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MATHEMATICAL DETERMINATION 
OF GEOMETRICAL IMAGE ABERRATIONS IN 
SINGLE- AND DOUBLE-MIRROR SYSTEMS 

By Martin G. Hurwitz and Hubert F. A. Tschunko 
Electronics Research Center 

SUMMARY 

The mathematical analyses to determine the image aberrations 
of single- and double-mirror systems are presented. The single 
mirrors, spherical and paraboloidal, are considered. Then, 
double-mirror systems with paraboloidal primary and hyperboloidal 
secondary are considered, along with higher aspherics of the 
secondary and tolerances in the relative positions of the mirrors. 
This investigation is a first step in the evaluation of the 
imaging performance of single- and double-mirror systems. 

The general analysis available in the literature is not 
applicable without development for the special requirements of 
the present case. This special raytracing is the prerequisite 
needed later for the Fourier transformations which serve to derive 
the image performance data necessary to the determination of wave 
optical aberrations. 

INTRODUCTION 

Image aberrations of mirrors and mirror systems have been 
investigated by many authors. In general, the more recent in- 
vestigations used the third and higher order theory of aberra- 
tions. In this treatment these theories are not used, and the 
different families of geometrical image aberrations are not con- 
sidered. 

The image aberrations of single- and double-mirror systems 
are analyzed. Three-dimensional analytical and numerical ray- 
tracing methods are used in the determination of the sizes and 
shapes of the images. Apertures are represented by points uni- 
formly distributed on concentric aperture circles which are pro- 
jected as a cluster of closed-image curves. The largest dimen- 
sion of each cluster is taken to be the aberration value E .  

First, single imaging mirrors with both spherical and 
paraboloidal imaging surfaces are investigated. Special features 
of the image curves, including the catacaustic for the sphere, 
are considered. Then, double-mirror systems with paraboloidal 
primary and hyperboloidal secondary mirrors are treated. Finally, 
position tolerances in the distances between both mirrors are 
considered. 



MATHEMATICAL ANALYSIS 

Single Mirrors 

Initially, single-mirror systemswere considered using 
mathematical models of the spherical and paraboloidal mirrors. 
These models were developed to permit comparative investigations 
of aberrations of each mirror as a function of its focal number 
and angle of field. 

Consider a three-dimensional Cartesian reference frame with 
the optical axis along the z axis. A single-mirror telescope is 
modeled by a portion of a sphere or paraboloid with its’vertex 
at the origin, its axis coincident with the optical axis, and its 
center of curvature along the positive z axis (Figures 1 and 2 ) .  
The equations of the surfaces are 

(sphere) 

x 2 + y 2 + ( 1 - z )  2 - 1 = o  

x 2 + y 2 - 2 z + z  2 = o  

and 

(paraboloid) 2 2 x + y  - 2 2 = 0  

PARABOLOID 

Figure 1 Figure 2 

A point target at infinite distance emits light rays imping- 
ing on the aperture; these rays are reflected from the mirror 
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Y 
A surface and imaged at a focal 

+ soo plane placed orthogonally to the 
optical axis at the focus of the 
paraboloid (0, 0, 0.5) where the 
focal length FL is 0.5. The 
apertures, in either case, are 
represented by points uniformly 

ture circles representing differ- 
ent focal numbers (Figure 3 ) .  

%X distributed on concentric aper- 

In all the ray tracing cal- 
culations, directions are defined 
in terms of 

j *  cos a cos B and cos y 

These are the direction cosines 

j f  j f  
Figure 3 

related to the x, y, and z axes, respectively, and the subscripts 
j = i,!n, or e are related to incident, normal, and exit rays, 
respectively. The exit ray directions may be determined when the 
incident rays and surface normals are known. Thus: 

cos c1 = cos 2anc0s ai + 2cos an(COS Bncos Bi + cos yncos yi) 

Bi + 2cos q c o s  yncos yi + cos ClnCOS a . )  

