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A LEAST SQUARES METHOD FOR THE REDUCTION OF
FREE-OSCILLATION DATA
By Phillip R. Wilcox and William L. Crawford

Ames Research Center

SUMMARY

The classical least squares curve fitting method is used to determine the
frequency, amplitude, damping ratio, phase angle, and zero offset of both a
one- and two-degree-of-freedom system from free oscillation data.

The method is applied to a number of experimental transients with good
results. Where possible, comparisons are made with the results of other
methods. The least-squares method is found to be particularly useful in the
analysis of two-degree-of-freedom systems where other techniques are difficult
or impossible to apply.

INTRODUCTION

In wind-tunnel testing when the dynamic stability of a configuration is
one of the parameters to be determined, either free-oscillation or forced-
oscillation techniques can be used. The free-oscillation technigue is easier
to implement and was used recently at Ames Research Center in testing axi-
symmetric hammerhead models (ref. 1). A typical model was mounted in the
wind tunnel on a free-oscillation balance and a disturbance in the model atti-
tude was introduced by rotating the model and then gquickly releasing it. A
continuous signal proportional to the model attitude was obtained and later
passed through an analog to digital converter to provide discrete measurements
at equal time intervals. When this record corresponds to a one-degree-of-
freedom system, there are several methods commonly used to obtain the damping
ratio and natural frequency. One of these methods (called here amplitude
response method) is to use the amplitude response curve (ref. 2) as indicated
in figure 1. This curve 1s obtained from the Fourier transform of the free-
oscillation transient. Another method (called here peak amplitude method) is
to plot the values of the peak amplitude on a semilog plot and then calculate
the damping ratio as indicated in figure 2.

During the reduction of the data from these tests it was found the
methods mentioned above failed to yield consistent data for a number of tran-
sients. These transients all showed evidence of multiple-mode oscillations.
In an effort to find a data analysis technigue that could be applied to tran-
sients of this type, a least-squares method was developed. It is the purpose
of this paper to describe this method which will analyze either a one- or two-
degree-of -freedom system rapidly and accurately, and to describe how the



results obtained by this method compare with the results obtained by the
amplitude response and peak amplitude methods.
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NOTATION

it

amplitude of the envelope of curve 1 at t

1

amplitude of the envelope of curve 2 at ¢
zero offset, same units as y(t)

phase angle of curve 1, radians

phase angle of curve 2, radians

number of data points

natural frequency of curve 1, radians/sec
natural frequency of curve 2, radians/sec
time, sec

amplitude of transient

measured values of transient

calculated values of transient

-L1p, 1/sec

-62a, 1/sec

damping ratio of curve 1

damping ratio of curve 2

DESCRIPTION OF THE LEAST-SQUARES METHOD

The response of the one- and two-degree-of ~-freedom transient is

to be of the form

and

y(t) = AeCLt sin(pt + £) + C

y(t) = Aeat sin(pt + £) + BeP? sin(qt + g) + C

0, same units as y(t)

0, same units as y(t)

assumed

(1)

(2)



The problem is to determine the constants in these equations so that the
equation best describes, in a least-squares sense, a set of experimental data.

Appendix A is a detailed description of the derivation of the equations
needed to solve for the unknowns in equation (1) or (2) by the LSM (Least
Squares Method). The analysis results in a matrix equation that can be solved
by normal matrix techniques. To apply this method to a two-degree-of-freedom
system, first assign a vector (Ao,ao,po,fo,CO,Bo,Bo,qo,go) of initial esti-
mates for all the unknowns. Using these values, calculate both y (denoted by
Vo) and the partial derivatives of y with respect to each of the unknowns
(0y/oA,dy/da, « « « , Oy/dg) at times corresponding to each of the n data
points. After doing the indicated summations the following matrix equation
for corrections to the initial estimates is obtailned.

