 

A systematic study'of viscoelastic behavior of fiber-reinforced compo­

sites was initiated by Hashin (Ref. 21). Such analyses are motivated by both 

theoretical and practical points of view. Fibrous composites consisting of 

linear viscoelastic phases are a natural extension of the linear elastic model 

in which phase materials are assumed to be Hookean Solids. On the other hand, 

phase materials in composites do exhibit very strong time dependent properties 

especially in a high temperature environment. A basic understanding of the 

viscoelastic behavior of composites is important before such materials are 

utilized in practical applications. 

Hashin (ef. 21) related the effective viscoelastic properties of a compo­

site which is composed of -linear viscoelastic phases to those of its constituents 

by a correspondence principle. This same model used by Hashin is used to 

study the steady state response to some simple types of sinusoidal surface 

tgactions or surface displacements. It should be noted that in Hasin's approach. 

to viscoelastic theory of composites, inertia forces are-neglected so that only 

quasi-static motion is treated. The present study is based on Hashin's work 

(Ref. 21) and the same assumption is implicit so that wave propagation phenome­

na will not be considered here. 

Following Reference 21, the general macroscopic viscoelastic behavior of 

a composite can be described by the following constitutive equations: 

-(t) *jk* d (r)dr (1) 

0 
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or 

t d O'u (71 dT 

Jijkk94 (tT) T (2) 
0 

where Ci (t) and 9i(t) are, respectively, the average stress and average strain 

in the 	composite at time t; Gi.k (t) and Ji. ,(t) are the effective relaxation 

moduli and effective creep compliances, respectively. 

By the symmetry of the average stress and average strain tensors, the 

following symmetry relations hold: 

G..ik (t) =G.ijk(t) =G. (jtM 

for t 0 (3) 

S=Ji2.t) 5 
= ijtk (t) 

In order to establish the correspondence principle between viscoelasticity 

and elasticity, it is assumed in Reference Z 

Gijk 	 (t)= Gktijit) 

and 	 for t >O (4) 

J k (t) = Ji (t) 

which 	are the Onsager Reciprocal Relations (Ref. 22) 

The one-sided Laplace transform of (1) and (2) gives 

(P) =p 	 G..(p) ; (p) (5) 
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( J (P -', 

where p is the transform variable and the circumflex " A " above a function 

denotes its Laplace Transform which is assumed to exist. Because of the 

formal resemblance of(5) and (6) to the generalized Hooke's Law in elasticity, 

A­
p G'ii.p) and p5k,(p) are termed transform domain (TD) effective moduli and 

compliances, respectively. 

Now for unidirectional fiber-reinforced composites, transverse isotropy 

will be considered (Ref. 21, 11). Consequently, only five effective relaxation moduli 

(or five effective creep compliances) are independent so that (5) and (6) can be 

much simplified. For example, (5) can be written down in terms of the following 

five independent TD effective relaxation moduli: 

p KZ3 (p) -- the plane strain TD effective bulk modulus; 

A,,, 

p G 3 (p) -- the TD effective transverse shear modulus; 

p G1 (p) - - the TD effective in-plane shear modulus; 

p E- (p) -- the TD effective Young's modulus; 

p C 1 1 (p)--	 to be associated with uniaxial stress in fiber direction 

with transverse deformation prevented by a rigid 

enclosure. 

On the other hand, the TD effective creep compliances are the reciprocals 

of the corresponding TD effective relaxation moduli. For example 
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^* 1 
p k 3 (p) * 

P I 3 (P ) 

Pgz 3 (P) = 
p 1z (pP 

etc.. 

After the effective characteristic functions (relaxation moduli and creep 

compliances) are defined, Hashin(Ref.Zl)used a correspondence principle to relate 

the effective viscoelastic characteristic functions to the effective elastic moduli 

of a duplicate composite body with elastic phases. 

On the other hand, the effective elastic moduli of unidirectional fiber­

reinforced composites have been obtained by Hashin and Rosen(Ref. 11). Closed-form 

expressions for four effective elastic moduli and bounds for the fifth are ob­

tained for the "random array" geometry. In applying the corresponding prin­
i I 

ciple, Hashin (Ref. 2l) used these expressions and went through a replacement 

scheme to obtain the Laplace Transforms of the corresponding effective visco­

elastic characteristic functions. Therefore, the entire problem of finding the 

quasi-static viscoelastic re'sponse reduces to Laplace Transform inversion 

which is not always easy. However, for cases where inversion is formidable, 

Abel-Tauber theorems can be used to draw important conclusions on the be­

havior of the effective moduli and compliances without the operation of inversion. 

Refs. 2l andll are referred for details. 

Now, for a unidirectional fiber-reinforced composite body under special 
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,oundary displacement or traction conditions(Ref.Zl), (1) and (2) can be reduced to 

t
 
Gt'd e (T) dr(7M *(t-r)b) G0 d_7*r d (7) 

t " (t)~ U (Ttr)dOr) (8)dT 

0
 
• =i___) () 

where 5(t) (e (t))" is a component'of the stress (strain) tensor a.. (t) 

whereas G"'(t) (3*(t)) represents one of the five effective relaxation moduli 

(effective creep compliances) of physical importance as defined previously. 

Henceforth, (7) (or (8) ) will be used as the representative average stress-strain 

relation that defines a particular viscoelastic characteristic function. 

In the course of obtaining the steady-state response by making use specifi­

cally ef the results of Ref. 21, we shall first develop certain relationships and 

investigate their vaiidity. Then the general results will be applied specifically 

to the unidirectional fiber-reinforced composite to obtain explicit expressions 

which characterize the response. Since we are interested in steady-state re­

sponse to sinusoidal input, we can assume that the input has been applied on the 

body for an indefinitely long time and'that all initial disturbances have died out. 

Under this circumstance, it is convenient to put ,the beginning, of motion at 

time -- (Ref. 23). Hence (7) and (8) are modified to the following forms: 

t di (T).dr 

(9)
-d. 
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and 

3t) .­drJ* (10)t
J * (tT do(r) dr (10) 

By changing the integration variable from T to C where t - T= , (9) and 

(10) become, res'kectively, 

JG () (t- )dC (11) 

0 

where prime denotes differentiation with respect to the argument of the function. 

Using complex representation for sinusoidal oscillatibn, 'we put 

i t(t) = e e (13) 

where e is in general a complex number and W, a real number, is the angular 
. 0 

frequency of the oscillation. 

Substituting (13) into (11) we obtain 

0(t) = iWSoe G (W) (14) 

where 

G 3 WG*(t) e dt (15) 

0 
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is the one-sided Fourier Transform of G (t) if it exists.
 

f Let a(t) a e 
iWt 

, whe'e ar is in general a complex number, then by (14),
 
0 0 

a(t) _ o - iLGo ( ) M (16) 
E(t) W 

0 

where M is called the effective complex modulus associated with G (ty. 

Equation (16) can also be written as 

e i ( +

M e 0oe(t)Wt 6) (17) 

"I 1]

where 6 tan ImEM*

'
 
Re [M 

which reveals the fact that & (t) is not in phase with C (t) 

Similarly, if U (t) a e iW t-then (1Z) becomes 

.- Wt .,
 

(t) iwa0e °t J"(W) (18)
0 

where 

J"(W) i e id (19) 

0 

is the one-sided Fourier Transform of J" (t) if it exists. 

Let e(t) = Co e then by (18), 

() =0 - i J*(W). (20) 

a(t) ao M 
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or
 

e (t) = ] ei( Wt )(21). 

which 	again shows that e (t) lags behind a (t) with a phase lag 6. 

From both (16) and (20), it follows that 

-3G JJ_(W) =1 

if both G'(w) and- *(03) exist. 

The physical significance of ImE M*I and Re E[M] is now discussed. 

First of all, it can be shown that the rate of work done by surface traction at time t 

on a body- can be expressed in terms of an integral over the entire body as follovs: 

T 	 d S.. SC.. d VS 
v 13
s ud 

where S denotes the boundary surface and V, the volume of the body. The above 

equality is valid only under the assumption of quasi-static motion. 

Furthermore, under special boundary conditions on the boundary surface 

S (displacement boundary condition u.(S) e.(t) x. or traction boundary condition 

Ti(S) = a..(t) n ,(Ref. 21)), it is easy to show that: 

1 (x, t) ij (x, t) dV .i( ) eij (t) V 

V 

Therefore, the total work done from time tI to time t2 is: 

[-	 (dt])t=t
Ti i T dS Idt = V a;jtM iijt)d 

t S 	 tI 
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If t - tI is the period of motion, then
-2Z 

•Wo , V ' I i(t) t (22)MZ dt 

denotes the total work done on the system in a cycle. According to the First 

Law of Thermodynamics, for isothermal steady state deformation, W is the 

total energy dissipated and transferred to the surroundings in the form of heat 

in a cycle. Under the special boundary conditions by which (7) and (8) are ob­

tained, W in (Z2) can be reduced to the following simple form: 

2. (23) 
W= VF Cr(t) e 

. 

(t) at 
t 

.t
I
1


where the factor F is either 1 or 2 depending on the boundary condition. 

i i
Therefore, if (t) = Rd 6 e Wt I and 0(t) * R [M*e e ] , then for" 

0 e 0­

a cycle with angular frequency of motion W, after some manipulation, (23) 

becomes 271 

W = VF dt = 9 e- Im [M-1 VF (o is assumed 
w S~~1T 0 0 

to'be real without loss of generality ) where r is any time during the motion. 

This gives the amount of energy dissipated in a cycle. 

Furthermore, it can be shown that a fraction of the amount of energy 

is twice in.every cycle alternately stored and expended inS(Re M VF 
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the system. Therefore, Im [M' ] is related to the energy dissipated while 

Re [Mv ]is related to the energy stored. 

