a.

.

NASA TM X-1554

LOCAL HEAT TRANSFER FOR WATER IN ENTRANCE REGIONS OF

TUBES WITH TAPERED FLOW AREAS AND

NONUNIFORM HEAT FLUXES

By Nick J. Sekas and James R. Stone

Lewis Research Center Cleveland, Ohio

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - CFST1 price \$3.00

LOCAL HEAT TRANSFER FOR WATER IN ENTRANCE REGIONS OF TUBES WITH TAPERED FLOW AREAS AND NONUNIFORM HEAT FLUXES by Nick J. Sekas and James R. Stone Lewis Research Center

.

SUMMARY

Local convective heat-transfer coefficients for water flowing through electrically heated circular tubes with axially varying heat fluxes and flow areas were investigated. Data were obtained in the turbulent flow regime with local Reynolds numbers from 8000 to 50 000 over a Prandtl number range of 1.6 to 4.5. Measurements of mass flow rate, heat flux, water bulk temperatures at tube inlet and outlet, and axial temperature distribution for each run were made and are presented in tabular form. Plots of local to fully developed Nusselt number ratio as a function of heated length-to-diameter ratio are presented. These data are compared with calculated values of the local to fully developed Nusselt number ratios based on a previously reported correlation of entrance effects with tubes of constant flow area and uniform heat flux. The calculated Nusselt number ratios generally approximated the present experimental results.

INTRODUCTION

A knowledge of the variation in local heat-transfer coefficients for liquids flowing in tubes of nonuniform cross-sectional flow area and nonuniform heat flux is directly applicable in the design of fluid-cooling channels for rocket nozzles. Tube-and-shell type heat exchangers and boilers could also conceivably benefit by the use of nonuniform cross-sectional area tubes.

Experimental heat-transfer data are presented in reference 1 for water flowing in constant-flow-area, uniform-heat-flux tubes that had several short unheated lengths preceding the heated portions. Reference 1 also contains a review of other investigations of heat-transfer coefficients in the entrance regions of tubes. However, limited experimental data have been published on the variation with length of local turbulent heattransfer coefficient of liquids in entrance regions of heated tubes with square-edged inlets. Especially lacking are data for tubes with nonuniform cross-sectional flow area, nonuniform heat flux, or both. The investigation described herein was initiated to obtain such data.

Two test sections were used in the present study. The first consisted of a modified section of stainless steel tubing used for cooling an experimental rocket engine, and the second was a chemically milled tapered wall Inconel tube. The first test section had a tapered cross-sectional flow area with a nonuniform heat flux. The flow area increased in the direction of decreasing heat flux. The total length of this test section was $53\frac{1}{8}$ inches (135 cm). The inside diameter varied linearly from 0.380 to 0.844 inch (9.6 to 21.4 mm). The heat flux ratio over the entire length was approximately 16 to 1 because of the tube and wall thickness taper.

The second test section had a constant internal flow area with a diameter of 0.431 inch (10.9 mm) and a tapered wall thickness. The total length of this test section was 43 inches (109.2 cm). The heat flux ratio over the entire length was 2 to 1. The two test sections were reversible and were tested in both directions of flow.

The ranges of conditions investigated in this report were as follows:

Mass flow rate, lb/hr (kg/sec)	370 to 2000 (0.047 to 0.252)
Heat flux, $(Btu/hr)/ft^2(W/m^2)$	0 to 6. 5×10^5 (0 to 2. 05×10^6)
Local bulk temperature, ${}^{O}F({}^{O}K)$	100 to 250 (310 to 395)
Reynolds number	8000 to 50 000
Prandtl number	1.6 to 4.5

APPARATUS

The experimental data were obtained with the test equipment described in detail in reference 2 and shown schematically in figure 1. The flow system is a closed loop in which the water is recirculated by a gear pump. The major components of the loop consist of a resistance-heated stainless steel preheater, a resistance-heated test section, and a water-cooled heat exchanger. The loop is pressurized at a surge tank which is connected to the loop at the pump inlet. The power for heating the test section and the preheater is supplied by two separate saturable core reactors and transformers.

Two test sections were studied in this investigation. The first section, shown schematically in figure 2, was obtained from tubing used to cool an experimental rocket engine. It was fabricated of type 304 stainless steel. The total length of the test section was $53\frac{1}{8}$ inches (135 cm), of which $52\frac{1}{4}$ inches (132.7 cm) was considered as the heated length. The inside diameter varied linearly from 0.380 to 0.844 inch (9.6 to 21.4 mm). The outside diameter varied linearly from 0.410 to 0.940 inch (10.4 to 23.9 mm). The cross-sectional flow area ratio and the heat flux ratio for the entire length of the test section were approximately 1 to 5 and 16 to 1, respectively.

.

The second test section had a constant internal flow area with a tapered wall thickness and was fabricated from 1/2-inch (12.7 mm) diameter Inconel tubing. The inside diameter was 0.431 inch (10.9 mm). The outside diameter was chemically milled to vary linearly from 0.464 to 0.500 inch (11.8 to 12.7 mm). The heat flux ratio over the entire length of this section was 2 to 1. The total heated length was 43 inches (109.2 cm). Copper bus bars were attached to both ends of the test sections for applying electrical power.

The system flow rates were measured by a turbine-type flowmeter. The flowmeter output was read from a frequency converter and checked with a counter. The system pressure was measured by a bourdon tube gage connected at the pump inlet. Chromel-Alumel thermocouples were spotwelded to the outer wall of the test sections at the same circumferential position for all axial temperature measurements. Inlet and outlet bulk temperatures were measured by thermocouples in the liquid stream at the inlet and outlet plenums. All the temperatures were recorded on self-balancing potentiometers. The ac power to the test section was measured by a dynamometer-type wattmeter. The voltage drop across the test section was measured by a vacuum tube voltmeter.

PROCEDURE

Each day before data were taken, water was circulated and boiled in the test section. Noncondensable gases were vented from the system through a line connected to the high point of the loop. Dissolved gas content was maintained at less than 3 ppm by weight based on the average molecular weight of air.

In order to check the thermocouples, runs were made in which heat was applied to the preheater only. Since the heat losses from the test section to the surrounding environment were small, the tube outer wall temperatures could be checked for consistency against the water bulk temperatures at the inlet and outlet plenums. This was done over the range of bulk temperatures encountered by adjusting the preheater power. The temperature recording instruments were calibrated before and after each series of runs.

The conditions for each run were established by adjusting the power to the preheater and test section, thus setting the inlet and outlet bulk temperatures, for preselected values of flow rate. When the inlet and outlet bulk temperatures became constant with time, the data for that run were taken. The system surge tank pressure was maintained at 120 psig (828 kN/m²).

DATA REDUCTION

The current through the test section was computed from the wattmeter and corresponding voltmeter readings. The local heat flux at the inside wall of the test section was calculated from the following equation:

q = 3.413
$$\frac{I^2 \alpha}{\pi D_i A_w}$$
, $\frac{Btu}{(hr)(ft^2)}$

or

$$q = \frac{I^2 \alpha}{\pi D_i A_w}, \qquad \frac{W}{m^2}$$

where

I current through test section, A

 α electrical resistivity, ohm-ft (ohm-m)

D_i local inside diameter, ft (m)

 A_w local wall cross-sectional area, ft² (m²)

The total resistance of the first test section was measured at 70° and 230° F (294^o and 383° K). The values obtained were 0.0299 ohm and 0.0333 ohm, respectively. These values of total resistance were substituted in the electrical resistivity equation

$$\alpha = \frac{R}{\int \frac{dx}{A_w}}$$

where R is total test section resistance in ohms and dx is incremental test section length in feet (m), to obtain the resistivity equation as a function of temperature

where T is temperature, ${}^{O}F$. A similar expression was determined for the second test section. When the local heat flux was calculated, the local resistivity based on the local outside wall temperature was used.

The local outside wall temperatures were obtained from the axially located thermocouples by means of the curve of calibrated electromotive force against temperature for Chromel-Alumel thermocouples. The inside wall temperature was computed as in reference 2, considering internal heat generation and no axial heat flow. The thermal conductivity of the stainless steel test section was obtained from reference 3, and that for Inconel from reference 2.

The values of local Nusselt, Reynolds, and Prandtl numbers were computed on the basis of the physical properties of water evaluated at the local bulk temperatures. The water local bulk temperatures were obtained by a heat balance. The physical properties of water were obtained from reference 4.

The local fully developed Nusselt number to which measured values were ratioed was computed from the local values of Reynolds and Prandtl numbers by the following relation obtained from reference 1 as an approximation for Prandtl numbers from 1.5 to 8:

$$Nu_{fd} = 0.023 (Re)^{0.8} (Pr)^{0.47}$$

where

•

Nu_{fd} local fully developed Nusselt number

Re local Reynolds number

Pr local Prandtl number

The calculated local Nusselt number ratio of reference 1 with which the experimental ratios were compared was obtained by the following equation, which was for the case of constant flow area and uniform heat flux:

$$\frac{\text{Nu}}{\text{Nu}_{\text{fd}}} = 1 + \frac{2.3}{0.5 \text{ } \text{z}^2 + \text{z} + \text{z}^{1/4}} \text{ Re} \ge 8000$$

where

$$z = \frac{\sqrt{xy}}{D_i Pr^{0.4}} \sqrt{\frac{1}{1 + 0.01 \text{ y}/D_i Pr^{0.4}}}$$

z distance and physical properties parameter

x heated length to local point of test section (see fig. 2)

y total length to local point of test section (see fig. 2)

RESULTS AND DISCUSSION

The experimental data for the tapered-flow-area, nonuniform-heat-flux test section are presented in table I. The data for the constant-flow-area, tapered-heat-flux test section are presented in table II. These tables contain the local heat flux and outside wall temperatures, as well as calculated inside wall and bulk temperatures, and local Prandtl, Reynolds, and Nusselt numbers.