TE T, - 1O [+ [1e6,
YE®, 2@ - YO =] | L&),

PEE, YOG, - @ | [ [ 2@,

After solving these nine equations for the corrections (AA,Aw, . . . JUAV-3 I

they are added to the original estimates of the constants and the process is
repeated. This iteration process is continued until the corrections are arbi-
trarily small (assuming convergence) at which time the estimate vector contains
values of the constants which best describe the experimental data.

This procedure does not guarantee convergence. It has been found, how-
ever, that if reasonable initial estimates can be made of the constants (in
particular the 7p and q), then convergence is assured and is very rapid.

PRESENTATION OF RESULTS

One Degree of Freedom

The transients of the three models selected are plotted in figure 3.
They were chosen because they are representative of the range of damping
ratios encountered during the actual testing program described in reference 1.



The peak amplitude and amplitude response plots of each transient ar
shown in figures 4 and 5, respectively. The Share Library Program, AAHANS,
mode 3 (ref. 3) was used to calculate the amplitude response of the transier
(i.e., Fourier transforms). This program was converted to MAP for use with
Fortran IV programs by the staff of the Computation and Analysis Branch at
Ames. The damping ratios of the peak amplitude plots were calculated as indi-
cated in figure 2 while the frequencies were determined from figure 3 by
counting the number of cycles in a given time increment. The damping ratios
and frequencies of the amplitude response plots were calculated as indicated
in figure 1. These results, the results obtained from the LSM, and the nor-
malized standard deviation, or SD, (see section on Error) are recorded in
table I. From this table it can be seen that the 3D's, calculated with the
parameters from the LSM, for the three transients are very small. Since
these values are less than the accuracy of the data, the values obtained from
the LSM for the frequencies and damping ratios are assumed to be correct.
Now, with the parameters of the LSM as the basis, the errors of the other
methods are as follows:

Transient A Transient B Transient C Method

P g P g 13 g
-0.36% +7.14%  -2.09%4 -5.94%  -1.68% +2.17% Peak amplitude

-0.06% +185.60% +0.17% +37.95%4 +0.20%  +34.35% Amplitude response

From this, it can be seen that all three methods compare well on frequency
but the amplitude response method gives damping ratios that do not agree with
those obtained from the other two methods.

The solutions obtained from the LSM have been plotted against the experi-
mental data in figure 6. It can be seen from this plot that there is very
good agreement between the generated curves and the transient data.

Two Degree of Freedom

The three transients chosen for the two-degree-of-freedom system have
been plotted in figure 7. They were chosen to give a variety of two-degree-
of -freedom cases in which the applicability of peak amplitude and amplitude
response methods becomes doubtful. The peak amplitude plots are as shown
in figure 8, and the fact that no straight line can adeguately represent the
peak values is apparent. The amplitude response plots are shown in figure 9,
and although the frequencies are well defined, the bandwidth measurement for
the second mode of transient E was uncertain. These results, along with those
obtained from the LSM, and the normalized standard deviation, or 8D, are
recorded in table IT. Here again the parameters as calculated by the LSM are
assumed to be correct for the reason stated previously. With these parameters
as a basis, the errors for the amplitude response parameters are as follows:



Transient D Transient E Transient F

P +0.02% +0.18% +0.33%
a +0453% +3.68% +0.10%
€y +18.45% -15.15% +33.80%
Lo -25.30% --- +22,10%

From this, it can be seen that although both methods agree well on freguency,
they disagree on the damping ratios.

The results of the LSM for transient D are shown in figure 10 where the
individual transients, curves 1 and 2, and their sum have been plotted. The
sum is plotted against the experimental data. The results obtained for tran-
sients B and F are plotted in figures 11 and 12, respectively. It can be
seen that there is again good agreement between the experimental data and the
theoretical curve for each of the transients.

Error
The present LSM has been programmed to assume that it has successfully
arrived at the values of the parameters when the incremental change in all

parameters is less than 0.05 percent of the previous value of that parameter.