(cos clnCOS ai + cos Bncos Bi) 

e 

cos B 

cos y = cos 2y cos y 

= cos 26 cos e n 1 

+ 2cos y e n i n 

Consider a ray approaching the mirror with angles yi, 

The intersection of the mirror surface with its normal is 

= (.rr/2) - yi. 'i a = "/2, i 

determined from the focal number, i.e., focal length over aper- 
ture diameter equals FN, as follows: 

- 0.5 
yo - q ( 4 )  

where yo is the radius of the aperture. The radius of curvature 
is assumed to be 1.0 and the focal length equal to 0.5. For the 
sphere : 

yo = sin y (5) n 
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and for the paraboloid: 

yo = -tan yn. 

The direction cosines of 'n are determined from 

cos an = sin yncos JI , cos 8, = sin ynsin 1c, (7 1 

where ranges as position angles over the aperture circle points. 
The direction cosines of the exit ray may now be determined from 
Eq. ( 3 ) .  

The exit ray is defined in terms of its intersection with 
the mirror (xl, yl, zl), and its direction cosines as 

where 

x = yocos $ I y1 = yosin $ 1 

while 

2 = 1 - cos yn 1 

for the sphere and 

for the paraboloid. 

This ray may be intersected with the focal plane z = 0.5 
to define an image point. The entire image is obtained by 
allowing $ to range over each aperture circle of constant radius. 
Different focal numbers provide different radii and different 
concentric aperture circles represent different focal numbers. 
All image curves together represent the image cluster, the 
whole geometrical image of the point object. 
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Special Image Points 

The images from a paraboloidal single mirror display some 
interesting properties, such as a triple point and highest point, 
already pointed out by Crockett (ref. 1) and Plummer (ref. 2 ) .  

The triple points indicate a region in focal numbers and 
fields of view where the maximum sizes of the geometrical aber- 
rations change from linear to quadratic dependence with field of 
view. 

Each highest point indicates one limiting position within 
an image cluster. These points are necessary in determining the 
aberration sizes of the clusters, especially for larger focal 
numbers. Without these points no theoretical evaluation of the 
aberrations for higher focal numbers is possible. 

These derivations are included because no exact determina- 
tions of these points may be found in the literature. A deriva- 
tion of these points deals with relations between the angles of 
the incident ray and normal rays and is presented below. 

Triple Point--The triple point is that point at which the 
image curve intersects itself for $ = Oo and +goo. 

Let $ = Oo. Then, from Eq. (7): 

cos B, = 0, cos a = sin y n n 

and 

i' cos y = 0 ,  cos B~ = -sin y i 

From Eq. (3): 

cos a = sin 2yncos yi e 

(14) i cos B, = sin y 

cos y = cos 2y cos y e n i 

The intersection points ( x ~ ,  yl, zl) of the incident ray 
with the mirror surface are found to be 

1 2  
Yn , y1 = 0 , z = -tan 1 2  x = -tan y 1 
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and t h e  e x i t  r a y  i s  then  

x - x 1  y - y 1  2 - 2 ,  

1 Thus, a t  z = - 2 .  

cos c1 

cos y x =  “ ( 2  - zl) + x1 
e 

- t a n  yn  1 1 2  
= t a n  2 y n ( +  - -tan 2 yn 

= o  

and 

cos Be 
y = cos  y e (. - 21) + y1 

t a n  y i  

2 
- - (1 - t a n 2  y n )  

2cos yn 

t a n  y i  
- - 

7 

2c0sd yn 

Now, l e t  $ = - g o o .  Then: 

cos B n  = - s i n  y n ,  cos c1 = 0 n 

i cos a = 0, cos Bi = - s i n  y i 

From Eq. ( 3 ) :  

COS ~1 = 0, cos B, = s i n  ( Y  - 2 y n )  e i 

cos y = cos ( V i  - 2 Y n ) .  e 
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The intersection of the incident ray with the surface now becomes 

x = o  1 

y1 = -tan y n w  

1 
2 A t z = - :  

x = o  

= -tan 1 (yi - 2yn )(I - tan 2 yn) + tan yn 2 

1 - tan2 yn ) + tan yn ( 2 0 )  

0 The two cases, $ = 0 and $ = -90  , both yield x = 0.  The 
two values of $ result in the same image point, so the y values 
must be equated: 

tan yi 

2cos yn 

yi - tan 2y  

2 tan yitan 2yn n](1 - tan2 'n ) + tan yn . 