From the above results, it is clear that in the steady state, the 

responding average stress (or average strain) will vary sinusoidally with the 

same angular frequency W) as that of the input average strain (or average stress 

with a phase difference 6 which is a function of W. Moreover, the amplitude 

ratio -0 is also a function of 0 only. 
C 

0 

According to (16) and (20), the knowledge of M * hinges on the knowledge 

of G (w) or J5(w) . However, G"(w) and J'_(W0) are formally. related 

to the Laplace Transforms G' (p) and J'*(p) by.the following relations: 

G () =G*(iw) 24) 
and 

j.W)= J"(i W) (25) 

Therefore, if expressions for G (p) and J (p) are known, G (W) and J(0) 

can be obtained immediately by the replacement of variable p in G*(p) and 

3 (p) by i. However, th'ere-still exists the problem of convergence -­

given a function of time t, the existence of its Laplace Transform does not im­

ply the existence of its Fourier Transform. Thus, givenii Laplace Transform 

of a viscoelastic characteristic function, it is necessary to examine the-location 

of its singularities in a complex plane of complex variable p. According to the 

definitions of the one-sided Laplace and Fourier Transforms, it is observed 

that if the singularities of the Laplace Transform are all located in a region to 
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the left of imaginary axis of the complex plane, j en the corresponding Fourier 

Transform exists. -

Hashin (Ref.21) has obtained closed-form enoressions for some effective 

rela cation moduli and creep compliances for the ' random array" model. Then, 

by making use of (24) and (25), the corresponding effective complex moduli can 

be obtained in a straight-forward manner. For example, for elastic fibers 

embedded in a viscoelastic matrix, the effective relaxation moduli K 3 (t) 

characterizing the plane strain dilatation has the following form in the Laplace 

Transform domain: 

• 1 . Vm -1 

pK 23 (p) = k (p) +-F (p)J+v 1 kkp k~~ (p)m m f{ +. Gf - (- 3 + v FP 

where km (p) , Fr(p) are matrix TD moduli; Kf and G, are fiber elastic bulk 

and shear moduli; vf and vm are the fiber and matrix volume fractions, respec­

tively. All these quantities are considered known if the composite body is 

given. Then according to (24), formally we have: 

iW K (W) =C i) +-1 r 2i)I+ 1
23 k(i + rm(iw)+f 

v 
+ 1 1 (i)-km(iw)-k (iw)+-P (1W)

3 m m 3 m 

and the complex moduli associated with K (t)is, according to (16) 

23 23 

Furthermore, it follows from Ref. 21 that for rigid fibers, 

3

K3 (W) = Km() + G m ) [i( + Gm() (vf- f 

32m3 
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where K (Wo)and G (tW) are the one-sided Fourier Transforms of the matrix 
m m 

bulk and shear relaxation moduli, respectively. On the other hand, if fibers 

are rigid and the matrix is elastic in dilatation and Maxwellian in shear, 

Hashin(Ref. l)has obtained simple expression for the effective creep compliance 

kZ 3 (t) of which the one-sided Fourier Transform does not exist. Similarly, 

other steady-state responses such as in-plane shear, etc. can be obtained in a 

straight-forward manner. 

It is emphasized here that the method developed here is also valid for 

other models than the composite-cylinder-assemblage model used in Ref. 21; the 

latter is only a case in which bounds of some of the characteristic functions in 

transform domain coincide to yield closed-form expressions. If other ex­

pressions can be obtained by other models, the corresponding effective com­

plex moduli can be obtained by the replacement scheme defined by (24) and (25). 

On the other hand, vibration experiments can be performed on composites to 

determine experimentally their respective effective complex moduli from 

which information on their corresponding effective viscoelastic characteristic 

functions can be obtained through Fourier transformations. 
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Evaluation of Transverse Effectiveness Factors for Use in Elastic Analysis
 

of Three Dimensional Filamentary Composites
 

The method of analysis developed in Reference 1 for the elastic constants 

of composites having filamentary reinforcements at various angles to the three 

principal orthogonal axes of the material employed factors p2) /2. 

etc. to define the transverse effectiveness of the filaments for resisting stretching, 

shearing, etc. For simplicity the assumption was made that the transverse 

effectivenesses were the same for all strains due to stretching regardless of 

whether the strains were -induced by Poisson's ratio effects, or were simply 

those in the direction of an applied extension. (Different values of transverse 

effectivenesses in shear from those in stretching were, however, allowed for.) 

This approximation led to generally satisfactory results for stiffnesses, with
 

the possible exception of EL, that is the stiffness along the filaments, for uni­

directional reinforcement - a somewhat disturbing exception in view of the
 

simplicity of calculation of this stiffness by the rule of mixtures. Even more
 

disturbing was the fact that the values of Poisson's ratios calculated with this
 

simplifying assumption of equal transverse effectiveness factors were not con­

sistent with those found by other methods of calculation.
 

Guidelines for the extension of the analysis of Reference 1 to provide for
 

* 	various values of for direct and Poisson strains were included with the 

analysis, but within the time available no evaluation could be made to determine 

whether or not the extension would be justified. A brief series of calculations 

has now been made to evaluate the differences among the various transverse 

effectivenesses for the extended analysis. The results are shown in Figure 18, 
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and the equations relating thereto are reproduced as Tables 1 to 3. 

In Figure 19,curves of ,r / ,rand A are plotted as 

derived from the upper limit values of the elastic constants of Reference 11for 

a typical glass/epoxy combination employing the assumption that 

- •As can be seen, differences among 

and are found, of increasing relative magnitude with in­

creasing volume fraction of binder (the abscissa on the Figure). Also 

differs from the value unity; this is the variation which is to be anticipated 

from the previously noted inconsistent calculation of E L for uni-directional 

reinforcement'with the simplified transverse effectiveness assumption. The 

differences in the various - values shown are, of course, just those consistent 

with the elastic constants as found from Reference 11. The .use of the 1f3r of 

Tables 2 and 3 thus reproduce properly all the elastic constants 

of a unidirectional reinforcement configuration, and hence provide a 

self-consistent basis from which the effects of multi-angular reinforcement, 

may be determined via extensions to equations like those of Reference 1. 

These extensions have been made and the general equations for the compliances 

incorporating the various '/3 are presente&dunTabler4 .....- _ 

As presenty writteg the equqions-dLTqbjI~e;y 3, af4h4 copcaalsorne 

internal inter7-reJ4qnshysoamnqn the yariogs-expressiona, aFo3,.eample, the 

trigonometric expressions of Table 4 are for convenience written in terms of 

the three angles , ', and Mt which the reinf.orcing filaments make 

with the composite orthogonal axes of symmetry (1, Z, and 3). Only two 
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-angles are needed, however, to define the filamentary directions; 7 
and A are related by the well known formula 

Similarly, for convenience six transverse effectivenesses have been 

defined (A P1 , , /2-,, ,A P'P - see tables 1, 2, and 3), 

where only five # are needed for consistency with the five elastic constant 

used in evalua'ting the transverse effectivenesses. Accordingly the equations 

of Table 3 may be.combined, as for example to yield the relation 

PO~T P2~' ~ 2 

where V, = the Poisson's ratio of the filamentary material. 

Thus simplificF.tions of the equations as given in Table 4 are undoubtedly 

possible by the employment of the trigonometric expressions, and values 

which lead to the least complex algebra. 
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DESIGN CONCEPTS 

:Study of Composite Structures 

Efficient application of composite materials to aerospace structures
 

requires proper selection of reinforcement pattern and material as well as
 

overall structural arrangement. To a large degree guidelines for optimum
 

* design of such composite structures have been lacking, nor have they been ob­

.vious a priori to the designer. 

Some clues about possible directions toward efficient configuration have 

recently become available. Reference 24 explored effects of material and rein­

forcement pattern on the structural efficiency of boost vehicle shells. Reference 

2 investigated similar effects for a number of aircraft structural elements. 

While these studies revealed a number of specific factors of importance for 

efficiency of application of composites, three general conclusions also evolved 

which served as a basis for the studies to be reported here. These conclusions 

were: 

,
1. 	 For a wide range of shell type applications the isotropic (00 ± 60o) 

reinforcement configuration is most efficient. 

Z. 	 The high (multi-directional) stiffness-to-density ratio of beryllium 

makes it more efficient than most near-future 'composites for hany 
- ,p 

shell and plate type structures, - particularly if the load intensities 

encountered are low, or if stiffness requirements are important. 

3. 	 Filamentary composites appear most attractive when used as 

unidirectionally reinforced elements to carry unidirectional loads. 
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The further question that seems to arise from these conclusions is 

wbether some combination of the biaxial properties ,of beryllium (or isotropic 

cpmposite) with the uniaxial properties of one-directional filamentary rein­

forcement may possibly be the best configuration of all. 

Circular Tube-Columns 

To exploie this possibility on an orderly basis, a simple round-tube 

column was selected as a first model for study. This model was chosen for 

simplicity; for an isotropic material optimization of the thin-walled tube in 

compression has perhaps achieved the status of being a classic example of 

balancing proportions between local buckling and column bending to achieve 

minimum weight. Thus its use to explore effects of combinations of unidirectional 

and multidirectional propeities is uncomplicated by complexities of the optimiza­

tion procedure itself. 

Accordingly beginning with the model of Reference 25, modifications were 

assumed of increasing complexity, and the effects on efficiency evaluated. As 

a first step, unidirectionally reinforced composite stiffeners were assumed added 

to the tube at three equally spaced points around the circumference. These 

stiffeners were assumed to contribute nothing to the local stability,-or instabilityi­

of the tube walls, but were assumed to add effective areas for column bending 

so that the effective radius of gyration of the tube is given by the expression 
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where 

(rGyr)Eff ,radius of gyration of stiffened tube 

R outside radius of tube 

t thickness of tube 

E B Young's modulus of unidirectional (boron) composite 

E 0 Young's modulus of tube material 

vB volume fraction of composite stiffeners 

v volume fraction of tube material (vB + v =) 

With equation (1) incorporated into the procedure of Reference 25, the 

efficiencies of the reinforced tubes were calculated from the formulas that 

follow. 

AA9 V P ) 

ja
, .. 3 E . , 
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whpre 

P axial load 

L column length 

W overall weight 

PB density of stiffening material 

density of tube material 

and the subscripts Sec and Tan refer to the secant and tangent moduli of the 

tube material, respectively. 

As indicated in the formulas, the reduced moduli used for plastic buckling 

were the tangent modulus for column bending, and the secant modulus for local 

buckling. The use of the tangent modulus for column bending is well founded. 

The use of the secant modulus for local buckling is used here as slightly more 

optimistic than the root mean square of the tangent and secant moduli as pro­

posed in Reference 26. Thus the efficiency curves resulting are perhaps slightly 

too high in the plastic region, representing a kind of upper bound. (Most 

affected are the curves for beryllium which should be accordingly somewhat 

discounted at the upper end.) In any event the 'use of this possibly optimistic 

reduced buckling modulus changes none of the conclusions drawn from the 

results. 