As an aid in Judging how well the theoretical curve fits the experi-
mental data, the normalized standard deviation is computed.

i [yc(ti) - ym(ti)f

sp = [==* X 100

i[y(t}

i=1

This parameter has been recorded in table I for the one-degree-of-freedom
transients and in table II for the two-degree-of-freedom transients. The
poorest fit was for transient D, where SD = 1.98, Thus, in all cases, very
satisfactory fits were obtained.

Since the second frequency for transient E was not pronounced (see
fige. 9), this transient was analyzed also as a one-degree-of -freedom system.
The best fit obtainable under this assumption was SD = 2,11, significantly
poorer than the two-degree-of-freedom case where 5D = 1.29.



CONCLUSIONS

A least squares method has been developed for the analysis of free-
oscillation data and a comparison of this technique with the peak amplitude
and amplitude response methods has led to the following conclusions:

1. For the one-degree-of-freedom transient data, all three methods give
good answers for the frequency but the amplitude response method gives poor
values for the damping ratio.

2. For the two-degree-of -freedom transient data, the least squares
method gave a good fit for cases where the other methods were not practical

to applye.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif. 94035, Jan. 8, 1968
124-11-04-09-00-21



APPENDIX A
MATHEMATTICAL DERIVATION OF NUMERICAL SOLUTION

It is assumed that the free-oscillation transients considered in this
paper can be modeled as the sum of one or more damped sine waves; that is

y(t) = A%t sin(pt + ) + BeBt(qt +g) + 4o +C (A1)

where t 1s the time variable; C 1is a zero offset correction; A, B, « «
are amplitude factors; a, B, « « « are functions of the damping ratios;
P, 45 + « « are frequencies; and £, g, . . » are phase angles.

The problem is to determine these parameters from the transient data
such that equation (Al) best describes the transient data in the least squares
sense,

The usual method of using the least squares criterion (ref. L) directly
for fitting equation (Al) to the transient, y(t), would result in a set of
nonlinear equations for which there is no known analytic solution. However,
an iterative method of determining successive corrections to estimates of the
parameters can be applied. This method (refs. 4 and 5) which results in
linear equations is derived in the following paragraphs.

The derivation will be made for the solution of the equation
at . Bt .
y(t) = Ae”” sin(pt + £) + Be” "~ sin(qt + g) + C (A2)

Extending the results to any number of damped sine waves is straightforward.

Equation (A2) can be written in the symbolic form

y = Y(t) = y(t,A,a,p,f,C,B,B,q,g) (A3)

To apply the least squares method, we need to express the relationship
between the empirical data and equation (A3) as a set of residual equations.
Given n data points y;, 1=1, 2, « «+ « , n, if vy represents the differ-
ence or residual between the data yi, taken at time +ti, and the value cal-
culated from equation (A2) at time ti, we obtain the following residual
equations:



vi = y(t1,8,ay « o o 5 8) - le

v, = Y(ti;A:Q’: e o o g)

> (ak)

v, = y(t 80, « o 0, 8) -ynJ

If we now assume that we can obtain approximate values Ag,q0,P0,f05C0,
BosBosdosgo for the true parameters A,a, « « « , g, then we can express the

true parameters as ~
A=AO+AA B=BO+AB
a=a + -4 B=pB_ +&8
° ° (a5)
P =D, + 4P Q=9 +24q
C=C_ + AC J
o
where AA,Aq, « o s &g are corrections to be determined. Substituting
equation (A5) in (Ah) we obtain the residual equations
j
vy = y(ta1,A, + Myay + DLay o . . , 8o +08) - ¥
vy =y(ti,Ao + Mo+ Loy e e e, By +0g) - ¥, ? (a6)
v = y(t A  + Mhyag +bay . - .5 8+ L8)

J

For simplicity let us consider only the ith residual equation, which
can be written as



v, vy = y(ti,Ao + Mya Do, e e e, By F Ag) (A7)

By considering the right side of equation (A7) as a function of A,y « « « 5 &
with t constant, we can expand it by Taylor's theorem for a function of sev-
eral variables (refs. 5 and 6) around the point (Ag,aos « « « » 8). This
expansion is valid since equation (A2) has continuous partial derivatives of
all orders with respect to A,a, « « « , and g.