This is simplified as follows: 

(tan y ) (tan 2yn) (tan y - tan yn> = o i i 

Thus, the possible solutions: 

(23) tan y = 0, tan 2yn = 0, tan y = tan y i i n 
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yield the values 

yi = +nr 

and 

tan y 2  

n = 0, 1, 2, ... 
n = 0, 1, 2,... 

( 2 4 )  

Equation ( 2 5 )  provides the condition for the occurrence of the 
triple point. 

Highest Point--The highest point of the image curve of a 
paraboloid mirror is found as follows. 

Let the highest y coordinate of the image of a ray be 
denoted by y* and the corresponding point of intersection of the 
ray with the mirror by yl. The highest point is then determined 
by minimizing y* - y. 
From Figure 4 :  

tan y = tan (2yn - vi) e 

where 

y = tan y, 

and 

A = tan yi . 
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Figure 4 

The value: 

y* - y = tan y ( z  - zl) I (28)  e F  

with ZF equal to the position of the focal plane, is to be 
minimized. 

Taking - 
L 

= -  1 z = Y  
F 2 ’  1 2 

and tan y as above, e 

A 4 -Ax - y3 + Ay2 + y - 2 
y * - y =  - Y  

-y2 + 2Ay + 1 

9 



For a minimum: 

-(y* d - y) = 0. dY 

This results in the equation: 

y5 - 3Ay 4 3 - 2y - 2Ay2 - 3y + A = 0 

with 

Then A can be found as 

3 - 2y - 3y tan yi = A = Y 
3y4 + 2y2 - 1 

or 

n tan yi 3tan y 

or 

(33) 

for small yn, and deviates from 1/3 as yn increases. 

from the above. This equation (35) is the condition for the 
occurrence of the highest point. 

With this result, the highest point y* may be determined 

(34) 

Minimal Image Diameter of the ~- Reflected Ray Bundle in the 
Catacaustic of axpherical Mirror--In the case of the spherical 
single mirror, the incident rays form a blurred image created by 
the intersections of the tangents to the catacaustic curve with 
the optical axis, as shown in Figure 5. 

10 
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Dl AME T ER 
OF ABERRATION 

.///I I 

C A T A C A U S T I C  
w \  

Figure 5 
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The catacaustic may be described parametrically as: 

r y = h(3sin c1 - sin 3a) 

These equations may be combined to yield 

2 3 
[(Ff + (Ff - 4] = 108(%) 

where r is the radius of the sphere, and will be taken to be 
unity . 
Further reduction of the above yields 

3 y2 = [$(. 2 + y2 - ',I 
4 

(37) 

The reflected rays from a spherical mirror create a blurred 
image even when the incident rays are parallel to the optical 
axis. This occurs because the sphere does not image to a single 
focus as does the paraboloid, but each concentric zone of the 
spherical mirror has a different focal point for angles of 
incidence yi = 0. 
envelope of the reflected rays. The rays from the largest 
aperture will be imaged in the focal plane, with the largest 
aberrations. The reflected ray is given by 

In this way, the catacaustic is formed as an 

y = -tan ye(z - zl) + y1 . 

For the sphere: 

Ye = 2Yn 

(39 1 

n y1 = sin y 

z = -cos yn . 1 

12 



Substituting: 

y = -tan 2y (z + cos yn) + sin yn . n 

Solving for z :  

y - sin y 

-tan 2yn 
n z =  - cos yn . 

