

Iowa City, Iowa

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
US Department of Commerce
Springfield, VA. 22151

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

The Low Frequency Cutoff of ELF Emissions*

hy

Donald A. Gurnett
and
Thomas R. Rurns**

Department of Phvsics and Astronomy University of Inwa

Iowa City, Inwa

May 1969

[^0]
ARSTRACT

ELF and VLF radio noises ohserved hy satellites in the ionosphere often have a verv sharp lower cutoff frequency near the proton gyrofrequency. This naner summarizes the experimentally onserved characteristics of this low frequency cutoff and proposes an explanation for the cutoff based on the reflection of downward prnpagating, extraordinary mode, waves near the two-ion cutoff.frequencr between the proton and helium gyrofrequencies. This explanation, if correct, provides the first direct evidence that chorus and ELF hiss emissions are gencrated at high altitudes (above 3000 km) and not near the hase of the ionosphere.

Ground-based ohservations of 700 Hz noise hands near the auroral zone, previouslv attributahle to nroton cyclotron radiation at low atlitudes in the ionosnhere, can now be explained by this reflection mechanism. nther possibly related effects (such as multinte flf noise bands and the reflection of whistlers at the two-inn cutnff frequency) are discussed.

I. INTRODICTION

Satellite observations of ELF and $V_{L}{ }^{\text {r }}$ radio noise have revealed that noise bands in the freauencv range from a few hundred Hz to several kHz often have a very sharn lower cutoff frequency near the proton gurofrequency frurns. 1966; Smith et al., 1968: and Guthart et a1., 1068. In this paper we summarize a study of this noise hand cutnff using data from the Injun 3 satellite and pronose an explanation for the cutoff hased on the reflection of downgoing, extraordinary mode, waves near the two-ion cutoff between the proton and helium (or oxygen) gyrofrequencies. This explanation, together with the ohserved, altiture dependence of the cutoff frequency, provides the first direct evidence that chorus and flf hiss emissions are generated at.high altitudes in the magnetosnhere fahove 3000 km) and not near the base of the innosphere. The results of this study further indicate that ion related propagation effects strongly influence the transmissinn of magnetospheric $E L F$ radio noises to the ground and can prevent these radio noises from reaching the ground. Ground observations of strong rand emissions at approximately the proton gyrofreauency near the hase of the
ionosphere [Aarons et al.,]ofon: Gustafsson et al., $\quad 060$: Egeland et al, 1965 and 1065 h$]$, previousiv sneculated to be proton cyclotron radiation, can now he internreted as being due to a combination of the low frequency cutoff in the transmission of FLF radio noise to the ground and the frequency spectrum of the emitted radiation.

II. CHARACTERISTICS OF THE LOW FREOUFNCY CUTOFF OF FFF FMISSIONS

In a previous studv of VLF emissions hy Taylor and Gurnett [1968], using data from the low altitude (237 to 2785 km) Injun 3 satellite, it was found that the region of maximum occurrence and intensity of VIF radio noises from a few hundred Hz to about 7.0 kHz occurred during the local day, 06:00 to 18:00 magnetic local time (MIT) and about 55° to 75° invariant latitude (INV), with a hroad maximum from about 9 to 11 hours MLT and $6 n^{\circ}$ to 70° INV. (MLT is the hour angle between the magnetic meridian through the satellite and the magnetic meridian through the sun, using the centered dipole anproximation Chamher: lain, 1961]; and INV is Arccos $L^{-1 / 2}$ where L is McIlwain's [1961] geomagnetic shell parameter.)

The most common type of radio noise found in this region of maximum occurrence consisted of hiss (bandlimited incoherent noise f(allet., 1950: Helliwell, 10651) $^{\circ}$ in the frequency range from a few hundred Hz un to about 2 kHz . This type of radio noise was called flF hiss. A frequency-time spectrogrom of ELF hiss observed hy Injun 3 is shown in Figure 1.

Often the frequency spectrum of ELF hiss has a very sharply defined lower frequency limit ranging from about 300 Hz to 700 Hz . This sharp low frequency cutoff can be seen at about 300 Hz for the ELF hiss band shown in Figure 1. Further examples of ELF hiss illustrating this sharp low frequency cutoff are shown in Figures 2(a), 2(b), and 2 (c) with an expanded ($0-1.25 \mathrm{kHz}$) frequency scale.

