DESCRIPTION AND EVALUATION OF DIGITAL-COMPUTER DESIGN-ANALYSIS PROGRAM FOR HOMOPOLAR INDUCTOR ALTERNATORS

by David S. Repas and Gary Bollenbacher
Lewis Research Center
Cleveland, Ohio

DESCRIPTION AND EVALUATION OF DIGITAL-COMPUTER DESIGNANALYSIS PROGRAM FOR HOMOPOLAR INDUCTOR ALTERNATORS

By David S. Repas and Gary Bollenbacher
Lewis Research Center Cleveland, Ohio

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

ABSTRACT

A digital computer program for analyzing the electromagnetic design of homopolar inductor alternators is presented. The program, which is written in FORTRAN IV programming language, is described in general terms. The calculational methods are either outlined briefly or appropriate references are cited. Instructions for using the program are given and typical program input and output for a $15-\mathrm{kVA}$ alternator are shown. Calculated results for this and two (nearly identical) $80-\mathrm{kVA}$ alternators are compared with experimental data. In general, considering the many assumptions and approximations which are made in the calculational methods, it is felt that reasonable agreement has been obtained between the test data and calculated results.
Page
SUMMARY 1
INTRODUCTION 1
COMP UTER PROGRAM DESCRIPTION 2
General Description 2
Description of Alternator to Which Program is Applicable 3
Method of Calculation 4
Magnetic calculations 4
Efficiency and loss calculations 9
Reactances 11
Skew factor calculation 13
HOW TO USE COMPUTER PROGRAM 14
Input Data Requirements 14
Preparation of Material Decks 15
Preparation of Alternator Design Deck 17
Typical Computer Program Output 19
EVALUATION OF COMPUTER PROGRAM 27
Description of Alternators Used for Program Evaluation 27
Brayton cycle alternator 27
SNAP-8 alternators 28
Comparison of Experimental and Calculated Results 28
Open-circuit saturation curves 28
Field currents under load 29
Losses and efficiency 29
Reactances 33
CONCLUDING REMARKS 33
APPENDIXES -
A - COMPLETE FORTRAN LISTING AND FLOW CHARTS OF HOMOPOLAR INDUCTOR ALTERNATOR COMPUTER PROGRAM 35
B - DEFINITION OF FORTRAN VARIABLES 71
C - DEFINITION OF INPUT VARIABLES FOR EACH NAMELIST NAME 82
REFERENCES 90

DESCRIPTION AND EVALUATION OF DIGITAL-COMPUTER DESIGN-ANALYSIS PROGRAM FOR HOMOPOLAR INDUCTOR ALTERNATORS
 by David S. Repas and Gary Bollenbacher
 Lewis Research Center

SUMMARY

A digital computer program for analyzing the electromagnetic design of homopolar inductor alternators is presented. The program, which is written in FORTRAN IV programming language, is described in general terms.

The method of calculation is either outlined briefly or appropriate references are cited. The items that are calculated by the program include the open-circuit saturation curve, the field-current requirement at various loads, losses, efficiency, and reactances. Instructions for using the program are given, and typical program input and output for a 15 -kilovolt-ampere alternator are shown. Calculated results for this and two (nearly identical) 80-kilovolt-ampere alternators are compared with experimental data. The comparison shows that the maximum difference between calculated and experimental data is 7 percent for field currents and 0.7 percent for efficiency at rated load.

An alphabetical list of major FORTRAN symbols, the complete program listing including flow charts, and a list of input variables with definitions are given in the appendixes.

INTRODUCTION

The application of the digital computer to the design of alternators has found wide acceptance within the electric machinery industry. However, specific computer programs that have been written remain for the most part proprietary.

In 1964 work sponsored by the NASA resulted in a report (ref. 1) that contained eight design manuals and eight digital computer programs for analysis of most major types of alternators. The programs are written in the FORTRAN II programming language for use on an IBM- 1620 computer equipped with an on-line card reader and a typewriter console for input and output.

These programs suffer from two shortcomings. The first is the limitations imposed
by the equipment for which it was written. The second and more serious shortcoming is that, for most of the programs, accuracy had never been thoroughly verified by comparing calculated results with experimental data. Both shortcomings were remedied for one of the eight computer programs. The homopolar inductor program was chosen because of the interest in this alternator for use in space-power systems and because of the ready availability of experimental data for three different homopolar inductor alternators.

Elimination of the shortcomings required numerous program modifications. These modifications included converting the program to the FORTRAN IV programming language for use on an IBM-7094 computer and rewriting the input and output statements to utilize high-speed peripheral equipment. The required input data to the program were substantially reduced, and checks for obvious errors in the input data were added. The output was clarified to the point of being self-explanatory.

More significant were the modifications found necessary when results of computer calculations were compared with experimental data for the 15 -kilovolt-ampere Brayton cycle alternator (refs. 2 and 3) and for the two 80-kilovolt-ampere SNAP-8 alternators (refs. 4 and 5). All three of these alternators are rated at $120 / 208$ volts, 400 hertz, and 12000 rpm . To obtain satisfactory agreement between experimental and calculated results, modifications were made in the magnetic, reactance, and efficiency calculations.

As shown in this report, the final version of the homopolar inductor alternator computer program gives calculated results that agree favorably with experimental data for all three alternators. The program may be used both for analyzing the electrical design of specific alternators and for parametric studies of alternators for auxiliary power generating systems.

COMPUTER PROGRAM DESCRIPTION

General Description

The homopolar inductor alternator computer program is an analysis program. This means that the program accepts as input a complete electromagnetic alternator design; from this, it calculates losses and efficiency, the open-circuit saturation curve, fieldcurrent requirement at various loads, several reactances, and weights of electromagnetic components. The results of the calculations, together with the input, are then printed out to provide a complete, self-explanatory record.

The program may be used with any computer system that accepts FORTRAN IV. For program execution, approximately 13000 storage locations are needed. At the Lewis Research Center, the program has been used on the 7044-7094 Mod II direct couple system using a FORTRAN IV, version 13 compiler. For this system, typical pre-execution
and execution times for the program are 1.0 and 0.04 minute, respectively.
The computer program consists of a main program and three subroutines. The subroutines were necessary because one long program would have been too large to compile with the available core storage locations.

Description of Alternator to Which Program is Applicable

The basic alternator configuration for which the computer program was written, with each major electromagnetic component identified, is illustrated in figure 1. As shown, the alternator consists of two laminated stators separated by a toroidal field coil. Surrounding both stators and the field coil is the yoke. The armature winding passes through both stators and under the field winding.

The rotor is constructed with saliences or poles on each end; all north poles are at one end and all south poles at the other. As in a conventional salient-pole alternator, the centerlines for the north and south poles are 180 electrical degrees apart.

A number of assumptions, in addition to those implicit in the geometric configura-

Figure 1. - Cutaway view of homopolar inductor alternator.
tion, are made regarding the alternator. These assumptions are
(1) Shaft, poles, and pole head are made of same magnetic material
(2) Alternator armature winding is three-phase Y-connected
(3) Both stators are made of the same material
(4) Distance between stators is the same as the field coil width
(5) Field coil is confined to the toroidal space bordered by a stator on each side, the yoke on the outside, and the armature winding on the inside
(6) Alternator has only one field winding.

In contrast to the restrictions imposed on the alternator by the preceding assumptions, there are several options that are available to the program user. These options, which increase the applicability of the program, are
(1) Armature conductors may be round or rectangular
(2) Field conductors may be round or rectangular
(3) Armature conductors may consist of any number of strands
(4) Yoke, rotor, and stator may each be made of a different magnetic material
(5) Damper windings may or may not be present
(6) If damper windings are present, the damper bars may be either round or rectangular
(7) Five different slot configurations may be used
(8) Three different yoke geometries may be used.

Method of Calculation

This section of the report will outline in general terms the method of calculation used in the computer program. However, due to the length of the program and the large number of equations involved, specific equations will not, except in a few instances, be given. Instead, references for the major design analysis equations are given. Reference 1 is particularly applicable.

More detailed information and specific equations may be found in the program listing in appendix A. To assist in locating specific information in the listing, COMMENT cards are used freely to identify the major calculations. Of further value is appendix B, which is an alphabetcal listing of the major FORTRAN variables including definitions and units, and the flow charts for the main program and two of the three subroutines included in appendix A.

Magnetic calculations. - A cross-sectional view of a homopolar inductor alternator is given in figure 2. For clarity, a two-pole alternator is shown. The main flux path in the alternator is shown by the solid arrows, and the leakage flux paths are indicated by the broken arrows. An additional leakage flux φ_{m} from the rotor to the stator between

Figure 2 - Homopolar-inductor-alternator basic configuration and flux paths. Leakage flux across field coil, φ_{1}; leakage flux from stator to stator, φ_{2}; leakage flux from stator to rotor end extension, φ_{3}.
the rotor poles is also present. This path is shown in figure 3, which is a developed end view of the alternator.

The main flux flows from a rotor north pole, across the air gap and then radially through the stator teeth and stator back iron. It then goes axially through the yoke to the other stator stack where the flux path is completed through the stator laminations, air gap, and rotor.

Figure 3. - Homopolar-inductor-alternator end view showing leakage flux between poles. Leakage flux between poles from rotor to stator, φ_{m}.

Figure 4. - Equivalent magnetic circuit for homopolar inductor alternator at no-load.

An equivalent magnetic circuit for the homopolar inductor alternator is given in figure 4. The various leakage fluxes and permeances which are considered in this program are shown. In this report, the laminated stator back iron is referred to as the stator core. The rotor shaft is the cylindrical part of the rotor and excludes the poles (fig. 1).

Some of the more important equations and assumptions used to determine field currents for various load conditions will be described in this section of the report. The complete equations for the magnetics calculations can be found in the FORTRAN program listing for subroutine MAGNET which is included in appendix A.

The method of calculation used to determine the field current at no-load will be described first. The flux distribution in the air gap at no-load is shown in figure 5 . In the

Figure 5. - No-load rated-voltage airgap flux distribution for homopolar inductor alternator.
following discussion, the useful flux in the air gap and poles is taken to be the flux that is present, excluding the leakage flux between the poles from the rotor to the stator φ_{m}.

In determining the useful flux in the air gap and poles, a hypothetical total flux φ_{t} is first calculated. This hypothetical total flux is assumed to have a constant flux density over the entire pole pitch; that is, the shape of the field form is assumed to be rectangular (ref. 6).

From the equation for the induced voltage in the armature winding of a synchronous machine, φ_{t} is calculated. This calculation takes into account the fact that the winding is pitched and distributed and that the actual flux wave is not a true sinusoid. The flux density in the air gap B_{g} due to the useful flux is

$$
\mathrm{B}_{\mathrm{g}}=\frac{\varphi_{\mathrm{t}}}{\pi l \mathrm{~d}}
$$

where
l length of one stator stack
d inside diameter of the stator laminations
The air gap magnetomotive-force drop F_{g} from B_{g} is then

$$
\mathrm{F}_{\mathrm{g}}=\mathrm{B}_{\mathrm{g}} \frac{\mathrm{~g}_{\mathrm{e}}}{\mu_{\mathrm{o}}}
$$

where
$\mathrm{g}_{\mathrm{e}} \quad$ effective length of the air gap
μ_{o} permeability of air
The useful flux per pole φ_{p} is

$$
\varphi_{\mathrm{p}}=\frac{\varphi_{\mathrm{t}}}{\mathbf{P}} \mathrm{C}_{\mathbf{P}}
$$

where
P number of poles
$C_{\mathbf{P}}$ ratio of the average to the maximum value of the field form (ref. 7)
From φ_{p}, the flux densities and magnetomotive-force drops, due to the useful flux in both the poles and stator teeth, are determined. The effect of φ_{m}, the leakage flux between poles from the rotor to the stator, on the air gap, pole, and teeth flux densities and magnetomotive-force drops must now be included.

It is assumed that this leakage flux density is constant around the stator periphery (fig. 5). Also, φ_{m} is the product of the sum of the air gap plus pole plus teeth magnetomotive-force drops and the permeance of the leakage path. The effect of φ_{m} is to increase the flux densities and, thus, the magnetomotive-force drops in the air gap, poles, and teeth. Since the magnitude of φ_{m} and these magnetomotive-force drops are interrelated, an iteration process is involved in determining φ_{m}.

Once the preceeding part of the magnetics calculations is completed, the rest of the procedure is fairly straightforward. A flow chart that gives the order of the entire magnetics calculations is given in appendix A. The magnetomotive-force drops in the magnetic parts of the alternator are determined in the program from the material magnetization curves. These curves are an input to this program.

The magnetics calculations are also made for several alternator loads at the load power factor specified in the program input. Rated terminal voltage for the alternator is assumed for these calculations. For load conditions, some modifications to the no-load calculation method must be made. As shown in reference 1, the air-gap magnetomotive force under load $F_{g l}$ will increase from the no-load rated-voltage value. Neglecting the effect of φ_{m},

$$
\mathrm{F}_{\mathrm{g} l}=\mathrm{e}_{\mathrm{d}} \cdot \mathrm{~F}_{\mathrm{g}}
$$

where

$$
\begin{gathered}
e_{d}=W X_{d} \sin \psi+\cos (\psi-\theta) \\
\psi=\tan ^{-1} \frac{\sin \theta+W X_{q}}{\cos \theta}
\end{gathered}
$$

and

Also, from reference 1, the flux per pole under load will increase from the no-load, rated-voltage value. Again, neglecting φ_{m}, the flux per pole under load $\varphi_{\mathrm{p} l}$ is

$$
\varphi_{\mathrm{p} l}=\mathrm{g}_{\mathrm{x}} \cdot \varphi_{\mathrm{p}}
$$

where

$$
g_{x}=e_{d}-0.93 w X_{a d} \sin \varphi
$$

where $X_{a d}$ is the direct-axis armature reaction reactance. Now, φ_{m} is a function of the air gap, pole, and teeth magnetomotive-force drops and of the demagnetizing magnetomotive-force due to the armature current.

Using these modifications, the magnetic characteristics of the alternator for load conditions can now be determined. The procedure is essentially the same as presented for the no-load case.

Efficiency and loss calculations. - Individual losses and efficiency are calculated at several loads of increasing magnitude, continuing until the alternator saturates or until calculations have been completed for five loads. While the first load at which loss calculations are made must always be zero per unit, the program user has the option of specifying any or all of the remaining four loads. These loads are designated by G within the program (G is in per unit).

Rated voltage and power factor, as defined by the program input data, are assumed throughout the loss and efficiency calculations. The individual losses, that are calculated by the program, along with the method of calculation or references, are listed below.

Field conductor losses and armature conductor losses: These losses are given by the expression $I^{2} R$ where I is the dc or rms current in the winding, as appropriate, and R is the dc winding resistance corrected for the winding temperature. Correcting the winding resistance for temperature involves several assumptions:
(1) The average no-load winding temperature T_{NL} is known or can be estimated.
(2) The average rated-load winding temperature T_{RL} is known or can be estimated.
(3) The average winding temperature is a parabolic function of the current in the winding.
With these assumptions, the winding temperature T_{G} at any load G is

$$
\mathrm{T}_{\mathrm{G}}=\frac{\mathrm{T}_{\mathrm{RL}}-\mathrm{T}_{\mathrm{NL}}}{\left(\mathrm{I}_{\mathrm{RL}}-\mathrm{I}_{\mathrm{NL}}\right)^{2}}\left(\mathrm{I}_{\mathrm{G}}-\mathrm{I}_{\mathrm{NL}}\right)^{2}+\mathrm{T}_{\mathrm{NL}}
$$

where
$I_{R L} \quad$ current at rated load
I_{NL} current at no-load, equal to zero for armature winding
$\mathrm{I}_{\mathrm{G}} \quad$ current in winding at load G
For the armature winding I_{NL} is, of course, zero. (If in the program, 1.0 per unit load ($G=1.0$) is not one of the loads for which losses are calculated, then the above equation is only approximately applied to the field temperature calculations.)

Eddy losses: References 1 and 8 present discussions of armature conductor eddy losses.

Pole-face losses: For no-load pole-face-loss calculations, see references 1 and 9; for pole-face-loss calculations at any other load see reference 10 (eq. 22).

Damper losses: No-load damper losses are calculated as shown in reference 11 using the "cold" damper-bar temperature; for damper bar loss calculations under load (ref. 10, eq. 22), the "hot" damper bar temperature is used regardless of the magnitude of the load. The cold and hot damper-bar temperatures are inputs to the program.

