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AN ACCURACY STUDY OF FINITE DIFFERENCE METHODS
IN STRUCTURAL ANALYSIST
By Nancy Jane Cyrus® and Robert E. Fulton®*¥

NASA Langley Research Center
SUMMARY

An accuracy study is made of central finite difference methods for solving
boundary value problems in struetural énalysis which are governed by equations
with variable coefficients leadihg to odd order derivatives,v wa methods are
studied thrbugh applicatién to beam-columns with nonuniform inplane loads and
nonuniform stiffness. Definitive expressions for the error in each method are
obtained by using Taylor series to derive the differential equations which .
exactly represent the finite difference approximations, - The fesulting differ-
ential equations are accurately'solv;d by a perturbation technique which yields
the error directly. A "half station" method, which corresponds to making finite
difference approximations before expanding deri?atiVes of function products in
the beam-column differential equations, was found clearly-superior to a "whole

station" method which corresponds to expanding such products first.

TThe‘material iﬁcluded herein was carried out by the first author in par-
tial fulfillment of the requirements for a degree of Master of Science in
Mathematics at Virginia Polytechnic Institute. 4

*Mathematician, NASA LangleyAResearch Center.*‘r
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INTRODUCTION

The differential equations governing the behavior of beams, plates, and
shells are often solved by approximating the derivatives by finite differences
and solving the résulting algebraicrequations on a digital computer. In design
analyses of complicated structures, such as civil engineering sheli structures
or aerospace vehicle structures, the number of simultaneous equations resulting
from finite difference approximations can be sufficiently large to exceed the
capacity of the computer or introduce round-off error. For such problems, the
accuracy of the difference procedure can be a critical item in obtaining mean-
ingful design results. In reference 1, for example, it was found that accurate
answers for the stress in a shell could not be obtained by using certain finite
difference approximations unless the mesh spacing was smaller than machine
capacity permitted.

The most popular difference approximations are the so-called central dif-
ferences which are given in textbooks on numerical methods. There are alternate
formulations of central differences which can be used when odd order derivatives
occur in the differential equations. Such a situation results in structural
problems, for example, when inplane loads are not uniform (a column loaded by
its own weight or a shell of revolution) or where the stiffness of the struc-
ture is nonuniform (a tapered beam or a variable thickness shell).

The purpose of this paper is to investigate the accuracy of two alternate
forms of central finite difference approximations used in the solution of struc-
tural problems. A new approach for studying the accuracy of finite difference
or finite element‘methods is presented and utilized. Thé study is confined to
beam-column problems; however, the approach and conclusions are applicable to a

wide class of plate and shell problems.




SYMBOLS

EI(x) bending stiffness of beam

f(x) nondimensional tension in beam or string
g(x) nondimensional stiffness of beam

h finite difference spacing

L(y) linear differential operator

N(x) tension in beam or string

p(x) nondimensional lateral load

q(x) lateral load

b'd axial coordinate of beam or string

y deflection of beam or string

Y deflection‘function in perturbation series (see eq. (12))

STATEMENT OF THE PROBLEM

Consider a general beam-column (fig. 1) with nonuniform stiffness EI and
nonuniform inplane load N (taken positive in tension). The well-known differ-

ential equation governing the lateral deflection y of the beam is
(ETy")" - (Wy*)' - a(x) =0 (1)

where q(x) is the distributed lateral load and where primes indicate differ-
entiation with respect to x. This equation can be solved by finite differences
by dividing the beam into stations of equal spacing h. The gquantities EI and

N are khown, and finite difference equations are written in terms of the dis-

placements at the ith station (i = 1,2,3 . . .).