The low frequency cutoffs illustrated in Figures 1 and 2 have typical attenuations exceeding 20 db (roughly black to white on the spectrograms) in a 50 Hz frequency range. Since it is difficult to be quantitatively precise about the definition of a cutoff, we shall use the cutoffs illustrated in Figures 1 and 2 as being typical of what we mean by a cutoff in the noise spectrum.

The low frequency cutoffs of the type illustrated in Figures 1 and 2 are not due to an instrumental effect; as is, evidenced by the facts that (1) the cutoff frequency changes systematically with spatial position of the satellite, sometimes by several hundred Hz during a 15 minute pass; (2) the same cutoff frequency has heen observed for data received by two different telemetry receiving stations; (3) the frequency response of the
satellite-borne VLF receiver is not nearly sharp enough to account for the observed cutoff: and (4) the same cutoff effect has been observed by VLF receivers on the Alouette satellites (R. E. Barrington, personal communication) and the OGO satellites [Smith et al., 1068 ; and Guthart et al., 1968].

The sharp low frequency cutoff is not always observed for ELF hiss received with Injun 3. In some cases the absence of a clearly identifiable cutoff is due to the poor signal to noise ratio of the data below ahout 500 Hz because of the rapidly increasing attenuation of the Iniun 3 VLF receiver in this frequency range [see furnett and 0'Brien, 1964, for details of the experiment \boldsymbol{l}^{\prime} : ; However, in many cases with good signal to noise ratios, the 10 w frequency cutoff can be seen to change from very sharn to diffuse or nonexistent in a time scale on the order of minutes. Approximately one third of the ELF hiss events observed with Injun 3 have a recognizable low frequency cutoff. This percentage of occurrence must he considered very uncertain because of the signal to noise ratio difficulty discussed above.

The low frequency cutoff commonly observed for ELF hiss is also observed for other, less common, types of RLF
emissions. Figures $2(a)$ and $2(c)$ illustrate the same low frequency cutoff for discrete VLF emissions of the tyne called polar chorus. The low frequency cutoff has also been observed for periodic emissions.

The cutoff frequency of ELF emissions, when it occurs, is found to decrease systematically with increasing altitude and is usually less than the proton gyrofrequency at the satellite. Figure 2 shows examples of the $10 w$ frequency cutoff for three different altitudes at ahout the same latitude (57.5° to 59.5° INV) and illustrates the general tendency of the cutoff frequency to decrease with increasing altitude.

To provide some statistical evidence of the altitude dependence of the cutoff frequency, several hundred measurements of the cutoff frequency were made at various altitudes and latitudes. The cutoff frequencies measured are shown as a function of altitude in Figure 3 for six latitude ranges. No measurements were made below about 380 Hz because of the poor signal to noise ratio and the uncertainty in identifying cutoffs at these frequencies. At the lower latitudes, 38° to 60° INV, the low frequency cutoff is seen to decrease systematically with increasing
altitude with only a small amount of scatter. All hut about 10% of the cutoff frequencies (F_{c}) are within the range $0.8 \Omega_{p}<F_{c}<\Omega_{p}\left(\Omega_{p}=\right.$ proton gyrofrequency $)$. Significantly, perhaps, some of the cutoff frequencies al definitely above the proton gyrofrequency. At higher latitudes, particularly in the 65° to 70° invariant latitude range, the scatter increases considerably and the cutoff frequency dependence on at+i+nis is less well defined.

In order to confirm and possibly clarify the dependence suggested by the statistical study, several individual passes with ELF hiss were selected for analysis. These passes were selected to have continuous good quality ELF hiss data with a low frequency cutoff covering the altitude and latitude ranges of interest (300 km to 300 km and 40° to 70° INV). Figure 4 shows the frequency-time spectrogram for one of the individual passes studied. A continuous, sharply defined, low frequency cutoff can be seen for the duration of this pass. Figure 5 illustrates the variation of the cutoff frequency ($F_{\dot{c}}$) and its rela tionship to the proton gyrofrequency $\left(\Omega_{p}\right)$ during the pass. It is seen that near the beginning of the pass at low altitude (400 km) and high latitude (65° INV) the cutoff
frequency is very close to the proton gyrofrequency. As the satellite proceeds to higher altitudes and lower latitudes, the cutoff frequency drops significantly helow the proton gyrofrequency until, near the end of the pass at about 1000 km altitude and 35° INV, the ratio of the cutoff frequency to the proton gyrofrequency is about 0.8 . Analysis of other individual passes selected for study generally support the altitude dependence illustrated in Figure 5, namely that the cutoff frequency and the ratio of the cutoff frequency to the proton gyrofrequency ($\mathrm{F}_{\mathrm{c}} / \Omega \mathrm{p}$) decreases with increasing altitude.
III. A POSSIBLE EXPLANATION OF TIIE LOW FREQUENCY CUTOFF