A plot of Nu/Nu_{fd} against the ratio of length from the start of heating to local diameter for the tapered-cross-sectional-flow-area test section is presented in figure 3. The lower curve represents the experimental data for the diverging flow area case and the upper curve for the converging flow area. Also presented are the calculated curves for both cases. These calculated curves were obtained using the distance and physical property parameter z of reference 1. The curves shown are faired through the calculated points for all the data runs in their respective directions of flow. It can be seen from the data that the converging flow (and increasing flux) case gives a slightly higher Nusselt number ratio than the diverging flow case at the same x/D ratio for ratios less than 10. This trend is shown by the calculated results, to a smaller degree. In both cases the experimental Nusselt number ratio exceeds the calculated.

The Nusselt number ratio is plotted against the length-to-diameter ratio for the constant-flow-area, tapered-flux test section in figure 4. Figure 4(a) presents the data for decreasing heat flux in the direction of flow and figure 4(b) the data for increasing heat flux. The respective faired calculated curves using the z parameter correlation. are also plotted. Although a small effect of Prandtl number on the Nusselt number ratio does exist, it was not presented because of the limited data taken and is not of magnitude to significantly affect the results presented herein. The experimental results can be approximated in both cases by the z parameter correlation

SUMMARY OF RESULTS

The present investigation has shown that the distance and physical properties parameter of NASA TN D-3098 can be used to approximate the local Nusselt number ratio near the entrances of tubes with tapered flow areas and nonuniform heat fluxes, over the range of conditions tested.

The ratio of local to fully developed Nusselt number is slightly greater for converging flow area and increasing heat flux than for the opposite case at the same ratio of heated distance to local diameter near the inlet of the test section studied. For the range of conditions tested the effect of flow direction on heat transfer was slightly more pronounced for the nonuniform-flow-area, nonuniform-heat-flux test section than for the nonuniform-heat-flux, constant-flow-area test section.

Lewis Research Center,

National Aeronautics and Space Administration, Cleveland, Ohio, January 3, 1968. 120-27-02-03-22

REFERENCES

- 1. Stone, James R.: Local Turbulent Heat Transfer for Water in Entrance Regions of Tubes With Various Unheated Starting Length. NASA TN D-3098, 1965.
- Jeglic, Frank A.; Stone, James R.; and Gray, Vernon H.: Experimental Study of Subcooled Nucleate Boiling of Water Flowing in 1/4-Inch-Diameter Tubes at Low Pressures. NASA TN D-2626, 1965.
- Kreith, Frank; and Summerfield, Martin: Investigation of Heat Transfer at High Heat-Flux Densities: Experimental Study With Water of Friction Drop and Forced Convection With and Without Surface Boiling in Tubes. Prog. Rep. 4-68, Jet Propulsion Lab., Calif. Inst. Tech., Apr. 2, 1948.
- 4. Kreith, Frank: Principles of Heat Transfer. International Textbook Co., 1958.

TABLE I. - EXPERIMENTAL DATA FOR TAPERED-FLOW-AREA,

.

.

NONUNIFORM-HEAT-FLUX TEST SECTION

Distance from		Heat fl	ux, q	Local o	outside	Local	inside	Local	bulk	Local	Local	Local	Local
star	rt of	Dt. (15+2)(1-)	w/m ²	wall te	mper-	wall te	mper-	temp	era-	Prandtl	Reynolds	Nusselt	fully
heati	ng, x	Buy (IL)(nr)	w/m	ature	, т _о	ature	э, т _і	ture	т _в	number,	number,	number,	developed
in	am			°F	°к	°г	°ĸ	°F	°K	Pr	Re	Nu	Nusselt
<u> </u>	Chi			_		_							number,
													^{Nu} fd
}	Pup 101: Increasing heat flux, converging flow area: mass flow rate, 2000 lb/hr (0, 252 kg/sec); nower to test se												
Run 101: Increasing heat flux, converging flow area; mass flow rate, 2000 lb/hr (0.252 kg/sec); power to test section												section,	
25 800 W; test section voltage, 29.6 V; inlet bulk temperature, 106 °F (314 °K); outlet bulk temperature, 150 °F) r	
(33)	9 K)	·····			r		i .	1	1	·	r		
0.25	0.64	30.70×10 ³	9.68 $\times 10^3$	125	325	118	321	106	314	4.20	23.71×10 ³	486	143
. 50	1.27	30.70	9.68	125	325	118	321	106	314	4.20	23.74	485	143
. 75	1.91	30.70	9.68	127	326	120	322	106	314	4.20	23.81	415	143
1.00	2.54	30.75	9.69	129	327	122	323	107	315	4.15	24.20	386	144
1.50	3.81	31.55	9.95	131	328	126	325	107	315	4.15	24.30	311	145
2.00	5.08	32.32	10.19	135	330	128	327	107	315	4.15	24.43	287	145
4.25	10.80	35.54	11.20	144	335	137	332	108	315	4.11	25.38	223	149
8.25	20.96	41.90	13.21	157	343	149	338	109	316	4.08	26.70	182	155
12.25	31.12	50.70	15.98	165	347	156	342	111	317	3.99	28.76	186	163
16.25	41.28	59.20	18.66	172	351	162	345	112	318	3.94	30.42	186	169
20.25	51.44	72.10	22.73	180	355	169	349	114	319	3.88	32.71	195	178
24.25	61.60	87.60	27.62	189	360	177	354	117	320	3.78	35.78	205	189
Bun	102. Inc	reasing heat f	lux convers	ring flow	varea:	mass f	low rat	e 150	0 lb/h	r (0. 189 k	g/sec): poy	ver to test	section.
21	$000 \text{ W} \cdot 1$	test section vo	ltage, 26, 6	V: inlet	bulk te	mperat	ure. 10	4 ⁰ F (313 ⁰ 1	(): outlet	bulk temper	ature, 15	2 [°] F
(34)	0 ^о к)			•••		-	,	,		-/, -	-	,	
		a. 70,10 ³	E 50.10 ³	101	202	110	200	104	212	4 20	17 33~103	303	112
0.25	0.64	24.72×10	7.79×10	121	202	110	320	104	212	4.30	17.33×10	302	112
. 50	1.21	24.72	7.79	121	204	110	320	104	212	4.30	17.0	314	112
1.00	1.91	24.00	7.82	124	226	199	322	104	314	4.00	17.60	280	112
1.00	2.04	25.22	7.95	127	320	122	325	105	314	4 25	17 77	200	114
2.00	5.01	23.00	8.16	130	320	123	327	105	314	4.25	17.86	245	114
4 25	10.80	21.30	0.00	141	334	135	330	106	314	4 20	19 14	183	120
8 25	20.96	34 30	9.17	157	343	150	339	107	315	4 15	19 63	139	122
12 25	31 12	41 60	19.01	165	347	157	343	109	316	4.01	20.99	144	127
16 25	41.28	48.60	15 39	173	352	165	347	111	317	3,99	22.65	142	135
20, 25	51.44	59.10	18 63	181	356	172	351	113	318	3,91	24.19	150	140
24, 25	61.60	71.90	22 67	191	362	181	356	116	320	3.80	26.44	156	148
L	1	1	1 22.01	L	L	J			1		<u></u>	<u></u>	J

į.

ţ

I

ĺ

TABLE I. - Continued. EXPERIMENTAL DATA FOR TAPERED-FLOW-AREA,

•

NONUNIFORM-HEAT-FLUX TEST SECTION

Distanc	e from	Heat f	lux, q	Local c	utside	Local	inside	Local	l bulk	Local	Local	Local	Local
star	tof	Btu/(ft ²)(hr)	W/m^2	wall ter	mper- т	wall te	emper-	temp	era- T	Prandtl	Reynolds	Nusselt	fully
- Heatin	Ig, X			ature	, <u>'</u> o	atur	e, _i		'B	Dr	Re Re	Nu	Nusselt
in.	cm			°г	°к	^o F	°к	^o F	°К	11		nu	number
			1	ļ			ļ		ļ			l	Nn
							ļ						fd
Dun 1	02. 7	ha haat f		ring flow			1	. 100	0 11 /1.		~/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
14 5	103: 100	test section vo	ltage 22 4	V• inlot	area, bulk to	mnerat	10 w rate	e, 100 4 ⁰ F (313 ⁰ 17	(0.120 K)	g/sec); pow	$e_1 = 10$ lest	3 ⁰ E
(340	100 w, 1 10 kr)	lest section vo	1tage, 22. 1	v, met	buik ic	mperat	uic, 10	ч I (010 1), outlet	Jurk temper	ature, 15	5 F
(010				_		r ·	r	1	(r		г. — — — — — — — — — — — — — — — — — — —	r
0.25	0.64	16.80×10^3	5.30×10 ³	116	320	112	318	104	313	4.30	11.56×10 ³	400	81
. 50	1.27	16.82	5.30	117	320	113	318	104	313	4.30	11.58	355	81
. 75	1.91	16.81	5.30	119	322	115	319	105	314	4.25	11.77	318	82
1.00	2.54	17.13	5.40	123	324	119	322	105	314	4.25	11.78	231	82
1.50	3.81	17.56	5.54	126	325	122	323	105	314	4.25	11.84	194	83
2.00	5.08	18.00	5.67	130	328	126	325	105	314	4.25	11.91	160	85
4.25	10.80	19.74	6.22	138	332	134	330	106	314	4.20	12.36	129	88
8.25	20.96	23.30	7.35	154	341	149	338	107	315	4.15	13.08	97	92
12.25	31.12	28.30	8.92	165	347	160	344	109	316	4.01	13.99	92	97
16.25	41.28	33.10	10.44	175	353	169	349	111	317	3.99	15.11	90	102
20.25	51.44	40.30	12.71	183	357	177	354	113	318	3.91	16.13	94	107
24.25	61.60	48.90	15.42	194	363	187	359	116	320	3.80	17.63	97	113
	ł	·	·			·	I			I	L	L	·
Run	104: D	ecreasing heat	t flux, diver	ging flow	area;	mass f	low rat	e, 500	lb/hr	(0.063 kg	/sec); powe	er to test	section,
708	30 W; te	est section, 15	5.4 V; inlet 1	oulk tem	peratu	re, 118	⁰ F (32)	1 [°] K);	outlet	bulk tem	perature, 16	54 ^o F (346	⁰ K)
0.25	0.64	138.40×10 ³	43.63×10 ³	180	355	171	350	119	322	3.70	14.67×10 ³	230	92
. 50	1.27	137.10	43.22	191	362	182	357	119	322	3.73	14.59	189	92
. 75	1.91	135.00	42.56	199	366	190	361	120	322	3.65	14.74	168	91
1.00	2.54	133.00	41.93	207	370	198	365	120	322	3.65	14.64	149	91
1.50	3.81												
2.00	5.08	124.50	39.25	227	382	218	377	122	323	3.60	14.65	116	90
4.00	10.16	106.80	33.67	233	385	225	380	126	325	3.45	14.63	100	89
8.00	20.32	77.60	24.46	233	385	226	381	133	329	3.22	14.18	84	84
12.00	30.48	59.40	18.73	225	380	219	377	139	333	3.05	13.72	79	80
16.00	40.64	46.30	14.60	219	377	214	374	144	335	2.91	13.53	75	76
20.00	50.80	36.30	11.44	213	374	208	371	147	337	2.83	13.03	72	73
24.00	60.96	29.94	9.44	208	371	204	369	150	339	2.76	12.52	71	70