( 4 1 )  

Substitution of this expression for z into the equation of the 
catacaustic then yields: 

i 6 c A i Y  = 0 
i=O 

where 

B2 5 A2 = 7(5B 3 4 - - 3B2 + &) + 3 ( B 4  - - 2 - -) 6 4  2 T 

A3 - - ~ ( 2 0 B  B 2 - 3)  + r(B 1 2 B  
T 

2 - +) 

( 4 3 )  

( 4 4 )  

3 
A6 = (-$ + 1) 
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and 

-sin y + cos yntan 2y, 

tan -2yn 
- n B =  ( 4 5 )  

T = tan 2yn . (46) 

This equation in the variable y is solved by an iterative 
procedure, while noting that y and y are opposite in sign. The 
diameter of the minimum bundle is ta i en as the aberration, 

To this minimal bundle diameter belongs a z-coordinate 
defining the optimal focal position for yi = 0. This focal 
position yields the focal length used to determine the image 
aberrations of the spherical mirror. For each focal number FN 
a nominal value of the largest aperture diameter is used, thus 
yielding the optimal focal position length, or optimal focal 
length. For all smaller aperture circles of the same aperture, 
the same optimal focal length had to be used to assure the same 
focal plane in the same cluster of image curves. 

The optimal focal plane positions OFP are presented as a 
function of focal number in the following table. 

The OFP's are often obtained in a cumbersome and rather 
imprecise way. For this reason, they were computed with a higher 
number of figures to show the approach to the value of 0.5. 

These values are necessary to compute the image aberrations 
of spherical mirrors over a larger range of focal numbers. 

DOUBLE-MIRROR SYSTEM 

First the ideal system is treated. This is a system of 
geometrically perfect paraboloidal primary and hyperboloidal 
secondary mirrors, without any higher surface aspherics, nor any 
provisions for tolerances in the mutual position between the two 
mirrors. 