One. of the most important features of the low frequency cutoff is the systematic decrease in the cutoff frequency with increasing altitude (Figure 3). This altitude dependence indicates that waves with frequencies just above the cutoff frequency at some given altitude are not observed at a lower altitude. If we consider that the waves are propagating in a horizontally stratified ionosphere, then we are led to two general possibilities for explaining this altitude dependence: (1) if the waves are downcoming from a source at a higher altitude, then the waves are being reflected (or absorbed) at the cutoff frequency, or (2) if the waves are entirely upgoing, then they are being generated at the cutoff frequency. The first possibility (1) above is strictly a propagation effect, and the second possibility (2) involves the generation mechanism.

When the effects of ions are considered on the propagation of ELF waves in the ionosphere a ready explanation arises for the observed cutoff. The pronagation of electromagnetic waves in the ionosphere at
frequencies on the order of the ion gyrofrequencies has been discussed by Gurnett et al. [1965] in connection with ion cyclotron whistlers. One of the results of principal interest to this paper is a cutoff in the extraordinary mode of propagation (corresponding to the usual whistler mode when ions are not considered) at a frequency hetween the proton and helium gyrofrequencies. This cutoff frequency is called the $L=0$ cutoff frequency \lceil Stix, 1962] or the two-ion cutoff frequency [Smith and Brice, 1964]. At the $L=0$ cutoff frequency the index of refraction goes to zero for all angles of propagation and the extraordinary mode becomes evanescent (non-propagating)

The importance of the $L=0$ cutoff frequency for the propagation of ELF waves in the ionosphere can be best illustrated using the plot of various critical frequencies versus altitude shown in Figure 6.' The fractional concentrations of $\mathrm{HI}^{+}, \mathrm{He}^{+}$, and O^{+}, shown at the bottom of Figure 6, are typical of a mid-latitude, local night (temperature $=800^{\circ} \mathrm{K}$) ionosphere and are identical to the model ionosphere used in Gurnett et al. [1065]. The critical frequencies plotted in Figure 6 are the
proton gyrofrequency $\left(\Omega_{p}\right)$, the crossover freallency r Smitr and Brice, lo64) (also labled $n=0$ according to the nomenclature of Stix $\{19627$, and the $L=n$ cutnff frequency.

The role which these critical freanencies nlav for ELF waves propagating in the ionosnhere can he illustrater by following a wave propagating downward from a source at high altitudes. Starting at a high altitude of 3000 km and a representative freauency of $40 \cap \mathrm{~Hz}$ the wave must he propagating in the extraordinary (whistler) mode since above the proton gyrofreauency the ordinarv mode is evanescent (up to frequencies on the order of the electron gyrofrequency, $\sim 1.0 \mathrm{MHz}$). At this altitude the extraordinary mode is right-hand nolarized. As the wave nropagates downward no major effect occurs until it reaches the altitude where the wave freauency is equal to the crossover frequency (ahout 880 km altiture for 40 nn Hz in Figure 6). As the wave crosses the $n=n$ (crossover frequency) altitude, the polarization changes from right-hand to left-hand. This nolarization reversal effect occurs only for plasmas with two or more ions fatix, 1962] and was first demonstrated to occur for oroton
whistlers propagating upward from the base of the ionosphere [Gurnett et al., 1965]. After the polarization reversal the wave can continue to propagate downward, left-hand polarized, until the altitude is reached at which the wave frequency is equal to the $L=0$ cutoff frequency (about 780 km for 400 Hz in Figure 6). At this altitude the index of refraction for the extraordinary mode (now left-hand polarized) goes to zero for all angles of propagation and is immaginary (non-propagating) at all lower altitudes. Thus, for waves propagating downwards from a high altitude source, only altitudes above the $L=0$ altitude are accessible to these waves. The region accessible to downward propagating waves is illustrated by croschatrhing in figure 6. The minimum transmission frequency to the ground (700 Hz in Figure 6) is determined by the altitude at which the H^{+}concentration hecomes so small that polarization reversal no longer occurs when collisions are considered [Jones, 1968]. This minimum transmission frequency produces an analngus cutoff for upward pronagating waves which is common 1 y ohserved for the right-hand polarized whistler preceding ion cyclotron whistlers [Gurnett et a1., 1965].