TABLE I. - Concluded. EXPERIMENTAL DATA FOR TAPERED-FLOW AREA,

.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Distanc	ce from	Heat f	lux, q	Local wall te	outside mper-	Local wall te	inside mper-	Local temp	l bulk era-	Local Prandtl	Local Revnolds	Local Nusselt	Local fully	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	heatin	ng, x	Btu/(ft ²)(hr)	W/m^2	ature	e, T	atur	е, Т,	ture,	T _B	number,	number,	number,	developed	
in. cm r F K <td></td> <td></td> <td></td> <td></td> <td>0-</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0.0</td> <td>Pr ·</td> <td>Re</td> <td>Nu</td> <td>Nusselt</td>					0-	0	0	0	0	0.0	Pr ·	Re	Nu	Nusselt	
Run 105: Decreasing heat flux, diverging flow area, mass flow rate, 1000 fb/hr (0.126 kg/sec); power to test section, 13 620 kg/sec); test section voltage, 21.1 V; inlet bulk temperature, 109 6 F (316 6 K); outlet bulk temperature, 135 6 F (341 6 K); outlet bulk temperature, 135 6 fr (340 6 K); outlet bulk temperature, 135 6 fr (340 6 K); outlet bulk temperature, 135 6 fr (340 6 K); outlet bulk temperature, 135 6 fr (340 6 K); outlet bulk temperature, 135 6 fr (340 6 K); outlet bulk temperature, 135 6 fr (340 6 K); outlet bulk temperature, 135 6 fr (340 6 K); outlet bulk temperature, 135 6 fr (340 6 K); outlet bulk temperature, 135 6 fr (340 6 K); outlet bulk temperature, 135 6 fr (340 6 K); outlet bulk temperature, 135 6 fr (340 6 K); outlet bulk temperature, 135 6 fr (340 6 K); outlet bulk temperature, 136 6 fr (340 6); outlet bulk temperature, 136 6 fr (340 6)	in.	cm			۶F	°К	- F.	⁻ K	r	ĸ				number,	
Run 105: Decreasing heat flux, diverging flow area; mass flow rate, 100 lb/hr (0. 126 kg/sec); power to test section, 13 620 W; test section voltage, 21. 1 V; inlet bulk temperature, 109 $^{\circ}$ F (316 $^{\circ}$ K); outlet bulk temperature, 155 $^{\circ}$ F (314 $^{\circ}$ K); outlet bulk temperature, 155 $^{\circ}$ F (316 $^{\circ}$ K); outlet bulk temperature, 155 $^{\circ}$ F (316 $^{\circ}$ K); outlet bulk temperature, 155 $^{\circ}$ F (316 $^{\circ}$ K); outlet bulk temperature, 156 $^{\circ}$ F (316 $^{\circ}$ K); outlet bulk temperature, 156 $^{\circ}$ F (316 $^{\circ}$ K); outlet bulk temperature, 157 $^{\circ}$ F (316 $^{\circ}$ K); outlet bulk temperature, 156 $^{\circ}$ F (316 $^{\circ}$ K); outlet bulk temperature, 157 $^{\circ}$ F (316 $^{\circ}$ K); outlet bulk temperature, 157 $^{\circ}$ F (316 $^{\circ}$ K); outlet bulk temperature, 157 $^{\circ}$ F (316 $^{\circ}$ K); outlet bulk temperature, 156 $^{\circ}$ F (316 $^{\circ}$ K); outlet bulk temperature, 157 $^{\circ}$ F (316 $^{\circ}$ K); outlet bulk temperature, 157 $^{\circ}$ F (316 $^{\circ}$ K); outlet bulk temperature, 157 $^{\circ}$ F (316 $^{\circ}$ K); outlet bulk temperature, 157 $^{\circ}$ F (316 $^{\circ}$ K); outlet bulk temperature, 157 $^{\circ}$ F (316 $^{\circ}$ K); outlet bulk temperature, 157 $^{\circ}$ F (316 $^{\circ}$ K); outlet bulk temperature, 157 $^{\circ}$ F (316 $^{\circ}$ K); outlet bulk temperature, 157 $^{\circ}$ F (316 $^{\circ}$ K); outlet bulk temperature, 157 $^{\circ}$ F (316 $^{\circ}$ K); outlet bulk temperature, 157 $^{\circ}$ F (316 $^{\circ}$ K); outlet bulk temperature, 157 $^{\circ}$ F (316 $^{\circ}$ K); outlet bulk temperature, 157 $^{\circ}$ F (316 $^{\circ}$ K); outlet bulk temperature, 154 $^{\circ}$ F (316 $^{\circ}$ K); outlet bulk temperature, 154 $^{\circ}$ F (316 $^{\circ}$ K); outlet bulk temperature, 154 $^{\circ}$ F (316 $^{\circ}$ K); outlet bulk temperature, 154 $^{\circ}$ F (316 $^{\circ}$ K); outlet bulk temperature, 154 $^{\circ}$ F (316 $^{\circ}$ K); outlet bulk temperature, 154 $^{\circ}$ F (316 $^{\circ}$ K); outlet bulk temperature, 154 $^{\circ}$ F (316 $^{\circ}$ K); outlet bulk temperature, 154 $^{\circ}$ F (316 $^{\circ}$ K); outlet bulk temperature, 154 $^{\circ}$ F (316 $^{\circ}$ K); outlet bulk temperature, 154 $^{\circ}$ F (316 $^{\circ}$ K); outlet bulk temperature, 154 $^{\circ}$ F (316 $^{\circ}$ K); outlet bulk tem														^{Nu} fd	
Run 105: Decreasing heat flux, diverging flow area; mass flow 744e, 1000 10 /nr (0: 126 %K); oullet bulk temperature, 155 °F (341 %K) 0. 25 0. 64 27.4.70c,10 ³ 86.60c,10 ³ 135 364 177 354 110 317 4. 04 27.10c,10 ³ 356 156 5.0 1.27 271.00 86.43 2.54 263.90 83.19 220 373 202 368 111 317 3.99 27.03 276 155 1.00 2.54 263.90 83.19 220 373 202 368 111 317 3.99 27.03 276 155 1.00 2.54 263.90 83.19 220 373 202 368 111 317 3.99 27.03 276 155 1.00 2.54 263.90 83.19 220 378 202 368 111 317 3.99 27.03 276 155 1.00 2.54 263.90 83.19 220 378 202 368 111 317 32.95 26.75 257 154 1.00 20.5.06 247.20 77.33 240 387 222 379 113 318 3.90 28.6.45 257 154 1.00 20.32 153.10 48.27 236 387 222 379 113 318 3.90 28.6.45 255 152 1.00 30.32 153.10 48.27 236 387 222 379 124 324 3.51 28.53 157 143 12.00 30.44 116.50 36.73 226 288 122 377 130 388 138 322 2.5.66 150 136 16.00 40.64 91.20 28.75 220 378 210 372 135 330 3.18 25.00 140 131 120.00 50.60 71.65 22.59 212 373 203 388 188 332 3.10 24.01 135 125 44.00 60.56 58.65 18.49 202 268 181 2375 103 388 138 23.10 24.01 135 125 12.5 142 120 Run 106: Decreasing heat flux, diverging flow area; mass flow rate, 1500 lb/hr (0.199 kg/sec); power to test section, 21 300 W; test section voltage, 26.6 V; inter bulk temperature, 106 °F (314 °K7); outlet bulk temperature, 154 °F (341 °K) 0.25 0.64 428.00c10 ³ 134.95x10 ³ 213 374 184 358 107 315 4.15 38.92×10 ³ 487 210 1.00 2.54 412.20 129.95 244 391 215 375 108 315 4.11 38.95 342 210 1.00 2.54 412.20 129.95 244 391 215 375 108 315 4.11 38.95 342 210 1.00 2.54 412.20 129.95 244 391 215 375 108 315 4.11 39.92 370 211 1.00 2.54 412.20 129.95 244 391 215 375 108 315 4.11 39.92 370 211 1.00 2.54 412.20 129.95 244 391 215 375 108 315 4.11 39.92 370 211 1.00 2.54 412.20 129.95 244 391 215 375 108 315 4.11 39.93 3.5 305 211 2.00 5.06 91.15 28.74 217 376 208 371 137 313 3.33 3.7.88 201 188 15.00 40.64 141.90 44.73 237 387 221 378 134 330 3.20 37.15 188 180 2.00 5.06 91.15 28.74 227 397 387 1221 378 134 330 3.20 37.88 291 197 12.00 3		l							1000		(0.1001				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Run	105: D	ecreasing heat	t flux, divergi	ing flow	area; n	nass flo	w rate,	, 1000 ງີດ _{ຕູ (3}	lb/hr	(0.126 kg)	/sec); powe	r to test	section,	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	13	620 W;	test section v	oltage, 21.1	v; inter	buik tei	nperatt	ire, 10:	9 F (3	010 K); outlet t	ouk tempera	uure, 15) [
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(34	41 K)											<u> </u>		
	0.25	0.64	274.70×10 ³	86.60×10 ³	195	364	177	354	110	317	4.04	27.10×10 ³	358	156	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $. 50	1. 27	271.00	85.43	201	367	183	357	110	317	4.04	26.98	326	156	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$. 75	1.91	268.00	84.49	214	374	196	364	111	317	3.99	27.03	278	155	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.00	2.54	263.90	83.19	220	378	202	368	111	317	3.99	26.85	257	154	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.50	3.81	256.10	80.74	233	385	215	375	112	318	3.95	26.78	222	153	
$ \begin{array}{c} 4.00 \ 10.6 \ 211.10 \ 66.55 \ 240 \ 399 \ 224 \ 380 \ 117 \ 320 \ 5.77 \ 26.88 \ 185 \ 150 \ 130 \ 127 \ 124 \ 320 \ 5.77 \ 26.88 \ 185 \ 150 \ 136 \ 120 \ 30.48 \ 116.50 \ 36.73 \ 226 \ 361 \ 214 \ 374 \ 130 \ 328 \ 3.32 \ 25.66 \ 150 \ 136 \ 141 \ 131 \ 142 \ 120 \ 142 \ 144 \ 131 \ 136 \ 136 \ 141 \ 134 \ 141 \ 134 \ 141 \ 142 \ 142 \ 142 \ 142 \ 142 \ 144 \ 141 \ 144 \ 141 \ 144 \ 141 \ 144 \ 141 \ 144 \ 141 \ 144 \ 141 \ 144 \ $	2.00	5.08	247.20	77.93	240	387	222	379	113	318	3.90	26.64	205	152	