Stator core loss and stator tooth loss: The respective equations used to calculate these losses are

$$
\begin{aligned}
& \text { Stator core loss }=k(\text { Stator core weight })(W L)\left(\frac{\text { Stator core flux density }}{B K}\right)^{2} \\
& \text { Stator tooth loss }=k(\text { Stator tooth weight })(W L)\left(\frac{\text { Stator tooth flux density }}{B K}\right)^{2}
\end{aligned}
$$

where
k empirical constant equal to 3.0. (This constant is variously stated in the literature to range from 1.5 to 3.0 . The 3.0 value was chosen in this program because it provided the closest agreement between experimental and calculated values.)
WL core loss at flux density BK and at rated alternator frequency, W / lb
BK flux density at which WL is measured
and where weights are given in pounds.
Windage loss: If an accurate value for windage loss is known, it may be read into the program for use in the efficiency calculation. If the windage loss is not read into the program, it will be assumed to be zero. The program user may also elect to have the program calculate an approximate value for windage loss. In that case, the equation used (ref. 1) is

$$
\mathrm{W}=2.52 \times 10^{-6}\left(\mathrm{~d}^{2.5_{\mathrm{n}}} 1.5_{l}\right)
$$

where

W windage loss, W
d rotor diameter, in.
n rotor speed, rpm
l pole length, in.
This equation assumes that the gas surrounding the rotor is air at standard pressure and temperature. For gases other than air at standard pressure and temperature, windage losses may be calculated by the method given in reference 12.

Miscellaneous load losses: These losses are assumed to be 1 percent of the kilovoltampere output of the alternator at load point G.

Efficiency: At each load efficiency is calculated from

$$
\text { Efficiency }=\ldots \text { Alternator power output } \quad \times 100
$$

where both alternator power output and losses are expressed in watts.
Reactances. - In the program, the following reactances are calculated:
(1) Armature winding leakage $X_{a l}$
(2) Direct-axis armature reaction $X_{a d}$
(3) Quadrature-axis armature reaction $X_{a q}$
(4) Direct-axis synchronous X_{d}
(5) Quadrature-axis synchronous X_{q}
(6) Field leakage X_{f}
(7) Direct-axis transient $X_{d}^{?}$

The armature winding leakage reactance is the sum of the slot leakage and end winding leakage reactances. The slot leakage reactance is determined from formulas given in reference 7, but the end winding reactance is calculated using the method of refer-
ence 13. Both the direct and quadrature-axis armature reaction reactances are determined from the method given in reference 7. The synchronous reactances are determined in the usual manner; that is, $X_{d}=X_{a d}+X_{a l}$ and $X_{q}=X_{a q}+X_{a 1}$.

The field leakage reactance is determined from the permeances of the alternator leakage paths. These paths are shown in figures 2 to 4 . The field leakage permeance \mathscr{P}_{f} is

$$
\mathscr{P}_{\mathrm{f}}=\mathscr{P}_{1}+\mathscr{P}_{2}+\frac{1}{2} \mathscr{P}_{3}+\frac{\mathrm{P}}{4} \cdot \mathscr{P}_{\mathrm{m}}
$$

where
\mathscr{P}_{1} permeance of leakage path across field coil
\mathscr{P}_{2} permeance of leakage path from stator to stator
\mathscr{P}_{3} permeance of leakage path from stator to rotor and extension
P number of poles
\mathscr{P}_{m} permeance of leakage path between poles
The field leakage inductance L_{f} is then

$$
\mathrm{L}_{\mathrm{f}}=\mathrm{N}_{\mathrm{f}}^{2} \cdot \mathscr{P}_{\mathrm{f}}
$$

where
N_{f} number of field turns
The field leakage reactance referred to the field winding $X_{f f}$ is

$$
\mathrm{X}_{\mathrm{ff}}=2 \pi \mathrm{f} \cdot \mathrm{~L}_{\mathrm{f}}
$$

where
f rated output frequency of alternator
The field leakage reactance referred to the armature is then

$$
\mathrm{X}_{\mathrm{f}}=\frac{3}{2} \mathrm{X}_{\mathrm{ff}} \cdot\left(\frac{\mathrm{~N}_{\mathrm{A}}}{\mathrm{~N}_{\mathrm{f}}}\right)^{2}
$$

where

$$
\mathrm{N}_{\mathrm{A}}=\frac{\mathrm{N}_{\mathrm{s}} \cdot \mathrm{~N}_{\mathrm{c}} \cdot \mathrm{k}_{\mathrm{p}} \cdot \mathrm{k}_{\mathrm{d}}}{2 \cdot \mathrm{M} \cdot \mathrm{C}}
$$

where
$\mathrm{N}_{\mathrm{A}} \quad$ effective armature winding turns
N_{S} number of slots
N_{c} conductors per slot
$\mathrm{k}_{\mathrm{p}} \quad$ pitch factor
k_{d} distribution factor
M number of phases
C number of parallel circuits
The direct-axis transient reactance is calculated by the usual method

$$
\mathrm{X}_{\mathrm{d}}^{\prime}=\mathrm{X}_{\mathrm{al}}+\frac{\mathrm{X}_{\mathrm{f}} \cdot \mathrm{X}_{\mathrm{ad}}}{\mathrm{X}_{\mathrm{f}}+\mathrm{X}_{\mathrm{ad}}}
$$

Skew factor calculation. - The usual skew factor formula for conventional alternators having only one stator stack does not apply to a homopolar inductor alternator. A new equation, which takes into account the stator stack separation, had to be derived for use in this computer program:

$$
\text { Skew factor }=\frac{2 \mathrm{~T}_{\mathrm{p}}}{\pi \mathrm{~s}_{\mathrm{o}}}\left[\sin \frac{\mathrm{~s}_{\mathrm{o}} \pi}{2 \mathrm{~T}_{\mathrm{p}}}\right]\left[\cos \left(\frac{\mathrm{s}_{\mathrm{o}} \pi}{2 \mathrm{~T}_{\mathrm{p}}}\right)\left(1+\frac{\mathrm{b}}{l_{\mathrm{o}}}\right)\right]
$$

where
T_{p}. pole pitch
$\mathrm{s}_{\mathrm{o}} \quad$ stator slot skew measured at the stator bore (for one stator stack)
b distance between two stator stacks
$l_{o} \quad$ length of one stator stack
The preceding equation reduces to the usual formula when the stator separation is zero ($b=0$) providing that it is recognized that setting $b=0$ gives a stator stack of length $2 l_{\mathrm{o}}$ and a total slot skew of $2 \mathrm{~s}_{\mathrm{o}}$.

HOW TO USE COMPUTER PROGRAM

Input Data Requirements

To use this computer program for the analysis of a homopolar inductor alternator the complete electromagnetic design of the alternator must be known. This includes physical dimensions, armature and field winding parameters and the magnetic characteristics of the materials to be used in the stator, rotor, and yoke. The design information must then be transferred onto data cards for use with the program. A typical set of data cards is shown in figure 6. It consists of three material decks. The material decks must be in the order shown in the figure, that is, stator material, rotor material, and yoke material. There must be exactly three material decks in each data deck even if two or all three materials are identical.

If more than one alternator design deck is included in the data deck, the program will treat each design deck independently. Each will result in a separate alternator analysis complete with an individual output record. However, the same material decks will be assumed to apply to each alternator design deck.

Figure 6. - Typical data deck makeup.

Preparation of Material Decks

A material deck consists of five cards. The first card contains the material name. This serves two functions: it identifies the material deck, and it is read by the computer and stored for later printout on the output record. The remaining four cards contain information about the magnetization curve of the material specified on the first card. This information allows the approximate reconstruction of the magnetization curve during program execution. Table I summarizes the infor mation pertaining to each data card of a material deck.

TABLE I. - FORMAT AND TYPE OF DATA REQUIRED ON
MATERIAL DECK DATA CARDS

Card	Format	Information contained on card
1	6 A 6	Material name
$2-5$	8 F 10.1	Coordinates from material magnetiza- tion curve

To illustrate preparation of a material deck, AISI 4620 steel (hardened) will be used as an example. The first card of this material deck will appear as shown in figure 7. The material name should start in column 1 and may extend up to column 36.

To prepare the remaining four cards of the material deck, the magnetization curve of the material is needed. The magnetization curve for AISI 4620 steel (hardened) is shown in figure 8. The units must be kilolines per square inch for the magnetic flux density and ampere-turns per inch for the magnetizing force. Fourteen points on the curve must then be chosen. In the figure, 13 points are indicated by data symbols; the 14th point is the origin. These points are listed in the table insert. Careful attention must be paid to the sequence in which the numbers are punched onto data cards. The first number must be the maximum flux density of the points chosen. In the example, this value is 128 kilolines per square inch. This is followed in ascending order, by alternate values of magnetic flux density and magnetizing force. Again, in the example, with reference to the table insert, the values appear in the following sequence on the data cards: 128, $0,0,2,5,5,10, \ldots 110,115,128,300$. The complete material deck for AISI 4620 steel (hardened) is shown in figure 7.

During program execution, the original magnetization curve is approximately recon-

Figure 7. - Material deck for AISI 4620 steel (hardened).

Figure 8. - Average magnetization curve for AISI 4620 steel (hardened).
structed by interpolation between points. The interpolation assumes a straight line on semi-log paper between data points.

Preparation of Alternator Design Deck

The alternator design deck contains all the dimensions, the geometric configuration (in numerical code), and the winding parameters needed for an electromagnetic analysis of the alternator design. Unlike the material decks, which are read according to a FORMAT statement, the alternator design decks are read with a READ statement referencing a NAMELIST name. For each NAMELIST name one or more data cards are required to numerically define the variables included in that NAMELIST name. In all there are 11 NAMELIST names. Each name is suggestive of the type of variables included in its list. Table II lists the NAMELIST names in the order in which they must appear in the alternator design deck and indicates the type of information conveyed by the variables belonging to that NAMELIST name. Detailed information about each NAMELIST name is provided in appendix C.

Preparation of an alternator design deck will now be illustrated with the construction of a typical data card for the NAMELIST name DAMPER. The data that will be used is

TABLE II. - SUMMARY OF NAMELIST NAMES USED IN
ALTERNATOR DESIGN DECK ${ }^{\text {a }}$

NAMELIST name	Type of information included
RATING	Rated kVA, power factor, voltage, rpm, etc. STATOR
SLOTS	All stator dimensions but not including slot dimensions Specifies type of slot and slot dimensions
WINDNG	Fully describes armature winding
AIRGAP	Gives air gap dimensions
CONST	Gives various constants needed for internal calculations
ROTOR	Gives pole and pole head dimensions but not including damper winding
DAMPER	All variables concerning damper windings SHAFT All shaft dimensions
YOKE	Yoke dimensions and type of yoke FIELD
Includes all field coil parameters	

${ }^{\mathrm{a}}$ For detailed information, see appendix C (table VII).
$\mathrm{b}_{\text {Presented }}$ in the order in which they must appear in the alternator design deck.

(a) Damper bar and damper bar slot design for Brayton-cycle alternator. (All dimensions are in inches.)

(b) Numerical values of DAMPER variables and appearance of data card. (See table VII(h) for definitions of FORTRAN symbols.)

Figure 9. - Preparation of data card for NAMELIST name DAMPER.
for the 400 -hertz, 15 -kilovolt-ampere, 120/208-volt Brayton cycle alternator (refs. 2 and 3). Figure 9(a) gives all pertinent design data for the Brayton cycle alternator damper circuit. Figure 9(b) shows how the design data are related to the variables of NAMELIST name DAMPER (table VII(h), appendix C) and how these data are transferred to the data card DAMPER.

Data cards for the remaining NAMELIST names are prepared in a similar manner. To illustrate the result, a complete data deck listing for the Brayton cycle alternator follows.

Typical Computer Program Output

In this section, the output, which resulted from the input data shown in the preceeding section, is presented. This output is typical, although the actual program output for mat will vary somewhat, depending, for example, on the type of slot or yoke configuration specified in the input data.
HOMOPCLAR INDUCTOR ALTERNATOR

ALTERNATCR RATING

ALTERNATOR KVA	15.0
LINE-LINE VCLTAGE	208.
LINENEUT VOLTAGE	120.
PHASE CURRENT	41.64
POWER FACTCR	0.80
PHASES	3
FREQUENCY	400.
POLES	4
RPM	$12 C 00.0$

STATCR SLOTS

AIR GAp

MINIMUN AIR GAP	0.040 INCHES
MAXIMUN AIR GAP	0.040
EFFECTIVEAIR GAP	0.043
CARTER CCEFFICIENT	
STATCR	1.057
RCTCR	1.014

arpatlere winding (y-ccanected, form wCund)

Strand dimensions	0.1400	$\times 0.0250$ INCHES
Uninsulated stranc height (racial)	0.0250	
distance etwn cl cf strand (radial)	0.0290	
STRANDS/CONDUCTOR IN RADIAL OIR.	2.	
TOTAL STRANCS/CONCLCTOR	2.	
COACUCTCR AREA	0.0070	So-IN.
CURRENT DENSITY AT FULL LOAD	2973.99	AMP/SQ-IN.
COil extensicn beycnc core	0.120	INCHES
MEAN LEAGTH OF 1/2 TLRN	12.030	
END TURN LENGTH	5.750	
STATOR SLCT SKEW (PER STATCR)	0 .	
RESISTIVITY AT 20 LEG. C	0.6940	MICRC OHM INCHES
STATOR RESISTANCE AT 25. DEG. C	0.0389	OHMS
No. of effective series turns	26.54	
SLCTS Spannec	8.	
SLCTS PER PCLE PER PrASE	4.00	
CONDUCTCRS/SLCT	8.	
NO. of parallel circlits	2.	
Phase belt angle	60.	degrees
SKEW FACTOR	1.000	
distributicn facticr	0.958	
PITCH FACTCR	0.866	

FIELD hINDING

```
CONDUCTOR CIANETER 0.0571 INCHES
CONCUCTCR AREA
NO. OF TURNS
mean lengTh OF TURN
RESISTIVITY AT 20 CEG. C
FIELD RESISTANCE AT 25. DEG. C
COIL INSIDE CIAMETER
COIL CUTSIDE DIAMETER
COIL WIDTH
    0.0571 INCHES
515.
6.560 INCHES
23.154 INCHES
0.6940 MICRO OHM INCHES
3.2951 OHMS
8.180
2.280
```

STATCR

```
STATOR INSICE CIANETER
STATOR CUTSIDE DIAMETER
OVERALL CQRE LENGTH (ONE STACK)
EFFECTIVE CCRE LENGTH
DEPTH EELCW SLCT 1.08
STACKING FACTCR
NO. OF CCCLING DUCTS C. 
NO. OF CCCLING DUCTS C.
CORE LOSS AT 77.4 KILQLINES/SQ.IN.
LAMINATICN THICKNESS
```

8.68
2.00
1.8 C
0.90
5.28 INCHES
8.68
2.00
1.80
1.08
0.90
C.
0.
INCHES
8.6 WATTS/LB.
$0 . C 07$ IN.

ROTCR

POLE ECOY	wICTH AXIAL LENGTH STACKING FACTOR	$\begin{aligned} & 2.370 \\ & 1.880 \\ & 1.000 \end{aligned}$	INCHES
Pole reac	WICTH	2.717	INCHES
	AXIAL LENGTH	1.880	
	STACKING FACTOR	0.911	
	LAMINATICN THICKNESS	0.014	INCHES
POLE EMbrace		0.700	
POLE HEIGHT		0.850	INCHES
PDLE HEIGHT (EFF.)		1.000	
ROTCR CIAMETER		5.200	
PERIPHERAL	SPEED	16349.	FEET/MIN.
SPEC. TANG	ENTIAL FCRCE	1.076	LBS/SQ.IN.