Results of the calculations are given in Figures 19 to 24. In Figure 19 are 

given basic results for unstiffened aluminum-alloy and beryllium circular-tube 

columns. Here the beryllium tubing is found to vary from Z5% of the weight of 

j.
the aluminum-alloy tubing in the elastic range ( /4 & [0. R 
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to 80% of the aluminum-alloy weight at high stresses (e T6 • 

The addition of the boron/epoxy three-point reinforcement permits the 

hluminum-alloy tubing to be made substantially lighter both at high and low 

loadings (Fig. Z0).- In the elastic stress range there is apparently an optimum 

Zeinforcement ratio beyond which higher percentages of 

reinforcement do not further increase the efficiency. At the high stresses, 

however, the very great strengtl and stiffness of the unidirectional reinforced 

composite provide increases in efficiency up to the maximum reinforcement 

ratio considered -W 

The beryllium round tubing is not improved by the boron composite rein­

forcement at low stresses; rather the efficiency is decreased as the reinforce­

ment ratio increases. This trend is just barely reversed, as might be expected, 

at high loadings (see Fig. 21). 

Comparisons between Figures 20 and 21 reveal that at low 'loadings the 

unreinforced beryllium is always the lightest of the combinations considered,­

being approximately one-third the weight of the best boron/epoxy- aluminum. 

At the high stresses on the other hand the reinforced aluminum is better than 

any beryllium tube, being about one-half the weight of the beryllium construc­

tion at the maximum loading considered. Thus it appears that the low propor­

tional limit strain of the.beryllium together with the flat top to the beryllium 

stress -strain curve beyond the proportional limit prevents it from acting 

effectively in conjunction with high-strength uni-directional reinforcement. 

In this range a better combination of materials is an isotropic boron/epoxy 
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e&onfiguration for the tube walls. This configuration should still be elastic at 

the values of P/L covered in Figures 19 - 21, and at the maximum values of 

,LZ considered the isotropic boron/epoxy tube is calculated from eqLations 

(1) and (2) to weigh very nearly one-half as much as the best reinforced 

aluminum tube. 
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Scalloped. Tube Columns 

One of the pitfalls -of efficiency studies like the foregoing is the possibility 

that a poor geometrical shape has been chosen, and as a result misleading con­

clusions are derived about the effects of various materials of construction. 

Ideally an optimum shape should be used (if need be the optimum for each 

material combination) so that shape effects may be divorced from material 

effects in the evaluations of the calculations. 

In order to assess 'the shape effect, the efficiencies of scalloped tubes 

were also investigated. First, a three-lobed scalloped round shape was used 

(Figure 22). The objectives of the scalloped shape are enhanced local buckling 

resistance due to decreased radius of curvature of the tube wall together with 

increased column bending resistance because the scalloped.tube approximates 

an equilateral triangle, and the equilateral triangle has a 21% greater cross­

sectional moment of inertia for the same area than a circle. Because the 

scalloped round tube does not substantially enhance the moment of inertia, 

'however, it was abandoned in favor of a scalloped triangular tube'. The charac­

teristics of these two shapes are summarized in Figure Zz. 

In Figure 2Z are plotted the percentage increases from a simple thin-walled 

round tube section attained by scalloped-round and scalloped-triangle sections 

having the same cross-sectional area and radius of curvature-to-thickness 

ratios as the reference round tube. As indicated by the curves of the Figure, 

the "scalloped triangle" has substantially greater potential for enhancing the 

column strength (at a constant R/t so that in first approximation the local 
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buckling strength is constant).than the "scalloped circle. ' Furthermore, the 

apexes of the triangular shape provide a greater radius of gyration for added 

stiffening as in the form of concentrated boion/epoxy elements than the crests 

of the scallops of the "scalloped circle." 

'While clearly the extreme limit of 21% increase in section properties 

represented by the "infinitely. scalloped" triangle 20 of Figure 4 surely 

cannot be attained, the development of a reasonable fraction of that amount may 

be anticipated for "reasonable" proportions. Here "reasonable" is taken to 

mean that the cusps betwedeh scallops are of sufficient-depth to establish stable 

corners not prone' to local buckling at the stresses encountered by the tubes. 

The assumption was made that the proportions so labelled on Figure 2z are 

reasonable, and likely performance gains through their use foi reinforced com­

posite columns was calculated with the results given in Figures 23 and Z4., For 

these calculations, equation (2) was replaced by 

a, V, 

where 

" noment of inertia of scalloped triangle section 
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Q 

area of triangle section (equal to area of circular 

sectibn of equivalent R/t 

r inside radius of scallops 

equivalent thickness -radius ratio of tube 

A .... 

In Figures 23 and 24 comparisons-of the efficiencies of the reinforced 

scalloped triangle tubes with envelope curves representing the lightest reinforced 

round tubes (the dotted curves on Figures Z3 and 24, derived from Figures 20 and Z) 

show. the expected gains for the triangular shape. With the triangular shape 

higher reinforcement ratios for the aluminum alloy tubing are effective (Fig. 23) 

and a reinforcement ratio M = 4 produces a tube column competitive with 

beryllium even in the elastic range (see Fig. 21). Further, the boron/epoxy re­

inforcement of beryllium in the plastic range is more effective with the scalloped­

triangle shape. The general trends established in the studies of the reinforced­

round tube columns, however, are not changed by the more-efficient triangle 

shape. Thus the scalloped-triangle beryllium tube is the most efficient of all at 

low loadings and the reinforced aluminum-alloy becomes more efficient when the 

stresses would cause yielding of the beryllium. 

The gains in efficiency shown on Figures 23 and Z4 for the scalloped-triangle 

shape appear great enough so that experiments to determine their validity appear 

desirable. That is, experimental definition is needed of the stability ofa 

scalloped-wall tube to establish the degree of scalloping beyond which corners 

of cusps will no longer remain fixed as straight lines along the tube to provide 

edges as restraints against local buckling distortions. 
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PIite Efficiencies 

- The efficiencies of composite materials for plate applications, already 

investigated for a variety of material combinations in Reference 25, have 

exhibited similar characteristics to those already discussed above for tube­

columns. Indeed combinations of beryllium and 00 boron/epoxy plates made 

up as sandwiches with the beryllium as the faces and the 00 boron/epoxy as 

the core demonstrate rather clearly the problems encountered in the develop­

ment of combination metal composite structures, as is shown in Figure 25. 

In Figure are plotted the results of calculations (made as in Reference 

25) of the efficiencies 'of sandwich plates which have 00 reinforced boron/epoxy 

cores and faces of beryllium, isotropic boron/epoxy, and (at the very top end of 

the curve) no faces at all. The solid curve represents the beryllium-faced 

sandwiches; up to the discontinuity (at MV k5JJ ) the plates 

are totally elastic (to achieve this elasticity at such high values of Nx a corn­

pressive pre-stress is assumed in the boron/epoxy core just sufficient to stress 

the faces to the proportional limit in tension at zero ekternal load). The rapid 

increase in weight of sandwich above the discontinuity-arises from the continuing 

decrease in stiffness of the beryllium faces as they are stressed further and 

further beyond their proportional limit. The dotted curve represents the higher 

efficiency that would be attained with beryllium with a higher elastic limit (or 

pre-stress). Inasmuch as neither of these improvements in the beryllium 

response appear possible of attainment in practice, the solid curve is the 

realistic one for the sandwich, and, as indicated, it can be surpassed in 
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efficiency - as by sandwiches utilizing isotropic boron/epoxy faces at the higher 

load intensities. Indeed as the loads become high enough, only the 00 boron/ 

epoxy retains enough stiffness to be effective, and no faces at all become most 

efficient. 

To a degree, the curves of Figure 25 may be considered to depict in 

general the yhrious. characteristics which must be balanced in composite plate 

construction for maximum efficiency, as follows: 

(1) 	 00 reinforced material should be used as the strength element, 

if possible pre-stressed to provide the maximum possible 

elastic range to the material used to provide transverse 

stiffness or plate buckling resistance. 

(2) 	 The material used to provide the plate buckling resistance 

(the face material in a sandwich should be selected on"the 

basis of the stresses to be carried, - atlow stresses beryl­

lium is most attractive, at higher stresses composite con­

figurations approaching closer and closer to the" 00 config­

uration should be used. 

(3) 	 While the example shown (Figure 25)is for a solid sandwich, 

so that the average stress is simply I ,I the 

same rules as (1) and (2) apply for hollowed out constructions 

which raise the average stress to Nx where T is the aver-
T
 

age.thickness and T - t. Thus, in general, any hollowing 

out (light weight core sandwich construction, etc.) which 

75 



does not introduce new instabilities or failure modes is 

like an increase in the structural index value on Figure 25, 

- i.e., it tends to make optimum constructions utilizing 

higher percentages of 00 reinforcement and lower 

percentages of beryllium. 

. , i %c~eZ o t.e -i-..a5 ry ": ' 2 3"t/f. B/ . , dyb 

These colp.z-isons are presented in Ei'­
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Panel Efficiencies 

The plate efficiencies just discussed were considered on the basis of 

initial buckling stresses only. Particularly at low stresses, as is well known, 

plates of most materials can continue to carry compression load without failing 

-t stresses substantially above the initial buckling stress. 

For plate' assemblies incorporating 00 reinforced composites as stiffeners, 

initial buckling of the plates may be expected to cause the major part of any 

subsequent load increase to be borne by these stiffeners. This load transfer 

into the 00 reinforcement is precisely the mechanism noted desirable above for 

-increased structural efficiency. Accordingly, for example, compression 

panels incorporating 00 reinforced stiffeners should be expected to achieve 

high structural efficiencies. 

High structural efficiencies were indeed found for 0° boron/epoxy Z-section 

stiffeners on t45 
0 

reinforced boron/epoxy skin in Reference 2. Part of this 

high efficiency arose from the high shear stiffness of the skin material 

(allowing the use of thin skins and hence allowiig most of the material to be 

incorporated in the stiffener s.) 

Reviews of the properties of ±450 boron/epoxy and comparisons with the 

properties of beryllium suggest that replscement of the -45' boron/epoxy skin 

on the panels of Reference 2 with beryllium. should result-in even higher effi­

ciencies than those calculated therein. For example, pertinent properties of 

these two materials are compared in the following table: 
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±45°B/Epoxy Be 

Density Mg. Z. 19 1.86 
(pmi.(pei) (0. 079) (0. 067) 

MN 
Yield Stress -­m 2 138 400­

(ksi) (20) (58) 

.4 

Shear Modulus 2N 72.5 145 
(i (10,500) (21,000) 

(ksi) 

Young's Modulus GN 
I 

Z5.5 
(3700)-, 

304 
(44, 000) 

(ksi) 

Yield Strain 0. 0054 0.0013 

Thus, except for its low yield strain, beryllium appears vastly superior to the 

±-45°B/Epoxy. The low yield strain, however, raises uncertainties, and a 

detailed evaluation is required to determine whether the beryllium/composite 

panels are as superior as would at first appear. 