	4.00	10.16	211. 10	66.55	240	389	224	380	117	320	3.77	26.88	185	150	
12.00 30.48 116.50 30.47 116.50 36.75 226 361 214 374 130 328 3.22 25.66 150 136 136 16.00 40.64 91.20 28.75 220 378 210 372 135 330 3.18 22.50 140 131 20.00 50.60 71.65 22.59 212 373 203 368 136 332 3.10 24.01 135 125 24.00 60.96 58.65 18.49 202 368 194 361 141 334 3.00 23.21 142 120 142 120 142 120 142 120 142 120 142 120 142 120 142 120 142 120 142 120 142 120 142 120 142 120 142 120 142 120 142 120 142 120 142 120 142 120 154 $^{\circ}$ F (341 $^{\circ}$ K) outlet bulk temperature, 166 $^{\circ}$ F (344 $^{\circ}$ K); outlet bulk temperature, 154 $^{\circ}$ F (341 $^{\circ}$ K) 150 15.17 (33.35 221 378 192 362 107 315 4.15 38.61 438 210 15.75 1.91 418.40 131.90 237 378 206 371 106 315 4.11 39.22 370 211 10.00 2.54 412.20 129.95 244 391 215 375 108 315 4.11 39.22 370 211 1.00 2.54 412.20 129.95 244 391 215 375 108 315 4.11 39.23 70 211 1.00 2.54 412.20 129.95 244 391 215 375 108 315 4.11 39.92 370 211 1.00 1.56 3.81 399.00 125.79 256 388 227 382 110 317 4.03 39.35 305 211 2.00 5.0 385 201 21.43 262 401 234 385 111 5 319 3.63 39.42 248 210 13.60 39.42 248 210 13.76 3.99 39.42 284 210 13.78 3.99 3.9.42 284 210 19.75 25 28 399 237 387 122 323 3.59 38.95 210 137.78 261 400 236 387 115 319 3.63 39.18 255 207 12.00 30.46 141.90 44.73 237 387 226 381 128 327 3.38 37.88 201 188 16.00 40.64 141.90 44.73 237 387 221 378 134 330 3.20 37.15 188 180 20.00 50.60 111.20 35.06 225 380 211 373 137 323 3.0 35.72 184 172 24.00 60.96 91.15 28.74 217 376 205 369 139 333 3.05 3.75 2 184 172 24.00 60.96 91.15 28.74 217 376 205 369 121 373 137 323 3.10 35.72 184 172 138 180 20.00 50.60 511.20 30.46 227 138 214 221 373 137 323 3.10 35.72 2 184 127 366 2.50 137.15 188 180 20.00 50.60 511.20 30.46 225 380 211 373 137 323 3.10 35.72 184 172 24.00 60.96 91.15 28.74 217 376 205 369 139 333 3.05 37.15 188 180 20.00 50.60 511.20 55.0 200.34 266 403 222 379 103 313 4.35 49.00 470 260 1.50 50.55 157.78 283 413 245 386 110 317 4.03 50.55 350 205.77 136 236 225 360 211 373 137 313 4.35 49.00 470 260 1.50 50.50 5157.78 283 413 245 392 110 317 4.03 50.55 350 255 18.00 20.32	8.00	20.32	153.10	48.27	236	387	222	379	124	324	3.51	26.36	157	143	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12.00	30.48	116.50	36.73	226	381	214	374	130	328	3.32	25.66	150	136	
20. 00 50. 80 71. 65 22. 99 212 373 203 366 134 334 3. 00 23. 21 142 120 Run 106: Decreasing heat flux, diverging flow area; mass flow rate, 1500 lb/hr (0. 189 kg/sec); power to test section, 21 300 W; test section voltage, 26. 6 V; inlet bulk temperature, 106 $^{\circ}$ F (314 $^{\circ}$ K); outlet bulk temperature, 154 $^{\circ}$ F (341 $^{\circ}$ K) 0. 25 0. 64 428. 00×10 ³ 134. 93×10 ³ 213 374 184 356 107 315 4.15 38. 82×10 ³ 487 210 50 1.27 423.00 133.35 221 378 192 362 107 315 4.15 38. 61 438 210 50 1.27 423.00 133.95 221 378 192 362 107 315 4.15 38. 61 438 210 50 1.27 423.00 125.79 256 398 227 387 108 315 4.11 39.22 370 211 1.00 2.54 412.20 129.95 244 391 215 375 108 315 4.11 38.95 342 210 1.50 3.81 399.00 125.79 256 398 227 382 110 317 4.03 39.35 305 211 2.00 5.06 385.20 121.43 266 401 234 385 111 317 3.99 39.42 224 210 4.00 10.16 329.20 103.78 261 400 236 387 115 319 3.83 39.18 255 207 8.00 20.32 238.70 75.25 258 399 237 387 122 323 3.59 38.95 210 197 12.00 30.48 182.10 57.41 244 391 226 381 128 327 3.38 37.88 201 188 16.00 40.64 141.90 44.73 237 387 221 378 134 330 3.20 37.15 188 180 22.4.00 60.96 91.15 28.74 217 376 205 360 211 371 373 32 3.10 35.72 184 172 24.00 60.96 91.15 28.74 217 376 205 369 129 333 3.05 34.22 179 165 Run 107: Decreasing heat flux, diverging flow area; mass flow rate, 2000 lb/hr (0.252 kg/sec); power to test section, 30 800 W; test section voltage, 31.4 V; inlet bulk temperature, 101 $^{\circ}$ F (311 $^{\circ}$ K); outlet bulk temperature, 149 $^{\circ}$ F (338 $^{\circ}$ K) 0.25 0.64 649.00×10 ³ 204.60×10 ³ 230 383 186 359 102 312 4.40 49.50×10 ³ 681 263 50 1.27 643.00 202.71 244 391 200 367 '02 312 4.40 49.50×10 ³ 681 263 50 1.27 643.00 202.71 244 391 200 367 '02 312 4.40 49.50×10 ³ 681 263 50 1.27 643.00 202.71 244 391 200 367 '02 312 4.40 49.50×10 ³ 681 263 50 1.27 643.00 202.71 244 391 200 367 '02 312 4.40 49.50×10 ³ 681 263 50 0.5.0 56 56.0 197.18 283 413 245 392 110 317 4.35 49.00 470 260 1.50 3.81 608.50 191.83 278 410 235 386 105 314 4.75 49.40 470 250 1.50 3.81 608.50 1	16.00	40.64	91.20	28.75	220	378	210	372	135	330	3.18	25.00	140	131	
24. 00 50. 90 36. 05 10. 49 202 206 194 36.3 191 3.34 3. 00 25. 21 112 120 Run 106: Decreasing heat flux, diverging flow area; mass flow rate, 1500 lb/hr (0. 189 kg/sec); power to test section, 21 300 W; test section voltage, 26. 6 V; inlet bulk temperature, 106 $^{\circ}$ F (314 $^{\circ}$ K); outlet bulk temperature, 154 $^{\circ}$ F (314 $^{\circ}$ K); 0. 25 0. 64 428.00×10 ³ 134.93×10 ³ 213 374 184 356 107 315 4. 15 38.82×10 ³ 487 210 .50 1.27 423.00 133.35 221 378 192 362 107 315 4. 15 38.82×10 ³ 487 210 .50 1.27 423.00 133.35 221 378 120 371 108 315 4.11 38.92 370 211 1.00 2.54 412.20 129.95 244 391 215 371 108 315 3.15 3.11 317 3.99 39.42 244 210 1.00 2.56 401 234 385 111 317 3.99	20.00	50.80	71.65	22.59	212	373	203	368	138	332	3.10	24.01	135	125	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	24.00	60.96	58.65	10.49	202	368	194	363	141	334	3.00	23.21	142	120	
21 300 W; test section voltage, 26. 6 V; inlet bulk temperature, 106 $^{\circ}$ F (314 $^{\circ}$ K); outlet bulk temperature, 154 $^{\circ}$ F (314 $^{\circ}$ K); 0. 25 0. 64 (426.00×10 ³) 134.93×10 ³ 213 374 184 358 107 315 4. 15 38.82×10 ³ 497 210 50 1. 27 (423.00) 133.35 221 378 192 362 107 315 4. 15 38.61 438 2100 .75 1.91 418.40 131.90 237 387 206 371 106 315 4. 11 39.22 370 2111 1.00 2.54 412.20 129.95 244 391 215 375 106 315 4. 11 38.95 342 210 1.50 3.81 399.00 125.79 256 398 227 382 110 317 4.03 39.35 305 211 2.00 5.06 385.20 121.43 262 401 234 385 111 317 3.99 39.42 284 210 4.00 10.16 329.20 103.78 261 400 236 387 115 319 3.83 39.18 255 207 8.00 20.32 238.70 75.25 258 399 237 387 122 323 3.59 38.95 210 197 12.00 30.48 182.10 57.41 244 391 226 381 128 327 3.88 37.88 201 188 16.00 40.64 141.90 44.73 237 387 221 378 134 330 3.20 37.15 188 180 20.00 50.60 111.20 35.06 225 380 211 373 137 332 3.10 35.72 184 172 24.00 60.96 91.15 28.74 217 376 205 369 139 333 3.05 34.22 179 165 Run 107: Decreasing heat flux, diverging flow area; mass flow rate, 2000 1b/hr (0. 252 kg/sec); power to test section, 30 800 W; test section voltage, 31.4 V; inlet bulk temperature, 101 $^{\circ}$ F (311 $^{\circ}$ K); outlet bulk temperature, 149 $^{\circ}$ F (318 $^{\circ}$ K) 0.25 0.64 649.00×10 ³ 204.60×10 ³ 230 383 186 559 102 312 4.40 49.55 581 262 .75 1.91 635.50 200.34 256 398 212 373 103 313 4.35 49.30 470 260 1.50 3.81 606.50 191.83 276 410 235 386 105 314 4.75 49.44 422 258 2.00 5.08 560.00 184.74 285 414 243 390 106 314 4.75 49.44 422 258 2.00 5.08 560.00 184.74 285 414 243 390 106 314 4.75 49.44 422 258 2.00 5.08 586.00 184.74 285 414 243 390 106 314 4.75 49.44 422 258 2.00 5.08 586.00 184.74 285 414 243 390 106 314 4.75 49.44 422 258 2.00 5.08 586.00 114.42 275 408 243 390 117 320 3.77 50.00 490 573 4.00 10.16 500.50 157.78 283 413 245 392 110 311 4.35 49.30 518 261 1.00 3.64 275.50 86.85 263 402 235 386 123 324 3.55 48.53 267 234 12.00 30.48 275.50 86.85 263 402 235 386 123 324 3.55 48.53 267 234 12.00 30.48 275.50 86.85 263 4	Run	Run 106: Decreasing heat flux, diverging flow area; mass flow rate, 1500 lb/hr (0. 189 kg/sec); power to test section,													