SHAFT

CIAMETER IUNCER FIELC COIL)	3.530	INCHES
INSIDE CIAMETER (CF YOLLCW SHAFT)	0.	
DIANETER IUNCER EAC TURNS)	1.000	
LENGTH (BTW. PCLES)	2.280	

DAMPER BARS (ROUNC)

DAMPER BAR DIAMETER	0.100 INCHES
SLCT OPENING WIDTH	0.030
SLOT OPENING HEIGFT	0.070
DANPER GAR LENETH	2.120
DAMPER BAR PITCH	0.320
NO. OF CAMPER EARS/PCLE	9
RESISTIVITY AT 20 CEG. C	0.694 MICRO-OHM INCHES

YCKE (TYFE 1)

WEIGHTS

STATOR CCNC.	10.380 POUNDS
FIELD CCND.	9.802
STATGR IRCN	33.692
ROTCR	21.966
YOKE	22.405
TOTAL	
(ELECTRCMAGNETIC)	97.645

```
CONSTANTS
    C1. FUNCAMENTAL/mAX. OF FIELC flux 1.128
    CP, PCLE CONSTANT 0.711
    CM, DENAGNETIZATICN FACTCR 0.844
    CQ, CRCSS MAGNETIZATION FACICR 0.5C2
    DI, POLE FACE LOSS FACTOR. 1.170
PERMEANCES (LINES/AMPERE TLRN)
```



```
REACTANCES
    AMPERE CCNDUCTORS/INCH
417.343
    REACTANCE FACTOR
    0.586
    STATOR WINCING LEAKAGE
    11.782 PERCENT
    ARM. REACTION IDIRECTI
    109.504
    ARM. REACTION (QUAC.)
    SYNCHRCNOUS (CIRECT)
    SYNCHRCNCUS (GUAD.)
    FiELD leakage
    TRANSIENT
    FIELD SELF INCUCTANCE 1.379 HENRIES
    GPEN CIRCLIT TIME CCNSTAAT
            (FIELC ONLY)
                                    0.41859 SECONDS
SHORT CIRCUIT AMPERE-TURNS
    1394.682
        SHORT CIRCUIT RATIC 1.C43
STATCR MATERIAL - SILICCN STEEL (.007 IN. LAMINATION)
ROTCR MATERIAL -- AISI 462C StEEL (HARDENED)
YOKE MATERIAL --- INGOT IRCN
```

MAGNETIZATION CHARACTERISTICS (NO LOAD, RATED VOLTAGE)

total useful flux	1418.98	KILOLINES
USEFUL FLUX/PCLE	252.19	
flux densities		
AIRGAP (INCL. PNL)	42.77	KL/SQ-IN
POLE	59.12	
TOOTH	86.38	
CORE	42.56	
SHAFT (UNCER FLC.)	58.56	
YOKE (OVER FLD.)	50.65	
AMPERE-TURNS		
AIRGAP	600.99	PER STATOR
POLE	27.02	
TCOTH	13.06	
CORE	2.03	
Shaft (UNCER PCLE)	42.14	
Shaft (UNDER flc.)	71.94	
YOKE	12.49	
TOTAL	1454.92	

Percent load	0.	50.	100.	150.	200.
leakage flux (pml)	20.88	41.09	64.08	89.31	115.20
AIR-GAP AMPERE TURNS	600.99	877.98	1208.45	1563.37	1929.39
flux densities (kL/So-in)					
POLE	59.12	64.33	69.79	75.99	82.74
TEETH	86.38	93.99	101.97	111.02	120.89
SHAFT IUNDER FLD. 1	58.56	67.64	77.59	88.72	100.50
CORE	42.56	46.91	51.66	57.10	63.00
YOKE IOVER FLC. 1	50.65	59.96	70.59	82.68	95.54
tCtal ampere turns	1454.92	2084.03	2893.04	3875.65	4913.03
field current (amps)	2.83	4.05	5.62	7.53	¢. 54
CLRRENT DEAS. (fielo	1103.24	1580.28	2193.73	2938.83	3725.45
field vilits	12.02	17.34	24.79	35.40	49.34
armature	93.50	98.75	114.50	140.75	177.50
RESISTANCES (OHMS)					
FIELD	4.25	4.28	4.41	4.70	5.17
ARMATURE	0. 0492	0.0500	0.0523	0.0563	0.0618
ECOY FACTOR	1.02	1.02	1.01	1.01	1.01
ALternator lesses (Watts)					
FIELC	33.95	70.16	139.25	266.39	470.69
hincage	0.	0.	0.	0.	C.
STATCR TCCTH	98.26	116.32	136.92	162.31	192.43
Statcr cere	102.55	124.61	151.12	184.60	224.76
pole face	84.97	90.18	105.79	131.81	168.23
CAMPER	0.22	0.28	0.32	0.40	0.52
STATCR CEPPER	0.	64.98	272.19	658.51	1285.34
EDOY	0.	0.34	1.30	2.71	4.39
misc. lCad	0.	75.00	150.00	225.00	300.00
total	319.96	541.86	956.9C	1631.73	2646.36
alternator cutput (kVa)	0.	7.50	15.00	22.50	30.00
Alternator cutput (KW)	0.	6.00	12.00	18.00	24.00
ALTERNATOR INPUT (KW)	0.32	6.54	12.96	19.63	26.65
FERCENT LCSSES	100.00	8.28	7.39	8.31	9.93
PERCENT EFFICIENCY	0.00	91.72	92.61	91.69	90.07

NO-LOAD SATURATION DATA

VOLTAGE PERCENT	80.0C	90.00	100.00	110.CC	120.00	130.00	14C.00	145.00	a_{0}.	a_{0}
LINE-NEUTRAL	96.07	108.08	120.09	132.10	144.11	156.12	168.12	174.13	C.	0.
LIAE-LINE	166.4C	187.20	208.c0	228.80	249.60	270.40	291.20	301.60	0.	0.
FIELC CURRENT	2.27	2.53	2.83	3.22	3.81	4.50	5.31	5.79	0.	0.
FLLX CENS.(KL/SG-IN)										
PCLE	47.27	53.18	59.12	65.16	71.39	77.71	84.09	87.38	0.	0.
TCCTH	69.07	77.70	86.38	95.21	104.30	113.54	122.87	127.67	0.	0.
StAFT	46.78	52.62	58.56	64.76	71.49	78.48	85.65	89.51	C.	0.
CCRE	34.03	38.27	42.56	46.97	51.63	56.42	61.31	63.88	0.	0.
YCKE	40.47	45.49	50.65	56.20	62.50	69.20	76.19	80.08	0.	0.
AMPERE-TLRNS										
AIRGAP	480.53	540.58	600.99	662.39	725.72	790.03	855.02	888.51	0.	0.
PCLE	23.42	$24.9 t$	27.02	29.06	31.53	35.29	40.66	44.09	0.	0.
TOOTH	2.56	3.88	13.06	45.87	123.72	223.49	337.56	417.45	0.	0.
CCRE	1.65	1.82	2.03	2.27	2.55	2.87	3.25	3.60	0.	0.
SHAFT	139.98	147.13	156.22	166.48	178.87	195.56	219.19	234.29	0.	0.
YOKE	10.78	11.55	12.49	13.70	15.21	17.81	40.35	42.12	0.	0.
tctal	1167.1C	1301.17	1454.92	1659.37	1961.14	2316.75	2732.51	2983.74	0.	0.

${ }^{\text {a }}$ All zeros in a column indicate that some section of the alternator has saturated. Examination of the previous column will generally identify which part of the magnetic circuit saturated.

EVALUATION OF COMPUTER PROGRAM

Agreement between results of the computer calculations and experimental data was determined for three homopolar inductor alternators. These three alternators were the 400-hertz Brayton cycle alternator and both the preprototype and prototype SNAP-8 machines. A more detailed description of these alternators is given in the following section of the report. Test data for the Brayton cycle alternator were obtained from reference 3. For the SNAP-8 alternators, test data were taken from references 4 and 5.

Description of Alternators Used for Program Evaluation

Brayton cycle alternator. - The Brayton cycle alternator is rated 12 kilowatts at 0.8 power factor (lagging), $120 / 208$ volts, 400 hertz, and 12000 rpm . It is designed to be cooled with oil which has a temperature of $93^{\circ} \mathrm{C}$.

The stator laminations are 0.007 -inch electrical sheet steel and the yoke is made of ingot iron. Both the armature and field winding conductors are copper. The armature conductors are stranded and laid flat in the slot to minimize eddy-current losses.

The rotor is made from AISI 4620 steel and has laminated pole tips of 0.014 -inch electrical sheet steel. The laminated pole tips are electron-beam welded to the rotor and were used to minimize pole-face losses. In addition, zirconium copper damper bars were installed in the pole tips to equalize the terminal voltage during unbalanced loading

C-68-3767
Figure 10. - Brayton cycle alternator rotor.
conditions. A photograph of the rotor is shown in figure 10. Note that some of the rotor material between the poles has been removed to reduce the leakage flux between poles from the rotor to the stator. Complete details of the alternator design are given in the sample output (pp. 19 to 26).

SNAP-8 alternators. - The two SNAP-8 alternators are rated 60 kilowatts at 0.75power factor (lagging), $120 / 208$ volts, 400 hertz, and 12000 rpm . They are designed to be cooled with a polyphenyl ether oil, which has a temperature of $99^{\circ} \mathrm{C}$

A comparison of the magnetic materials used in the preprototype and prototype SNAP-8 alternators is shown in the following table:

| | Preprototype | Prototype |
| :--- | :---: | :---: | :---: |
| Stator laminations (0.014 in.) | AISI M-19 | AISI M-19 |
| Rotor | AISI 4130 | AISI 4620 |
| Yoke | Ingot iron | AISI 1020 |

The prototype alternator has a thicker yoke than the preprototype and also has some of the rotor material between the poles removed as in the Brayton cycle alternator. In addition, the prototype alternator had circumferential grooves machined in the pole face surfaces in an attempt to reduce pole-face losses. Test results indicated that there was no major difference in pole-face loss between the prototype and preprototype alternators.

Comparison of Experimental and Calculated Results

Open-circuit saturation curves. - A comparison of the test data and calculated results for the open-circuit saturation curves of the three alternators are shown in figure 11. In the computer program, field currents are calculated for a range of terminal voltages. The minimum voltage is 80 percent of rated terminal voltage. The voltage is then increased by varying steps (maximum of 10 percent of rated terminal voltage) until some part of the magnetic circuit saturates. Saturation occurs when a flux density in a part of the circuit exceeds the maximum flux density of the appropriate material as specified in the material data deck.

The maximum percent difference between the experimental and calculated field currents for the three alternators is 7 percent over the range of voltages from minimum to maximum. At rated voltage, the maximum difference is 4 percent.

Figure 11. - Alternator open-circuit saturation curve.

Field currents under load. - In table III, field currents are compared at rated voltage and power factor for various alternator loads. At rated load conditions, the maximum percent difference between the test and calculated field currents for any of the alternators if 5 percent.

Losses and efficiency. - Before discussing losses and efficiency, the test and calculated values for the field and armature winding resistances will be compared. This is of interest because, in determining copper losses, it is important that the winding resist-

TABLE III. - COMPARISON OF EXPERIMENTAL AND CALCULATED FIELD
CURRENTS AT RATED VOLTAGE AND POWER FACTOR

Alternator	Load (a)	Field current, A		Percent difference		
		Test ${ }^{\text {b }}$	Calculated			
Brayton cycle (400 Hz)	7.5 kVA at 0.8 power factor	$c_{4.1}$	4.1	0		
	15.0 kVA at 0.8 power factor	5.7	5.6	1.9		
	22.5 kVA at 0.8 power factor	7.7	7.5	2. 6		
	30.0 kVA at 0.8 power factor	9.8	9.5	3.1		
SNAP-8 (preprototype)	60 kVA at 0.75 power factor	$\mathrm{d}_{23.1}$	23.8	3.0		
SNAP-8 (prototype)	60 kVA at 0.75 power factor	$\mathrm{d}_{19.1}$	18.1	5.4		
${ }^{a_{A l l}}$ power factors are lagging. ${ }^{\mathrm{b}}$ For separate excitation. $\mathbf{c}_{\text {Test values from ref. } 3 .}$ $d_{\text {Test values from }}$ ref. 4 .						

ances be computed accurately from the conductor size and physical dimensions of the coil.

A comparison of test and calculated winding resistances for the three alternators at $25^{\circ} \mathrm{C}$ is given in table IV. All the corresponding test and calculated resistances agree to within 5 percent except for the calculated SNAP-8 preprototype armature resistance which is low by 10 percent.

The reason for this larger error is probably as follows. When the cross-sectional

TABLE IV. - CALCULATED AND EXPERIMENTAL WINDING RESISTANCE AT $25^{\circ} \mathrm{C}$

Alternator	Winding	Resistance, ohms		Percent dif-ference
		Test	Calculated	
Brayton cycle (400 Hz)	Armature	$\mathrm{a}_{0.0382}$	0.0389	1.8
	Field	3.27	3.30	. 9
SNAP-8 (preprototype)	Armature	${ }^{\text {b }} 0.0063$	0.0057	10.0
	Field	1.46	1. 53	4.7
SNAP-8 (prototype)	Armature	$\mathrm{b}_{0.0057}$	0.0056	1.8
	Field	1.48	1. 53	3.3

[^0]area of a rectangular conductor is determined in the program, the radius of the rounded corner is calculated per ASTM B48-55. The armature conductor of the SNAP-8 preprototype alternator appears to have a larger corner radius than that used in the program. Hence, the computed conductor cross-sectional area is greater than the actual value. This results in a lower calculated than actual value for this particular resistance.

Test and calculated values of the losses and electromagnetic efficiency at rated load and power factor for each of the three alternators is given in table V. For the test data, the method of separation of losses as given in reference 14 was used. For comparison of loss data, the following experimental losses are used: field and armature conductor losses and open-circuit core, and stray load losses. Since these are not the losses spe-

TABLE V. - COMPARISON OF EXPERIMENTAL AND CALCULATED LOSSES
AND EFFICIENCY AT RATED LOAD

AlternatorBrayton cycle (400 Hz)	Load (a) 15 kVA at 0.8 power factor	Loss or efficiency being compared	Test data	Calculated data	Percent difference
		Armature conductor, W	c_{277}	272	1.8
		Field conductor, W	135	139	2.9
		Open-circuit core, W	320	286	11.2
		Additional load, ${ }^{\text {b }}$ W	270	260	3.8
		Total loss, W	1002	957	4.6
		Efficiency, percent	92.3	92.6	. 3
SNAP-8 (preprototype)	60 kVA at 0.75 power factor	Armature conductor, W	d_{1470}	1344	9.0
		Field conductor, W	1210	1337	10.0
		Open-circuit core, W	1250	1335	6.6
		Additional load, ${ }^{\mathbf{b}} \mathrm{W}$	2500	1995	22.4
		Total loss, W	6430	6011	6.7
		Efficiency, percent	90.3	90.9	. 7
SNAP-8 (prototype)	60 kVA at 0.75 power factor	Armature conductor, W	${ }^{\text {e }} 1320$	1323	0.2
		Field conductor, W	800	744	7.2
		Open circuit core, W	1250	1314	5.0
		Additional load, ${ }^{\mathbf{b}} \mathrm{W}$	2000	1883	6.0
		Total loss, W	5370	5264	2.0
		Efficiency, percent	91.8	91.9	. 1

${ }^{a}$ All power factors lagging.
$\mathbf{b}_{\text {Stray }}$ load loss for test data. Total of stator copper eddy, miscellaneous load and additional pole face, damper, and stator tooth and core due to load for calculated data.
${ }^{\mathrm{c}}$ Test values from ref. 3.
$\mathrm{d}_{\text {Test values from ref. } 5 .} 5$
$\mathrm{e}_{\text {Test values from ref. } 4 .}$
cifically calculated in the program, to make a comparison with the test data, some of the computed losses had to be added together. A table that shows the calculated losses corresponding to the experimental values of the open-circuit core and stray load losses follows.

Experimental loss	Corresponding calculated losses that are added together
Open-circuit core	No-load pole face No-load stator tooth No-load stator core No-load damper
Stray load	Armature conductor eddy Miscellaneous load Additional pole factor, stator tooth, stator core, and damper due to load

The maximum difference between the test and calculated values of electromagnetic efficiency for any one of the three alternators was 0.7 percent. Agreement between the test and calculated data for the specific losses was not as good, ranging up to a maximum difference of 22 percent. Conductor losses can be in error due both to inaccuracies in the resistance computation and in the estimated operating temperature of the windings. The accuracy of the pole-face, tooth, and core loss calculations, all of which are highly empirical, affect the comparisons for the open-circuit core losses and for the additional losses due to load.

Experimental and calculated values of electromagnetic efficiencies for the Brayton

Figure 12. - Electromagnetic efficiency.
cycle alternator over a range of loads from 25 to 125 percent of rated load are given in figure 12(a). Figure 12(b) shows a similar comparison for the SNAP-8 preprototype alternator up to rated load. Maximum difference in data for the Brayton cycle alternator is 0.8 percent. For the SNAP- 8 alternator, the maximum difference in test and calculated efficiencies is 2 percent which occurs at 25 percent of rated load. From 50 percent to rated load, the maximum difference is 1.0 percent. The difference at lower loads is not due to a large error in any one particular calculated loss. Rather, it is caused by an accumulation of small errors in several of the computed losses.

Reactances. - A limited evaluation of the accuracy of the alternator reactance calculations was made. The direct-axis synchronous, and direct-axis transient reactances of the alternators were the only ones for which both experimental and calculated values were available. A comparison for these reactances is given in table VI. Except for the

TABLE VI. - EXPERIMENTAL AND CALCULATED ALTERNATOR REACTANCES

Alternator	Reactance	Test value, per unit	Calculated value, per unit	Percent dif- ference
Brayton cycle (400 Hz)	Direct-axis synchronous Direct-axis transient	$\mathrm{a}_{1.19}$	1.21	1.7
	SNAP-8 (preprototype)	Direct-axis synchronous	$\mathrm{b}_{1.40}$.563

${ }^{2}$ Test values from ref. 3.
$\mathrm{b}_{\text {Test values from ref. } 5 .}$
$c_{\text {Test values from ref. }} 4$.
test data of the transient reactances, all values of reactances are for unsaturated conditions.