In the present paper, two different finite difference approximations are

considered. For convenience one formulation is called the "Half Station"” method



and the other the "Whole Station" method. For the term (Ny')' in equation-(1)
these two methods lead to the following finite difference expressions:

1. Half Station Method

il

(My');

1
EE\Ti_l/gyi_l - (Nj-1/2 + Ni+1/2)y; + Ni+1/gyi+l] (2)

or

2. Whole Station Method

N N;i? .
[ky" + N'Yi]i = ;%(yi_l -2y *t Vi) tF 5%_(-yi‘l + ¥i41)
1 1
1 hN; b
= e (Ni "“§;>yi—l - 2Nyy; + (Ni + ;'>yi+l (3)

Note that the half station method is the natural result of making the finite dif-
ference approximation before expanding the derivatives while the whole station
method results from making the approximation after the expansion. The latter

type of approximation is widely used (see, for example, refs. 2 and 3). Corre-
sponding choices for the term (EIy")" are:

1. Half Station Method
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2. Whole Station Method
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While the preceding two sets of finite difference approximations are both of
order hZ2, they clearly lead to different coefficients for the simultaneous equa-
tions in terms of the displacements at the ith station. Of concern here are the

relative magnitudes of the errors in these different approximations.
ERROR ANALYSIS AND RESULTS

The usual approach in a finite difference accuracy study is to carry out the
numerical solution to a number of problems for which exact solutions can be
obtained and to compare the resulting numerical answers at each station with the
exact answers. Such a procedure has the liability that comparisons can only be
made for each problem at specific stations and the calculations must be redone

‘each time the mesh size changes.



The approach used in this paper is one which has not been reported pre-
viously in the literature. The finite difference approximations are expanded in
Taylor series. This procedure results in differential equations which are exactly
equivalent to the finite difference approximations. The resulting differential
equations are then solved by a perturbétion technique and yield analytical expres-
sions for the largest error term. These expressions are independent of mesh
épacing, are directly comparable, and give a clear indication of the relative
accuracy of the difference approximations not just at discrete points but over
the length of the beam.

There are two terms in the beam-column equation which are approximated by
finite differences: (l) the nonuniform tension effect and (2) the nonuniform

stiffness effect. It is convenient to consider these two effects separately.

Effect of Nonuniform Tension
To study the effect of the inplane load term in equation (1) let EI = O.
The resulting equation describes the behavior of a laterally loaded string sup-
ported at each end and subjected to nonuniform tension. For convenience, the
variables are nondimensionalized so that the length of the string is 1 and tension

is 1 at the left end. This leads to the following problem:
~(£(x)y*) - p(x) =0 (6)
y(xo) =0 y(xo + 1) =0

where f(x) now represents the nondimensional tension in the string, p(x) is
a nondimensional lateral load, and X, is the coordinate of the left end of the
string. Application of the two difference patterns, equations (2) and (3), to

equation (6) yields:
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1. Half Station Method
N |
- E[fi—l/.?yi—l - (£5.1/2 + fiq1/2)y; + ,fi+]_/21h'.+l] -p; =0 . (7)

2. Whole Station Method

]

1 _ bfy! hfy
"i‘l'g(fi""é”"yi—l"?fiyi"' f3 + —5—Jyia| - P31 =0 (8)

Expand the finite difference recursion formula equations (7) and (8) about

the ith point using such Taylor series expansions as:

— + |+h2 "+
Yigy = ¥3 TRy F 5oy *
foo = £ theyt 4B 2

qa = fy FRE AT L

2%
For both the half station and whole station method this procedure leads to a

differential equation of the form

ft

Lo(v1) - o1 + b2Li(y;) + B'Io(ys) + . . . = O (9)

subject to the boundary conditions

¥, =0 at X = Xg
Y1 =0 at X =X5+ 1
The symbols Iy, L3, and Lo are linear differential operators given by

Loys;) = ~(£571')" (10)



and

1. Half Station Method

\
Ll(Yi) _ fiyiiv . fi'yi“" N fi”yi“ . fi'”yi'
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2. Whole Station Method ~
] 1t
f.y: 1V L.y
i¥i i
Lyi) = -\=—5—* —=
foys VL EytysV
Lo(yy) = -|—== e (11b)

Equations (9) and (10) together with either (1la) or (11b) are clearly dif-
ferential equations which represent exactly the finite difference recursion
formulas. As h goes to zero, equation (9) approaches equation (6). The solu-
tion to equation (9), satisfying the appropriate boundary conditions, gives an
analytical representation of the numerical finite difference answers. Unfortu-
nately a closed form solution to equation (9) does not appear feasible because
it contains an infinite number of terms. For a practical problem, however, h
is perhaps 0.1 or 0.01 or even smaller. This suggests that equation (9) can be
solved by a perturbation method with the perturbation parameter taken. to be he.