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	21	300 W;	test section v	oltage, 26.6	V; inlet	bulk ter	mperati	ire, 10	6 ^o f (3	314 ^о к); outlet h	oulk tempera	ature, 15	4 ^o F	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(34	41 ⁰ K)													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.95	0.64	419 00-103	134 93 103	213	374	184	25.9	107	215	4 15	38 82~103	497	210	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.25	1 97	428.00×10	133 35	213	378	192	362	107	315	4 15	38 61	438	210	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	75	1.21	418 40	131 90	237	387	208	371	108	315	4 11	39 22	370	210	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 00	2.54	412.20	129 95	244	391	215	375	108	315	4.11	38.95	342	210	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.50	3 81	399.00	125.79	256	398	227	382	110	317	4.03	39.35	305	211	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.00	5.08	385.20	121.43	262	401	234	385	111	317	3.99	39.42	284	210	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.00	10.16	329.20	103.78	261	400	236	387	115	319	3.83	39.18	255	207	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.00	20.32	238.70	75.25	258	399	237	387	122	323	3.59	38.95	210	197	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12.00	30.48	182.10	57.41	244	391	226	381	128	327	3.38	37.88	201	188	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16.00	40.64	141.90	44.73	237	387	221	378	134	330	3.20	37.15	188	180	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	20.00	50.80	111.20	35.06	225	380	211	373	137	332	3.10	35.72	184	172	
Run 107: Decreasing heat flux, diverging flow area; mass flow rate, 2000 lb/hr (0. 252 kg/sec); power to test section, 30 800 W; test section voltage, 31.4 V; inlet bulk temperature, 101 $^{\circ}$ F (311 $^{\circ}$ K); outlet bulk temperature, 149 $^{\circ}$ F (338 $^{\circ}$ K)0. 250.64649.00×10 ³ 204.60×10 ³ 2303831863591023124.4049.50×10 ³ 681263.501.27643.00202.71244391200367'023124.4049.25581262.751.91635.50200.342563982123731033134.3549.305182611.002.54625.50197.192664032223791033134.3549.004702601.503.81608.50191.832784102353861053144.7549.444222582.005.08586.00184.742854142433901063144.2049.453902574.0010.16500.50157.782834132453921103174.0350.053502558.0020.32362.00114.122754082433901173203.7750.0029224712.0030.48275.5086.852634022353861233243.5548.5326723416.0040.64	24.00	60.96	91.15	28.74	217	376	205	369	139	333	3.05	34.22	179	165	
Run 107: Decreasing heat flux, diverging flow area; mass flow rate, 2000 lb/hr (0. 252 kg/sec); power to test section, 30 800 W; test section voltage, 31.4 V; inlet bulk temperature, $101 {}^{0}F$ ($311 {}^{0}K$); outlet bulk temperature, $149 {}^{0}F$ ($338 {}^{0}K$)0. 250. 64649.00×10 ³ 204.60×10 ³ 2303831863591023124.4049.50×10 ³ 681263.501. 27643.00202.71244391200367'023124.4049.25581262.751. 91635.50200.342563982123731033134.3549.004702601. 002. 54625.50197.192664032223791033134.3549.004702601. 503.81608.50191.832784102353861053144.7549.444222582. 005.08586.00184.742854142433901063144.2049.453902574. 0010.16500.50157.782834132453921103174.0350.053502558. 0020.32362.00114.122754082433901173203.7750.0029224712. 0030. 48275.5086.852634022353861233243.5548.63267234 <td> </td> <td>I</td> <td></td> <td>1</td> <td></td> <td>1</td> <td>L</td> <td></td> <td></td> <td></td> <td></td> <td>l</td> <td>L</td> <td>L</td>		I		1		1	L					l	L	L	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Run	107: D	ecreasing hea	t flux, diverg	ing flow	area; r	nass fle	ow rate	, 2000 , 2000	lb/hr	(0.252 kg	(/sec); powe	er to test	section,	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	30	800 W;	test section v	roltage, 31.4	V; inlet	bulk te:	mperati	are, 10	1 °F (:	311 °K	.); outlet	bulk temper	ature, 14	9 °F	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(3	38 K)	I	r			-	·····	.	r		г	г	r	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.25	0.64	649.00×10^3	204.60×10^3	230	383	186	359	102	312	4.40	49.50×10 ³	681	263	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $. 50	1.27	643.00	202. 71	244	391	200	367	'02	312	4.40	49.25	581	262	
1.002.54625.50197.192664032223791033134.3549.004702601.503.81608.50191.832784102353861053144.7549.444222582.005.08586.00184.742854142433901063144.2049.453902574.0010.16500.50157.782834132453921103174.0350.053502558.0020.32362.00114.122754082433901173203.7750.0029224712.0030.48275.5086.852634022353861233243.5548.5326723416.0040.64214.0067.462573982273821293273.3547.5125322520.0050.80168.1052.992403892193771323293.2545.6223821424.0060.96137.8043.442303832123731343303.2043.69230205	. 75	1.91	635.50	200.34	256	398	212	373	103	313	4.35	49.30	518	261	
1.503.81608.50191.832784102353861053144.7549.444222582.005.08586.00184.742854142433901063144.2049.453902574.0010.16500.50157.782834132453921103174.0350.053502558.0020.32362.00114.122754082433901173203.7750.0029224712.0030.48275.5086.852634022353861233243.5548.5326723416.0040.64214.0067.462573982273821293273.3547.5125322520.0050.80168.1052.992403892193771323293.2545.6223821424.0060.96137.8043.442303832123731343303.2043.69230205	1.00	2.54	625.50	197.19	266	403	222	379	103	313	4.35	49.00	470	260	
2.00 5.08 586.00 184.74 285 414 243 390 106 314 4.20 49.45 390 257 4.00 10.16 500.50 157.78 283 413 245 392 110 317 4.03 50.05 350 255 8.00 20.32 362.00 114.12 275 408 243 390 117 320 3.77 50.00 292 247 12.00 30.48 275.50 86.85 263 402 235 386 123 324 3.55 48.53 267 234 16.00 40.64 214.00 67.46 257 398 227 382 129 327 3.35 47.51 253 225 20.00 50.80 168.10 52.99 240 389 219 377 132 329 3.25 45.62 238 214 24.00 60.96 137.80 43.44 230 383 212 373 134 330 3.20 43.69	1, 50	3.81	608.50	191.83	278	410	235	386	105	314	4.75	49.44	422	258	
4.00 10.16 500.50 157.78 283 413 245 392 110 317 4.03 50.05 350 255 8.00 20.32 362.00 114.12 275 408 243 390 117 320 3.77 50.00 292 247 12.00 30.48 275.50 86.85 263 402 235 386 123 324 3.55 48.53 267 234 16.00 40.64 214.00 67.46 257 398 227 382 129 327 3.35 47.51 253 225 20.00 50.80 168.10 52.99 240 389 219 377 132 329 3.25 45.62 238 214 24.00 60.96 137.80 43.44 230 383 212 373 134 330 3.20 43.69 230 205	2.00	5.08	586.00	184.74	285	414	243	390	106	314	4.20	49.45	390	257	
8.00 20.32 362.00 114.12 275 408 243 390 117 320 3.77 50.00 292 247 12.00 30.48 275.50 86.85 263 402 235 386 123 324 3.55 48.53 267 234 16.00 40.64 214.00 67.46 257 398 227 382 129 327 3.35 47.51 253 225 20.00 50.80 168.10 52.99 240 389 219 377 132 329 3.25 45.62 238 214 24.00 60.96 137.80 43.44 230 383 212 373 134 330 3.20 43.69 230 205	4.00	10.16	500.50	157.78	283	413	245	392	110	317	4.03	50.05	350	255	
12.00 30.48 275.50 86.85 263 402 235 386 123 324 3.55 48.53 267 234 16.00 40.64 214.00 67.46 257 398 227 382 129 327 3.35 47.51 253 225 20.00 50.80 168.10 52.99 240 389 219 377 132 329 3.25 45.62 238 214 24.00 60.96 137.80 43.44 230 383 212 373 134 330 3.20 43.69 230 205	8.00	20.32	362.00	114.12	275	408	243	390	117	320	3.77	50.00	292	247	
16.00 40.64 214.00 67.46 257 398 227 382 129 327 3.35 47.51 253 225 20.00 50.80 168.10 52.99 240 389 219 377 132 329 3.25 45.62 238 214 24.00 60.96 137.80 43.44 230 383 212 373 134 330 3.20 43.69 230 205	12.00	30.48	275.50	86.85	263	402	235	386	123	324	3.55	48.53	267	234	
20.00 50.80 168.10 52.99 240 389 219 377 132 329 3.25 45.62 238 214 24.00 60.96 137.80 43.44 230 383 212 373 134 330 3.20 43.69 230 205	16.00	40.64	214.00	67.46	257	398	227	382	129	327	3.35	47.51	253	225	
24.00 60.96 137.80 43.44 230 383 212 373 134 330 3.20 43.69 230 205	20.00	50.80	168.10	52.99	240	389	219	377	132	329	3.25	45.62	238	214	
	24.00	60.96	137.80	43.44	230	383	212	373	134	330	3.20	43.69	230	205	