The maximum difference between the experimental and calculated data for the direct-axis synchronous reactance is 11 percent. This is for the SNAP- 8 preprototype alternator. For the other two alternators, agreement is much better, being within 3 percent. For the direct-axis transient reactance, the calculated values exceed the corresponding test values by as much as 17 percent. This is probably due mainly to neglecting the effects of saturation on the calculated value.

CONCLUDING REMARKS

This report presents a digital computer program which calculates the electrical per-
formance characteristics of a homopolar inductor alternator from design data. A comparison was made between the test results and calculated data for the 400 -hertz Brayton cycle and SNAP- 8 alternators. The following observations were made.

1. For the open-circuit saturation curves, the maximum difference between the test and calculated values of field currents was 7 percent.
2. At rated load and power factor, the test and calculated field currents agreed to within 5 percent.
3. The calculated efficiencies of the alternators at rated load and power factor were in agreement with the test results by a maximum difference of 0.7 percent.
4. For a range of alternator loads from 25 to 125 percent of rated load, test and calculated efficiencies agreed to within 2 percent.

The program accuracy, as summarized above, is sufficient to allow using the program in practical applications such as parametric system studies and for specific alternator designs.

Lewis Research Center,
National Aeronautics and Space Administration, Cleveland, Ohio, October 28, 1968, 120-27-03-42-22.

COMPLETE FORTRAN LISTING AND FLOW CHARTS OF HOMOPOLAR

INDUCTOR ALTERNATOR COMPUTER PROGRAM

The complete FORTRAN listings of the main program and the three subroutines, which together constitute the homopolar inductor alternator computer program, are contained herein. The main program is INDCT, and the three subroutines are, in the order given, SINDUC, MAGNET, and OUTPUT. Each program listing, except that for OUTPUT, is followed by its flow chart. The organization of OUTPUT is self-evicient since it consist largely of WRITE and FORMAT statements.

INDCT
INCCT


```
C
12 AYC=3.1416E(CYC+TYE)*TYE
    AYR=TYR*(CU+2.*TY)*3.1416
    ALYC=BCCIL
    ALYR=DYC-DL
    CCNTINLE
    NO-LOAD. RATED VOLTAGE MAGNETIZATION CHARACTERISTICS
    ZZL=PX*GE/(.CO319*CA*PE)
    KSAT=10
    GXX=1.
    ECC=1.
    FH=EG*GE/O.CO319
    FGML=0.
    CALL MAGNET
    J=1
    FGLL(J)=FGL
    PMLL(J)=PML
    BPLL(J)=BPL
    BTL(J)=BTLL
        ESHLL(J)=BSHL
        BCL(J)=BCLL
        BYCL(J)=BYCLL
        FFL(J)=FFLL
    SHORT CIRCUIT RATIO ANC SHORT CIRCUIT AMPERE-TURNS CALCS
        FSC=XA*FH*C.O2
        SCR=FFLL/FSC
        WRITE (6.14) FSC,SCR
    WRITE (6.14) FSC,SCR A 93
    FCRNAT (1HL,9X,27H SHCRT CIRCUIT AMPERE-TURNS,F16.3/10X,2OH SHORT A 94
    ICIRCUIT RATIC,F23.3)
        WRITE (6,15) SMAT
        95
        A
        FCRMAT (IHL, 18H STATOR MATERIAL -, IH, 6AG)
        WRITE (6,16) RMAT
        FORMAT (1HL,18H RCTOR NATERIAL --, 1H,GAG)
        WRITE (6,17) YMAT
            *
        A 99
        A }10
        FORMAT (1HL,18H YOKE NATERIAL ---,1H ,6A6)
A 101
```

FYOKE=FYL+FYCL+FYRL

```WRITE (6,18) TG,FQ,BG,EPL,BTLL,BCLL.BSHL,BYCLL,FGL,FPL,FTL,FCL,FSH
ILP,FSHL,FYCKE,FFLL A 104
    FORNAT 11HI,3OH MAGNETIZATION CHARACTERISTICS/5X,25H INO LOAD, RAT A 105
    1ED vOLTAGEI//10X,18H TCTAL USEFUL FLUX,F12.2,1OH KILOLINES/10X,17H A 106
    2 LSEFUL FLLX/POLE,F13.2//10X,15H FLUX DENSITIES/13X,19H AIRGAP IIN A 107
    3CL. PMLI,F8.2,9H KL/SG-IM/13X,5H POLE,F22.2/13X,6H TOOTH,F21.2/13X A 108
    4,5H CORE,F22.2/13X,19H SHAFT (UNDER FLD.I,F8.2/13X,17H YCKE IOVER A 109
    5FLD.I,F10.2//10X,13H AMPERE-TURNS/13X,7H AIRGAP,F20.2,11H PER STAT A 110
    60R/13X,5H POLE,F22.2/13X,6H TCOTH,F21.2/13X,5H CORE,F22.2/13X,19H A 111
    7SHAFT (UNDER PCLE),F8.2/113X19H SHAFT (UNDER FLD.),F8.2/13X,5H YOK A 112
    8E,F22.2//13X,6H TOTAL,F21.2)
    IF (KSAT.EC.O) GO TO 19 A 114
    GC TO 20
19 WRITE (6,76)
    CO TO 3
C
    HCT AND CCLC CAMPER BAR LOSS CALCULATIONS
20 IF (BN) 21,21,22
21 hD=C.O
    hU=0.0
    GC 10 44
    AA=WO/GE
    VT=C
    IF (AA) 23,26,23
    IF (AA-C.65) 24,26,25
    VT=ALOG(10.#AA)*(-0.242)+0.59
    GO TO 26
    VT=0.32 7- (AA =0.266)
    CCNTINUE
    FS1=2.0*QN*PN*F
    FS2=2.0*FS 1
    N=0
    RM=RE*(1.O+ALPHAE*(T33-2C.))
    GC TO 2E
    RM=RE*(1.0+ALPHAE*(T3-20.))
    \DeltaA=(FSI/RM)**0.5*CC*0.32
    AB=(FS2/RM)**0.5#DD*0.32
    IF (AA-2.5) 29.29.30
    VI=1.0-0.15*AA+0.3*AA*AA
    GC TO 31
    VI=AA
    IF (AB-2.5) 32,32,33
    v2=1.0-C.15*AB+C.3*AB*AB
    GC TO 34
    V2=AB
    IF (H.EQ.O.) GO TC }3
    IF (H.EQ.E) GO TC }3
    vC=F/(3.0 = E*VI)
    GC 10 36
    VC=C.75/V1
    VS=FD/WC+VT+VC
    VG=TB/(CC*GC)
    Q1=1.0-(1.0/(((80*0.5/GC)**2.0+1.0)**0.5))
    GZ=EO/TS
A 102
A }11
A 113
A 115
    -A 116
```

Q2=1.05*SIN(GZ*2.844) A 158IF (QZ-0.37) 37,37.38A 159
$63=0.46$ A 160
CC TO 39A 161 A 162
$03=0.23 * \operatorname{SIN}(10.46 * 0 Z-2.1)+0.23$
$03=0.23 * \operatorname{SIN}(10.46 * 0 Z-2.1)+0.23$ 38
64=SIN(6.283*TB/TS-1.571)+1.CA 163
CS $=S$ IN(12.566*TB/TS-1.571)+1.0
IF (H) 41,40,41A 164
GC TO 42A 165
$A B=C .785 * C D * C D$ 40
41
$A B=\vdash * B$A 166
A 168A 167
$W 2=P X * B N * S B * R M * 1.246 /(A B * 1000$.
$w^{3}=(02 /(2.0 * V S+(V G / Q 4))) * * 2.0 * V 1$ A 169
$h 5=(03 /(2.0 * V S+(V G / Q 5))) * * 2 \cdot C * V 2$ A 171
$W C=(T S * B G * C 1 * C C) * * 2.0 * h 2 *(W 3+W 5)$ A 172
$\mu=N+1$ A 173
IF (M-1) 44,43,44 A 174$W U=W D$A 175
GC TO 27 A 176A 177
CONTINUE
CONTINUE 44 A 178$G T=E O / G C$
$A A=1.75 /(\mathrm{GT} * 1.35)+0 . \varepsilon$ CC
$G F=A * P I * S C /(C * F H)$
PCLE-fACE LCSS CALCULATICN
PCLE-fACE LCSS CALCULATICN A 179 A 180
[2=EG*2.5*0.C00061 61
$03=(0.0167 * 6 Q * R P M) * * 1.65 * 0.0 C 0015147$

$\mathrm{D} 3=(0.0167 * 6 Q * R P M) * * 1.65 * 0.0 \mathrm{CO} 015147$
A 181$\begin{array}{ll}\text { A } & 181 \\ \text { A } 182\end{array}$A 183
A 184
IF (TS-0.9) 45,45.46
A 185
C4=1S**1.285*0.81
A 186
CC 1049
IF (IS-2.0) 47.47,48
[4=1S**1.145*0.79
GC TO 49
$48 \quad \quad \mathrm{C} 4=15 * * 0.79 * 0.92$
D7 $7=\mathrm{RO} / \mathrm{GC}$
IF (07-1.7) 50.50.51
A 187
A 188
A 189
A 191
50
[5 $=$ C7**2.31*C.3
CO 1056
A 192
A 193CO TO 56A 195[F (D7-3.C) 52,52,53A 196
C5= $\mathrm{C} 7 * * 2.0 * 0.35$197
CC 1056
A 199
IF (D7-5.0) 54.54,55 A 200
53
C5 $=$ C7**1.4*0.625 A 201
GC TO 56 202
[5 $=$ [7**0.965*1.38 A 203
55
56
56 C $6=10.0 * *(0.932 * C 1-1.6 C 6)$ A 204
hN=C1*C2*D3*D4*C5*C6*GA A 205A 206
calculate nc-loac, rated voltage tooth and core loss A 207
$W T=(S M) * G G * S S * H S * 0.84 S *(P T L(1) / E K) * * 2.0 * W L$ A 209A 208
$h G=(D U-H C) * 2.67 * H C * S S *(B C L(1) / B K) * * 2.0 * W L$ A 210

C	ARRANGING LCAD POINTS IN ORDER	A	211
C		A	212 213
	DC $58 \mathrm{~J}=1.4$	A	214
	I $A=5-\mathrm{J}$	A	215
	CC $58 \mathrm{I}=1, \mathrm{IA}$	A	216
	IF (GII).GT.G(I+1)) GC TC 57	A	217
	GC 1058	A	218
57	$P C L=G(1)$	A	219
	$\mathrm{G}(\mathrm{I})=\mathrm{G}(\mathrm{I}+1)$	A	220
	$\mathrm{G}(\mathrm{I}+1)=\mathrm{POL}$	A	221
58	CONTINUE	A	222
	G(1)=0.	A	223
	M M $=5$	A	224
	CO $59 \mathrm{I}=2.5$	A	225
	IF (G(I).GE.1.0.ANC.G(I-1).LT.0.999) MM $=1$	A	226
	$Y A(I)=1 C O . / G(I)$	A	227
59	CONIINUE	A	228
C		A	229
C	Calculate generatcr lcad characteristics	A	230
C		A	231
	$A N=A R C C S(P F)$	A	232
	DO $60 \mathrm{~J}=2.5$	A	233
	$A A=A T A N(1 X E / Y A(J)+S I N(A N)) / P F)$	A	234
	$E B=\triangle A-A N$	A	235
	ED(J) $=X A * S I N(A A) / Y A(J)+C C S(B E)$	A	236
	FGX(J) = FATI* $100 . / \mathrm{YA}(\mathrm{J})$	A	237
		A	238
	TTE(J) $=0$.	A	239
	TTA ${ }^{\text {P }}$) $=0$.	A	240
	RRA($)=$ C.	A	241
	$\operatorname{RRE}(J)=0$.	A	242
	EZ(J)=0.	A	243
	$\operatorname{STRAY}(J)=0$	A	244
	PNLL(J) $=0$	A	245
	FFL (J) = C	A	246
		A	247
	BCL (J)=0	A	248
	ETL(J)=C	A	249
	BPLL(J) $=0$	A	250
	$\operatorname{EYCL}(J)=0$	A	251
	$F I(J)=0$	A	252
	CCC (J) $=0$	A	253
	$E F(J)=0$	A	254
	$\mathrm{PR}(\mathrm{J})=0$	A	255
	ST(J)=0	A	256
	WGL(J) = C	A	257
	FP(J)=0	A	258
	CL $(J)=0$	A	259
	$\operatorname{PS}(J)=0$	A	260
	EX(J)=0	A	261
	SP(J)=0	A	262
	AKVA(J) $=0$	A	263
	$h A(J)=0$	A	264
	$\mathrm{P}(\mathrm{J})=0$	A	265
	$P Z(J)=0$	A	266
	$E(J)=0$	A	267
60	FGLL(J) $=0$	A	268
	$J=2$	A	269

$K S A T=10$

A 270

GXX=GX(J)

ECD=ED(J)
A 271
FGML=FGX(J)
A 272
CALL MAGNET
FGLL(J) $=F G L$
A 273
FGLL(J)=FGL A 274
PMLL(J)=PML
BPLL(J) $=$ BPL
A 275
A 276