Such an evaluation was made as a part of the study of Reference 27. The 

results are reproduced here and extended to make possible direct comparisons 

of the efficiencies of the ±L450 B/Epoxy and beryllium-skin Z-panel constructions. 

These comparisons are presented in Figure 26. 

Figure 26 plots curves of weights of box-beam compression covers (plus 

supporting ribs) for optimized Z-stiffened panels.' Optimization includes the 

selection of rib spacing and stiffener size and spacing for minimum weight to 

carry a design bending moment M with a box beam of Width b and depth d.-

Further the skin thickness. is required to be adequate, in terms of the box depth, 
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to provide a specified torsional stiffness; - accordingly the beryllium and 

±450 B/Epoxy are compared at "equivalent" values of skin thickness t 
,. : :SEq
 

such that 

The curves of Figure 26 show substantial weight savings for the beryllium 

° 

skin on 0 B/Epoxy stiffeners. These weight savings are depicted by the cross­

hatching between the curves for the ±450 B/Epoxy-skin panels (the dashed 

curves) and the beryllium-skin panels (the solid curves) at the equivalent tor­

sional stiffness measures (equal values of 

Several factors accumulate to produce the weight savings shown in Figure 

26 for the beryllium-skin composite construction: (1) the favorable shear stiffness 

of the beryllium permits an even higher percent of stringer material-with its 

high-strength, high column-bending stiffness characteristics, - than for the. 

± 45° Boron/Epoxy skin; (2) the beryllium is of lowver'density tharn the boron/ 
00 

epoxy; (3) the high strength of the 00 reinforcement (as noted in the opening dis­

cussion for. this section) permits it to carry the load long after initial buckling 

of the beryllium skin. 
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Studies of Composite Materials 

Three -Dimensionally Isotropic Materials 

The form of the matrix of elastic constants relating stress to strain in a 

generalized Hooke's law has been studied for various conditions of structural 

symmetry. For two dimensions, it is known that a material is isot :opic in a 

plane for which there exists a normal axis of at least six-fold symmetry. Thus, 

as a practical example, a fibrous composite plate is effectively isotropic in 

th ii 

its plane when one n of the fibers are oriented every - radians for n = 3. 
n 

(By effectively isotropic,, it is meant that the average stress, average strain 

relations are isotropic. ). Similar conditions to obtain three dimensional iso­

tropy appear to be unavailable in the literature. - Several configurations having 

multiple symmetry conditions which might yield at least an approximation to 

an elastically isotropic material haire been studied. The first material treated 

has. two three-fold axes of symmetry separated by the angle for which the cosine 

is '-1/3. Such a material can be obtained with a fibrous composite having one 

fourth of the fibers oriented in each of the four directions defined by the altitudes 

of a regular tetrahedron. 

The stress-strain relations for a general elastic body may be written as: 

,3 1,. .. 6 
3 ij. 3 3j 

where 7% are the stress components 

e, are the strain components 

c'. are the 21 independent elastic constants (c c..)
 
13 3' '3
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We treat a material having two axes of three-fold symmetry at an angle 9 

such that 

Cose - 3 

As a consequence of this, there must exist two additional axes of three-fold 

symmetry; the four axes being oriented along the directions of the four alti­

tudes of a regular tetrahedron. (This four-legged array is called a caltrop.) 

We select the vertices of the tetrahedron at the points: ( 0, 0, L )
" 2 

This is a tetrahedron with centroid at the origin. This body has elastic symme­

try with respect to a rotation of about the z axis. Thus for the following3 

transformation of coordinates, the stress-strain relations remain unchanged: 

jx y z
 

Cos 0 sinG 
 1 0
 

y' -sinO cos 0 0
 

z' 0 0 1
 

This reduces the elastic constant matrix to the following form (Ref. 28) 

e11 C12 c13 c14 e15 01
 

c12 cIl c13 -c14 -c15 0 \
 

c13, c13 c33 0 0 0 (2)
 

c14 -c14 0 c44 0 -c15
 

c15 15 0 0 c44 c14
 

0 0 I (
-c 15  0 c 14  c 
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This array has seven independent constants. 

The stress-strain relations will also be invarient for a rotation about 

one of the other axes of three-fold rotational symmetry. In particular, we 

coasider a 1200 (counter-clockwise) rotation about the axis passing through 

the point ,-' ,--- followed by a 1200 (clockwise) rotation about 

the axis passing through the point - o, - The direction cosines 

for this transformation are 

Ix y a
 

3 010 3/3 .
 

y 0 -1 0
 

0 1
 
z-r
 

It can be shown that the elastic constant matrix must therefore be of the
 

form
 

c 11  c 12  cll+cl -c 3 3  0 /2 (cli-c3 3 ) 0 

cll c1l+c 1 2 -c33 0 -/2 (C1 1 -c 3 3 ) 0 

c33 0 0 0 

-i-
3 

cn 
lz

T-C3 0 - ('c c-3 3 )( 3 
3 c12
 
-c e0 - (c -c 3 

12 

This material has only three independent elastic constants and is a 

mnaterial with the symmetry of the cub'ic crystal. Indeed, a transformation 
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of the principal axes of a cubic crystal given by: 

1 1 

IIy 

followed by a transformation of axes given.by 

x 0 -1 0 

y 1 0 0 

z 0 0 1 

brings the principal axes'of a cubic crystal in coincidence v ith the x y z axes 

which are the reference axes for eqs. (5). This transforms the array of elas­

tic moduli of a cubic crystal to the following form: 

1 1 0-(C-D-2E)T(C;+D+ZE) (C±SD-ZE) (C+ZD.ZE) 0 

(C+D+ZE) -- (C+D-E) 0 -- (C-D-ZE) 0 

- (G+2D+4E) 0 0 0 

0 (C-D-21 

0(C-D+E) 

+ (C-D+4E 

(4) 
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where C, D and E are the three independent elastic moduli for the cubic 

system. 

The array (4) has the same form as the array (3). In fact, if we let 

3C = 4cl- c33
 

' +633
=-Cl+6c 

(c 11 +c)iz 

and E 33 

then (3) and (4) are identical. This shows that the material with the elastic 

moduli of the form of (3) is elastically cubic. 

Although this material is not isotropic, the properties for a particular 

fibrous composite prove interesting, as will be shown in the following sec­

tion. 

Another configuration of interest is'that of Reference 1 which is construL­

ted by taking three pairs of reinforcing filaments, oriented with reference to 

an orthogonal Cartesian coordinate system, xyz, as follows: one pair in 

the xy plane making angles of +0 with the x axis; one pair in the yz plane 

making angles of +0 with the y axis; and one pair in the zx plane making 

angles of +0 with the z axis. It was shown in Reference 1 that when . is ap­

proximately 300, the shear modulus, Poisson's ratio, and Young's modulus 

satisfy the relation: 

E 
G= 
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It can be shown that when 

0e tan (2 sin, 18 ) 310 43' 

the twelv rays ( 6 lines), from the origin pass through the vertices of a 

regular icosahedron with centroid at the origin. These six lines are there­

fore axes of five-fold symmietry. The possibility that a body having six 

axes of five-fold symmetryas isotropic is suggested. This result is per­

haps of academic interestonly, as it does not appear possible to construct­

a continuous space lattice.having five-fold axes of symmetry. 
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Evaluation of Moduli of Caltrop Reinforced Materials 

The equations derived for the elastic constants of three-dimensionally 

ireiniorced composites were used to compute properties of the caltropic re­

filforcement configuration. Calculations were made using both the equations 

o .fReference 1 (for which = = , etc. ) and the equations of Table 
=0LT* CO
 

4 herein. The following material constantd were employed.'
 

Ef (Young's modulus of filaments) 10• 

Eb (Young's modulus of binder) -- X Ef 
1*1 

Vf (Poisson's ratio of filaments). 0.2 

Lb (Poisson's ratio of binder) 0. 35 

These values correspond to those for E-Glass in epoxy. Values of 0 were 

found for these material constants by derivation of the upper bound Hashin­
/

p 

Rosen (Ref. 2) elastic constants of unidirectional reinforcement at values of 

volume fraction filament of 0. 2, 0. 4. 0. 6, and 0. 8. 

Results of-the calculations are given in Figure 27 for the filament orien­

tation shown. Both methods of calculation yield different. compliances in the 

,2-and 3-directions (values of A and A ) from tlhat in the 1-directi.on. -Differ­
4: 6 

" ences .between, th.. twq n-.iethods a.renot sub.stantial..aswas~anticipate4,nor 

are the compl~anca fond ibktantially at v jhr..ee .dirctions(v~a..aV ttt~ .Ct. 4JAr~ J , . ,LA W~,2It- *.jt kinA 

cz(ar*enAe ert. .pixrposes, the compliances in the three directions are pro,e 

bably so nearly equal that differences among them can be neglected. 
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A 

Three Phase Composite Compression Members 

In the foregoing studies of the efficiency of combination metal/composite 

structures the efficacy'of 00 reinforced composite material to provide strength 

to the structure while. some other material or configuration provided adequate 

transverse stiffness or continuity was evaluated. On the presumption that such 

00 reinforcement would truly be an extremely high compressive strength material, 

these evaluations were indeed favorable. Because of the relative weakness and' 

lack of stiffness of available resin binder systems, however, it is not obvious 

that the 00 configuration necessarily has the maximum compressive strength. 

Rather, as this section will demonstrate, some transverse reinforcement may 

be desirable. 

Reference 4 described the mechanics of stabilization of uni-directional 

filaments in compression. -As noted there, three failure modes may be encoun­

tered: 

(1) a mode.in which the shear stiffness of the binder material governs, 

described by the equation 

C 

where 

ultimate compressive stress in filament direction 

shear modulus of binder 

volume fraction filament 

(2) a iiode in which the strength of the binder is critical, described by 

the equation 
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where 

. yield stress for binder 

Young's modulus for filament 

and (3) a mode in which the stiffnesses of both filaments and binder are 

operative, described by the equation 

The lowest value of found from the foregoing equations is, of course, the 

failure stress. 