NONUNIFORM-HEAT-FLUX TEST SECTION

Distance from Heat flux, g		x, q	Local	outside	Local	inside	Local bulk		Local	Local	Local	Local	
star	t of	- (12)	2	wall te	mper-	wall t	emper-	temp	era-	Prandtl	Reynolds	Nusselt	fully
heatir	ng, x	Btu/(ft ⁻)(hr)	W/m~	ature	, т _о	atur	те, т _і	ture,	т _в	number,	number,	number,	developed
in	cm			о _н	oĸ	0 _F	oĸ	0 _F	0 _K	Pr	Re	Nu	Nusselt
				1	1	1	**	r	IX.				number,
													^{Nu} fd
Run 1	Decre	easing heat flu	in the di	rection	of flow:	mass	flow ra	te. 100	00 lb/	hr (0, 126	kg/sec): po	wer to tes	tsection
15 6	50 W; t	est section vo	ltage, 30.0	5 V; inl	et bulk i	temper	ature,	101 ⁰ F	(312	^O K); outle	t bulk temp	erature, 1	51.5 ⁰ F
(340	°K)		0,	,		-				//		· · · · , -	
0.05	0.04	100 5-103	cn cv10 ³	170	959	150	249	101	011	4 45	01 40-103	955	100
0.25	0.04	198.5×10	62.0×10	184	358	100	342	101	311	4.47	21.49×10	308	130
75	1 91			104		105		102	512				130
1.00	2.54	194.3	61.3	201	367	182	356	103	313	4.35	22.30	242	138
1.50	3.81	192.1	60.6	214	374	195	364	104	313	4.30	22, 58	207	139
2.00	5.08	189.3	59.7	223	379	204	369	104	313	4.30	22.58	186	139
3.94	10.00	181.0	57.1	237	387	219	377	108	315	4.12	23.63	159	141
6.94	17.62	167.8	52.9	237	387	219	377	112	318	3.95	24.62	152	143
9.94	25.24	156.8	49.4	234	385	216	375	117	320	3.78	25.88	153	146
12.94	32.86	147.3	46.4	234	385	215	375	121	323	3.61	26.86	151	147
15.94	40.48	138.8	43.8	236	386	217	376	125	325	3.49	27.91	144	149
18.94	48.10	131.0	41.3	226	381	207	370	128	326	3.40	28.59	158	150
21.94	55.72	124.2	39.2	228	382	210	372	132	329	3.25	29.54	151	151
Run 2	: Decre	easing heat flu	in the di	rection	of flow:	mass	flow ra	te. 10	00 lb/	hr (0, 126	kg/sec) no	wer to tes	t section
16 3	90 W: t	est section vo	ltage, 30.0	V: inl	et bulk	tempei	ature.	149 ^O F	(338	^O K): outle	t bulk temp	erature, 2	00.5 ⁰ F
(367	^O K)			,			,		\	,,	· · · · · · · · · · · · · · · · · · ·		
	1					<u> </u>	r	r	I	<u> </u>			r
0.25	0.64	203.5×10 ³	64.2×10°	217	376	198	365	149	338	2.80	34.09×10°	388	158
. 50	1.27	202.2	63.7	223	379	205	369	150	339	2.78	34.42	343	158
. 75	1.91											·	
1.00	2.54	199.3	62.8	237	387	219	377	151	339	2.72	34.75	274	158
1.50	3.81	197.1	62.1	248	393	230	383	151	339	2.72	34.75	233	158
2.00	5.08	194.1	01.Z	200	398	238	300	152	241	2.70	35.10	211	159
6.04	17 62	100.0	50.5	207	404	249	204	100	244	2.04	30.01	104	160
9.94	25 24	160.8	50.7	201	404	249	394	164	346	2.51	38 12	175	161
12 94	32 86	151 0	47 6	201	405	252	394	169	349	2.40	39 39	168	162
15.94	40 48	142 4	44 9	271	406	253	396	173	351	2 27	40 28	164	163
18.94	48.10	134.4	42.4	265	403	247	393	177	354	2.20	41.71	177	166
21.94	55.72	127.4	40.2	267	404	249	394	180	355	2.14	42.20	170	165
	I	L	L	1			L	I		1	L		
Run 3	: Decr	easing heat flu	ix in the di	rection	of flow;	mass	flow ra	te, 75	4 lb/h	r (0.0951	(g/sec); pow	ver to test	section,
	40 W; t	est section vo	ltage, 26.	6 V; inl	et bulk	temper	rature,	149 ⁻ F	(338	[°] K); outle	et bulk temp	erature, 2	00 [°] F
(366	<u>K)</u>			r			-	r			Y		<u> </u>
0.25	0.64	150.0×10 ³	47.3×10 ³	207	370	193	363	150	339	2.78	26.10×10 ³	326	127
. 50	1.27	149.0	47.0	213	374	199	366	150	339	2.78	26.10	284	127
. 75	1.91										·		
1.00	2.54	146.9	46.3	226	381	212	373	151	339	2.72	26.35	225	127
1.50	3.81	145.3	45.8	234	385	220	378	152	340	2.70	26.61	199	127
2.00	5.08	143.0	45.1	237	387	223	379	152	340	2.70	26.61	188	127
3.94	10.00	136.9	43.2	253	396	239	388	155	341	2.63	26.88	152	126
6.94	17.62	126.8	40.0	257	398	243	390	160	344	2.51	28.30	142	129
9.94	25.24	118.5	37.4	256	398	242	390	164	346	2.43	28.90	141	130
12.94	32.86	111.3	35.1	256	398	243	390	168	349	2.35	29.87	137	130
15.94	40.48	104.9	33.1	259	399	246	392	172	351	2.29	30.55	131	131
18.94	48.10	99.0	31.2	254	396	241	389	176	353	2.20	31.62	140	133
21.94	55. 72	93.9	29.6	257	398	244	390	1 180	355	2.15	32.00	135	132

TABLE II. - EXPERIMENTAL DATA FOR CONSTANT-FLOW-AREA, TAPERED-HEAT-FLUX TEST SECTION

•

.

TABLE II. - Continued. EXPERIMENTAL DATA FOR CONSTANT-FLOW-AREA,

.