BSHLL(J)=BSHL
$B C L(J)=B C L L$
A 278
A 279
BYCL(J) = BYCLL
A 280
FFL(J)=FFLL
A 281
(A 282
IF (KSAT.EQ.O) GO TO 62
A 283
IF (J.EG.5) GO TO 62
$J=\mathrm{J}+1$
GC TO 61
$J A=J$
IF (KSAT.EC.O) JA=JA-1
A 284
A 285
A 286
A 287
FI(MM)=FFL(MM)/PT
$h W=W U$
$V V=3 . * P I * E P * P F \quad$ A 291
$M=1$ A 292
CONTINUE A 293
EDOY FACTCR CALCULATICNS
A 294
295
$U A=G(M)$
A 296
$U A=G(M) \quad$ A 297
1TA(M) =(T1-T11)*UA*UA+T11
A 298
$R E=(1.0 E-6) * R S *(1.0+A L P H A S *(T T A(M)-20.1)$ A 299
IF (SH) 64,64,65
A 300
$64 \quad E Z(N)=1$.
A 301
GC TO 66
A 302
$65 A A=0.584+(S N * S N-1.0)=C .0625 *(S D * C L /(S H * H M / 2.1)=\# 2$
A 303
$A B=(S H * S C \# F * A C /(B S * R B * 10 C 0000.0)) * * 2.0$
$E T=A A * A B * 0 . C 0335+1.0$
A 304
AB A 305
$E B=E T-0.00168 * A B$
A 306
$E Z(M)=(E T+E B) * 0.5$
A 307
c
C
C
6
LOSSES AND EFFICIENCY UNCER LOAD
A 308
A 309
FI(M)=FFL(M)/PT
A 310
A 311
$\operatorname{CDD}(M)=F I(M) / A S$
A 312
$T B(M)=((T 2-T 22) /(F I(f M)-F I(1))=m 2) *(F I(M)-F I(1)) * * 2+T 22$
A 313
$\operatorname{RRB}(M)=(1, O E-6) * R R *(1.0+A L P H A R *(T T B(M)-20)) * Z$.
$\operatorname{PR}(M)=F I(M) * F I(M) * R R B(M)$
A 314
$P R(N J=F I A M 15$
$E F(M)=F I(M) \# R R B(M)$
A 316
$\operatorname{RRA}(M)=R B \geqslant R Y$
$\operatorname{PS}(M)=(3 . *(P I * U A) * 2) * R R A(M)$
A 317
WQL(M)=HQ (BCL(M) A 318
$W Q L(M)=W Q *(B C L(M) / B C L(1)) * * 2 \quad$ A 319
$S T(M)=W T *(B T L(M) / E T L(1)) * * 2 \quad$ A 320
HA (N) =VVEUA/1000.
$\operatorname{AKVA}(M)=W A(M) / P F$
$\operatorname{STRAY}(M)=\operatorname{AKVA}(M) \geqslant 10.0$
A 322
A 323
$G M=(G F * \cup A) * 2.0+1.0$
A 324
DL(M) =GM*WH
$F P(N)=G N+W N \quad$ A 326
$E X(N)=(E Z(N)-1.0) * P S(M) * 2 . C * C L / H M$
A 327
$S P(N)=P P(M)+C L(M)+P R(N)+P S(M)+E X(M)+S T(M)+W F+W Q L(M)+S T R A Y(M) \quad$ A 328
$P(M)=(S P(M) / 1 C 00)+.W A(N)$
$P Z(N)=(S P(N) / P(M)) * .1$
$E(M)=1 C O . C-P Z(N)$
IF (M.EG. 1) $W W=W D$
$N=\mu+1$
IF (M.LE.JA) GC TC 63
WRITE (6,67) PF,(G(I), I=1,5),(PMLL(I),I=1,5),(FGLL(I),I=1,5),(BPLL
$1(I), I=1,5),(B T L(I), I=1,5),(B S H L L(I), I=1,5),(B C L(I), I=1,5),(B Y C L I)$
$2, I=1,5),(F F L(I), I=1,5),(F I(I), I=1,5),(\operatorname{COO}(I), I=1,5),(E F(I), I=1,5) \quad$ A 337
FCRNAT I 1 HI, 26×47 HALTERNATCR LCAD CHARACTERISTICS IRATED VOLTAGE,F
$15.2,14 \mathrm{H}$ PCWER FACTOR $/ / 27 \times 66 \mathrm{H}-\cdots-10$
2--------------------1///7X12HPERCENT LOAD,11X,2PF17.0,4F19
3.0/17X18HLEAKAGE FLUX (PML), $5 \times$, OP5F19.2/7X2OHAIR-GAP AMPERE TURNS.
$43 \times 5 \mathrm{~F} 19.2 / 17 \times 25 \mathrm{HFLUX}$ DEASITIES (KL/SQ-IN)/1CX4HPOLE, $16 \times 5 \mathrm{~F} 19.2 / 10 \times 5 \mathrm{H}$
5 TEETH15 5 5F19.2/10×18HSHAFT (UNDER FLD.) 2×5 F19.2/10×4HCCRE16X5F19.2
6/10×16HYOKE IOVER FLD. I4X5F19.2//7XI8HTOTAL AMPERE TURNS5X5F19.2/7
7X20HFIELD CURRENT (AMFS) 3×5 F19.2/7X2IHCURRENT DENS. (FIELD)2X5F19.
82/7X11HFIELD VCLTS 12×5 F1S.2)
hRITE (6,6民) (TTB(I), I=1,5), (TTA(I), I=1,5), (RRB(I), I=1,5),(RRAII),
$1 I=1,5),(E L(I), I=1,5),(P R(I), I=1,5), W F, W F, W F, W F, W F,(S T(I), I=1,5),(W$ A 348
2CL(I), I = 1,5$),(P P(I), I=1,5),(C L(I), I=1,5),(P S(I), I=1,5),(E X I I), I=1$,
35), (STRAY(I), $I=1,5),(S P(I), I=1,5),(\operatorname{AKVA}(I), I=1,5),(W A(I), I=1,5),(P$
$4(1), I=1,5),(P 2(I), I=1,5),(E(I), I=1,5)$
FORNAT (1HK, $6 \times 20 H T E M P E R A T U R E S ~(D E G . C I / 10 X 5 H F I E L D 15 \times 5 F 19.2 / 10 \times 8 H A R M$
1ATURE12×5F19.2/17X18HRESISTANCES (OHMS)/10X5HFIELD15X5F19.2/10×8HA
2RMAIURE12X5F19.4//7X11FECDY FACTOR12X5F19.2//7×25HALTERNATOR LESSE
3 S (WATTS)/10×5HFIELD $15 \times 5 \mathrm{~F} 19.2 / 10 \times 7 \mathrm{HWINDAGE} 13 \times 5 \mathrm{~F} 19.2 / 10 \times 12 \mathrm{HSTATOR} T$
4COTH8X5F19.2/10X11HSTATOR CORE9X5F19.2/10X9HPOLE FACE11X5F19.2/10X
56HCAMPER14×5F19.2/10×13HSTATCR COPPER7X5F19.2/10X4HEDUY16X5F19.2/1
60X1CHMISC. LCAC10X5F1S.2/10X5HTUTAL15X5F19.2//7X23HALTERNATOR OUTP
7LT (KVA)5F19.2/7×22HALTERNATOR QUTPUT (KH) $1 \times 5 \mathrm{~F} 19.2 / 7 \times 21 H A L T E R N A T O R$
8 INPUT (KW)2X5F19.2/7X14FPERCENT LOSSES9X5F19.2/7XI8HPERCENT EFFIC
GIEACY5X5F19.2)
calculate no-load satlraticn data
LC $69 \mathrm{~J}=1,10$
GPERV(J)=C
GVLL(J) $=0$
$\operatorname{GVLN}(J)=0$
$\operatorname{CFCUR}(J)=0$
$\operatorname{cTAT}(J)=0$
CAGAT(J)=0
GPAT $(J)=0$
CCAT(J)=0
$\operatorname{CCAT}(J)=0$
$\operatorname{CTHAT}(J)=0$
$\operatorname{GSAT}(J)=0$
$\operatorname{GYAT}(J)=0$
$\operatorname{GSAT}(J)=0$
$\operatorname{CYAT}(J)=0$
GFC $(J)=0$
$\operatorname{GCD}(J)=0$
$\operatorname{GCD}(J)=0$
$\operatorname{GTHC}(J)=0$
$\operatorname{QSD}(J)=0$
$G Y[(J)=0$
A 329
A 33 C
A 331
A 332
A 333
A 334
A 338
A 339
A 340
A 341
A 342
A 343
A 344
A 345
A 346
A 347
A 348
A 349
A 350
A 351
A 352
A 353
A 354
A 354
A 355
A 356
A 357
A 358
A 359
A 360
A 360
A 361
A 362
A 363

A 364
A 365
A 366
A 367
A 368
A 369
A 370
A 371
A 372
A 373
A 374
A 375
A 376
A 377
A 378
A 379
A 380
A 381

```
            FGML=0. 
            FG=FH
    ECD=1. A 384
            GXX=1.
            IDELR=10
            R=. &
    J=1 A 388
    KSAT=10
    FH=FG*R A 390
            FQ=TG*R*CP/PX
    CALL MAGNET A 392
    IF (KSAT.EG.O) GC TO 71 A 393
            GPERV(J)=100.*R
    GVLL(J)=EE#R A 395
            QVLN(J)=QVLL(J)/SQRT(3.)
            GFCLR(J)=FFLL/PT
    GTAT(J)=FFLL A 398
            GAGAT(J)=FGL
            GPAT(J)=FPL
    CCAT(J)=FCL
            GTHAT(J)=FTL
            GSAT(J)=FSHL+2.*FSHLP
            CYAT(J)=FYL+FYCL+FYRL
            CPC(J)=BPL
            CCD(J)=BCLL
            GTHC(J)=BTLL
            CSD(J)=BSHL
            CYC(J)=BYCLL
            IF (J.EG.1C) GO TO }7
            J=J+1
            R=R+FLGAT(IDELR)/1CO.
            GC TO }7
            R=R-FLOAT(ICELR)/100.
    IF (IDELR.EO.10) GO IC }7
            IF (IDELR.EG.5) GC TO }7
            GC TO 74
            ICELR=5
            R=R+FLCAT(IDELR)/100.
            KSAT=10
            GC TO 70
            ICELR=2
            R=R+FLCAT(IDELR)/1CO.
            KSAT=10
            GC TO 70
    WRITE (6,75) (GPERV(K),K=1,10).(QVLN(K),K=1,10),(QVLL(K),K=1,10),1
    1OFCUR(K),K=1,10),(GPD(K),K=1,10),(QTHD(K),K=1,10),(QSD(K),K=1,10),
    2(GCC(K),K=1,10),(GYD(K),K=1,10),(GAGAT(K),K=1,10),(GPAT(K),K=1,10)
    3,(QTHAT(K),K=1, L0),(QCAT (K),K=1,10),(QSAT(K),K=1,10),(QYAT(K),K=1,
    410), (QTAT(K),K=1,10)
    FCRMAT (1H1,50X23HNO-LCAC SATURATION DATA/51X23H-------------------
    1-----//2X7HVCLTAGE/5\times7HPERCENT6X10F11.2//5\times12HLINE-NEUTRALIX10F11.
    22/5\times9HLINE-LINE4X1OF11.2//2X13HFIELD CURRENT 3X10F11.2//2\times20HFLUX D
    3ENS.(KL/SG-IN)/5X4HPOLEGXIOF11.2/5X5HTOOTH8X1OF11. 2/5X5HSHAFT8X1OF
    411.2/5\times4HCCRE9X1OF11.2/5X4HYCKE9X1OF11.2//2X12HAMPERE-TURNS/5X6HAI
    5RGAP7X1OF11.2/5\4HPOLEGX10F11.2/5X5HTOOTH8X1OF11.2/5\times4HCCRE9X1OF11
    6.2/5X5HSHAFT8X1OF11.2/5X4HYOKE9XIOF11.2//5X5HTOTAL8X10F11.2)
        GC TO 3
    FORMAT (1HLIOX,I7HMACFINE SATURATED)
    END
    A 384
    A 386
    A 387
    A
    A 391
    A 3
    A 396
    A A 397
    A 398
    A 399
    A 400
    A 401





subroutine sincuc ..... 1
CONNCN A,AA, AB, AC, ACR,AG,AI,ALH,ALPHAE,ALPHAR,ALPHAS,ALY,ALYC,ALYR\(1, A P, A S, A S H, A T H, A Y, A Y C, A Y R, B, B 1, B 2, B 3, B C L L, B C O I L, B G, B K, B N, B O, B P, B P L\)\(2, B S, B S H L, B T L L, B V, B Y C L L, C, C 1, C C, C C R, C E, C F, C K, C L, C M, C P, C Q, C W, D, D 1, D C\)3CIL,DD, DF, DI, DISH, DISH1, DR, DSH, DU, DW, DW1, DYC, EC, EDO, EE,EL,EP,EW,F,\(4 F C L, F E, F F L L, F G L, F G M L, F F, F K 1, F P L, F Q, F S, F S H L, F S H L P, F T L, F Y C L, F Y L, F Y R L\)5,G,GA,GC,GE,GP,GXX,H,HC,HD,HN,HO,HP,HP1,HS,HT,HV,HW,HX,HY,IBN,IPN,GIPX,IQQ,12Z,JA,KSAT,LTR,LTRI,LTS,P5,P6,P7,PBA,PC,PCOIL,PE,PF,PHL, P7Hh, PI, PL, PM, PML, PN, PT, PX, QN, CQ,RC, RD, RE, RF, RGI, RK, RKI, RPM, RR, RS, RT8,RY,S,SE,SC,SC,SF,SH,SI,SIGMA,SK,SN,SN1,SS,STATET,T1,T11,T2,T22,T39,T33,TB,TC,TF,TG,TS,TST,TT,TY,TYE,TYPY,TYR,VA, VR,WC,WF,WI,WL,WO,WRSCTOR,WTCTAL,WYOKE,XA, XB, XD, XF,XL,XQ,XR,XU,YY,Z,ZG,ZZ,ZZZ
INTEGER TYPY,ZZREAL LT,LTS,LTR,LTRIDIMENSION LA(B), DX(6), CY(8), DZ(8), AI(90), G(5)NAMELIST /RATING/ VA,EE,EP,F,RPM,IPX,PF,G/STATOR/DI,DU,CL,HV,BV,SFL,LTS,WL, BK/SLCTS/ZZ, BC,B3, BS,HO,HX,HY,HS,HT,IGQ/WINDNG/RF,SC,YY,C,2DW, SN, SNL, CWI, CE, SD, PEA,SK,T1,RS, ALPHAS,T11,TST/AIRGAP/GC,GP/CONST3/C1,CP,EL,CM,CQ,WF/ROTCR/RK,PL,HP,HP1,PE,BP,WROTOR,LTR,LTR1,RKI,PH\(4 \mathrm{~W}, \mathrm{PHL}, \mathrm{DI/CAMPER/WC,HO,CO,H,B,EN,SB,TB,T33,RE,ALPHAE,T3/SHAFT/DSH,D}\)5ISH, DISH1, ALH/YCKE/TYPY, TY,TYE, TYR, DYC/FIELC/PCOIL,DCOIL,PT,RD,RT,6T2.BCOIL,TF,T22,RR,ALFHAR
DATA DA,DX,OY,CZ/C.05,C.C72.C.125,0.165,0.225,0.438,0.688.1.5,0.0010124,0.C0021,0.00021, C.0C084,2*0.00189,2*0.0CO124,2*C.00084,0.0018\(29,0.00335,0.00754,0.0302,3 * 0.000124,2 * 0.00335,0.00754,0.0134,0.030\)32/\(\mathrm{Cl}=0\)
RS \(=0.694\)\(R R=C .694\)\(R E=0.694\)ALPHAS=C.CC393ALPHAR \(=0.00393\)ALPRAE=0.0C393T33=20.
TF=25.
TST=25.
GP=C.
RK1=0.
\(\mathrm{PE}=\mathrm{C}\).
\(\mathrm{PH}=0\).
PL=C.
PHL=0.
LTR1=0.Dl=C.C
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{PBA}=60\). & & B & 51 \\
\hline SN=1.0 & & B & 52 \\
\hline CYC \(=0\) 。 & & B & 53 \\
\hline \(\mathrm{SH}=0\). & & B & 54 \\
\hline Chl \(=0\) & & B & 55 \\
\hline C \(C=C\). & & B & 56 \\
\hline \(\mathrm{CW}=0\) & & B & 57 \\
\hline \(C P=0\) & & B & 58 \\
\hline \(E L=C\) & & B & 59 \\
\hline \(\mathrm{CM}=0\) & & B & 60 \\
\hline G(1)=0. & & B & 61 \\
\hline \(G(2)=0.75\) & & B & 62 \\
\hline \(\mathrm{G}(3)=1 . C 0\) & & B & 63 \\
\hline \(G(4)=1.25\) & & B & 64 \\
\hline \(\mathrm{C}(5)=1.50\) & & B & 65 \\
\hline \(C Q=0\) & & B & 66 \\
\hline PM \(=\mathrm{C}\) & & B & 67 \\
\hline P5 \(=0\) & & B & 68 \\
\hline \(F 6=0\) & & 8 & 69 \\
\hline \(\mathrm{P} 7=0\) & & B & 70 \\
\hline \(\mathrm{kC}=0\) - & & B & 71 \\
\hline \(h F=0\) & & B & 72 \\
\hline \(T Y=0\) & & B & 73 \\
\hline TYE=0 & & B & 74 \\
\hline \(T Y R=0\) & & B & 75 \\
\hline CYC=0 & & B & 76 \\
\hline \(E P=0\). & & B & 77 \\
\hline \(E E=0\). & & B & 78 \\
\hline IPN=3 & & B & 79 \\
\hline \(\mathrm{PN}=3\). & & B & 80 \\
\hline I \(P \mathrm{X}=0\) & & B & 81 \\
\hline \(F=0\). & & B & 82 \\
\hline RFN \(=0\). & & B & 83 \\
\hline \(\mathrm{BP}=0\). & & B & 84 \\
\hline \(\mathrm{SF}=0\). & & B & 85 \\
\hline RK=C. & & B & 86 \\
\hline LTS \(=0\). & & B & 87 \\
\hline LTR=0. & & B & 88 \\
\hline WROTOR=C. & & 8 & 89 \\
\hline \(H V=C\) 。 & & B & 90 \\
\hline EV=C. & & B & 91 \\
\hline ECCIL=0. & & B & 92 \\
\hline \(t=0\). & & B & 93 \\
\hline SK = C & & B & 94 \\
\hline hRITE (6,1) & & B & 95 \\
\hline FCRNAT (1H143×33F**HONCPCLAR & INCUCTOR ALTERNATOR**I & B & 96 \\
\hline REAC (5,RATING) & & B & 97 \\
\hline REAL (5,STATCR) & & B & 98 \\
\hline REAC (5,SLCJS) & & 8 & 99 \\
\hline REAC (5,WINCNG) & & B & 100 \\
\hline REAC (5,AIRGAP) & & 8 & 101 \\
\hline REAC (5,CCAST) & & B & 102 \\
\hline REAC (5,RCTCR) & & B & 103 \\
\hline REAC (5,DANPER) & & B & 104 \\
\hline REAC ( 5, SHAFT) & & \(B\) & 105 \\
\hline REAC (5,YCKE) & & B & 106 \\
\hline REAC (5,FIELC) & & 8 & 107 \\
\hline
\end{tabular}
```