In all three modes of failure the binder properties are important. Accord­

ingly, increases in binder properties may be expected to be reflected in increases 

in compressive strength of uni-directionally reinforced composites. -One method 

for increasing effective binder properties would appear to be to take some of the 

uni-directional, load-carrying filaments and distribute them uniformly through­

out the binder. Thus, while for every failure model the value of O would 

tend to be reduced by the reduced volume fraction 6f load-car-ying filament 

(vf in above equations), the net effect should be expected to be an increase in 

47 due to the improvement in binder stiffnesses and strengths,. 

In order to assess the potential magnitude of compressive strength 
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increase available by this approach, the assumption was made that the binder 

properties attained by the utilization of some fraction of the-filamentary 

material (the original volume fraction filamentsvfo was assumed to be 0.5 

throughout) for binder reinforcement would be given by simple, rule-of-mixture­

like, expressions such as 

where 

is the Poisson's ratio found by the rule of mixtures 

for filaments and binder 

and ­

with the primes denoting the properties after-binder reinforcement. 

Using the foregoing equations, three possible composite combinations were 

evaluated: (1) boron binder reinforcement for uni-directionally reinforced boron/ 

epoxy; (Z)glass binder reinforcement for uni-directionally reinforced glass/ 

epoxy; and (3) glass binder reinforcement for uni-directionally reinforced boron/ 

epoxy. In the first'two cases the total amount of reinforcing material in the 

composite was held constant, so vfb + vf 0.5. In the last case vf was held 

constant and the total amount of reinforcement therefore increased as v was
"b
 

increased.
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The results of the calculations for these three combinations are plotted 

in Figures 28, Z9, and 30. In Figure 28, curves for the boron-boron corn­

posite are presented for the following nominal constituent properties: 

Ef = 414 GN (60,000 ksi) 

Eb = 3.45 GN . (500 ksi) 

O = 2.76 GN (400 ksi)
x
 m
 

= 0.1 GN (15 ksi)
z
 m
 

0.2 

0.35 

In Figure 29 the glass-glass 'combination is considered for the same binder 

properties and the following nominal glass properties 

Ef = 72.45 GN (10,500 ksi) 

2 
m 

= .76 GN (400 ksi) 
z m_2 

= 0.2 

The boron-glass combination of Figure 30 uses the same nominal properties 

for each of the materials as those given above. 

For properties like -those of the boron/epoxy composites of Figure 28, 

the conversion of a small percentage of the axial filaments into transverse 
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,filaments which effectively stiffen the binder should be advantageous, raising' 

the compressive strength from 2.75 .N (392 ksi) to 3.8 GN (550 ksi), 

approximately (cee Figure ZS). If the properties are more like those of the 

glass/epoxy composites of Figure z9, however, the same gain is not to be 

expected (see Figure 29). If glass is added to boron/epoxy, on the other hand, 

as in Figure 30, substantial gains are to be anticipated. 

Because of the gains found in the calculations for Figure 28, a series of 

uni-directional boronlepoxy compression specimens having various percentages 

of chopped-glass filaments added to the binder were fabricated and tested. The 

results are shown as the points in Figure 31, with the large and small circles 

representing nominal glass-filament lengths of 0.16 cm. (1/16 in.) and 0.08 cm. 

(1/32 in.), respectively. Despite the large scatter, strengthening appeared to 

be achieved in two cases. 

Both the scatter in the test data, and the sensitivity of strength of the 

boron/epoxy composites of Figure 28 to the small amounts of bindei reinforce­

ment point to the critical nature of the role played by the binder in the composites 

for the development of high compressive stresses-. The marked difference be­

tween the curves of Figures 28 and 29 suggests that this criticality is substan­

tially greater for boron than for glass reinforcement. 

To explore the sensitivity of boron composites to binder properties 

somewhat further, the calculations represented by the curves of Figure 31were 

also made. These curves show the effects of changes in binder strengths 

( and binder-filament-reinforcement strengths on the compressive 
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strength of the three-constituent composite when the "binder strength" mode is 

critical. The compressive stiength is found to depend most critically on the 

b i$nder strength at the.low ratios of binder reinforcement. 
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STUDIES OF MATERIALS- PROPERTIES TESTS 

The testing of filamentary composites to determine their mechanical 

propartios has ptoved to be more dlffieult than the testing of homogeneous 

materials like metals. Thedifficulties take several forms; they may derive 

from discontinuities encountered in specimens designed to provide a diminished 

cross-section, as is often done to avoid failures at points of load introduc­

tion; they may be associated with the shear weakness of the binder leading 

to undesired modes of failure; or they may arise because a type of test 

known to be inadequate is used for economy or other reasons. In this section 

some of the aspects of mechanical-property testing of composites are 

examined both analytically and experimentally to help establish guidelines for 

improved techniques. 

The NOL Ring Split-Dee Tensile Test 

The N. 0. L. ring "split-dee" tensile test, shown schematically in 

Figure 3Z, has the advantages that the specimen may be readily fabricated by 

winding, and the test may be performed in a conventional universal testing 

machine without special-fixtures (other than the split dees themselves). The 

test has the disadvantages, however, that (1) no test section is available at 

which strain gages may be mounted to measure the stress-strain properties, 

and (2) more seriously, the test introduces substantial bending moments in 

the ring where the split occurs between the two dees. These bending moments 

extend above, and below the, split, -as shown in Figure 33. Because the mer­

brane stress in the ring causes it to increase in diameter as the load increases, 
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the Fing tends to pull away from the corners of the dee, and the maximum 

-bending moment is that associated with the load times the deflection to the 

center of the ring cross-section near the corners of the dees. The magnitude 

of the bending may be found from the following equations (developed in Appendix B). 

u -i' 

where may be evaluated by the trial and error solution of the equations 

(2) 

and 

$I;?~ 7r IjfP(3) 

such that 
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I 

qhere 

Mi bending moment at center line of ring, at split in dees 

Young's modulus in direction of filaments
 

moment of inertia of ring cross-section
 

R initial inside radius of ring
 

E 1 

o 

t ring thickness 

P load acting in each half of ring (one-half of applied load) 

A ring cross-sectional area 

unsupported semi-span between dees 

e and 6 	 slope at point of departure of ring from dee, measured 

relative to direction of load application. 

shear modulus along filamentsG 12  

Evaluation of equation (1) for a typical E-glass reinforced epoxy ring 

for I 0 = 7.30 cm. (2.,875 in.) yields the curve of maximum bending stress 

vs. ring thickness given in Figure 34. Obviously these bending stresses are 

of sufficient magnitude to raise questions about the engineering merit of the 

tensile strength values measured as the P/A stress at the maximum load on the 

ring. 

(Curiously, the magnitude of the bending moment is relatively insensi­

tive to the composite properties. For example, the stress increment due to 

bending in an hypothetical boron/epoxy ring with E1 = 414 GN/mZ (60,000,000 

GN
 
psi) is essentially the same as that in a glass-epoxy ring with E 1 = 51.75 

m 
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(7, 500, 000 psi) at the same load. The increased bending stiffness of the boron/ 

.epoxy is compensated for by the decreased diametral expansion of the ring 

under load, so that the bending stresses remain essentially constant as E 1 

varies. ) 

Variations of the Split-Dee Test 

The high bending stresses encountered in the split-dee test are rather 

disappointing in view of the many attractive features of the test. Accordingly 

the question naturally arises as to whether minor changes may be made in 

specimen or fixture design which will reduce or eliminate the bending. Some 

possible variations of this nature are considered below. 

The "racetrack" specimen - The provision of a straightaway section adjacent 

to the split in the dees is a first logical step toward the improvement of the 

N. 0. L. ring split-dee tensile test. Such a specimen is shown schematically 

in Figure 35. 

The analysis of the bending of the critical section of the racetrack is 

similar to that of the ring, and is described in the following equations: 

((5) 
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,where now 'is evaluated from 

Ro
 
(6) 

and 

again with 

where s = length of straightaway, and the other symbols are as before. 

Results from the analysis of this racetrack specimen compared to those 

from the N. b. L. ring are compared in Figure 36. Figure 36 shows-that while 

bending is not eliminated by the straightaway, it is substantially reduced, ­

even by a relatively short straight section. For example, just' a 1 cm (0.4 in.) 

the bending moment, to less than one-half that of thestraightaway reduces 


circular ring.
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The mechanics of the reduction of maximum bending moment are 

suggested in the (exaggerated) sketch of Figure 37. Under load the mid-point 

of the straightaway deflects inward toward the center of the track, so that 

even though the curved portions pull away from the dees the eccentricity of 

*the tensile load at mid-span is small and hence the moment associated with 

it is small, - i. e. the maximum moment is still that near the corners of 

the dees, not that at mid-span. The fact that the moment in the straight 

portion is small, however, is advantageous for the use of strain gages in that 

'region. 

Experimental confirmation of a qualitative nature of the foregoing 

analyses of split-dee tests were obtained by photoelastic tests (Figure 33 

and 38), and by strain measurements on an enlarged, aluminum-.alloy ring 

(Figure 39). Even with the enlarged ring the stress gradients were so steep 

around the circumerence that the gages could not be located accurately enough 

to-make a quantitative check of the analyses. Indeed, the strain gaging 

problems pointed up the merits of some such approach as the follow".mg for 

further improving the split-dee test. 
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Compression Tests of N. 0. L. Rings 

A simple compression test for an N. 0.L. ring-type specimen (analogous 

to the split-dee test for tension) would be useful for the evaluation of the com­

pressive properties of filament-wound composites. Efforts to develop such a 

test under this contract were not successful. The specimen tried is shown 

schematically in Figure40,consisting of two short segments cut from an N. O.L. 

ring and mounted back to back as shown. 

Application of tangential end loads to the segments of ring in Figure 40 and 

pressure-like forces from the supporting, hour-glass-like cQre ideally would 

reproduce the compression induced in an entire ring by external pressure. 