Let the sQlution ¥i to equation (9) be taken in the form

¥i = Yo + b9y + . . . (12)



Substituting equation (12) into equation (9) leads to

Lo(¥o) - py + hE[:LO(Yl) + Ll(Yo;] +...=0 _ (13)

subject to
Yo(xo) + h2Erl(xO)] +...=0
Yolxo + 1) + hE[Y-l(xo + 1)] +...=0

If each order of error term 15 solved in sequence, the following series of prob-

lems result:

(1) Lo(Yo) -p3 =0 Yo(xo) = 0, Yo(xo +1)=0 (1k)
(2) Lo(¥y) + I3(¥) = 0 Y1(%0) = 0, Yy(xo +1) =0 (15)
(3) . .. C ...

Note that since equation (6) is linear Y, given by equations (1) is in
fact the exact solution. From the form of y; it is seen that Yj; can be
interpreted as the first order error term in the finite difference results. The
magnitude of Yy is therefore a measure of the error in the finite difference
results as compared to the exact answer to the problem. A comparison of the error
terms Yl/ resulting from two different finite difference approximations indicates
the relative accuracy of the two approximations when the node point spacing is the
same.

Using this method, the error functions Y; corresponding to the half sta-
tion and whoie station finite difference approximations have been obtained for a
family of problems. These problems are a string having a lateral load which is

distributed uniformly and a tension force f(x) which varies as follows:



(1) £(x) = éﬁ for

subject to the boundary conditions

y(1) =0
y(2) = 0
and
(2) flx) =1+ x for
subject to the boundary conditions
y(0) =0
y(1) =0

For the case where ' f(x)

o
A
o
A
o

is linear (corresponding to f(x) = 1, x, or

1 4+ x) the results for the half station and whole station finite difference

approximations are exactly the same.
answers are the exact answer.

methods lead to different results.

case f(x) =_j% in detail as a typical example.
x
For f(x) = = and y(1) = y(2) =0
<3
5 31 ) 16
Y, = - £ + 2= - =
o ° 5 B T

1. Half Station Method

1= - — i

Mooy, 22 3 2,

In fact for f(x) = 1, both difference
For all other cases, however, the two difference

It is useful to compare the results for the

(16)

% (17)

1125 6 150
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23AWholefStation Method

=...].‘§le++£x3-2]:x.2+.2_6_' . (18)
450 3 30 225

A plot‘of the two error terms Yy, over the length of the string is given in
figure 2(a). Solutions were also obtainéd for the error terms in deflection for
all of the remaining load functions f(x) noted préviously; an additional plot
of results, for the case £(x) = 1 + x3, is shown in figure 2(b). Detailed plots
of the remaining solutions are not shown because figure 2 éerVes to illustraté the
character of the results; an overall measure of the relative errors in the twp
methods will be shown later for all the solutions oﬁtained.

While errors in the deflections of the string’are important, errors in
numerically obtained derivatives should also be considered for a thbrough error
analysis. Therefore, results were obtained'by using the finite difference
answers for approximate curvatﬁfes (second derivatives). The second difference
operator was applied to the difference results followed‘by Taylor and perturba--

tion series expansions to yield:

1"

¥y

I

L ,
;—2—(3’1_1 ~ 2y4 + ¥i+1)

i

Yo" + heY" + hlg(yoiv + 02 e L ) e L,

or

'n_Y1f+h2st+YOiv+ ‘ ( )
yi = 1 1 -—-]-:-2-—- « a2 . 19

The h2 error terms in the curvatures for the two methods and for the case

£(x) = £ are as follows:
X
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1. Half Station Method

iv
Y, 164 1 -
v " 4 1O = - 2 - + 21 20
e R T - RN (20)
2. Whole Station Method
T 31
"o+ Tl x° + 6x - = (21)

A plot of the error in the curvature for each of the two methods is also given iﬁ
figure 2(a) for this case and in figure 2(b) for the case f(x) = 1 + xJ. Again,~
results for the remaining load functions will be shown later in the form of an
overall measure of the relative error.