 IF (EP.EQ.C.) EP=EE/1.732051 B 108
 IF (EE.EQ.C.) EE=EP*1.732051 B 109
 IF (GP.EQ.C.) GP=CC
 IF IDW1.NE.C.I SH=CW1
 IF IIPX.EQ.O.ANC.RPM.NE.C.) IPX=(F*120.1/RPM
 PX=IPX
 IF (RPM.EG.O..AND.PX.NE.C.) RPM=(F*120.)/PX
 IF (F.EG.O.) F=PX*RPM/12C.
 HW=HY-HC-HT
 6Q=IQQ
 IF (ZZ.NE.3) GO TO 2
 El=(HO+HT-HS)*(6.283185/6Q)+83
 E2=R1+(6.283185*HW/QQ)
 BS=(82+83)/2.
 CONTINUE
 PI=(VA*10CC.)/(EE*SQRT(3.))
 CK=1.
 IF (PF.GE.C.95) CK=1.10
 IF (ZZ.EQ.1.OR.ZZ.EQ.5) EO=BS B 126
 I LZ= LZ
 CB=.25
 IF (DU.CE.8.) CB=0.5
 IF (BCOIL.EG.O.) BCOIL=ALH
 FE=3.1416*(PCOIL+CCOIL)/2.
 LR=CI-2.*GC
 IF (PE.EQ.O.) PE=(PX/3.1415927)*(ARSIN(PHW/DR))
 IF (PHW.EQ.0.) PHW=DR*SIN(3.1415927*PE/PX)
 IF (BP.EQ.C.) EP=FFW
 IF (PL.EQ.C.) PL=PFL
 IF (PHL.EG.O.) PHL=PL
 HC=(OU-CI-2.O*HS) #C.5
 IF (DYC.EQ.O.) DYC=DU
 ZY=0.7*FS
 DC 3 I =1.5
 IF (G(I).GT.9.) G(I)=C(I)/10C.
 GN=GG/(PX*PN) B 143
 CS=YY/(PN*QN)
 CHECK FOR ERROR CCNDITIONS
CHECK FCR ERROR CCNDITIONS
CHECK FOR ERROR CCNDITIONS
CHECK FOR ERROR CCNDITIONS
IF (HC.LT.ZY) WRITE (E,8) HC,HS
IF (DSH.GE.CR) WRITE (6,9)
IF (DCOIL.GT.DYC) WRITE (6,10)
IF (PCOIL.LT.UI+2.*HS) WRITE (6,11)
IF (TYPY.GT.1.ANC.TYE*TYR.LT.1.OE-10) WRITE (6,12)
IF (RT.LT.1.OE-10) GO TO 4 B 156
IF ((((CCCIL-PCOIL)*BCCIL)/(RT*RD)).LE.2.*PT) WRITE (6,13) B 157
GC IO14 ((OCCIL-PCCIL)*BCOIL/RD**2.LE.1.7146*PT) WRITE (6,13)
GC IO 14 (IN-PCCIL)*BCOIL/RD**2.LE.1.7146*PT) WRITE (6,13)
FORNAT (5X,27H CS (PER UNIT POLE PITCH) =,F7.3/10X.31H CS MUST BE
1BEThEEN 0.5 AND 1.0)
FCRNAT (LH , 3\&H EITHER PFASE CR LINE VOLTAGE IS WRONG)
B 110
B 111
B 112
B}111
B 114
B 115
B 116
B 117
B 118
B }11
B }12
B 121
B }12
B 125
126
B }12
8 128
B 131
B 132
B}13
134
B }13
B 136
B B 137
B 138
140
143
B }14
C
C
B }14

```
B 148
B 149
B 150
    151
    152
        B }15
```



```
        155
    157
    O, B 159
B 160
4
6
    161
```



```
        SIGMA=(54.E3/LI**2)*(PF/SS)*(VA/RPM) B 219
        B 220
        VR=0.262*CR*RPM
        TS=3.142*DI/CR
        IF (ZZ-4) 30,31,30
        IT=\.667*HS+C11)*3.142/60
        GC T0 32
31 TT={DI +2.0*HO+1.333*BS)*3.1416/00
C CALCULATE CARTER CCEFFICIENTS
IF (ZZ.GT.1.AND.ZZ.LT.5) GO TO 33
CC=(5.0*GC+BS)*TS/((5.C*CC+BS)*TS-BS*BS)
GO IO 34
CC=(4.44*GC+C.75*BO)*TS
CC=GC/10C-BC*BO)
CC=CC/(OC-BC*BO)
CC=(4.44*GC+0.75*WO)*TB B 235
CCR=QC/(QC-NO**2)
GC TO 36
CCR=1. 
TP=3.142*CI/PX 隹 239
    PITCH FACTCR AND SKEW FACTOR CALCULATIONS
    CF=SIN(YY#1.571/(PN*QN))
        IF (SK) 37,37,38
        FS=1.0
        GC TO 39
        FS=(SK/TP)*1.5707
        FS=(1./FS)*(SIN(FS))*(CCS(FS*(1.+BCOIL/CL)))
        CHECK IF WINCING HAS IATEGRAL NO. OF SLOTS PER PCLE PER PHASE
        D=1.0
        IF (PBA.GT.61.0) C=2.C
        IZY=IPX*IPN
        ICM=0
        IDM=IDM+IZY
        IF (IQQ-ICN) 42,41,40
    CALCULATE CISIRIRUTIOA FACTOR FOR INTEGRAL SLOT WINDING
    CF=SIN(1.571*D/PN)/(QN*D*SIN(1.571/(PN*QN)))
    GC TD 46
    CALCULATE CISTRIBLTION FACTOR FOR FRACTIONAL SLOT WINDING
    IIG6=166
    I=2
    IF((IZY/I)*I.EQ.IZY.ANO.(IIGQ/I)*I.EQ.IIQO) GO TO 44
    IF (I.GT.IZY) GC TC 45
        I=I+I
        CC TO 43
        IZY=IZY/I
        IIGG=IIGQ/I
        CC TO 43
        B 221
        B 222
        B }22
C
B 224
C
B 225
C
B 227
B 229
B 230
B 231
B 232
#
B 235
B 236
B 237
B B 240
C
B}2240
B 241
B 243
37
38
C
```

45 FNG=I160 O 275
CF=SIN(1.571*C/PN)/(FNG*L*SIN(1.571/(FNQ*PN))) B 276
46 EC=GQ*SC*CF*FS/C
C
C
C
GC TO 60
ZY=0.0
OT=AMIN1{CW,DWI)
CG=AMAXI(CW,DWI)
49 IF (OT-.05) 52,52,50
JA=0
JA=JA+1
IF (DT-DA(JA)) 53.53.51
C=0
IF (ZY) 59,59,72
53 IF (DG-0.188) 54,54,55
54 CY=CX(JA-1)
CZ=CX(JA)
GO TO 58
IF (DG-0.75) 56,56,57
CY=CY(JA-1)
CZ=CY(JA)
GO TO 58
CY=CZ(JA-1)
CY=CZ(JA-1)
C=CY+(CZ-CY)*(CT-CA(JA-1))/(CA(JA)-DA(JA-1))
IF (ZY) 59,59,72
AC=(DT*CG-D)*SN1
CALCULATE END EXTENSICN LENGTH
IF (EL) 61,61,69
IF (RF) 62,62,68
IF (PX-2.0) 63,63,64
L=1.3
GC TC 67
64 IF (PX-4.0) 65,65,66
L=1.5
GO TO 67
U=1.7
EL=3.1416\#U*YY*(DI*HS)/OC+C.5
GO TO 69
EL=2.0*CE+(3.1416*(0.5*HX+DB))+(YY*TS*TS/(SQRI(TS*TS-BS*BS)))
HM=2.*CL+EL+BCCIL
calculate stator resistance
A=PI*SC*CF/(C*TS)
RY=SC*CO*HN/(PN*AC*C*C)
RG1=(1.E-6)*RS*(1.0+ALPHAS*(TST-20.))*RY
S=PI/(C*AC)
COMPUTE FIELC CONLUCTCR AREA
CCMfuTE ARNATURE CCNDLCTCR AREA
IF (DW1) 47.47.48
B 277
B 278
47 AC=C.785*DH*DW*SN1 隹 - B 282
B 279
CCMFUTE ARNATURE CCNDLCTCR AREA
B 281
B 283
B 284
B 285
5 0
5 1
56,56,57
C
6 0
6 1
6 2
6 3
64 IF (PX-4.0) 65,65,66
6 5
6 6
B 285
B 286
B 287
B 288
B 288
B 290
B 291
B }29
B }29
55
B }29
B 295
B 295
B }29
5
B 298
B 298
B 300
B 301
B 302
B }30
B }30
C
C
B 305
8 306
B 306
B 307
B 308
B 309
B 311
64 GC TC 67
B 311

```

```

 B 312
 B }31
 9 314
 d 315
 B 316
 B }31calculate stator resistanceB 317
 B
B 319
C
C
B 320
compute fiele concuctcr area
B
B
B 324
B
B }32
B 327
C
C
EC=GQ*SC*CF*FS/C
B }28
B }28
B }29
*)

C		B 331
	IF (RT) 70,70,71	B 332
70	$\Delta S=.7854 * R C * R D$	B 333
	GC TC 73	B 334
71	$Z Y=1.0$	B 335
	$D T=A M I N I(R T, R D)$	B 336
	LG = $\mathrm{MMAXI}^{(1 R T, R D)}$	B 337
	GC T0 49	8338
72	$A S=D T * D G-C$	B 339
C		8340
C	CCMPUTE FIELD RESISTANCE	B 341
C		B 342
73	ZG=PT*FE/AS	B 343
		B 344
C		B 345
C	nc load magnetic calcllaticns	B 346
C		B 347
	$\mathrm{GA}=3.142 * \mathrm{DI} *(C L-H V * B V)$	8348
	GE=CC*GC*CCR	B 349
	$A G=6.38 * D I /(P X * G E)$	B 350
	IF (C1) 75,74,75	B 351
74	C1 $=(.64$ G*ALCG(PE) +1.359$) *((G C / G P) * * 0.352)$	B 352
75	$\mathrm{CW}=\mathrm{C} .707 * E E * C 1 * C F /(E P * P N)$	B 353
	TG=600CCOC.0*EE/(CW*EC*RPM)	B 354
	$B G=T G / G A$	B 355
	IF (CP) 76,76,77	B 356
76	$C P=(G C / G P) * * .41 * P E *(A L C G(G C / T P) * .0378+1.191)$	B 357
77	$F Q=T G * C P / P X$	B 358
C		B 359
C	cetermine cemagnetizine ampere turns (full leadi	B 360
C		8361
	IF (CM) 78,78,79	B 362
78	$A A=S I N(3.142 * P E)$	B 363
	$\Delta B=S(N(1.571 * P E) * 4.0$	B 364
	$C N=(3.142 * P E+A A) / A B$	B 365
79	CONTINUE	B 366
	FGML=.45*EC*PI*CM*CF/PX	B 367
C		B 368
C	PERNEANCE CALCUlAtions	B 369
C		B 370
	IF (CQ) $80,80,81$	B 371
80	$A E=3.1416=P E$	B 372
	$C G=(4 . * P E+1) / 5 ..-S I N(A B) / 3.1416$	B 373
81	$X R=.0707 * A * C F /(C 1 * B G)$	B 374
	FACTCR = YY/ (PN*GN)	B 375
	IF (PBA.LT.61.) GC TO 82	B 376
	$F F=.05 * 124 . * F A C T C R-1.1)$	B 377
	IF (FACTOR.GE.0.667) FF=.75	B 378
	IF (ZZ.EQ.5) FF=1.	B 379
	GC 1083	B 38C
82	$F F=.25$ * (6.*FACTCR-1.)	B 381
	IF (FACTOR.GE.0.667) FF= -25*(3.*FACTOR+1.)	B 382
	IF (2Z.EQ.5) FF=1.	B 383
83	$C X=F F /(C F * C F * C F * D F)$	B 384
	$\mathrm{Z}=\mathrm{CX} * 2 \mathrm{C} .0 /(\mathrm{PN} * \mathrm{CN})$	B 385
	BT=3.142*DI/CQ-BD	B 386

```
    ZA=ET*BT/(16.0*TS*GC) 8 387
    2B=0.35*BT/TS
                    B 388
    ZC=HC/BC
        B 389
    ZC=FX*.333/ES
    B }39
                    ZE=FY/BS
            IF (ZZ-2) 84,85,86
    B 391
            B }39
4 PC=Z*(ZE+ZC+ZA+ZB)
        B 392
84 PC= Z*(ZE+ZC+ZA+ZB)
            B }39
85 PC = Z*(ZC+(2.O*HT/(BO+ES))+(HW/BS)+ZD+ZA+ZB)
    G0 10 90
    B}39
    B 396
86 IF (ZZ-4) 87,88,89
        B }39
87 PC= Z*(2C+(2.0*HT/(80+E1))+(2.0*hW/(B1+B2))+(HX/(3.*B2))+ZA+ZB)
        B 398
    G0 T0 90
        399
88 PC= Z*(ZC+0.62)
        400
    GC TC 90
    PC=Z*(ZE+ZC+(0.5*GC/TS)+(0.25*TS/GC)+0.6)
    B 401
89
90
    PC=Z*(ZE+ZC+(0.5*GC/TS)+(0.25*TS/GC)+0.6) 
    B 401
    IF (DI-8.C) 91,91,92
    B }40
    B 404
91 EK=SORT(EK)
    B }40
    ZF=.612*ALEG(10.0*CS)
B 406
    EW=6.28*EK*LF*(TP**(0.62-(.228*ALOG(ZF))))/(CL*DF*DF) B 407
    PM=3.19*3.1416*CR*CL*(2.C-PE)/(PX*(HP1+GC))
    P5=1.675*(CCCIL-PCOIL)*(CCCIL+PCOILI/BCOIL 
    P5=1.675*(CCCIL-PCOIL)*(CCCIL+PCOIL)/BCOIL
    P6=P6+1.67*(CI-DSH)*(CI+CSH)/BCOIL
        P7=2.5*(DI+DISHI)*(DU-CI)/(DL-DISHI) B 412
    RL=(P5+P6+P7/2.+PM*PX/4.)
    RL=(P5+P6+P7/2.*PM*PX/4.)
C
C
    STATOR WINCING LEAKAGE AND ARMATURE REACTION REACTANCES
        XL=XR*(2**PC+EW)
        XL=XR*(2**PC+EW
    XG=XR*CG*AG
        B 410
    B }41
    B 412
    B }41
        B44
        B 415
    field leakage reactance, SElf inductance and time constant
    XF=3.0E-06*3.1416*F*(STATET**2)*RL*PI/EP
        B 416
        B 417
        418
        B419
C
C
C
    \FF=3.0E-06*3.1416*F*(STM*)
TC=SI/FK1
B 420
SYACHRONOUS AND TRANSIENI REACTANCES CALCULATIONS
XA=XL+XD
B422
XA=XLLXCD
XU=XL+(XF*XD)/(XF+XD)
B }42
B 423
92 ZF=.612*ALEG(10.0*CS)
    PM=3.19*3.1416*CR*CL*(2.C-PE)/(PX*IHP1+GC)
    /8S
86
    B 402
91
420field leakage reactance, self inductance and time constantB 422
B424
T
B 425
B }42
C
C
    B 426
B 427
C
C
COMPUTE FRICTION AND WINCAGE
B428
B429
B 430
IF (WF-1.0) 94,93,94
WF=CR**2.5*(RPM**1.5)*PL*0.0C000252
B432
C
C
B 431
C
C
B}443
WEIGHT CALCULATICNS
```

```
B }433
9 3
hEIGHT CALCULATICNS
B435
B }43
C
C
IF (ZZ-3) 95,96,95
94
```



```
B 437
B 438
C
95
B439
```

```
        IF (Z2.NE.4)WI=WI-QQ*(BS*HS-((HO+O.5*HT)*(BS-BO)))) B 443
    IF (2Z.EQ.4) WI=WI-QG*(BS*BS*3.1416/4.+HO*BO)
B 444
GC TO }9
    WI=(DU-HC):3.1416*HC
    WI=WI+HS*((DI+2.*HS)*3.1416-CQ*B3)
    hI=WI+GG*((HC+O.5*HT) ( (BS-BO))
    mI=WI*0.5t6*SS
C
C
C
        8445
```

WSHAFT $=.283 * 3.1416 *(D S H * * 2-D I S H * 2) / 4 \cdot *(A L H+2 \cdot * P L)$
THETA $=2$. \#3. 1416 *PE/PX
ATIP=OR*E2 (THETA-SIN(THETA))/8.
$\triangle B C E Y=C R * S I N(T H E T A / 2.1 *(C R * C C S(T H E T A / 2) / 2 ..-C S H / 2)$.
EETA=ARSIN((DR*SIN(THETA/2.)/2.)/(DSH/2.1)*2.
ABASE=DSH*2*(SIN(BETA/2.)-SIN(BETA)/4.-BETA/4.)/2.
WPCLE= $283 * P L *(A T I P+A E C D Y+A B A S E)$
$W R C T O R=W S H A F T+P X * W P O L E$
WTOTAL $=W C+W I+R C+W Y O K E+W R C T C R$
RETURN
END
$R C=0.321 * P T * F E * A S \quad$ B 451
$W C=.321 * S C * G C * A C * H^{\prime}$
IF (TYPY.EG•1) GC TO 98 $\quad 855$

1CYCI/2.) 2. \#TYR*(CYC-(CU4TY))/2.)) B 457
IF (TYPY.EG.2) WYOKE=WYOKE+3.1416*0.283*(DU+TY)*TY*(2.*CL) B 458
IF (TYPY.EG.3) WYOKE=WYOKE $+3.1416 * 0.283 * 2 . * C L *(0.333 *(10.5 * D U+Y Y) *$ B 459
$1 * 2+(0.5 *(D U+T Y)) \neq 2+(0.5 *(D U+T Y)) *(0.5 * D L+Y Y))-0.25 * D U * D U\rangle \quad$ (460
CC TO 99
WYOKE =. 283*3.1416*(DU+TY)*TY*(2.*CL+BCOIL) B 462
IF IWROTOR NE O TC 100

END 2

B 445
B 446
B 447
B 448
B 449
B 450
452
B 453

B 461
B 463
B 464
B 465
B 466
B 467
B 468
B 469
B 470
B 471
B 472

- 43

474
475- ．．．．．．．．．．．．．．．．．．．．．．．－．．．．．．．．．
\square ．．．
．
.