Because of refraction as the wave approaches the $\mathrm{L}=0$ altitude, a downward propagating wave will in general be reflected before it reaches the $L=0$ altitude. The reflection altitude depends critically on the initial wave normal angle and can even be ahove the crossover or proton gyrofrequency altitudes. For a horizontallv stratified ionosphere the altitude at which reflection takes place can be determined from a nlot of the horizontal refractive index (n_{x}) as a function of altitude, as 'shown in the top of Figure 6. From Snell's law reflection will take place when n_{x} is equal to the initial horizontal component of the refractive index vector ($n \sin \theta$, $\theta=$ initial angle of incidence).

From the plot of the horizontal index of refracti in Figure 6, it can be seen that the largest vertical gradient in n_{x} occurs in the altitude range between the $\mathrm{L}=\cdot 0$ cutoff and the proton gyrofrequency altitudes. Thus, for a reasonably uniform distribution of initial wave normal angles, most of the waves will be reflected in this altitude range, or correspondingly, below the proton gyrofrequency and above the $L=0$ cutoff frequency.

From this discussion of the effects of ions on downward propagating ELF waves in the ionosphere, it is
evident that the low frequency cutoff of ELF emissions can be explained by the reflection of downward pronagating ELF emissions due to the large vertical gradient in the refractive index of the extraordinary mode near the $L=n$ altitude. The following general points of agreement with the experimental data support this exnlanation.
(1) Relation of the Cutoff Frequency to the Proton Gyrofrequency. The altitude of reffection, and the corresponding cutoff frequency, are expected to he generally below the proton gyrofrequency, as is generally ohserved. It is possible, however, with a sufficiently large intial wave normal angle, for the reflection altitude and the corresponding cutoff frequency to be above the proton gyrofrequency, as has heen ohserver in a few cases.
(2) Relation of the Cutoff Frequency to the $L=n$ Cutoff Frequency. Calculations of the $t=0$ cutoff frequency as a function of altitude for reasonahle postimates of the ion concentrations generally show that the observed cutoff frequency is somewhat greater (10 to $7 n$) than the calculated $\mathrm{L}=0$ cutoff freanency. In a few cases at mid-latitudes, where nroton whistjers are ohserved
simultaneously with a lower frequency cutoff of ELF emissions, the observed cutoff frequency was found to he above the crossover frequency (the crossover frequency is easily determined from proton whistlers). These observations are consistent with the explanation that the cutoff is due to the reflection of downgoing waves above the $L=0$ altitude, and, therefore, above the $L=0$ cutoff frequency. Since the cutoff frequency and the spectrum near the cutoff are strongly dependent on the intial wave normal angle, the observed cutoff is not, in general, the $L=0$ cutoff frequency. Thus, the cutoff frequency cannot be easily used to obtain ion concentration information as has been done for the crossover frequency of ion cyclotron whistlers. The dependence of the frequency spectrum near the cutoff on the initial wave normal angle has been suggested (N. Brice, personal communication) as a method of determining the distribution of wave normal angles.
(3) Altitude Dependence of the Cutoff Frequency. Since the $L=0$ cutoff frequency strongly influences the refractive index near the reflection altitude, the altitude dependence of the observed cutoff frequency is expected to be similar to the altitude dependence of the $L=0$ cutoff
frequency. As the $L=0$ cutoff frequency, and the ratio of the $L=0$ cutoff frequency to the nroton gyrofreanency, always decreases with increasing altitude (see Figure 6). the general tendency for the cutoff freauency (F_{c}), and the ratio of the cutoff frequency to the nroton grofrequency (F_{c} / δ_{p}), to decrease with increasing altitude, as illustrated in Figures 3 and 5 , is accounted for.
(4) Transmission Past the $\dot{L}=0$ Cutoff and mone Coupling. ELF emissions are often ohserved which exteni considerably below the lower cutoff frequency of FLF hiss, and below the $L=0$ cutoff frequency estimated from reasonable models of the jon concentrations. These cases of transmission past the $L=0$ cutoff seem to he parti-cularly-common at high latitudes (above 60° TNV).