Numerical calculations were also carried out for the deflections and curva-
tures for the problems cited to determine if the analytical errors adeguately
represented the numerical errors. The data are not included here; however, for
h less than about 0.1 all analytical errors agree with calculated numerical

~errors to within 1 percent.

Effect of Nonuniform Stiffness
To study the effect of nonuniform stiffness on the numerical results for the
behavior of a beam-column, the tension N 1is set equal to zero and the difference
approximations given by equations (4) and (5) are compared. Results are obtained
for a simply supported beam having a uniformly distributed load. Here again the
variables have been nondimensionalized to make the length of the beam and the

bending stiffness at the left end each equal to 1. This leads to the following

problem:

[e(x)y"] "o (22)
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(%) = 0 y(xo + 1) =0

¥ (xg) =0 y'(xg +1) =0

where g(x) now represents the stiffness of the beam and the distributed load
is 1.

From equations (4) and (5) the two difference equations resulting from equa-
tion (22) are

1. Half Station Method

1 .
;g\zgi—lyi-z - 2(8y1 *ei)Yioq t (Bi-1 t hEi toeie1)Vy

- Q(gi * gi+l>yi+l + gi+1yi+2] =1 (23)

2. Whole Station Method
..;L_ e - .7 e, Lt 2, u
h4[§g1 hg; )yi—2 + ( 4g1 + 2hgg' + h%gy )yi—l
+ (681 - ghggi")yi + (—)-l-gi - Ehgi! + hggi")yi+l

+ (gi + hgi'>yi+él =1 , (2k4)

As before, expanding y; and gy about the ith point leads to the differ-

ential equation

i
-

Lo(yi) + B2Ly(¥1) + B¥o(yi) + . - . . (25)

where, now

Lo = [e(x)1;"]" (26)
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and

1. Half Station Method

vi v i "
Li(yy) = B0 BV T ey (BT BT ]
Vi) = 6 > EE g1 Vi 3 e
: viii vii ' v
Lo(ys) = &i¥i . 8;'yy $ L gy iy &'y + L giivy.iv$
211 80 20 360 o1 Vi 12 1% i
A A
+ i vi 4 1 i
60 . 360 J

2. Whole Station Method

i o 3
Vi~ ‘ v " iv
Ly(yy) =S BV &
6 2 12 g
viii vii n, vi
Loys) < B0, 'V " B Y5
2w 80 20 360

./

(27a).

(27p)

If solutions to equation (25), taking into account (26) and either (27a) or

(27b), are again taken in the form (12), the series of simpler equations (1k4)

and (15) are again obtained (with p = 1). However, since the beam equation is

fourth order rather than second, a boundary condition on bending moment must also

be considered. The moment is taken to be zero at the ends of the beam; this

leads to

Y,)' =0 at X = Xg and X=X+ 1

and
iv
Yl" + ;2 = 0 at X = Xg and X=X+ 1

for the zeroth and first order error problems, respectively (see eq. (19)).

1k

(28)



Results bave been obtained for

g(x) = x2 n=2, 3 4

and

for both the half station and whole station methods of approximating the deriv-
atives. The error termé for both deflections and curvatures are shown in fig-
ure 5 for the case g(x) = xJ corresponding to the case of a linearly tapered
beam. An overall measure of the relative error in the half and whole station
methods is given below for all three cases. The analytical error results for
both deflection and curvature also agree with numerical error calculations within

1 percent for h 1less than about O.1.