SUBROUTINE MAGNET 1
CCNNON A, $A A, A B, A C, A C R, A G, A I, A L H, A L P H A E, A L P H A R, A L P H A S, A L Y, A L Y C, A L Y R$ 2
$1, A P, A S, A S H, A T H, A Y, A Y C, A Y R, B, B 1, B 2, B 3, B C L L, B C O I L, B G, B K, B N, B O, B P, B P L$ C
$2, B S, B S H L, B T L L, B V, B Y C L L, C, C 1, C C, C C R, C E, C F, C K, C L, C M, C P, C Q, C W, D, D L, D C$ 3
4$4 F C L, F E, F F L L, F G L, F G N L, F F, F K 1, F P L, F Q, F S, F S H L, F S H L P, F T L, F Y C L, F Y L, F Y R L$6IPX,IQQ,IZZ, JA, KSAT, LTR,LTR1,LTS,P5,P6,P7,PBA,PC,PCOIL,PE,PF,PHL, P9, T3 , TE,TC, TF,TG,TS,TST,IT,TY,TYE,TYPY,TYR,VA,VR,WC,WF,WI,WL,WO,WRSCTCR,WTCTAL,WYCKE, XA, XE, XD, XF, XL, XQ, XR, XU,YY,Z,ZG,ZZ,ZZZINTEGER TYPY
3CIL, DO, DF, DI, DISH,DISH1,CR,DSH, DU, DW, DWI, DYC, EC, EDD, EE, EL,EP,EW,F, CC 6
5,G,GA,GC,GE,GP,GXX,H,HC,HD,HN,HO,HP,HPI,HS,HT,HV,HW,HX,HY,IBN,IPN,
$7 H W, P I, P L, P N, P M L, P N, P T, P X, Q N, C Q, R C, R D, R E, R F, R G I, R K, R K I, R P M, R R, R S, R T$ $C \quad 9$
8,RY,S,SB,SC,SE,SF,SH,SI,SIGMA,SK,SN,SN1,SS,STATET,T1,T11,T2,T22,T3CIMENSICN AI(90), G(5)C 1112$\mathrm{EPL}=0$14
ETLL=0 1615ESHL=0
BCLL=0 -
BYCLL=0 19
FFLL=0 20
FTL=0 21$F P L=0$$P P L=G X X=F G$22
$h=F H * E C C$ 2423
FGL=W 25
PMLA $=0$
C 27CALCULATE AIRGAP AMPERE-TURNS AND PML$P M L=P M *(F G N L+F T L+F P L+F G L) * .001$C 2829
$P M L A G=P M L * P E /(2.0-P E)$ 31
$F G L=W+P N L A G * Z Z Z$ C 32
$P N L=P M *(F C N L+F T L+F P L+F G L) *-C C l$ 33
$P M L A G=P N L * P E /(2.0-P E)$ C 34
C 35FLLX DENSITY ANC ANPERE-TURNS FOR POLEC 36
$B P L=(P P L+P N L A G) / A P$ C 38
$\Lambda A=31$ 39
$K=1$30
$X=B P L$ 41
GO TO 19 42
FPL=AT*HP 43C 44
flUX density and anpere-turns for teeth C 45FlUX DENSITY AND ANPERETURNS FOR TEETH
C46
ETLL=(PPL+PNLAG)/ATH
ETLL=(PPL+PNLAG)/ATH C 47
$X=B T L L$ C 48
$\mathrm{NA}=1$C 49$K=2$n
GO TO 19 C 51
3 FTL=AT*HSC 52
CHECK IF PHL HAS CONVERGED C 54c 56
IF (ABS((PNL-PNLA)/PML).LE.I.CE-04) GO TO 4
PNLA=PNL C 57
GO TO 1 C 58
C
FLUX DENSITY AND AMPERE-TURNS FOR SHAFT (UNDER FIELD COIL) C 60
CC 61
$Z=F T L+F G L+F P L$ C 62
PH7L=P7*Z*.001 63
PSHL=(PPL+PMLAG)*PX/2.C+PML*PX/2.0+PH7L C 64
BSHL=PSHL/ASH C 65
$X=B S H L$ C 66
$N A=31$ C 67
$K=3$ C 68
EC 1019 C 69
FSHL=AT*ALH C 70
5
C
CC
FLUX DENSITY AND ANPERE-TURNS FCR SHAFT (UNDER POLES) C 72
PDIFF=PSHL-PH7LC 73
$X=(.250 * P C[F F+P H 7 L$)/ASH C 75
$\mathrm{A} A=31$ C 76
$K=4$ C 77
GC 1019 C 78
FSHLP=AT*PL/2.0 C 79
$X=1.625 * P C I F F+P H 7 L$)/ASH C 80
$\mathrm{NA}=31$ C 81
$K=5$ C 82
GG 1019 C 83
$F S H L P=F S H L P+A T \bullet P L / 4.0$ C 84
$X=1.875 * P C I F F+P H 7 L$)/ASH C 85
$N A=31$ C 86
$K=6$ C 87
GC 1019 88
FSHLP=FSHLP+AT*PL/4.0 C 89
flux density anc anpere-turns for core C 91
$Z=2 . * Z+F S H L+F S H L P * 2$. C 93
PHGL=P6*Z*.COI C 94
$B C L L=(P P L+P M L A G+(P+7 L+P H E L) / P X) / A C R$ C 95
$X=B C L L$ C 96
$\mathrm{NA}=1$ C 97
$K=7$ 98
GC TO 19 99
FCL=AT*HC 100101
FLUX DENSITY AND ANPERE-TURNS FCR YOKE

C 102

Z=2+2.*FCL
C 103
PH5L=P5*Z*.COL
C 104
IF (TYPY-1) 11,10,11

10	PY $=$ PSHL + PH6L+PH5L	C 107
	GC 1012	C 108
11	$P Y=P S H L+P H \in L$	C 109
12	$X=P Y / A Y$	C 110
	$N A=61$	C 111
	$K=8$	C 112
	GC 1019	C 113
13	FYL $=$ AT*ALY	C 114
	IF (TYPY-1) 14,15,14	C 115
14	$P Y=P Y+P H 5 L$	C 116
	$X=P Y / A Y C$	C 117
	BYCLL=X	C 118
	$\wedge A=61$	C 119
	$K=9$	C 120
	GO TO 19	C 121
15	FYCL $=0$	C 122
	FYRL=0	C 123
	EYCLL $=x$	C 124
	GO T0 18	C 125
16	FYCL=AT*ALYC	C 126
	$X=P Y / A Y R$	C 127
	$\wedge A=61$	C 128
	$K=10$	C 129
	GC 1019	C 130
17	FYRL $=A T$ * ALYR	C 131
C		C 132
C	total ampere-turns	C 133
C		C 134
18	FFLL $=2 . *(F G L+F T L+F C L+F P L+F S H L P)+F S H L+F Y L+F Y C L+F Y R L$	C 135
	RETLRN	C 136
C		C 137
C	INTERPGLATION PROCEDURE FOR MATERIAL CURVES	C 138
C		C 139
19	IF (AI(NA)-X) $24,2 \mathrm{C}, 2 \mathrm{C}$	C 140
20	$N A=N A+3$	C 141
21	If (AI (NA)-X) $22,23,23$	C 142
22	$N A=N A+2$	C 143
	GC TC 21	C 144
23	$\Delta A=A I(N A)$	C 145
	$E B I=A I(N A-2)$	C 146
	$C C=A I(N A+1)$	C 147
	$C=A(1 N A-1)$	C 148
	$X X=(A A-B B 1) /(.4343 *(A L C G(D C)-A L O G(D+.0001)))$	C 149
	$Y=A A-X X *$. $4343 * A L C G(D C)$	C 150
	$A T=E X P(2,3 C 6 \pm(X-Y) / X X)$	C 151
	CO 10 (2,3,5,6,7,8,9,13,16,17),K	C 152
24	$K S A T=0$	C 153
	RETURN	C 154
	END	C 155-

MAGNET

SUBROUTINE CUTPUTCOMNON A，AA，AB，AC，ACK，AG，AI，ALH，ALPHAE，ALPHAR，ALPHAS，ALY，ALYC，ALYR2
$1, A P, A S, A S H, A T H, A Y, A Y C, A Y R, B, B 1, B 2, B 3, B C L L, B C O I L, B G, B K, B N, B C, B P, B P L$ 3
$2, E S, B S H L, B T L L, E V, E Y C L L, C, C 1, C C, C C R, C E, C F, C K, C L, C M, C P, C O, C W, D, D 1, D C$3CIL，DO，CF，DI，DISH，CISF 1, CR，DSH，DU，DW，DWI，DYC，EC，EDD，EE，EL，EP，EW，F，4FCL，FE，FFLL，FGL，FGML，FH，FKL，FPL，FQ，FS，FSHL，FSHLP，FTL，FYCL，FYL，FYRL

$$
5, G, G A, G C, G E, G P, G X X, H, H C, H D, H M, H O, H P, H P 1, H S, H T, H V, H W, H X, H Y, I B N, I P N,
$$5，G，GA，GC，GE，GP，GXX，H，HC，HD，HM，HO，HP，HPI，HS，MT，HV，HW，HX，HY，IBN，IPN，6IPX，IQQ，IZZ，JA，KSAT，LTR，LTRI，LTS，P5，P6，P7，PBA，PC，PCOIL，PE，PF，PHL，P$7 H W, P I, P L, P N, P M L, P N, P T, P X, Q N, G Q, R C, R D, R E, R F, R G 1, R K, R K 1, R P M, R R, R S, R T$8，RY，S，SB，SC，SD，SF，SH，SI，SIGMA，SK，SN，SN1，SS，STATET，T1，T11，T2，T22，T39，T33，TB，TC，TF，TG，TS，TST，TT，TY，TYE，TYPY，TYR，VA，VR，WC，WF，WI，WL，WO，WRSCTCR，WTOTAL，WYCKE，XA，XE，XD，XF，XL，XQ，XR，XU，YY，Z，ZG，ZZ，ZZZ

SCTCR,WTOTAL。WYCKE。XA,XE,XDOXF,XL,XO,XROXU,YY,Z,ZGっZZ,ZZZ
DIMENSICN STAR（5），DASH（3）．AI（90），G（5）
INTEGER TYPY
REAL LTSOLTR，LTRI
3CIL，DO，CF，DI，DISH，CISF1，CR，DSH，DU，DW，DW1，DYC，EC，EDD，EE，EL，EP，EW，F，
D 5

$$
6
$$

6IPX，IQQ，IZZ，JA，KSAT，LTR，LTRI，LTS，P5，PG，P7，PBA，PC，PCOIL，PE，PF，PHL，P $7 H W, P I, P L, P N, P M L, P N, P T, P X, Q N, G G, R C, R D, R E, R F, R G I, R K, R K I, R P M, R R, R S, R T$ 9，T33，TB，TC，TF，TG，TS，TST，TT，TY，TYE，TYPY，TYR，VA，VR，WC，WF，WI，WL，WO，WR SCTCR，WTOTAL，WYCKE，XA，XE，XD，XF，XL，XQ，XR，XU，YY，Z，ZG，ZZ，ZZZ
8

1－－－－－－－－－－－／
WRITE $(6,1) V A, E E, E P, P I, F F, I P N, F, I P X, R P M$
$0 \quad 9$
10
D 11
D 12
13

FCRMAT（IHL，IBF ALTERAATCR RATING／／10X，15H ALTERNATOR KVA，F16．1／10
1X，1EH LINE－LINE VCLTAGE，F12．0／10X，19H LINE－NEUT．VOLTAGE，F11．0／10X $2,14 \mathrm{H}$ PHASE CURRENT，F1E．2／10X，13H POWER FACTOR，F19．2／10X，7H PHASES， 3122／10X，10H FREGUENCY，F2C．O／10X，6H POLES，123／10X，4H RPM，F27．1）
IF（ILZ－2）3，5，2
IF（IZ2－4）7，9，11
WRITE（6．4）BS．HX，HY，HS，IQC，TS，TT

 $5 \times 1 H * / 10 \times 13 \mathrm{H}$ NC．CF SLCTSI16， $23 \mathrm{X}, 1 \mathrm{H} *, 2 \times 8 \mathrm{H} * * * * * * *, 2 \times 1 \mathrm{H} / 62 \mathrm{~K} / \mathrm{H} *, 2 \mathrm{~K} 1 \mathrm{H}$

 8， $12 \times 1 \mathrm{H} * / 10 \times 15 \mathrm{H} \quad$ AT $1 / 3$［IST．，F14．3， $1 \times 6 \mathrm{HINCHES}, 16 \times 19 \mathrm{H} * * * * * * * * * * *$

GO TO 13
WRITE $(6,6) \quad$ EC，BS，HO，FX，FT，Hh，HS，ICQ，IS，IT
FERNAT（1HL， $13 H$ STATOR SLOTS／／5X22H TYPE－PARTIALLY CLOSED／67X4H－BO