Transmission past the $L=n$ cutoff can he readily explained by mode coupling near the crossover frequencr, much as in the case of ion cyclotron whistlers f Gurnett et a1., 1965; and Jones, 19681. When the effects of collisions are included a critical counling angle (θ_{c}), relative to the geomagnetic field, is ohtained. For wave normal angles greater than θ_{c}, at the crossover frequency altitude polarization reversal. occurs in ths usual way (right-to
left-hand for downgoing waves) and the wave cannot go helow the $L=0$ altitude. For wave normal angles near θ_{c}, however, the phase velocities of the two modes are verv nearly equal and mode coupling is strong, with the result that both right- and left-hand polarized waves are produced below the crossover altitude. Since the $I=0$ cutoff is only for left-hand polarized waves, the right-hand nolarized component can he transmitted nast the $\mathrm{L}=0$ cutoff. frequency. For wave normal angles less than θ_{c}, nolarization reversal does not occur [Jones, 1968$]$ and all of the wave energy can be transmitted past the $L=n$ altitude. Since the critical coupling angle is usuallv rather small (5 to 10°) mode coupling effects are expected to occur only for waves propagating nearly parallel to the geomagnetic field at the crossover frequency altitude. Thus, mode coupling would tend to occur nrimarily for ducted propagation or for certain latitude ranges where the source, presumed to be near the equatorial nlane, illuminates the ionosphere with wave normal angles.nearlv parallel to the geomagnetic field. Some of the ohserved cutoff characteristics, such as the tendency for sharnly defined cutoffs and less scatter in the cutoff freanencies at low latitudes (less than 60° INV), anpear to he
consistent with the expected latitude variation in the wave normal angles from an ELF emission source near the equatorial plane at L values of 4 to 8 . Considerahle additional investigation is required to estahlish the role of mode coupling for ELF emissions observed at low altitudes in the ionosnhere.

IV. DISCUSSION

In addition to explaining the low frequency cutoff of ELF emissions, the reflection of downoing waves near the I = 0 cutoff frequency may have application to other ELF radio noise phenomena observed on the ground and hy satellites. Possible effects related to the $L=n$ cutoff frequency are discussed below.
A. 700 Hz Noise Bands

ELF and VLF emissions in the frequency range from a few hundred Hz to several kHz are very commonly observed from the ground at middle and high latitudes. Observations of ELF noise at.Kiruna, Sweden, (65.3° goemagnetic latitude) by Aarons et a1. [1960]; Gustafsson e.t al. [1960]; and Egeland et al. [1965] have shown that the flf noise spectrum generally has a strong peak at abou: 700 Hz . These observations of strong band emissions at approximately the proton gyrofrequency in the lower ionosphere (about 700 Hz at 400 km altitude) have led to the suggestion that this noise may be generated by proton cyclotron radiation in the ionosphere [Aarons et al., 1960].

When the effects of inns are considered on the propagation of FLF waves a fairly simnle exnlanation arises for the 700 Hz noise band emissions observed hy Aarnns and others. From Figure f it is seen that the minimum transmission freauency to the grounc is determined hy the proton gyrofrequency at the hase of the protonosnhere. If the frequency snectrum of the downoning roise is increasing rapidly towards lower frequencies in this frearency range as is often the case judging from the Injun 3 data, then the resulting ELF noise spectrum observed on the ground would be peaked near the minimum transmission frcoupncr, the peak being rue to the comhination of the sharn lower cutoff in the transmission to the ground and the frequency spectrum of the source. This exnlanatinn can account for the princinal characteristics of the $70 n \mu_{2}$ noise band given hy Fgeland flog5al, namelv that (l) the peak noise intensity occurs at a frenllency near the proter gyrofrequency in the lower innosphere (ahout. $7 \mathrm{nn} \mathrm{Hz}_{\mathrm{z}}$ at 400 km altitude), (2) the noisc snectrum has an asvmenotrical shane, with a slone which is muct ateener helnw the frequency of maximum amnituce tran ahove, and (z) the noise band is relatively narrov (ahout $5 n \mathrm{n}_{\mathrm{H}} \mathrm{H}_{\mathrm{z}}$.

