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DEVELOPMENT OF A GENERAL FORMULA EXPANDING
THE HIGHER-ORDER DERIVATIVES OF THE FUNCTION
tanh z IN POWERS OF tanh z AND A-NUMBERS

SUMMARY

A general formula for the rth derivative of the function tanh z with
respect to z is developed. This formula is a finite polynominal in powers of
tanh z where the coefficients are of simple structure containing A-numbers.

(m)

The A-numbers, Ar , of order m and degree r are introduced as an abbre-

viation for an expression containing C-numbers which are related to Euler's
numbers. A recursion formula for the A-numbers and their special properties
are derived. The paper contains a tabulation of derivatives of tanh z from the
first to the sixth order as well as a table of A-numbers covering all combina-
tions of order and degree from 0 to 10.

METHOD OF DEVELOPMENT

While deriving general transfer relations for electrical networks em-
ploying synchronous commutation (modulation and demodulation), it was found
desirable to obtain closed-form expressions for the rth derivative of the function
tanh z with respect to z.*

Considering the Taylor series expansion of tanh (z + y) in powers of y,

oo T T
tanh (z +y) = Z —q—r(tanhz)‘z—',(!yl<7—zr‘) (1)
r=0 dz )

we note that the rth derivative of tanh z is contained in the coefficient of yr.
T
d
Since it is desired to express 7 (tanh z) in powers of tanh z, we use a
dz

* The author is indebted to Prof. Dr. Richard F. Arenstorf of MSFC's Computa-
tion Laboratory who suggested the basic approach as well as rigorous treat-
ment of the infinite series involved.



second approach to develop tanh (z + y) into a power series in y through the
identity '

tanh (z +y) = (tanh z + tanh y) (1 + tanh z- tanh y)~! (2)

and the binomial expansion,

- o]
(1 +tanh z. tanh y) 1= > (-1)" tanh" z- tanh y (3)
m=90

which converges for Itanhmz- tanhmy | < 1. Combining equations (2) and (3)
we obtain

o0
+1 -
tanh (z+y) =tanh z+ )  (-1)7 [tann™ "2 _ tann™ 12] tanh™y
m=1 4)

(|tanh z({<1, [tanh y]|<1)
Now, for every fixed real value of z, the infinite series on the right
of equation (4) is uniformly convergent in a closed circular region of radius p

around the origin of the y - plane defined by

™
< —
IyI—P<4

For, abbreviating the general terms of the series by

-1
£ = (D™ [tann™ 2 - tann™ 2] tann™y

we have, for every fixed real z, Itanh z | < 1 and

m
<2 .
lfm(y) | |tanh y |
To satisfy Weierstrass's M - test [1] we require that
[tanhy | =K< 1
and find that this condition can be satisfied by the restriction

T
Iy|5p<4



which insures that any closed circular region of radius p <% about the

origin of the y - plane is mapped into a closed region in the interior of the
unit circle about the origin of the w - plane through the transformation

Now we substitute in equation (4) the power series for tanhmy, developed
below,

00 r
tanh™y = Y AT Lm0, iy1<E, A™ 0 forman  (8)
r r! T
r=1
and obtain
o 1 1] © ,(my
tanh (z +y) = tanh z + Z (—1)m [tanhmJr z—tanhm— z] Z ArIn %
m=1 r=1 :

(8)

Since the series (4) converges uniformly for |y| =< p <£ for every p <% and

since the series (5) converges at least for |y| <77;- , we can, by Weierstrass's

double-series theorem [1], reverse the order of summation over r and m in
equation (6) and obtain the desired power series of tanh (z + y),

0 0 Tr
tanh (z +y) =tanh z+ >y [tanhm+1z - tanhm‘iz] At ¥
r=1 m=1 T r.