That is, moment equilibrium at any station along the segment is represented 

by the equation 

where 

P = 1/2 total load 

R = ring radius 

1/2 angle included by segment 

intensity of normal load on ring at station 

that is 

As might be expected, this equation is compatible with.a simple pressure 

load. Thus, if ­
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Tests of specimens fabricated as sketched in Figure 40,. however, were not 

successful in maintaining the compatibility so readily expressible in equation 

form. Attempts were made to replace the resin filler of Figure 40 with aluminum­

leading to a nice test of the aluminum (Fig. 41); attempts were made to test 

specimens of larger radius of curvature in this fashion, and a maximum failure• 

stress of 59 4N (86 ksi) was so achieved in a glass/epoxy composite. Despite 

the-fact that failure in this case appeared to be by shearing at the quarter point 

of the specimen with no evidence of overall column instability (Fig. 4z), the 

stress is less than can be achieved with well collimated, straight compression 

specimens and is probably not representative of the material strength. 

Some evidence of "brooming" of the ends of the specimens was apparent 

even in this best test. A number of further tests of like specimens with ends 

cast in cerrobend were made to try to avoid such end failures, Stresses in no 

case were higher than the foregoing.value., . -

Initially straight specimens appear to be required for compression testing. 
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Low-Melting Alloy Casting Fixture of Compression Tests 

The use of a fixture in which the specimen ends can be cast in a low­

melting point alloy has proved successful in preventing premature "brooming" 

type failure in tests of straight compression bars. Such a fixture is shown in 

Figure 42. The fixture incorporates end plates having holes, - of the same 

shape as the specimen cross-section, - but approximately 0.6 cm. (1/4 in.) 

oversize so that . 3 cm. of the low-melting alloy can be cast all around between 

the hole wall and the specimen. 

Conventional 3 to 1 aspect ratio, uni-directionally reinforced compres­

sion specimens have been tested in this type of fixture with consistently high 

stresses at failure. Consistency and modes of failure both suggest that these 

high stresses are representative of the compressive properties of the material. 
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Elastic Moduli 

The desire to measure the elastic constants of a uniaxial fibrous com­

posite by using specimens which represent the filament.winding fabrication 

process has led to the use of thin-walled circumferentially wound tubes 

(e.g. Ref 29). Axial load and internal or external pressure tests of such tubes
 

can be used to measure four of the five independent effective elastic con­

stants of the composite material. (See Ref. 11 for a discussion of independe'nt 

effective moduli of tomposites. ) The use of these thin cylindrical tubes to 

measure the elastic moduli of a composite laminate appears to be a most 

suitable approach. However, it is not without'problems; the first of which 

is that of definition of the moduli. When a laminate is to be used as a plate 

or shell structure, the desired elastic relations may be written with respect 

to the principal geometric axes, denoted as the 1 and Z directions, as: 

Nn cl (8). 

N zz22(92 

22 	 (10)Mi. (11) 

M22 2 22 )2 (12) 

I 2l 	 -12
2 	 (13) 

where: 	 e are the three middle surface strain components 

. are the three curvature components 
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N are the three stress resultants 

M are the three moment resultants. 

In this form, for an arbitrary laminate, the Cij matrix is a 6 x 6 array of e­

lastic constants which must be determined experimentally. Because the larni­

nate is non-homogeneous there may be coupling between extension and bend­

ing. The existance of certain non-zero terms in the C matrix complicates 

the relationships among these elastic constants and the so called engineer­

ing constants: Young's moduli and Poisson's ratios. This is best illustrated 

by considering alternate forms of Equations (8) - (13). These Equations may 

be written as (e. g. Ref. 2): 

N. = a C + b.. X. 

M. =b . + d.£. 

These Equations are represented by: 

Equation (15), can be manipulated to yield: 

M g hi Y (6 

and 
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-------- (17)
]---.---

As an example we now consider the Young's modulus in the I direction 

which can be defined as the ratio of average stress to strain and is therefore 

given by: 

N 
E - (18) 

where t is the laminate thickness. 

This modulus can be evaluated from Equation (17) for N 2 =N = 0,M i 

as 

E 1 tA (19) 

Or it can be evaluated from Equation (16) for N 2 = = = 0 as:N 3Ii 

E. - (20)
1 tell 

The definition of Equation (19) is consistent with the usual practice of having 

all but one of the stress components vanish. However, the restrictions assoc­

iated with the definition of Equation (20) are representative of the loading con­

ditions'on the shell specimen. That is, . = 0, because of symmetry. These 

two definitions are not the same unless b,. = 0; in which event, it follows that 
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= f= g=g:= B C = 0 and Aij = e
 

ij ij ijjj kj.
 

It is suggested that the rational approach to this problem is to de­

emphasize the calculation of Young's moduli,, etc. and to utilize a six by six 

matrix definition of the elastic constants of a laminate. When a particular 

extensional or bending stiffness is required, the definition thereof should be 

"explicitly stated. 

A second aspect of the modulus problem is the influence of the form of 

the material anisotropy and the specimen -configuration upon measured values. 

The filament wound cylindrical tube under consideratioh is a material possess­

ing cylindrical anisotropy. In the case of a circumferential or other winding 

pattern symmetric with respect to the principal geometric axes, the material 

may be considered to be cylindrically orthotropic. 'An analysis of the stress 

distribution in such a medium for various applied loads is available in Refer­

ence 30, which shows that the stress distribution even for simple applied loads 

is non uniform. For example the axial stress, a , in a cylindrical tube sub­
z 

jected to an axial load is not constant unless V = VO This condition is gen­

erally not satisfied in a filament wound shell, and for a circurnferentially 

:wound shell, the two Poisson ratios are definitely unequal. In this case, the 

modulus defined by Equation 18 is an average value and can be related to the 

true value by using the expression for the axial stress, a . This result is 
z 

p'resented on page 254 of Reference 30. However, there is evidently a typo­

graphical error in Equation (40. 4) which is not diemsnionally correct as pre­

sented. The desired result was therefore rederived for the particular-type 
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of material symmetry -representedby the circumferentially wound tube. The 

extensional stresses and, strains for a cylindrically orthotropic tube are 

given by: 

rre Vrz 
r E 

r 
-

6 . 
Er 

z 

____ 1 6zea 
"'Or I Oz a 
€@ z 

T- E 

- zrz "-i---
zLEr 

z_-~ 1(i,-­
f z J 

S 

The shear strains and stresses are simply related by: 

Yez = ez /Gez. 

Yzr rzr/Gzr (22) 

These relations can be further specialized for the circumferentially 

wound tube inasmuch as the material plane normal to the local fiber direction 

can be assumed to be a plane of elastic isotropy. Thus 

z r 

'r e ( 2 3 ) 

a;9 = Gre 
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Equations (Zl) and (ZZ) are also applicable to filament wound tubes which 

are symmetric with respect to the longitudinal and circumferential direc­

tions and which have a sufficient number of laminae such that coupling between 

extension and shear is negligible. To take advantage of this -wider applicabiii­

ty the analysis will riot utilize the simplifications offered by Equation (23). 

Since the applied loads are symmetric, there will be no shear stresses or 

strains and the constitutive relations for this problem are those of Equation 

(21). By symmetry, all variables will be functions only of the radial coordi­

nate. Thus the equilibrium equations simplify to: 

r + r - 0 (24) 
r rr 

which can be satisfied by s-electing a stress function,cp, such that 

1 dcp (5 
r r dr (25) 

dr
 

The only compatibility equation which is not satisfied automatically
 

is: de r d 2 de
d = 

(26)
-d-dr 0dr 

,Substitution of Equations (Zl) and (25) into (26) yields a fourth order differen­

tial equation on Cpgiven by: 

r 4CPV +r 3I -r CP11 +rp 10 (27) 
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where 2 (Jr~r (28) 

For I the solution is: 

cp = Arl- + Brl+ + Cr'+ D (29) 

The stresses resulting from this are: 

A= l-P)rr + B(l+0)r -1 + 2C 

B 4 (30) 
= A_i~-( l) B( +l)r - +2C 

The' cylinder is considered.to be subjected to an axial shortening re­

sulting in'a uniform strain, e = e, and internal and external pressures, pi 

and po respectively. This. train displacement -relations sirmplify to 

du
 
r dr
 

(31) 

u
 
S r
 

'E: 

Substitution of Equation (30) into Equation (21) defines the strains. C 'and C 
re 

Equatif6n (31) offer':t 6dmethbdl;eioT if.ding U:'-o 'a uniqe' det'ernaihtion:' 

= elz rz (32) 

Use of the boundary.conditions: 
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ar(r=ri) = "P. 

,*,(33) 

0 P0 

defines the remaining two constants 

r LTG Z 

in Equation (30). 

J Po.( o 

This yields: 

_= 

(34) 

l 1 " G + 1 - +1)
1 " F1 -C3I-1
1 (-)1- I - /r
 

where C 
r 

0 

r 

(35) 

o = E e + 8z %8+l 
.z Z rz 

or (36) 
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tAxial Compression Test 

It is now possible to compare the results obtained by the tube tests with 

the actual elastic moduli. First, consider the tube in axial compression. The 

measured modulus is given by. 

T Z-(37) 
z e 

a is the average axial stress (total load divided by 
z 

tube cross-sectional area) 

Thus: 

dA 
a = . ­

a i rdr (38) 

0 1 

Substituting Equations (36), (34) and (35) with pi.= po = 0, into Equation (3E, 

and the- result into Equation (37) yields, after much manipulation: 

z z (Vr7 rZ) ZO+l [~(1+0 )(l+C)-4C 

Srz _Z r (2 -1 
2 // 

a+ 28z (-' 
(1-vz') 2L ~(39)22 (0 

For a thin shell we find by taking the limit'of Equation (39) as C-+1 that 

E = 
z z 

Thus the thin-walled circumferentially wound tube appears to be a suitable test 

technique for measuring the transverse Young's modulus., The magnitude of the 
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erro3 associated with this technique is indicated by computing the quantity ' 

in the following equation as @:function of p: 

T-Ea (vez-vzE-E 

Z --- 80 (40) 

rzzr
 z 


where the correction factor, 7, is determined by comparison of Equations (39) 

and (40). 

The factor ' was evaluated for a radius ratio of C = 0.9 which is a rela­

tively'thick shell for this purpose. Correction factors, Y, for smaller radius 

ratios, C, will be smaller. It was found that' 

9< 0.01 2,< 6 

y < 0.1 2 < 10 

It seems safe to conclude that the circurnferentially wound tube in axial 

compression is a valid test for the Young's modulus transverse to the fibers of 

a uniaxial composite. 
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Internal Pressure Test 

An internal pressure test has been used (e.g. Ref. 29) to determine the 

Young's modulus in the fiber direction and the Poisson's ratio. Strains are 

ineasured on the inner and outer surface. For this loading we may examine 

the equations for strain by substituting Equations (34) - (36) into Equation (21). 