Distanc	e from	Heat flu	ix, q	Local	outside	Local	inside	Loca	l bulk	Local	Local	Local	Local
star	tof	Dt. //(12)/h-	w/2	wall te	mper-	wall t	emper-	temp	era-	Prandtl	Reynolds	Nusselt	fully
heatir	ng, x	Bu/(It)(IIF)	w/m	ature	, т _о	atur	е, Т _і	ture	, т _в	number,	number,	number,	developed
in	cm			°F	°к	ч0	°к	°F	°к	Pr	Re	Nu	Nusselt
	- Cim			-		-		_					number,
													^{Nu} fd
Bun 4	· Decre	asing heat flu	v in the di	rection	of flow	mass	flow ra	te 74	4 lb/h	r (0 094 k	g/sec) now	er to test	section
117	00 W t	est section vo	ltage 26	i V∙inle	et bulk i	temper	ature.	102 ^o f	(312	^O K): outle	t bulk tempe	erature. 1	52 °F
(340	⁰ K)			- •,		· · · · · · · · · · ·				,,	1	, , -	
	,	2	9	r						<u> </u>			·
0.25	0.64	144.5×10 ³	45.6×10 ³	166	348	152	340	103	313	4.35	16.59×10°	290	109
. 50	1.27	143.5	45.2	173	351	159	344	103	313	4.35	16.59	252	109
. 75	1.91										******		
1.00	2.54	141.7	44.7	188	360	174	352	104	313	4.30	16.80	199	110
1.50	5.01	140.0	44.1	204	300	100	364	104	313	4.30	16.00	104	110
3 94	10 00	131.8	41 5	205	381	213	374	108	315	4 12	17 58	193	111
6 94	17 62	122 1	38 5	226	381	213	374	113	318	3 90	18 58	118	113
9,94	25.24	114.1	36.0	222	379	209	371	117	320	3.78	19.26	120	115
12.94	32.86	107.2	33.8	223	379	210	372	121	323	3.61	19.99	116	116
15.94	40.48	101.0	31.8	223	379	210	372	125	325	3,49	20.77	114	118
18.94	48.10	95.3	30.3	215	375	202	368	129	327	3.34	21.62	124	119
21.94	55.72	90.4	28.5	218	376	206	370	132	329	3.25	21. 98	116	119
		L		L							L	I	
Run 5	: Decre	easing heat flu	ix in the di	rection	of flow;	mass	flow ra	te, 50	0 1b/h	r (0.063 k)	g/sec); pow	er to test	section,
/940	W; tes	t section volta	age, 20.75	V; inte	t bulk t	empera	iture, 1	U3 F	(313	K); outlet	buik tempe	rature, 14	19 F.
(338	K)			r				r		,			
0.25	0.64	91. 1×10 ³	28. 7×10 ³	154	341	146	336	104	313	4.30	11. 29×10 ³	213	85
. 50	1.27	90.5	28.5	158	343	150	339	104	313	4.30	11. 29	193	85
. 75	1.91												
1.00	2.54	89.2	28.1	175	353	167	348	105	314	4.25	11.37	141	80
1.50	3.81	88.2	27.8	184	358	175	353	105	314	4.25	11.37	124	80
2.00	5.08	86.8	27.4	193	363	184	358	106	314	4.20	11.51	109	80
3.94	10.00	83.3	26.3	211	373	202	368	109	316	4.08	11.90	87	81
6.94	17.62	77.0	24.3	216	375	207	370	113	318	3.91	12.49	79	83
9.94	25.24	72.0	22.7	213	374	205	369	117	320	3.77	12.94	79	84 0E
12.94	32.80	63 7	21.3	212	373	204	369	121	323	3.61	13.55	10	00 85
18 94	48 10	60 1	18 9	205	369	197	365	124	326	3 30	14 30	83	86
21.94	55.72	57.0	18.0	207	370	199	366	131	328	3.29	14.78	79	87
						100				0.20			
Run 6	: Decre	easing heat flu	ıx in the di	rection	of flow;	mass	flow ra	te, 50	0 lb/h	r (0.063 k	g/sec); pow	ver to test	section,
8280	W; tes	st section volta	age, 21.9	V; inlet	bulk te	mperat	ure, 14	9 ⁰ F (338 ^O F	(); outlet	bulk temper	ature, 199	9.5 ⁰ F
(366	^{6 °} К)												
0.25	0.64	92.5×10^3	29×10^3	198	365	189	360	150	339	2.78	17.21×10^{3}	222	91
. 50	1.27	91.8	28.9	202	368	193	363	150	339	2.78	17.21	199	91
. 75	1.91	91.2	28.8	211	373	202	368	150	339	2.78	17.21	164	91
1.00	2. 54	90.5	28.5	217	376	208	371	151	339	2.72	17.38	148	91
1.50	3.81	89.6	28.2	228	382	219	377	152	340	2.70	17.55	125	91
2.00	5.08	88.2	27.8	235	386	226	381	155	341	2.63	17.73	116	91
3.94	10.00	84.4	26.6	248	393	239	388	160	344	2.51	18.66	99	93
6.94	17.62	78, 2	24.7	251	395	242	390	164	346	2.43	19.06	93	93
9.94	25. 24	73.0	23.0	252	395	243	390	168	349	2.35	19.70	90	93
12.94	32.86	68,6	21.6	252	395	244	391	172	351	2.29	20.15	88	95
15.94	40.48	64.7	20.4	254	396	246	392	176	353	2.20	20.86	85	95
18.94	48.10	61.0	19.2	246	392	238	388	180	355	2.15	21. 11	97	95
21.94	55.72	57.9	18.3	252	395	246	392	183	357	2.10	21.62	83	96

TAPERED-HEAT-FLUX TEST SECTION

TABLE II - Continued. EXPERIMENTAL DATA FOR CONSTANT-FLOW-AREA,

•

.

Distanc	istance from Heat flux, q		ıx, q	Local o	outside	Local	inside	Local	bulk	Local	Local	Local	Local
star	t of	Dt. //(12)())	2	wall te	mper-	wall te	mper-	temp	era-	Prandtl	Reynolds	Nusselt	fully
heatir	ng, x	Btu/(it ⁻)(nr)	w/m	ature	, т _о	atur	e, T _i	ture,	т _в	number,	number,	number,	developed
in.	cm		ľ	°F	°к	ч ⁰	oĸ	°F	oĸ	Pr	Re	Nu	Nusselt
	0.111			-			K	r	ĸ				number,
													Nu _{fd}
Bun 7	Decre	asing heat flu	ix in the di	rection	of flow-	mass	flow ra	te 50		r (0_063 k		er to test	section
8280	W: tes	t section volt	age, 21.95	V; inle	t bulk te	empera	ture. 2	00.5 ⁰	F (36)	7° K): out	let bulk tem	oerature	252 ^O F
(395	^O K)		- /			-	,		•			,	
	0.04	00 0 103	00 0.103	0.4.5	201	000			0.07			- 10	
0.25	0.64	92.9×10	29. 3×10	245	391	236	386	201	367	1.87	24.42×10 ⁻	242	100
. 30	1.41	91.6	28.9	258	299	242	390	202	006 836	1.00	24.00 24.56	210	100
1.00	2 54	90.9	28.7	263	401	255	397	202	368	1.80	24.50	159	100
1.50	3.81	89.9	28.3	271	406	263	401	203	368	1.00	24.71	137	100
2.00	5.08	88.6	27.9	279	410	271	406	204	369	1.84	24.85	120	100
3,94	10.00	84.7	26.7	289	416	281	411	207	370	1.80	25.33	104	101
6.94	17.62	78.5	24.7	293	418	285	414	212	373	1.75	26.09	98	102
9.94	25.24	73.3	23.1	291	417	283	413	216	375	1.71	26.68	99	103
12.94	32.86	68.9	21.7	295	419	287	415	221	378	1.67	27.45	95	104
15.94	40.48	64.9	20.5	298	421	290	416	225	380	1.63	28.10	91	105
18.94	48.10	61.3	19.3	293	418	285	414	229	383	1.60	28.71	99	106
21.94	55.72	58.2	18.3	296	420	288	415	232	384	1.57	29.19	94	106
						.	<u></u>		L	(0.047)		· · ·	
Run 8	Decre	easing neat ill	ix in the di	rection	01 110W;	mass	flow rat	e, 373	3 1b/h	r(0.047 k)	g/sec); pow	er to test	section,
2880	w; tes	t section volt	age, 18.3	v; inlet	buik ter	mperati	ure, 10	I F. (3	SII K	; outlet	buik temper	ature, 150) F
(339	K)												
0.25	0.64	71.0×10 ³	22.4×10 ³	150	339	143	335	102	312	4.40	8. 21×10 ³	170	62
. 50	1.27	70.5	22.2	155	341	148	338	102	312	4.40	8.21	151	62
. 75	1.91												
1.00	2.54	69.5	21.9	169	349	162	345	103	313	4.35	8.31	116	63
1.50	3.81	68.8	21.7	179	355	172	351	103	313	4.35	8.31	98	63
2.00	5.08	67.7	21. 3	188	360	181	356	104	313	4.30	8.42	86	63
3.94	10.00	64.8	20.4	208	371	201	367	107	315	4.17	8.69	67	64
6.94	17.62	60.0	18.9	215	375	209	371	111	317	3.99	9.12	59	65
9,94	25.24	56.1	17.7	216	375	209	371	116	320	3.80	9.51	58	66
12.94	32.86	52.7	16.6	216	375	209	371	120	322	3.66	9.94	57	67
10.94	40.48	49.6	15.6	214	374	208	371	124	324	3.51	10.33	57	68
18,94	46.10	46.9	14.8	206	370	200	360	121	320	3.41	10.58	61	69
21.94	55. 12	44.5	14.0	207	310	201	367	151	320	3.29	11.02	60	
Run 9	: Decre	easing heat flu	ux in the di	rection	of flow;	mass	flow rat	ie, 37	3 lb/h	r (0.047 k	g/sec); pow	er to test	section,
5940	W; tes	t section volt	age, 18.4	V; inlet	bulk ter	mperat	ure, 14	9.5 ⁰ F	r (338	^O K); outle	et bulk temp	erature,	199.5 ⁰ F
(366	^O K)												
0.25	0.025	71 0-103	22 0113	102	360	194	359	150	330	2 78	12 8~103	107	79
0.20	0.635	71.8×10	22.6×10	192	364	199	360	150	339	2.10	12.0×10	175	12 72
75	1 905	70.8	22.3	202	368	194	363	151	339	2.72	13.0	154	72
1 00	2.54	70.2	22.5	202	371	201	367	151	339	2.72	13.0	131	72
1 50	3.81	69.5	21 9	220	378	212	373	152	340	2.70	13.1	108	72
2.00	5.08	68.4	21.6	227	381	219	377	153	340	2.69	13.2	97	72
3.935	10.00	65.4	20.6	240	389	233	385	156	342	2.60	13.4	79	72
6.00	17.62	60.6	19.1	244	391	237	387	161	345	2.50	13.9	74	73
9.00	25.24	57.0	18.0	243	390	236	386	164	346	2.43	14.2	73	73
12.00	32.86	53.2	16.8	244	391	237	387	169	349	2.33	14.7	72	74
15.00	40.48	50.2	15.8	245	391	238	388	173	351	2.28	15.0	71	74
18.00	48.10	47.4	14.9	241	389	234	385	176	353	2.20	15.6	75	75
21.00	55.72	44.9	14.2	244	391	237	387	180	355	2.15	15.8	72	75