(z real, Iyl<%) . (7

Since both power series for tanh (z + y), equations (1) and (7), have
the region of convergence |y| <§ in common and since their sums are equal
in this region, both power series are identical by the identity theorem for
power series [1]. Therefore we can equate corresponding coefficients
(m)

of equations (1) and (7) and, considering that Ar

=0 for m > r, we obtain



T r
-@—; (tamh 2) = ) (- a®@ [tanhm+1z - tanhm"iz] (8)
dz m=1 r -

(z real, r > 0)

We note that the function tanh z,its derivative, and integral powers
are analytic functions for all complex z except for the poles of tanh z and
that equation (8) holds along the real z-axis. Therefore, by the identity
theorem for analytic functions [1], equation (8) holds for all complex z
except for the poles of tanh z, and we obtain the desired expansion for the

rth derivative of tanh z with respect to z in powers of tanh z:

T T
-1
4 (tanh z) = > (-1) ™) A(m)[tanhm+1z - tanh™ z] (9)
r r
dz m=1
r>0
The A-numbers, Ar(m) , are obtained from the recursion relation
A(m+1) = (m+1) (A(m) _ A(m+2)> (10)
r+1 T T
(r=0,1,...,0;m=0,1,...,r; m,r = 0)
where
A(m) =m! (m = 0)
m
Ai") =0 (r=1) (11)
A(rm) =0 (m>r=0)

Aim) = 0, when (m-r) is an odd integer in the range 1 =m < r

Ai‘m) # 0, when (m-r) is an even integer in the range 1 <m =< r.

Now we develop the power-series expansion of tanhmy, stated in

Lm), with the

recursion relation (10) and the properties (11). Consider that the well known

equation (5), which led to the introduction of the A-numbers, A



power series of tanh y begins with y and contains only odd integral powers of y.
Factoring y out of this series, we obtain tanh y in the form

tanhy =y {1+ay® +agyt+...}. (12)

Raising both sides of equation (12) to the mth power, we have
m m
tanh  y =y {1+ by’ +by*...}. (13)

Note that the infinite series in brackets in equations (12) and (13) both contain
only even powers of y, since the multinomial expansion of any finite order m,

{1+ a,zy2 + a4y4 ... }m, must again contain only even powers of y. Writing
equation (13) as

tanh™y = y™ + by™ 2 + by ™ 4 L, (14)

we see that the power series of tanhmy starts with ym and contains only even
powers of y when m is even and only odd powers of y when m is an odd integer.

To determine the coefficients of equation (14), we start with the
identity
2
tanhy=1—T—' . (15)
(e Y+ 1)

Raising equation (15) to the mth power and using binomial expansion, we
obtain

m 2 il n 2
tanh 'y=}|1-—F—7— = ) (-1) my . = . (16)
(e2y+1) n=0 (n) (e2y+ 1)n

By the generating function for the C-numbers, C](rn), from Milne-Thomson [2]

n r

Z t C(n) (17)

r r

(e +1) T r!2

and after putting t = 2y, equation (17) becomes
m < & n (n) r
— m y
"y, = 3,4 2 (-0 () e L (18)

where the C-numbers of order n and degree r are given by the recursion
relation



(n) (n+1) (n)
e =n(c " -2ctM ) (19)

(0)

an) =1andCr =0 whenr = 1.

The C-numbers are related to Euler's numbers.

Since, by equation (14), the lowest power in the series of tanhmy is

(o)
r

ym and since, by equation (19), C = 0 when r = 1, the summation over

r must start with r = m and the summation over n must start withn=1in
equation (18). Thus, equation (18) becomes

m i o n (n) r
mony= Y )Y 0" (%) ML (20)
r=m { n=1 :
Introducing the A-numbers, A(m) » by
(m) _ m |
a™ = (1) ( ) c (21)

n=
and substituting equation (21) into equation (20), we have

oo

tanhmy= Z (m) L

r r!
r=m
which was stated in equation (5).

Equation (21) expresses the A-numbers in terms of the C~numbers

where A(m) is an A-number of order m and degree r. The A-numbers have
the property stated in equation (11) which results from the discussion of
equation (14).