14 



FN 

.5 

.75  

1.0 

1 .5  

2.0 

2.5 

3 .0  

3.333 

4.0 

5 .0  

6 .0  

8.0 

1 0 . 0  

1 2 . 0  

16 .0  

20 .0  

VALUES OF OPTIMAL FOCAL PLANE AS A FUNCTION 
OF FOCAL NUMBER FOR SPHERICAL MIRRORS 

OFP 
- - 

0.43193 40028  6 5 5 4 2  

0 .47669 8 7 8 0 2  44569  

0 .48754  48957  6 1 0 7 6  

0 .49465  1 8 5 2 5  9 0 0 3 7  

0 .49702 6 6 6 3 8  9 1 0 1 4  

0 .49810 7 2 3 0 9  29950  

0 . 4 9 8 6 8  9 3 7 5 8  44114  

0 .49879  9 0 6 8 2  3 9 8 5 7  

0 .49926 48846  1 5 9 5 8  

0 .49953  0 1 4 8 4  09819  

0 .49967 3 9 4 8 3  5 8 0 6 8  

0 . 4 9 9 8 1  6 7 2 6 7  1 7 2 2 7  

0 . 4 9 9 8 8  2 7 4 3 7  89342  

0 . 4 9 9 9 1  85866  6 2 5 3 8  

0 .49995  4 2 1 3 1  5 2 6 8 7  

0 .49997  0 6 9 8 8  32746  
- 

FN 

25.0 

32.0 

50 .0  

64.0 

80 .0  

100.0  

1 5 0 . 0  

200 .0  

250 .0  

256 .0  

320.0 

400.0 

500 .0  

512 .0  

1000.0  

1 0 2 4 . 0  

OFP 

0.49998 1 2 4 8 2  41999  

0 .49998  85552  5 3 3 2 5  

0 .49999 5 3 1 2 3  90134  

0 .49999  71389  3 6 1 2 3  

0 .49999 81689 28549  

0 .49999 8 8 2 8 1  1 8 1 3 4  

0 .49999 9 4 7 9 1  65315  

0 .49999 97070  3 0 8 2 1  

0 .49999  98124  99825  

0 .49999 9 8 2 1 1  86497  

0 .49999  98855  59363  

0 .49999 99267  5 7 8 7 8  

0 .49999 9 9 5 3 1  34400  

0 .49999  99552  96535  

0 .49999 99884  33952  

0 .49999  99889  1 9 1 3 2  

Ideal System 

The double-mirror systems are Cassegrain systems. The 
primary is a paraboloid of revolution and the secondary is one 
sheet of a hyperboloid of two sheets. The paraboloid contains a 
central core in an area obstructed by the projection of the 
secondary mirror in the direction of Yir and of sufficient 
diameter to permit imaging of rays in a focal plane described 

1 5  



by z = -B, B > 0. Except for the core, the mirror will be the 
same as the single-mirror paraboloid described above. 

In the ideal system, one focus of the hyperboloid coincides 
with that of the paraboloid, while the other focus is located at 
the point (0, 0, -B) , the intersection of the focal plane with 
the optical axis (Figure 6). 

The hyperboloid is described by the equation 

C z = h + z[(K + 1) (Z - h)2 + p 2 ]  

where 
2 

P 2  = (x - xo) + (y - yo)2 , 

x and y are displacements from the optical axis, 0 0 

2- 
= (K + l ) L  

is the vertex curvature of the hyperboloid, 

( 4 8 )  

( 4 9 )  

where e is the eccentricity of the hyperboloid, and M is the 
imaging magnification of the secondary mirror, 

L = 0.5 + B , ( 5 2 )  

which is the distance from the secondary effective focal plane 
to the primary focus, and, 

0.5 - MB 
M + 1  ’ h =  (53) 

is a displacement along the optical axis. 
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The hyperboloid equation may be written as 

where 

1 
C (K + 1.) a =  

b = a$(K + 1) 

are the semi-major and semi-minor axes, and 

z = h + a  
0 ( 5 7 )  

is the z coordinate of the center of the system. This provides 
a more common form for an elliptic hyperboloid of two sheets with 
center at (xo, yo, z o ) .  

A further simplification yields: 

+ z o  
K + 1  z = k  

with the plus sign representing the right-hand sheet. 

Double Mirror Geometry 

The double-mirror system will create images in the back 
focal plane. 
that for the single mirrors up to reflection from the primary. 
The exit rays from the primary will intersect the secondary at 
points which must be determined. This determination is accom- 
plished by simultaneous solution of the equation of exit ray with 
that of the hyperboloid using an iterative procedure. The inter- 
section point will be called (x2, y2, z2), and the value for 22 
should approximate the value B + h. 

The imaging process will be initially the same as 

Once this point is established, the ray is reflected from 
this point, through the core of the paraboloid, and toward the 

r 

. 
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focal plane. The normal to the hyperboloid, H(x,y,z) = 0, at the 
intersection point is established for use in determination of the 
exit ray. This normal will have direction cosines 

a H  cos a = -t 

cos B, = -t 1: \ 
aY 

cos yn = -t az a H  1 
with t determined as 

1 I t =  

since 

The equation of the exit ray from the hyperboloid is then 

( 5 9 )  

(60) 

where cos ae, cos Be, and cos ye are determined as in Eqs. (3), 
using the old exit angles as the new incidence angles, and the 
normals just established. The intersection point of this ray 
with the focal plane z = -B is then established, providing an 
image point (x 3' Y3r Z3)' 

The values y3 may be reduced to a common origin so that 
comparison of values is facilitated. This is accomplished by 
subtracting a normalizing value from each y3. 
values are computed as above with 

Such normalizing 

y, = 0, yi # 0, and FN = FN (nominal) 

19 
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and represents the intersection point of a ray through the center 
of the aperture with the secondary effective focal plane. 

When this procedure has been done for all values of $ for 
each aperture, the required images have been achieved as clusters 
of closed image curves. The largest dimention of each cluster 
is taken to be the aberration value E. 