B. Multiple Noise Rands

Figure 7 illustrates two examntes of noise hands occurring at frequencies ($200-300 \mathrm{I} z$) considerahlv helow the usual two-ion cutoff freauency near the nroton gronfrequency. These noise bands each have a sharn, low frequency cutoff at approximately the Te^{+}gyrofreanency. Since there is also a two-ion cutoff frequencr hetween the He^{+}and O^{+}. gyrofrequencies, these $10 w$ frequencr cutoffs may be due to the reflection of downoing waves near the $\mathrm{He}^{+}-\mathrm{O}^{+}$two-ion cutoff frequency, similar to the reflection of ELF emissions near the $\mathrm{H}^{+}-\mathrm{He}^{+}$two-ion cutnff frequencr. Many additional examples of multiple fla noise hands must. be studied to determine the role which ion effects have on the propagation of these noises.

C. $L=0$ Cutoff Effects
 for Mhistlers

Just as with Elf emissions, downgoing whistlers in the ELF frequency range will he reflected ahove the $\mathrm{L}=\mathrm{n}$ altitude in the absence of mode coupling. This tyne of reflection of whistlers has heen ohserved in VLF data from the OGO-II and IV satellites [Muzzio, 1968$].$

ACKNOWLESGEMENTS

The authors wish to express their thanks to Mr. S. D. Shawhan and, Mr. W. Taylor for their helnful comments on this paper and to Professor J. A. Van Allon for his continuing support and encouragement. This research was supported in part by the $\cap f f i c e$ of Naval Research under contract Nonr $1509(06)$ and by NASA grant NGR-16-001-n43.

REFFRFNCFS

Aarons, J., G. Gustafsson, and A. Fgeland, "Correlation of audio-frequency electromagnetic rac̣iation with auroral zone micronulsations"; Nature, 185, 148, (1060).

Burns, $I . B$., "A study of WhF noise bands with the Iniun z satelifite", paner nresented at the Fall IRST meeting, Palo Alto, Calif., 0966).

Chamberlain, J. W., Phvsics of the Aurnra and Airglow (Academic Press, New York, 1061).

Egeland, A., G. Gustafsson, S. Olsen, w. Rarron, and A. Katz, "An investigation of the natural plectrnmagnetic radiation hetween $10 \mathrm{c} / \mathrm{s}$ to $1 \mathrm{n} \mathrm{r}-\mathrm{c} / \mathrm{s}$, " Arkiv For Geophrsik, 1 (28), 537, (1n65a).

Egeland, A., G. Gustafsson, S. Olsen, J. Narons, and w. Barron, "Auroral gone emission centered at $7 n n$ cycles per second," J. Geophys. Pes., $7 \mathrm{Z}, 1070$. (1965k).

Gallet, R. M., "The verv low frequency emissinns generater in the earth's exosphere," J. Res. Nat]. Rur. Str., 63D, 2i, (1959).

Gurnett, D. A., and B. J. n'Brien, "ligh-latitude gennhvsical studies with the satellite Tnjun 3. Dart 5. Very-low-frequency electromagnetic radiation," J. Geophys. Res., 60, 65, (1064).

Gurnett, D. A., S. D. Shawhan, N. M. Price, and. D. I. Smith, "Ion Cyclotron Whistlers," T. Gennhyc. Res., 70, 1665, (1965).

Gustafsson, G., A. Egeland and J: Aarons, "Andin-freauencv electromagnetic radiation in the auroral zone," J. Geophys. Res., 65, 2740 , (196ก).

Guthart, H., T. L. Crystal, P. P. FickTin, w. F. R1air, and T. J. Yung, "Proton óvrofrequency band emissinns

Hellivell, R. A., Whistlers and Related Tonosnheric Phennmena (Stanford University press, Stanford, Calif, Tत反s).
Jones, D., 'The thenry of the effect of collisions on ion cyclotron whistlers", naner nresented at the NATn Advanced Studv Institute on Plasma Waves in Snace and in the Lahoratory, Rфros, Norwav, (77-?6 Anril 1968).