Taylor's expansion yields

v, +y. = Y(t-;A 1o I =3 )

1 1 1 O (o] (o]
S > d 3\
4—}: 3?'[<%A SA + Ao ) S PN A= 5?> y(t,A,a, o o ey g)]
=1 »
(48)

where ¥ means that after differentiation the numerical values of the partials
are calculated for +t = ti, A = Ag, @ = ao, P = Poy £ = fp, C = Co, B = Bo,
B = Boy 4 = dos 8§ = &o-

Expanding equation (A8) gives

Vi + yi = y(ti,Ao’aJo, L A ] go)
o (B) + () e (Z) Y
A/, dot ' 3¢, 3 (9)
J=2

Since sin(pt + £, gt + g) s 1, cos(pt + f, gt + g) = 1 for all (pt + f,

qt + g); and at, Bt, A, and B are bounded; it is clear that the Rj consist
of sums of terms Rjx ©F the order

Rjk = order [max(l,A,B)maX(AAZ,AA Dy o o o DA NG,

AaBy Do DDy o s o 5 BDZ, o o o, AR, L. L, Agz)} (A10)

Since all the Aa, Xay . « . , Ag are considerably less than 1, and all the
partials are bounded, all the Rj approach zero as j gets large. This
result, together with the fact that all the partials exist and are continuous

in the range O S t < 1 is a sufficient condition (ref. 7) for equations (A8)
and (A9) to be valid.



If we now approximate y(ti,AO + Moo + Dty o 0 5 80 + Ag) by dropping
the second and higher order terms of equation (A9),

- ¥
vyt Yy y(ti’Ao’ao’ ot go) + oA <§;>*

o) 3
+ Ao <§§>* + ..+ Ag <§§>* (A11)

or
- oy oy S
= (§), r o (), r e (),

) - v, (Al2)

+ y(ti)AO,G’O’ L ] go 1

If we let 71 = y(ti,Acs00s « « » » 80) - ¥yi, equation (A12) pecomes

- oy oy oy -
v o= DA <54>* + Aa,<§a:L + .0 .+ Dg <§g A + 75 i=12, . .., n (313)

Equation (AlB) now represents a set of n residual equations which are linear

in the corrections A&, Huy, « « o , &g and can thus be solved for the correc-

tions by a least squares technique. n
The least squares criterion is that j{j vi2 will be a minimm (ref. 7).

i=1

This criterion will be satisfied when the first partials with respect to all

the unknowns, evaluated at the point (Ao,ao, .« « 5 Bo)y are equal to zero.

Thus for the partial with respect to AA:

Substituting equation (A1l3) for V; Tbecomes
n 12
) oy oy oy
i=1

10



or

S, @), - (@), @), = -

1=1

(%), (3, s+ (), 7]

Distributing the summation and taking the constants AA, Aa, .
outside the summations gives

Y@ @ @@,

Proceeding similarly for each of the other corrections Ao, Ap, « « « , A%
results in nine linear equations in the nine unknown corrections. Numerical
values for the corrections can now be obtained by matrix techniques (ref. 8).
If we arrange into an array the coefficients of the unknowns in the set of

nine equations derived in the same manner as equation (Alh) we obtain the
square matrix U of order 9:

RCREDICKCIE GRE)
® YE - Be

EPAIY.