For zero longitudinal strain and zero external pressure this yields: 

~y2P)0~L+ oj rz L 0r 

The measured surface .strains will then be' given by: 

Ce (r) pi ~J [i+c21_ "Or (1_c.)0 (42) 

e (r o )= 20 18 Pi (43) 
'6 0 11-c 

As in the preceding section, we choose to examine the error associated 

with the use of equations developed for isotropic materials. The alternative 

is to write the simultaneous equations relating all the measured strains to all 

the elastic moduli and solving for the latter. However, this alternative pro­

cedure is complex and perhaps not possible as tl ere is no apparent direct 

measurement to define the transverse shear stiffness, G . Thus, we con­
zr 

sider 
- _e 

ae =(44)TO 



where E is the effective circumferential thickness for 

zero axial strain. 

a is average circumferential stress. 

For-equilibrium: 

C (45) 

The stiffness defined byEquation (44) can be evaluated by the use of e. g. (45) 

and either Equation (42) or (43). .We denote the results El andfE respec­

tively. Treating the thin shell we write: 

1-6 (46) 

where 6 is the shell thickness to radius ratio. The results are: 

0 

Eg +7, (47) 
271 

Ti 1 f-, (48)-YO _zS 

Equation (47) shows that the use of the external surface strain measurement 

yields a result for the extensional stiffness which has an error measured by 

half the thickness to radius ratio, e. g. 5% error for a radius to thickness 

ratio of 10. On the other hand, the inner surface measurement involves many 

other material moduli and is therefore unsuitable for simple use in the circum­

ferential modulus determination. 

Note also that there is a significant difference between internal and ex­
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ternal strains. Thus: 

5(r) - s(r 0) 1 r 8 ] 
a=110+ 7;S0)bVa __(+l-1~~) (49) 

TPes4en Test 

Reference to Section 43 of Reference 30 shows that the stress distribu­

tjon in a cylindrically anisotropic hollow shell for which there exists at each 

point a plane of elastic symmetry normal to the axis is obtained in the same 

way as in an isotropic rod. That is, z is the only non-vanishing stress 

component and 

0 

The circumferentially wound circular shell satisfies these symmetry require­

ments and therefore provides an exact measure of the in-plane sheai stiffness, 

Ge " 
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CONCLUDING REMARKS 

The applicationof existing analyses of strength and stiffness of fibrous 

composites to the analysis and design of composite structures has been treat­

ed. It has been shown that, although the present undetstanding of failure 

mechanisns is incomplete, it is possible to construct a rational set of fail­

ure criteria for fibrous composite laminates. Additional studies of the fail­

ure mechanisms of a uniaxial composite have been performed by using limit 

analysis techniques. -Also the effect of stress concentrations upon tensile 

strength has been explored and initial-studies were made of the complex 

moduli of fibrous composites having viscoelastic matrices. 

The design criteria were used in the evaluation of columns, plates and 

panels in which uniaxial composites for high strength were combined with 

isotropic metals or composites -for high stiffness. Designs offering substantial 

improvement over those made of one material only were demonstrated. Im­

proved composite materials were achieved through the use of a third phase as 

a local reinforcement of the matrix. Also approximately isotropic three­

dimensional materials were designed. 

Test methods were analyzed leading to a verification of the suitability of 

thin-walled tubes for modulus measurements and the unsuitability of the NOL 

ring for tensile strength measurements. Improvements in methods for measure 

ment of tensile and compressive strength were demonstrated. 

The studies emphasize the feasibility of using present methods for the 
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rmechanical analysis of composites in preliminary design studies. They also 

$ndicate that our understdndinj of composite failure mechanisms is a continual­

ly evolving one requiring additional theoretical and experimental study. 
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A1JPENDIX A - Limit Analysis For Composites With Elastic-Brittle Fibers 

Five types of surface losdings are considered: 

1. Tractions equivalent td a uniform shear stressiTl2 are applied on 

the entire boundary surface. 

Use will be made of the theorems of limit analysis which will not be 

stated here. For lower bound construction. a uniform stress field 

0 

L.. 0 20 

is chosen as a statically admissible stress field where 7 is such that Von
0 

Mises'yield criterion of the matrix is not violated. Then it can easily be 

shown that 

=kb(14 (1) 

where kb is the yield stress of the matrix in simple shear. 

For upper bound construction, a kinematically admissible velocity field 

is chosen as follows: 

(a) In the region of the composite specimen not occupied by composite 

cylinders and on the boundary of the composite cylinders. 

= 
='O, =Y 0 x1, 0 (Z)u2 u 3 
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where y0 is any real numbets'". 

(b) In any composite' cylinder, the velocity field u is the elastic dis­

placement s-lution-to the displacement boundary value problem with displace­

ment boundary conditions (Eq. 2) prescribed as formulated in Appendix 2 of 

(Ref. 11) with the modification that the fibrous core is rigid. 

an upper bound (TILAn application of the upper bound theorem gives 

as a function of P and VI the latter being the volume fraction of all the composite 

cylinders embedded in the composite specimen: 

(3)" 

i V(r jLZ) kb+ ( l: ) 

where 

=R +4 Z - C d~dR 

I (l-r2) J J 0 R R 

0 and the fiberIn the case of "random array" (Ref. 11) for which v 


volume fraction of the composite specimen vf P , Equation (3) b~ecomes
 

LL 

rt)4) 

$k b 

2- Tractions equivalent to a uniform shear stress arq applied on 

the surface of the specimen. 

The condition of plane strain is assumed. Then, the Von M.ises' yield 

criterion for the matrix reduces to a simple form 
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+ 
 4k 
-2 .33) 4r b,b5 

For lower bound construction, a uniform stress field 

0i 0 0 

0 

is chosen as a statically admissible stress field where T is such that Eq. (5) 

is nowhere violated. Then it follows that the lower bound for the limit load 

(72 3) "= kbb 

which is independent of fiber volume fraction. 

.For upper bound construction, the same principle is used here. A 

kinematically admissible velocity field is chosen as follows: 

(a) In the region of the composite specimen not occupied by composite 

cylinders and on the boundary of the composite cylinders, 

u ,u2=6 x, u 0­
1 2 2 3' u3 2 (6) 

(b), In any composite cylinder, the velocity field u is the elastic dis­

placement solution to the displacement boundary value problem with displace­

ment boundary conditions (Eq., (6) ) prescribed as formulated in Appendix 1 

of Rief. 11 with an additional condition that the fibrous core is rigid and the 
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binder shell is incompressible. 

An application of the upper bound theorem gives ah upper bound (r) 

as a function of and v1 

Ir kb + kh(zl 7)(12 -1)Z3)UV 

where 

Z(',R) cos ed~dRTr(i-	 2 R 1 ,R) +z ) Jo 

and
 

R4 ' R]z + 
P+0 --. +[I~±+) R]R) 	 V [4±2+l) ( 2+) + 3 

(R) -p 2([t42,)_ l) 0] (404+P+l) +3S 	 R7 - [- 2 . 3.IR 

3. Tractions equivalent to uniform axial tension TZ on the composite 

specimen 	under the conditions of plane strain.
 

Using the same principle, the lower bound for the limit load is
 

L = Zkb 

For upper bound construction, a kinematically admissible'velocity field 

is chosen which is obtained from the one constructed for the preceeding case 

through an o rthogonal transformation such that 

123
 



• 	 dij j ij 0 T 
0 

where u! are the velocity components used in the preceeding case referred to3 

an x'-system. Then, after 	some manipulation, it turns out that 

Another kinematically admissible velocity field was constructed: 

a. In the region of the composite specimen not occupied by composite 

cylinders, and on the boundary of the composite cylinders, 

Y y 
uI 0, u -x, u -- x 3

1. 2 3 2Z 

or in polar coordinates, 

Y Y 
U 0, U =---r cos 26, u = --- r sinze 

b. In any composite cylinder, the velocity field in oolar-coordinates 

is assumed to have the following form: 

Y
 
u= p(r) Cose .
 

2 

Yof for r r r b 
- f) (r) sinZ 8 

124 



where p (r) and Q (r) are arbitrary functions and 

p(rb) (r b= (8) 

In addition, we assume that p(r ) =l(r ) = 0. Becuase of the assumed 

incompressibility of velocity field, p(r) and 0 (r) satisfy the following equation: 

dp(r) 2(1(r) p(r) 
dr r r (9) 

Furthermore, let p (r) = A (r-rf) 
1 . f 

+ A (r-r 
2 

)3 
f 

where the constants 

r 4 Zr 
A f b 

(rb -

and­
rf +r b
 

A f b 32 
(b-rf)

3 

have been determined from (8) and (9). 

Now the velocity field of the entire specimen is constructed and the 

upper bound theorem is applied to obtain a new in terms of fiber­

volume fraction for the case of "random array". Incidentally, this same vel­

ocity field, after an orthogonal transformation, can also be used to obtain a 

new&L . Unfortunately, numerical calculations show that for all fiber­
\2 3/tj 

volume fractions between 0 and 1, both(r 2~ and " obtained here are7
 

slightly higher than their corresponding values obtained previously. 
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4. Tractions equivalent to biaxial uniform tension T2 2 and r33 

# 	 r 3 3 ) on the composite specimen. 

For definiteness assume r22 > T Then following the ideas used in' 

qase 3, it can be shown that 

* 	 (2j 3~=k 

. The type of surface loading considered here is for r.. in the follow­
,13
 

ing, form: 

3 7*l2 " (10) 

0 	 0 0 

where the constant stress components T1, and 72 are related in the following 

way: 

1l2 = a (11) 

vith oa 0. This amounts to a proportional. loading of combined uniform shear' 

;tresses r 12. and uniform tensile, stresses T 2 on the boundary surface S of 

he specimen. 

Since both 7 12 and TZZ are assumed finite, it is obvious that a = 0' 

:orresponds to the case where stressesonly uniform tensile r22 are present. 

)n the other hand, M4 w corresponds to the case where the specirnen is sub­
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jected to uniform shear stresses r 

In lower bound construction, a uniform stress field of the form (2) 

supplemented by (3) is chosen as a statically admissible stress field to obtain
 

L L
 
lower bounds for the limit loads -r and respectively. It turns out that,
12  

lL\
__)_ 1 
3 

and (12) 

(Tl21 " . 

kb 4 1 .7 

3 

for aL
> 
0. 