Higher Aspherics 

The hyperboloid will be described so as to include higher 
aspherics. These higher aspherics are introduced in such a way 
as to preserve radial symmetry of the surface about the optical 
axis. The inclusion of higher aspherics requires a modification 
of the equation of the surface, 

with the Ci's as parameters to be determined. 
gation, n is taken to be no more than 4 because the ranges of 
values to be considered render negligible the terms p l  with 
i > 10. 

For this investi- 

Tolerances 

In addition to higher aspherics, the hyperboloid may be 
repositioned. A position change along the optical axis, an axial 
shift, will be denoted by 6, and the hyperboloid equation becomes 

I n 
2(i + 1) 

z = z  + & + a + -  + c CiP 
a2(K + 1) i=l 0 f 

and represents the secondary mirror, an aspheric hyperboloid dis- 

where xo and yo are now to be termed lateral shifts fromothe 
optical axis, as defined in Eq. ( 4 9 ) .  

placed axially by an amount 6 and laterally by amounts x and y 0' 

20 



The non-displaced case without higher aspherics is given by 
Eq. (64) with 6 = xo = yo = 0, and Ci = 0, i = 1,. ..,4. 

Finally, the hyperboloid may be tilted about its vertex. 
This tilting will be considered relative to the x' and y axes, 
respectively, and jointly. Two-dimensional Cartesian coordinate 
systems, with x, y, and x', y' axes rotated through an angle e 
relative to each other may be related as 

x = xlcos e + y'sin e 

y = -x'sin 8 + y'cos 8 . (65) 

To achieve rotation of the system, the on-axis hyperboloid is 
shifted along the optical axis a distance, 

+ 6  C ( K  + 1) A = h +  ( 6 6 )  

so that its origin coincides with that of the coordinate system. 
The hyperboloid is rotated first about y with angle 0 ,  then 
about x with angle +, and finally shifted back to its original 
vertex position. The equation of the hyperboloid with tilting 
is 

[ ( z  - AICOS + + (x - xo)sin +]cos e + ( y  - yo)sin e 

where 
n 

i=l 

21 
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and 

2 z)sin 4 + (x - xo)cos 4 1  ( P ' )  = [(A - 2 

+ ( - [ ( z  - AICOS + + (x - xo)sin +]sin e 

2 + (y - YO)COS e }  

Equation ( 6 7 )  will be rewritten as 

H(x,y,z) = 0 

where 

( 6 9  I 

H(x,y,z) = [ ( z  - A)COS + + (x - xo)sin +]cos e 

+ (y - yo)sin e - a [ p g  - 11 

Optimum Axial Focus with Axial Shift Tolerance 

In an ideal, double-mirror system, a parallel bundle of 
light approaching the primary mirror with yi = 0 would create a 
point image on the optical axis in the focal plane. (When 
yi # 0, aberrations are formed in the focal plane image.) If, 
in addition, tolerances in axial shift are introduced, it becomes 
necessary to find the optimal position for the focal plane, as 
the image with minimal aberrations no longer occurs at Z = -B, 
the secondary focus of the original hyperboloid. 

The optimal focal plane position was evaluated as follows. 
For 7 )  = 900,  the corresponding ray was traced as above, and 
imaged in each of two focal planes separated by a distance ZB. 
This was done as a function of the focal number FN; the ray 
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b . 1  

. 

corresponding to the minimum value of FN was intersected with 
the rays corresponding to FN + nA(FN), with A(FN) an increment, 
for n = 1,2,... until an intersection was obtained which pro- 
vided the minimum aberration value. 

An iteration was then performed to ensure the realization 
of the actual minimum aberration. The position on the optical 
axis corresponding to these minimum aberrations was taken to be 
the focal plane position. 

COMPUTATIONS 

The given analyses provide the necessary geometrical skele- 
ton for the numerical evaluation of image aberrations for the 
implementation on digital computers. 

The computations were done using FORTRAN IV on the IBM-7049 
I1 of NASA-ERC. 
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