(A15)

@0 Je.e. . e

11



We now define a column vector V as the left hand members of the nine

equations
V =
or
n —
Z %@ y; - (e
i=1 *
n ~
or - 3t
V= iZl<5@ MRS vty (116)

We now wish to determine the vector X such that UX = V. Jordon's
I, the identity matrix, through

method (ref. 9) is used to reduce U to
a series of elementary transformations, which when applied to V result

in X. The vector X now represents the corrections:

OA

(A7)

iz



Since this result was obtained by a truncation of the Taylor series
expansion in equation (All), X contains only approximate values for the
corrections. We, therefore, form a new set of approximate values A;, a1,
¢« « « 5 g1 by adding the computed corrections to the initial estimates

~
Ay

A + NA
o
ar = o, + Lo {A18)

g1 = g, + Lg

J

For notational convenience we now let A; be called Ap, a1 be called

aoy « o » , and g, be called go, and return to equation (A12). We now
proceed as before to obtain an improved approximation to the true parameters
A, ay ¢« ¢« o , g. This process of iteration is repeated until there is no
change (to the degree of accuracy obtainable from the input data) in the
parameters A, o, « « « 5 & 1in equation (A18) in two subsequent iterations.

By using the computer program based on this analysis, we have shown that
this iterative process does converge rapidly under a specific range of condi-
tions. The primary condition is that the initial estimate of the frequencies
be close to the true values. The choice of first and last data points pre-
sented to the program is not critical because of the parameters included for
phase angles. However, including data containing extraneous forces or vibra-
tions, or data with nonstationary parameters within the time period used will
definitely limit or negate convergence to meaningful values.

13
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TABLE I.- COMPARISON OF RESULTS FOR ONE-DEGREE-OF-FREEDOM TRANSIENTS

Frequency Phase angle Normalized
i t1i 11 Z ffset iati
Transient Method (p/Eﬁ) Da?gi?i/r? io|Amp EX?de (£) ero(g) se standar?sg§v1atlon
i Hz P radians (
%)
A Peak amplitude 16.6 0.0018
Amplitude response | 16.65 .00L8
Least squares 16.66 .00168 1.9801 0.0761 -0.00k44 0.20
B Peak amplitude 17.3 .0088
Amplitude response | 17.70 .0129
Least squares 17 .67 .00935 8634 -.0069 .0138 .78
e Peak amplitude 19.8 L0165
Amplitude response | 20.30 0217
Least squares 20.26 .01615 -1.715 L0428 .0257 l.h2
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TABLE II.- COMPARISON OF RESULTS FOR TWO-DEGREE-OF-FREEDOM TRANSIENTS

Frequency Damping ratio Amplitude Phase angle Normalized
Zero standard
Transient| Method |Curve 1|Curve 2 Curve 1jCurve 2|offset| deviation
Curve 1 | Curve 2 | Curve 1}Curve 2
(p/20) | (0/20 | (¢ _ V|6 ammp/a) () (g) | (0 (sp)
Hz Hz | Ca=-a/p)|(E2=-B/a (a) (3) radians|radians

D - Peak

» amplitude - | === --- ---

: Amplitude ‘ i |

"response | 25.50 ! 32.45 ;0.0088 0.0157 ‘

Least E .

squares 25.46  32.28  .007L43 .02097  1.0161 | 1.3805 -0.8603 |0.3161 |-0.01k7 1.98
E Peak

- amplitude --- | --- - -—-

Amplitude '

response 21,70 . 23.55 .0235 -———

Least ’

! squares 21.66  2L.L45 02769 01546 -1.9502 -.4288 .0017 2.499 L0009  1.29

F Peak

amplitude -—- - ~--- -—-

Amplitude

response  45.20 102.20 .01lL9 . 0069

Least

squares 45,05 102.10  .01llhk 00565 L6614 -1.783L LA478L L0429 -.0141 1.57
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Figure l.- An amplitude response curve.
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Figure 2.- Plot of peak amplitudes.
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Figure 3.- Transients used in the one-degree~of-freedom analysis.
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Figure 4.- Peak amplitude of transients used in single-degree-of-freedom
analysis.
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freedom analysis.
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Figure 6.- Results of the transients as calculated from the LSM,
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Figure 10.- Results of transient D as calculated from the LSM.
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Figure 11.- Results of transient E as calculated from the LSM.
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Figure 12.- Results of transient F as calculated from the LSM,
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