From Equation (12)"ii'is obvious that for the special case where a= 

(i. e. for uniform transve'r'sB 'stiess T 2 acting alone), 

__3 

(13)
 

kb
 

In the case where a-+ -, corresponding to the case where the specimen 

is subjected to the uniform in-plane shear stresses r1 alone,2 

/Lh
T
 
lim 1i)L I
 

a-+ kb 
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For upper bound construction, a kinematically admissible velocity 

field u is chosen to be'a linear combination of the two kinematically ad-

L LF 

missible velocity fields used to obtain andj respectively: 
U U 

(a) In the region of the composite specimen not occupied by composite 

cylinders and on the boundary of the composite cylinders: 

( )"u U + u (14) 

-+(1 

where u = (0, Yi xf 0) 

(2) 
' Z 

2
and .U 0, - 3) 

with. 

Y1- = W Y2 (15) 

where w is any real number. 

(b) In any composite cylinder, the velocity field is the elastic displace­

ment solution to the displacement boundary conditions (1,0 together with (15) 

prescribed with an additional condition that the fibrous core is rigid and the 

binder material is incon-pressible. In fact, the solution to this displacement 

boundary value problem can be obtained from the associated solutions to the 

individual problems connected with obtaining and by the ri 

ciple of superposition. 

Then an application of the upper bound theorem gives,, for'the case of 

constant 0 throughout the specimen 
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where 

3'13 

k Ib --+ a W
2 

1 2 3 I 1 T RqI(w, R)+Dl (w, ,R) cosa+23(lSz3~~~w 3 (Q R)cos ZedeOdR 

S(wo,, R j= 44 t 

R"4 

44+8P 2+1)- 1 +l) 

+'3Z2+
+ 012 , R 

2 

=Zo( 1 41Z ) 

R 

R 

and 

*~l(~,)3(P , R) 82~=8 P 

R 

4+82+l)0- I 

L2 

" T (8 
2)~F~(zl 

RZj 

23 2R 

3 
-

(~2+1)1(404+ 

-

'i 

In the case of "random array", (16) reduces to 

_____ 

k 

= 

1 

3 (17) 
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Since w in (15) is arbitrary, -the lowest upper bound among the class 

Di upper bounds in (17) will be obtained by minimizing th e right-hand side of 

(,l7) withrepect to w.' 

Thus, 

mm b 3 

u {w +MW (18) 

and L kb I 
b 

()U =min 

L L 
will be chosen as the upper bounds for Tr Land rL , respectively.

22. 12 

Numerical calculation is performed t6 obtain (T 2Z and (, 1 ) from 

(18) for. different values of 0 and a. It is interesting to note that in the num­

erical calculation, for any given , which minimizes the right hand side of 

Equation (18) is a monotonic increasing function of a but w a (except when 

=-O, then W =c = 0). 
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APPENDIX B - Derivation of Equations for N. 0. L. Ring Split-Dee Test Analysis 

The assumptions are made that the N. 0. L. ring exactly fits around. 

tlie two dees at zero load and that there i-s no friction be tween dees and ring, so 

tat the portion of the ring that remains in contact with the dees is subjected 

tio essentially a radial pressure which induces a hoop tensile force P in the 

ring. This hoop tension produces a circumferential expansion 2 of the ring, 

equivalent to: 

(1)AC 

where 

E Young's modulus in hoop direction of ring
 

A cross-sectional area of ring
 

R initial inside radius of ring

0 

t ring thickness 

This circumferential -expansion is converted to a straight-line separation 

D between the dees, so that 

4J6
 
I (Z) 

very nearly, and the problem is that of the analysis of a -beam at the split in the 
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dees as sketched below: 

.I 

That is," the beam is tangent to the dee at some point at a distance 

from the center line of the split between the Dees. At the centerline the beam 

is subjected to the tensile force P and a moment M At the point of tangency 

the force P is also acting and a fictitious moment M is hypothesized of the 
t 

magnitude required to form the ring to its initial radius of cur-vature R + ­
o0 

So 

In other words the analysis considers the beam as initially straight when un­

stressed. The desired bending moment at the center line vi. will thus be found 

by subtraction of the fictitious moment M from M. 

Selecting x-y coordinates as shown, we note\that the moment M at any 

section of the'beam is 

Ad P A140 (3) 
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or 

f). 

Let 

By substitution (4) becomes 

The solution of (6) is 

cash x ( -(7y 

Accordingly the slope . at the point of tangency of the beam to the dees is 

The deflection is similarly found as 

Me (9)jg w /- 1 3 
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Combining (8) and (9) 

e L (10) 

Because the beam is tangent to the dee at x , the angle subtended by 

the .arc of the dee between the split and the point of contact may be found by 

trigonometry -as 

(M( 

And 

Finally, from (3) for y = 0 

A4M -M P6 (13) 

Or by substitution of (9) 

(14) 

os13 
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Shear deflections may be included in the analysis by re-writing equation (7) as 

(15) 

For a rectangular section.n = 1.Z, and (15) becomes 

6-= (16) 

Analysis to include the effect of the straightaway on the racetrack specimen 

follows the same form as above, leading directly to the equations given in the 

text. 
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I-DirectionF#hmenft 

I-O fi/reE 

-('& £ £, 

I-
o-;7. L .;  ('-'7'1') '" 

Table 1. - Generalized equations for compliances of composites having uni­
directional reinforcilg filaments in the l-.direction (from Ref. 1). 
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Table Z. -Relationships among elastic constants and com-pliances for uni-direc­
tional reinforcement for use in evaluations of the various 3 Is in 
Table 1 (from Ref. 1). 
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E, ___ - 2b Vf) 

If Adif! 

G,<(i,,) 

Table 3. - Equations for the transverse effectiveness factors (p) in terms of 
the elastic constants for uni-directional reinforcement (equations of 
Table 2 solved in terms of 8 for $- values equal to unity). 
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1 

7 

-

._z' C,,.,f 

Table 4. - Generalized equations for the compliances of three-dimensionally 
reinforced composites having three orthogonal planes .ofsymmetry . 
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Table 4. (Cont.)
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 (Cont.)
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Figure 1. 	 Calculated Stress-strain Curves for E-Glass and Epoxy Composite 

Laminates. 
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Figure . Yield Strength-of a Symmetric Bi-axial Composite Laminate for 
Failure Modes Involving Each of the Principal Lamina Stresses, 
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Figure 3. Composite Specimen for Limit Analysis. (Fibers in X -Direction). 
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Figure 4. Bounds on th'e Limit Load for In-plane Slhear, 
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Figure 5. Bounds on the Limit Load for Transverse Tension. 
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Figure 6. Bounds on the Interaction Curves for In-plane Shear and Transverse Tension for Various 
Fiber Volume Fractions. 
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Figure 7. 	 The K 
h 

Layer in a Laminate for the Limit Analysis Model. 
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Figure 8. 	 Tensile Failure Model for a Composite Reinforced by 

Continuous Fibers. 
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Figure 9. Number of Breaks as a Function of Applied Load (Ref. 4, Series B). 
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Figure 18. -. Typical Variations of TransVerse Effectivenesses of Filamentary 
Reinforcement with Volume Fraction, as Calculated for'an E-
Glass/Epoxy Composite. 
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Figure 19. 	 Efficiencies of Round, Unreinforced Tube - Columns of 7075-T6 Aluminum Alloy and 

Beryllium. 
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Figure 20. Efficiencies of Round 7075-T6 Aluminum 
- Alloy Tube-Colunns Reinforced at Three 

Circumrferenatial Points by Uni-directional ]3oron[Epoxy Stiffener s. 
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Figure 2Z. 	 Changes in Colurnn-Binding Characteristics of Scalloped Thin-
Walled Tubes at Constant R /t with Angle Included by Scallop. 
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Figure Z5. Efficiencies of Solid-Sandwich Plates having 0 Reinforced Boron/Epoxy Cores and Faces 
of Various Materials. 
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Figure 28. Calculated Compressive Strengths for Three Indicated Failure Modes 

'ior a Boron/Epoxy Composite of Nominal Constituent Properties witl 
Constant Total Reinforcement Volume Fraction of 507o but Varying 

Proportions of the Reinforcement Uni-directional and Randomly Dis­
persed in the Binder. 
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Figure 29. Calculated Compressive Strengths for Three Indicated Failure Modes 
for Glass/Epoxy Composites of Nominal Constituent Properties with 
Constant Total Reinforcement Volume Fraction of 50%, but Varying 
Proportions of the Reinforcement Uni-directional and Randomly Dis ­
persed in the Binder. 
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Figure 30. 	 Calculated Compressive Strengths for Glass-Boron/Epoxy Com­

posites of Nominal, Constituent Properties with Constant Uni-Direc­

tional Boron Reinforcement Volume Fraction Vf = 0. 5 and Varying 

Quantities of Randomly Dispersed Glass Filaments in the Binder. 
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Figure 31. 	 Experimental Results for Tests of Glass-Boron/Epoxy Composites 

having Uni-directional Boron Filamentary Reinforcement of Nominally­

50%6 by Volume, and Comparison with Calculations for Various 

Glass-Filament and Binder Strengths. 
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Figure 32. Schematic of N. 0. L. Ring, "Split-Dee" Tensile Test. 
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Figure 34. Results of Analysis of Maximum Bending Moment in the "Split -Dee" 
Test of a Glass Filament Reinforced Epoxy N. 0. L. Ring. 
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Figure 35. "Race-Track", Filament-Wound Tensile Specimen.
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Figure 36. Ratios of Maximum Bending Moments Induced in Race-Track 
and Circular 0.15 cm.(0. 06 in.) Thick Split-Dee Specimens of 
Glass/Epoxy at 0.69 --L (100 ksi) Axial Stress. 

m 178 



N 402-095 

Figure 37. 	 Schematic Representative of Mechanics of Deflection of "Race-
Track' Specimen. 
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Figure 38. 	 Photoelastic Study of Stresses in the Straightaway of a "Race-
Track" Specimen. 
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F'igure 39. 	 Strain Measurements Near the Split in the Dee inN . 0. L. Ring 
Type Split-Dee Tension Test. 
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Figure 40. Proposed Compression Specimen Made from Segments of NOL 
Ring. 

182 



i 
I-­

tI-i 

Figure 41. Aluminum Insert from Specimen Sim~ilar to that of Figure 40 after Test. 
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Figure 43. 	 Tol and End Views of Con ress n Specimn Cast in Cerrobend 
End Fixtures. 