TAPERED-HEAT-FLUX TEST SECTION

TABLE II. - Continued. EXPERIMENTAL DATA FOR CONSTANT-FLOW-AREA,

Distanc	e from	Heat flu	x. a	Local	outside	Local	inside	Local	bulk	Local	Local	Local	Local	
star	tof			wall te	mper-	wall te	mper-	temp	era-	Prandtl	Reynolds	Nusselt	fully	
heatir	ng. x	Btu/(ft ²)(hr)	W/m^2	ature	Т.	ature	т.	ture,	Tp	number,	number,	number,	developed	
т	-0,		ŀ	- 1	, 0				<u> </u>	Pr	Re	Nu	Nusselt	
in.	cm			⁰ F	оκ	°ғ	°к	۴F	ЧК				number,	
													Nufd	
									_					
Run 10	: Decre	asing heat flu	x in the di	rection o	of flow;	mass f	low rat	e, 371	lb/h	r (0.047 k	g/sec); pov	wer to tes	t section,	
5940	W; test	section voltag	e, 18.5 V	; inlet b	ulk tem	peratur	e, 198.	3 ^o f (366 ⁰	K); outlet	bulk tempe	erature, 2	249 ⁰ F	
(394 9	^o K)													
0.25	0 635	72 6×10 ³	22 9×10 ³	237	387	230	383	199	366	1 90	17 8×10 ³	214	78	
50	1 270	72.2	22.7	243	390	236	386	199	366	1,90	17.8	178	78	
75	1.905	71.6	22.6	249	394	242	390	200	366	1.89	18.0	155	79	
1 00	2.54	71.0	22.4	254	396	247	393	200	366	1.89	18.0	138	79	
1 50	3.81	70.3	22.2	262	401	255	397	201	367	1.87	18.1	119	79	
2.00	5.08	69.2	21.8	267	404	260	400	202	368	1.86	18.2	109	79	
3,935	10.00	66.2	20.9	279	410	272	406	205	369	1.82	18.6	90.0	79	
6.00	17.62	61.3	19.3	282	412	275	408	209	371	1.78	19.0	85	80	
9.00	25.24	57.3	18.1	284	413	277	409	213	374	1.74	19.5	81	81	
12.00	32, 86	53.9	17.0	283	413	276	409	218	376	1.70	20.1	84	81	
15.00	40,48	50.8	16.0	284	413	277	409	222	379	1.66	20.5	84	82	
18.00	48.10	47.9	15.1	284	413	277	409	225	380	1.63	20.8	81	83	
21.00	55.72	45.4	14.3	287	415	280	411	229	383	1.60	21.3	82	83	
l	(1.00 (5) (72 (4) (4) (4) (4) (20) (4) (1) (22) (38) (1.00) (21.3) (82) (83)													
Run 11	Run 11: Increasing heat flux in the direction of flow; mass flow rate, 1000 lb/hr (0. 126 kg/sec); power to test section,													
15 8	40 W; te	st section vol	tage, 30.5	V; inle	t bulk to	empera	ture, 1	02 °F	(312 \	K); outlet	bulk temp	erature,	152 °F	
(340	°К)					· · · ·	1			1				
0.25	0.635	90. 3×10 ³	28.5×10 ³	146	336	128	326	102	312	4.40	22.0×10 ³	342	137	
. 50	1. 270	90.7	28.6	153	340	135	330	102	312	4.40	22.0	270	137	
. 75	1.905	91.4	28.8	157	343	139	333	103	313	4.35	22.3	249	138	
1.50	3.81	92.4	29.1	169	349	151	339	103	313	4.35	22.3	189	138	
2.00	5.08	92.8	29.3	176	353	158	343	104	313	4.30	22.6	169	139	
4.00	10.16	95.6	30.1	186	359	167	348	104	313	4.30	22 6	149	139	
8.00	20.32	101.4	31.2	195	364	178	354	109	316	4.08	23.8	143	141	
12.00	30.48	106.9	33.7	197	365	180	355	112	318	3.95	24.6	153	143	
16.00	40.64	114.4	36.1	209	371	192	362	116	320	3.80	25.5	145	144	
20.00	50.80	121.8	38.4	216	375	198	365	121	323	3.61	26.9	152	147	
Run 1	2. Incre	acing heat flu	v in the di	rection	of flow	mass	flow rat	e 100)0 lb/	hr (0 126	kg/sec) n	ower to te	est section	
16.0	80 W. to	et section vol	taga 30 8	lection v	ulk ten	massi meratu	re 150	⁰ F (3	39 ⁰ K	• outlet h	ulk temner	ature 20	0°F	
(366	⁰ K)	St Section voi		,	Juni ten	iper usu	, 100	1 (0		, ounce a	um temper		• •	
	<u> </u>		9			τ	r	r		1				
0.25	0.635	92. 3×10 ⁻³	29.1×10 ³	193	363	175	353	150	339	2.78	34.4×10°	345	158	
. 50	1.270	92.6	29.2	197	365	179	355	150	339	2.78	34.4	298	158	
. 75	1.950	93.3	29.4	201	367	183	357	151	339	2.72	34.8	272	158	
1.50	3.81	94.3	29.7	210	372	192	362	151	339	2.72	34.8	215	158	
2.00	5.08	94.8	29.9	216	375	198	365	152	340	2.70	35.1	192	159	
4.00	10.16	97.7	30.8	223	379	205	369	152	340	2.70	35.1	172	159	
8.00	20.32	103.5	32.6	233	385	215	375	157	343	2.58	36.4	166	160	
12.00	30.48	109.2	34.4	236	386	218	376	160	344	2.51	37.3	175	161	
16.00	40.64	116.9	36.8	248	393	231	384	164	346	2.43	38.1	162	161	
20.00	50.80	124.4	39.2	252	395	234	385	169	349	2.33	39.4	177	162	

TAPERED-HEAT-FLUX TEST SECTION

- -

TABLE II - Concluded. EXPERIMENTAL DATA FOR CONSTANT-FLOW-AREA,

•

Distan	ce from	Heat flu	x, x	Local o	utside	Local	inside	Local	bulk	Local	Local	Local	Local
sta	rtof	. 2	. 2	wall te:	mper-	wall to	emper-	temp	era-	Prandtl	Reynolds	Nusselt	fully
heati	ing, x	Btu/(ft ²)(hr)	W/m ²	ature,	T	atur	е, Т _і	ture,	т _в	number,	number,	number,	developed
. 1				0-	0	0_	0	0	0	Pr	Re	Nu	Nusselt
1n.	cm			F.	-K	F	ĸ	· F	⁻K.				number,
								••					^{Nu} fd
Run 1	l3: Incre	asing heat flu	in the dir	ection o	f flow;	mass i	flow rat	e. 500	lb/hr	(0.063 ke	(sec); pov	ver to test	section.
8280) W: test	section voltag	ge, 21.9 V	; inlet b	ulk tem	peratu	re, 102	⁰ F (31	2 ^o K)	outlet bu	ilk tempera	ture, 152	°F
(340) ^O K)		· /	, 		-	,		,	,	-		
0.25	0.635	46.6×10 ³	14. 7×10 ³	134	330	126	325	102	312	4.40	11.0×10 ³	191	79
. 50	1.270	46.8	14.8	138	332	130	328	102	312	4.40	11.0	164	79
. 75	1.905	47.1	14.9	142	334	134	330	103	313	4.35	11. 1	149	79
1.50	3.81	47.6	15_0	153	340	145	336	103	313	4.35	11.1	111	79
2.00	5.08	47.9	15.1	161	345	153	340	104	313	4.30	11.3	96	80
4.00	10.16	49.3	15.5	173	351	165	347	104	313	4.30	11.3	79	80
8.00	20.32	52.3	16.5	184	358	176	353	109	316	4.08	11.9	76	81
12.00	30.48	55.2	17.4	186	359	178	354	112	318	3.95	12.3	81	82
16.00	40.64	59.0	18.6	197	365	189	360	116	320	3.80	12.8	78	83
20.00	50.80	62.8	19.8	203	368	195	364	121	323	3.61	13.4	82	84
Run	14: Incre	easing heat flu	c in the dir	ection o	f flow;	mass	flow rat	e, 500	lb/hi	· (0.063 kg	g/sec); pov	ver to test	section,
828	0 W; test	t section voltag	ge, 22.0 V	; inlet b	ulk ten	nperatu	re, 151	^o F (3	39 ^o K)	; outlet b	ulk temper	ature, 20	1.5 [°] F
(369	Э [°] К)												
0.25	0.635	47. 1×10 ³	14.8×10 ³	179	355	171	350	151	339	2.72	17.4×10 ³	220	91
. 50	1.270	47.3	14.9	182	356	174	352	151	339	2.72	17.4	192	91
. 75	1.905	47.6	15.0	185	358	177	354	152	340	2.70	17.6	178	91
1.50	3.81	48.1	15.2	195	364	187	359	152	340	2.70	17.6	128	91
2.00	5.08	48.4	15.3	201	367	193	363	153	340	2.69	17.7	113	92
4.00	10.16	49.7	15.7	209	371	201	367	153	340	2.69	17.7	97	92
8.00	20.32	52.8	16.7	220	378	212	373	158	343	2.56	18.3	91	92
12.00	30.48	55,8	17.6	225	380	217	376	161	345	2, 50	18.7	92	92
16.00	40.64	59.6	18.8	236	386	228	382	165	347	2.41	19.3	88	93
20.00	50.80	63.5	20.0	240	389	232	384	170	350	2.32	19.9	95	94

TAPERED-HEAT-FLUX TEST SECTION

Figure 2. - Tapered tube test section. Flow can be reversed, so that inlet becomes outlet. Dimensions are in inches (cm).

Figure 3. - Variation in Nusselt number ratio with length to local diameter ratio from start of heating for tapered-cross-sectional flow-area test section.

Figure 4. - Variation in Nusselt number ratio with length to local diameter ratio from start of heating for constant-flow-area test section.

National Aeronautics and Space Administration WASHINGTON, D. C.

OFFICIAL BUSINESS

FIRST CLASS MAIL

POSTAGE AND PEES PAID NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

POSTMASTER: Pos

If Undeliverable (Section 158 Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Notes, and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546