McIlwain, C. E., "Coordinates for manning the distrihution of magnetically tranned narticles.". T. Geonhvs. Des.. 66, 3681 , (061).
Muzzio, J. L. R., "Reflection of whistlers in the innosnhere," paper 5-7 presented at the Snring IRSY meeting, Washington, Л. C., (068).
Smith, E. J:, R. F. Holtzer, J. V Olann, and R. K. Rurton, Measurements of magnetic fluctuations hetween 1 and $10 n 0 \mathrm{~Hz}$ in the Inwer magnetosnhere, " naner $5-3$ presented at the Snring IIRSt meeting, Nastington, ก. C., (1968).

Smith, R. L., and N. M. Brice, "pronagation in multicomponent nlasmas, "T. Renphys. Res. KO, 5020 , (10кA).
Stix, T. H., The Theory of Plasma Waves ('criraw-litil fonnt-
Taylor, W., and D. A. Surnett. "The fiornhologv of wir: emissions observed with the Injum satellite." Res. Rent. 6S-6, Department of Phrsica and Astronomy, I. of Inva, Iowa City, Towa, raccented for puhJication, J. Cenphys. Res., 10681.

FLGIIRF CAPTTOMIS

Figure 1	Frequency-time snectrogram of PLr hiss.
Figure 2	Snectrograms illustrating the Jow realencr cutoff of TLLF emissions
Figure 3	Scatter plot of the lower cutoff frequencr of ELF emissions as a function of altitude and latitude.
Figure 4	Spectrogram showing the 1 now freauency cutoff variations with latitude and altitude for an individual nass.
Figure 5	Comparison of the low frequency cutoff with the proton gyrofreauency.
Figure 6	Critical frequencies and horizontal index nf refraction vs. altitude for a, model innosnhere.
Figure 7	Frequency-time snectrogram of multinle noise bands ohserved with Iniun 3 .

NOISE BANDS WITH $57.5<$ INV. <59.5

Figure 2

Figure 3

Figure 4

667-424-1

Figure 5

Figure 6

DOCUMENT CONTROL DATA - R\&D

(Securty classification of title. body of abstract and indexink annotation must be entered when the overall report is classifted)
1 ORIGINATING ACTIVITY (COFPORATE aUthOR) $\quad 2$ a REPORT SECURITY CLASSIFICATICN

University of Inwa
Department of physics and Astronomv

INCT,ASCTFTFП
$2 b$ GROUP
3. REPORT TITLE

The Low Freauency Cutoff of rlif Fmissions

4- DESCRIPTIVE NOTES (Type of raport and inclusive dates)
Progress Mav 106.3
5 AUTHOR(S) (Last namo, first name, initial)
Gurnett, Donald A. and Rurns, Thomac R.

6 REPORT DATE	7a. totalno of pages	7 Pa NO.OFREFS
May 1968	34	10
Ba Contractior grant no Nonr 1509(06) b PROJECT NO	9a ORIGINATOR's REPORT	BER(S)

c
9b OTHER REPORT NOPS) (Any other numbers that may bo assignod this roport)
d
10 AVAILABILITY/LIMITATION NOTICES
Distribution of this document is un1imiter.
11. SUPPL EMENTARY NOTES

12 SPONSORING MILITARY ACTIVITY

Office of Naval Desenrch
13. ABSTRACT

ELF and VLF radio noises ohserved hy satellites in the ionosphere often have a verv sharn lover cutoff freanencr near the proton gyrofrequency. This nancr summarizer the experimentally observed characteristics of this low frentence cutoff and promoses an exnlanation for tho cutnff hasod an the reflection of downward pronagating, extranrdinary mode, waves near the two-ion cutoff frequency hetweon the nroten and helium gyrofrequencies. This exnlanatinn, if correct, provides the first direct evidence that chorus and ricr hiss emissions are generatod at high altitudes (ahore znnn 1 m) and not near the hase of the protonosniere.

Ground-hased ohservations of 7 nn ${ }^{1 r} z$ noise hands mear the auroral zone, previouslv attrihutakle to nroton cuclotron radiation at low altitudes in the ionosnhere, can now ho explained hy this reflection mechanism. nther nossihlv relinted effects (such as multiple FIf noise hands, tranning of fir waves in the ionosnhere, and the reflectinn of whistlors at the two-ion cutoff frequencv) are discussed.

Security Classification

[^0]: *Research supported by the National Aeronautics and Snace Administration under grant NGR 16-n@1-n4.3 and hy the Office of Naval Research under contract Nonr $15 n \cap(06)$.
 **National Aeronautics and Space Arministration Sraduate Trainee