The recursion relation (10) for the A-number can be developed from
equation (5) considering the properties stated in equation (11). Differentiat-
ing equation (5) r-times and letting y = 0, we obtain

T m
alm™ < [———Ld i )] . (22)
dy y=



Increasing m to m + 1 in equation (5) yields

fee) !

r
tann™Hy = > Al ¥ : (23)
o r r'
r'=m+i

Differentiating equation (23) (r + 1)-times and letting y = 0, we have

+1
Am+t) _ (a7 (tann™ ")

+ +
r+1 dyri y=0

Amet) | af d(tanh™ " 1y)
r+1 T dy

dy y=0
r Ir
+
= (m+1) 9 9 (tamn™y) - - (tann™*) . (24)
T r
dy dy y=0

By equation (22), equation (24) yields the desired recursion formula

(m+1) (m) (m+2)
Ar+1 = (m+1) (Ar - Ar )

which was stated in equation (10).

Now, to further evaluate equation (9), we rewrite it as follows:

m A(m) m—iz

r Tr
d” tanh z m , (m)
e ; . tanh

- (-1) Ar

m+1 r
tanh  z - Z (-1)
dz m m=1

After replacing m by m-2 in the first right hand summation and taking into

+ +
account that, by equation (11), Ai.r 2) = Air 1) = 0 and ALO) = 0, when

r > 0, we obtain

d"tanh z _ "&?
r

dz m

(- (Aim‘z) - Ai_m)> tanh™ 7 + Ai_i) : (25)

e

2
r>0



Replacing m by m-2 in the recursion relation (10) for A-numbers results in

A(m—i)
(m-2) ,(m)\ _‘r+t
(Ar _Ar ) " (m-1) ’ (26)

Then substitution of equation (26) into equation (25) yields

T+2 A(m_i)
& (tamhz) =AY + Y (™ EL ™ (27)
— r ~ (m-1)
r m=2
dz r>0
(m)

Since, by equation (11), A = 0 when (m-r) is an odd integer (1 =m < r),

r
we obtain the following formulas for m, r odd and m, r even, respectively:

dr (1) r+2 A(Ti_i) m-1i
— (tanh z) = A - Z LT tamh z; m, r odd
q r T - (m-1)

Z m=3

r>0 (28)

& r+2 A(mi—i)
—_— - -+ -

~ (tanh 2) = Y, ™ 1z; m, T even.

dz m=2 (m-1)

Derivatives of tanh z up to the sixth order are listed in Table I. The A-numbers,

Ai'm) , for r, m from 0 to 10 are listed in Table II.

George C. Marshall Space Flight Center
National Aeronautics and Space Administration
Huntsville, Alabama, August 10, 1967
933-50-02-0062



TABLE I. DERIVATIVES OF tanh z FROM FIRST TO SIXTH ORDER

4 - R
5, (tanh z) =1 - tanh’z

2

d—dzz' (tanh z) = -2 tanh z + 2 tanh®z

H

(tanh z) = -2 + 8 tanh’z - 6 tanh?z
— (tanh z) = 16 tanh z - 40 tanh®z + 24 tanh®%z

— (tanh z) = 16 - 136 tanh®z + 240 tanh%z ~ 120 tanhSz

—% (tanh z) = -272 tanh z + 1232 tanh®z - 1680 tanh®z + 720 tanh’z




0T

TABLE I, THE A-NUMBERS, Aim) , FOR r,m FROM 0 TO 10
Ar(m) 1 2 3 4 m5 6 7 8 9 10
0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
2 0 2 0 0 0 0 0 0 0 0
3 -2 0 6 0 0 0 0 0 0 0
4 0 ~16 0 24 0 0 0 0 0 0
r| 5 16 0| -120 0 120 0 0 0 0 0
6 0 272 o| -960 0 720 0 0 0 0
7 -272 0| 3696 0| -8400 0| 5040 0 0 0
8 0| -7936 0| 48384 0| -80640 0 40320 0 0
9 7936 0 |-168960 0| 645120 0 |-846720 0 | 362880 0
10 0 | 353792 0|-3256320 08951040 0-9676800 0 |3628800
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