Relative Errors of the Half and Whole Station Methods
While results such as those given in figures 2 and 3 are usually sufficient
to identify which of the two methods is superior for a given problem, identifica-
£ion of the superior method for specific results is sometimes difficult (see,
for example, the curvature errors of fig. 2(b)). Moreover, a guantitative meas-
ure of the relative accuracy of the methods is desirable. Probably the fairest
comparison of their overall merit can be made by examining the root-mean-square

values of the errors for the whole structure; that is:

- xo+l 5
Yl = J[ Y,"dx

X5

for the error in deflectidn and

2
- Xo+l iv
Yl" —_ f (Yln + YJO-2 ) d_X
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for the error in curvature, where the integration is over the (unit) length of
the string or beam. Thus, to assess quantitatively the relative merits of the

half station and whole station methods for the various pfoblems solved, the

ratios
¥y ,halr
Yl,whole
and
e 1
YIl,half
Tl
17 ,whole

have been calculated for each problem. The results are shown in figure k.
DISCUSSION OF RESULTS

The results given in figure 4(a) show that for all problems studied, the
error in the deflection resulting from use of the half station method is less
than the error due to the whole station method - in some cases, by an order of
magnitude. The investigation of the accuracy of the curvature approximations
gives the same result in general. Thus, the half station method is generally
superior for calculation of both deflections and bending curvature for the prob-
lems studied.

While the results are a clear victory for the half station method, one
exéeption occurs: for the case of the string with the load f(x) =1 + x2,
the error in the curvature is 25 percent greater with the half station method.
Curiously, the difference between the two methods is seen to be generally less
in calculating the second derivatives of deflections than in calculating the

deflections themselves; moreover, differences in the comparative error from

16



pfoblem ﬁo problem are noticeably less with the second derivatives than with
the deflections. Both of these results are unexpected.

Tt should be noted that the analytical representation of errors in the
present paper shows clearly the danger of using numerical data at a singie
station or a few points to characterize the error in a problem. A typical case

is shown in figure 2(a) for f(x) = -+. If comparisons are made of the curva-

X

ture near the end x = 1, the whole station method appears much more accurate
than the half station method} whereas figure 4(b) shows clearly that the average
‘error with the whole station method is over twice as great.

It should be noted also that the present approach to error assessment may
also be useful for comparison of different finite element structural approxi-
mations. In fact, the recursion formulas given by the half station method
(egs. (2) and (4)) are the same recursion formulas which occur for a finite
element model consisting of rigid bars connected by rotational springs, which
often is used to replace the beam-column of figure 1 (see, for example, ref. U4).
Thus, the results of the present paper verify that the finite element model
of reference U4 is a good representation of beam-column behavior.

Reasons for the superiority of the half station méthod are not altogether
clear, but may include the symmetry of the matrix of coéfficients in this method.
By contrast, the matrix of coefficients assoclated with whole stations is not
symuetric, Matrix symmetry can be of great value for many numerical procedures
associated with eigenvalue routines and simultanecus equation solving routines

and, in some cases, is required for an efficient numerical solution of a large

order system.
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CONCLUDING REMARKS

A new procedure has been developed to determine an analytical representa-
tion of the error in a finite difference solution and to allow a direct compari -
son between two difference methods which is independent of ﬁesh size. This pro-
cedure appears to have considerable merit for assessment of the relative accuracy
of finite differénce and finite'elemeht numerical techniques of structural
analysis.

Using this procedure, a comparison has been made of the accuracy of two
different finite difference methods for solving structural problems through
applications to a spectrum of beam and string problems having the characteristics
of nonuniform stiffness and inplane load. The methods investigated were a "half
station” method which corresponds to making the finite difference approximation
before expanding the derivatives of function products and a "whole station”
method which corresponds to expanding such products first; both methods are in
use. It Wés found that, for the same number of stations, the average error in
calculated deflection resulting from use of‘half station difference approxima-
tions was always less than the error which would result from the use of whole
station difference approximations. In some caseé this error is reduced by an
order of magnitude. The investigation of the accuracy of the curvature approx-
imations gave similar results in general. Thus, the half station method is
indicated to be clearly superior to the whole station method and its use in

finite difference solution of structural problems is recommended.
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