 $319 \times 2 \mathrm{HHT}, 4 \times 1 \mathrm{H}=8 \times 1 \mathrm{H} / 1 \mathrm{CX} 3 \mathrm{H} H \mathrm{H}, \mathrm{F} 26.3,24 \times 1 \mathrm{H}, 10 \times 1 \mathrm{H} / 10 \times 3 \mathrm{H} H \mathrm{H}, \mathrm{F} 26.3,18$ $4 \times 6 \mathrm{H}-\mathrm{Cl}^{-*}, 12 \times 1 \mathrm{H} / 10 \times 3 \mathrm{H} \mathrm{HT}, \mathrm{F} 26.3,23 \times 1 \mathrm{H}, 12 \times 1 \mathrm{H} / 10 \times 3 \mathrm{H} \mathrm{HW,F} 26.3,19 \times 2 \mathrm{H}$ $5 \mathrm{HW}, 2 \times 1 \mathrm{H} *, 12 \times 1 \mathrm{H} / 10 \times 3 \mathrm{H} H \mathrm{H}, \mathrm{F} 26.3,18 \times 6 \mathrm{H}----* 2 \times 8 \mathrm{H} * * * * * * *, 2 \times 1 \mathrm{H}, 2 \times 2 \mathrm{HH}$ $6 \mathrm{~S} / 62 \mathrm{XIH}, 2 \times 1 \mathrm{H}, 6 \times 1 \mathrm{H}, 2 \times 1 \mathrm{H} / 1 \mathrm{CX} 13 \mathrm{H}$ NO．OF SLOTS $116,23 \times 1 \mathrm{H}, 2 \times 1 \mathrm{H}, 6 \times 1$


```
    8HES, 12 \2HHX, 2X1H*, 12X1H*/62X1H*, 2X8H********, 2X1H*/1OX1IH SLOT PIT
    9CH,41X1H*,2X1H*,6X1H*,2X1H*/10X15H AT 1/3 [IST.,F14.3,1X6HINCHES
```



```
    $#/62X19H**************-----/62X1H1,12X1H1/62X14H1-----BS-----1/62X
    $1H1.12\times1H1)
    GC TO 13
    WRITE (E,8) BO,Bl,E2,E3,ES,HO,HX,HT,HW,HS,IQQ.TS,TT
    FORNAT (1HL,13H STATOR SLOTS//5X25HTYPE-CONSTANT TCOTH WIDTH/GIXIH
    11,14X1H1/61X16H1------E1~----1/10X3H BO,F26.3,1X6HINCHES,15X1HI,1
    24XIH1/10X3H E1,F26.3,22X1H1,5\times4H-BO-,5\times1H1/1CX3H B2,F26.3,11\times17H--
    3------1----*,4\times17H*--1--M------10\times3H B3,F26.3,22\times1H1,4X1H*
    4,4\times1H*,4X1H1,8\times2HHC/1CX15H BS = (B2+B3)/2,F14,3,22X1H1,4\times1H*,4X17H
    5:---1---------/10\times3F HO,F26.3,22\times1H1, 2X1H*,8\times1H*, 2X1H1,8\times2HHT/1
    60\times3H HX,F26,3,22X1H*,14X,12H*------110X3H HT,F?6.3,12X2HHS,7X
    71H*,16X1H*,7X2HHW/10X3H HW,F26.3,20\times1H*,3X12H************,3X1OH*-
    8-----/10\times3H HS,F26.3.19\times2H*1.3X1H*,10X1H*,3X2H1*/57X1H*,1X1H1, 3X
    91H*,10X1H*,3X1H1,1X1H*,4 \2HHX/10X13H NO. OF SLOTS,I16,17X1H*, 2X1H1
    $,3\times12H************,3\times1H1,2\times1H*,6H-----/55X1H*,3\times1H1,18X1H1,3X1H*/
    $10X11H SLCT PITCH,Fl8.3,1X6HINCHES,4X34H----**********************
    $********/54\times1H1, 4X1HI,18\times1H1,4\times1H1/10X11H SLOT PITCH,33X1H1,4X2OH1
    $-------B2--------1,4\times1H1/10X15H AT 1/3 DIST.,F14.3,1X6HINCHES,8
```



```
    $1,28\times1H1)
        GC 10 13
    WRITE (6,10) BC,HC,BS,FS,IGQ,TS,TT
    FORNAT /1HL,13H STATOR SLOTS//5X,11H TYPE-ROUND//10X,13H SLOT OPEN
    1ING,F16.3,1XGHINCHES/10X,19H SLOT OPENING DEPTH,F10.3/10X,14H SLOT
    2 DIAMETER,F15.3/10X11F SLOT CEPIH,F18.3//10X,13H NO. OF SLOTS,Il6/
    3/10X,11H SLCT PITCH,F18.3,1XGHINCHES//10X,11H SLOT PITCH/10X,15H
    4 AT 1/3 DIST.,F14.3.1X6HINCHESI
    GO TO 13
    WRITE (6,12) BS,HX,HY,FS,IGQ,TS,TT
    FCRNAT (1HL,13H STATOR SLOTS//5X25H TYPE-CPEN (1 COND./SLOT)/57X,6
        1H-----* 12X6H*-----/62X,1H*,12X1H*/58X5HHY *,12X1H*/62X1H*,12X1H*/
        210X,3H BS,F26.3,1X6HINCHES,11X,6H-----*, 2X8H********,2X1H*/10X,3H
        3HX,F26.3,23X,1H*,2X1H*,6X1H*,2X1H*/10X,3H HY,F26.3,23X,1H*,2X1H*,6
        4X1H*,2X1H*/10X,3H HS,F26.3,23X,1H*, 2X1H*,6X1H*, 2X1H*, 2X 2HHS/58\times2HH
        5X,2X1H*, 2X1H*,6X1H*, 2X1H*/10X,13H NO. OF SLOTS,116,23X1H*,2X1H*,6X
        61H*,2X1H*/62X1H*,2X1H*,6\times1H*, 2X1H*/10X,11H SLOT PITTCH,F18.3,1X6HIN
        7CHES,16\times1H*,2\times1H*,6\times1H*, 2X1H*/57\times6H-----*, 2X8H********, 2\times1H*/10\times11
        8H SLOT PITCH,41X1F*,12X1H#/1CX15H AT 1/3 DIST.,F14.3,1X6HINCHES,
        916\times19H**************----/62\times1H1,12\times1H1/62\times14H1-----------1/62\times1H
        $1,12X1H1)
            CCNTINUE
            WRITE (6,14) GC,GP,GE
    FORMAT 11HL,8H AIR GAP//10X,16H MINIMUM AIR GAP,F17.3,LXGHINCHES/I
        ICX,16H MAXIMUM AIR GAP,F17.3/10X,18H EFFECTIVE AIR GAP,F15.3//I
    IF (IBN.EG.O) GC TO le
    WRITE (6,15) CC,CCR
    FORNAT 11H,10X,18HCARTER COEFFICIENT/17X,6HSTATOR,F20.3/18X5HROTO
    1R.F20.3)
    GG TO 18
    WRITE (6,17) CC
    FORMAT (1H,10X,18HCARTER COEFFICIENT,F14.3)
    IF (RF.LT..S) WRITE (E.19)
FCRNAT (1HL, \(13 H\) STATOR SLOTS//5X25H TYPE-CPEN 11 COND./SLOTI/57X,6
```



``` \(3 H X, F 26,3,23 X, 1 H *, 2 X 1 H *, 6 X 1 H *, 2 X 1 H * / 10 X, 3 H H Y, F 26,3,23 X, 1 H *, 2 X 1 H *, 6\)
```



``` \(61 H *, 2 \times 1 H * / 62 \times 1 H *, 2 \times 1 H, 6 \times 1 H * 2 \times 1 H * / 10 X, 11 H\) SLUT PITCH,F18. \(3,1 \times 6 H I N\)
```



``` \(\left.\$ 1,12 \times 1 \mathrm{H}_{1}\right)\)
CCNTINUE
WRITE \((6,14) \quad\) GC,GP,GE
FORMAT ILHL, 8H AIR GAP//IOX, 1GH MINIMUM AIR GAP,FI7. 3, LXGHINCHES/L
IF (IBN.EQ.OI GC TO LE
FORMAT (1H , 10X, 18HCARTER COEFFICIENT/17X,6HSTATOR,F20.3/18X5HROTO
1R.F20.3)
GG TO 18 03
WRITE \((6,17)\) CC
IF (RF.LT..5) WRITE (6.19)
```


FCRMAT I $1 H K, 9 X, 13 H$ PQLE EMERACE,F27.3/10X,12H PCLE HEIGHT,F28.3,1X
D 163 16HINCHES/LOX,19H PCLE FEIGHT (EFF.),F21.3/10X,15H RCTOR DIAMETER,F $225.3 / 10 X, 17 H$ PERIPHERAL SPEEC,F20.O.3X,10H FEET/MIN./10X,23H SPEC. 3 TANGENTIAL FORCE,F17.3,11H LBS/SQ.IN.I
WRITE (6.34) DSH,CISH.CISHI,ALH
FCRMAT (1HL, GH SHAFT//IOX,28F CIAMETER (UNDER FIELD CCIL),F13.3,7H 1 INCHES/10X,34H INSIDE DIAMETER (OF HOLLOW SHAFT),F7.3/10X,27H DIA 2METER (UNDER END TURNS), F14.3/10X,20H LENGTH (BTW. POLES),F21.3)
IF (IBN.EG.O) WRITE (E.35)
FCRFAT (IHL,19H DAMPER BARS (NCNE))
IF (DD.EQ.O..AND.IRN.AE.O) WRITE (6.36) H.B
FCRHAT (1HL, 26H DANPER BARS (RECTANGULAR)//1CX,22H DAMPER BAR DIME 1NSICNS, F17.3,2H X, 1XF5.3,1X6HINCHES)
IF (DD.NE.C..AND.IBN.AE.C) WRITE (6,37) DD
FORMAT (IHL, 2OH DAMPER BARS (ROUND)//10X,20H DAMPER BAR DIAMETER,F 119.3,1X6HINCHES)

IF (IBN.NE.O) WRITE (E,3E) WC,HD,SB,TB,IBN,RE
FORMAT (1H,9X,19H SLCT CPENING WIDTH,F20.3/10X,2OH SLOT OPENING H 1EIGHT,F19.3/10X,18H DAMPER BAR LENGTH,F21.3/10X,17H DAMPER BAR PIT 2CH,F22.3//10X,24H AO. CF DAMPER BARS/POLE,I12//10X,25H RESISTIVITY 3 AT 20 DEG. C,F14.3.17F MICRC-CHM INCHESI WRITE (6.39) JYPY
FORNAT (IHI. I1H YCKE (TYPE,I2,1H))
IF (TYPY-2) $40,43,48$
WRITE (6,41)(STAR(I),I=1,5), CASH(1),TY,(STAR(2),I=1,5),(DASH(I),I $1=1,21, S T A R(1)$
FORNAT (1HL/4(52X,1H1/), 13X,5A6,5H**\# , A6, 1H-/13X,1H*, $31 \mathrm{X}, 1 \mathrm{H} / \mathrm{H} / 12 \mathrm{X}$ 1, 1H*, $13 \mathrm{X}, 4 \mathrm{HYCKE}, 14 \mathrm{X}, 1 \mathrm{H}, 3 \mathrm{X}, 4 \mathrm{HTY}=, \mathrm{F} 5,2,4 \mathrm{H}$ IN./11X,1H*,30X,2H**/11X $2,5 A G, 1 H *, 1 X, 2 A 6 / 15 X, 1 H, 8 X, 1 H *, 7 X, 1 H, 8 X, 1 H *, 10 X, 1 H 1 / 15 X, 27 H *$ STAT 3CR FIELD STATCR * $10 X, 1 H L / 15 X, 1 H *, 8 X, 9 H *$ COIL *, $8 X, 1 H *, 10 X, 1 H$ $41 / 8 x, 2(7 X, 1 H *, 8 X, 1 H *), 10 X, 1 H 1 / 15 X, 1 H *, 8 X, A 6,3 H * * *, 8 X, 1 H * / 15 X, 1 H *, 8$ $5 \mathrm{X}, 1 \mathrm{H}, 7 \mathrm{X}, 1 \mathrm{H} * 8 \mathrm{~B}, 1 \mathrm{H} * / 8 \mathrm{X}, 2(7 \mathrm{X}, 1 \mathrm{CH} * * * * * * * * * / / / /)$
WRITE $(6,42) \mathrm{CU}$, BCOIL
FORMAT IIHK, $9 \mathrm{X}, 20 \mathrm{H}$ INSICE YOKE DIAMETER, $3 X, F 7.3,7 H$ INCHES/10X, 17 HST IATCR SEPARATION, 6X,F7.3,7H INCHES)
GC TO 50
WRITE $(6,44)($ CASH(I) , $I=1,2),(S T A R(I), I=1,4)$, DASH(1)

 $2 *, 15 X, 1 H *, 15 X, 1 H 1 / 11 X, 3 H T Y E, 10 X, 1 H *, 5 X, 4 H Y C K E, 6 X, 1 H, 15 X, 1 H 1 / 2 X, 21$ $315 \mathrm{X}, \mathrm{A} 6,2 \mathrm{H} *), 2 \mathrm{X}, \mathrm{AC}, 3 \mathrm{H}-\cdots-)$

D 164
D 165
D 166
D 167
D 168
D 169
D 170
D 170
D 171
D 172
D 173
D 174
D 175
D 176
D 177
D 178
D 179
D 180
D 181
D 182
D 183
D 184
D 185
D 186
D 187
D 188
D 189
D 190
D 191
D 192
$\begin{array}{ll}D & 192 \\ 0 & 193\end{array}$
$\begin{array}{ll}0 & 194 \\ 0 & 195\end{array}$
$\begin{array}{ll}0 & 195 \\ \text { D } 196\end{array}$
D 197
D 198
0199
D 200

WRITE (6, 46) (DASH(I),I =1,2), (STAR(I),I=1,4), DASH(I), (STAR(I),I=1, 13)

201
D 202
D 203 204

FCRMAT $11 H, 9 X, 2 A 6,5 H-\cdots--1 X, A 6,3 H * *, 18 X, 2 H T Y / 12 X, 1 H 1,15 X, 1 H *, 7 X$
$1,1 H * / 12 X, 1 H L, 5 X, A 6,5 H, * *, 1 X, 5 H F I E L D, 1 X, 2 A 6,2 X, A 6,3 H--1 / 12 X, 1 H 1,6$ $2 X, 1 H *, 8 X, 1 H, 1 X, 4 H C O I L, 2 X, 1 H, 8 X, 1 H *, 10 X, 1 H 1 / 12 X, 2(7 X, 10 H *$ STATOR 205 206

 208 WRITE (6,47) TYR,TYE,TY,CYC, CU,BCOIL 211
FORNAT (1HL, 9X, 3HTYR,F30.3,7H INCHES/10X,3HTYE,F30. 3/10X, 2HTY,F31. 13/1CX,25HDYC. YOKE INSIDE CIAMETER/I5X,16HIAEOVE FLD COIL).FI2. $3 / 1$ 20X, 27HDU, STATCR CUTSICE DIANETER,F6.3/10X,25HBCOIL, SPACE BTWN ST3ATORS,F8.3)

212
(0)
hRITE (6,49)(DASH(I),I=1,2),(STAR(I),I=1,2),(DASH(I),I=1,2) D 217
FORNAT $(1 H+13 X, 14 H(T A P E R E D$ ENCS)/1HL, $35 X, 1 H 1,3 X, 1 H 1 / 32 X, 5 H---1,3$
D 218

```
    1X,9H1———-TYR/2(12X,1H1,23X,1H1,3X,1H1/),12X,1H1,43X,1H1/10X,1H-,2 D 219
2A6,1X,2A6,5H*****,15X,1H1/24X,1H*,15X,1H*,15X,1H1/11X,3HTYE,8X,3H*
3**,15X,3H***,2X,2A6, 2H--/19X,3H***, 8X,4HYOKE,9X,3H***/16X,3H***, 27
4X,3H***)
    GC TC 45
    WRITE (6,51) WC,RC,WI,WRCICR,WYOKE,WTOTAL
    FORNAT (1HL,8H WEIGHTS//1OXI3H STATOR COND.,F17.3,1X6HPOUNDS/10X12
        1H FIELD CCND.,F18.3/1CX12H STATOR IRON,F18.3/10X,6H ROTOR,F24.3/10
        2X,5H YOKE,F25.3//10X,GF TOTAL/IIXI8H (ELECTROMAGNETICI,F11.3)
    WRITE (6,52) C1,CP,CM,CQ,O1
    FORNAT IIHL,IOH CCNSTANTS//LOX,35H CI, FUNDAMENTAL/MAX. OF FIELD F
        ILUX,F8.3/10X.18H CP, FCLE CONSIANT,F25.3/10X,27H CM, DEMAGNETIZATI
        2CN FACTER,F16.3/10X,31H CQ, CROSS MAGNETIZATION FACTOR,F12.3/1OX,2
        36H Dl, POLE FACE LCSS FACTOR,F17.3)
    HRITE (6,53) AG,PC,EW,PM,P5,P6,P7 D 233
    FCRMAT (1H1,31H PERMEANCES (LINES/AMPERE TURN)//10X,8H AIR GAP,F35 D 234
        1.3,24H PER INCH CF CORE LENGTH/1OX,3CH WINDING LEAKAGE - STATOR SL D 235
        20T,F13.3/29X,1OHSTATOR END,F14.3//10X,8H LEAKAGE/13X,25H PM, FROM D 236
        3ROTCR TO STATOR/15X,19H(BTWN. ROTOR TEETHI,F19.3/13X,22H P5, ACROS
        4S FIELO COIL,F18.3/13x,26H PG, FROM STATOR TO STATOR,F14.3/13X,24H
        5 P7, STATOR TC SHAFT END,F16.3)
    HRITE (6,54) A,XR,XL,XC,XQ,XA,XB,XF,XU,SI,TC
    FCRNAT (IHL,11H REACTANCES//10X23H AMPERE CONOUCTORS/INCH,F20.3/10
        1X17H REACTANCE FACTOR,F26.3//10X23H STATOR WINOING LEAKAGE,F2O.3,1
        2X,7HPERCENT/10\times23H ARN. REACTION (DIRECT),F2O.3/10\times22H ARM. REACTI
        3CN (QUAD.),F21.3/10X21F SYNCHRONOUS (DIRECT),F22.3/10\times20H SYNCHRON
        4CLS (QUAD.),F23.3/10X14H FIELD LEAKAGE,F29.3/1OX1OH TRANSIENT,F33.
        53//10X22H FIELD SELF INDLCTANCE,F21.3,1X7HHENRIES///10\times27H OPEN CI
        GRCLIT TIME CCNSTANT/17X13H (FIELD ONLY),F23.5,1X7HSECONDS)
    RETLRN
    ENC
0 220
D 221
D }22
D }22
\begin{tabular}{|c|c|}
\hline  & D 219 \\
\hline  & 0220 \\
\hline 3**, 15X, \(3 \mathrm{H} * *, 2 \mathrm{X}, 2 \mathrm{~A}, 2 \mathrm{H}--/ 19 \mathrm{X}, 3 \mathrm{H} * *, 8 \mathrm{X}, 4 \mathrm{HYOKE}, 9 \mathrm{X}, 3 \mathrm{H} * * / 16 \mathrm{X}, 3 \mathrm{H} * *, 27\) & D 221 \\
\hline 4X, 3H***) & D 222 \\
\hline GC T0 45 & D 223 \\
\hline WRITE (6,51) WC,RC,WI, hRCTER,WYOKE, WTOTAL & D 224 \\
\hline FORNAT (1HL, 8 H WEIGHTS//10XI3H STATOR COND.,F17.3,1×6HPOUNDS/10X12 & D 225 \\
\hline 1H FIELD CCND.,F18.3/1CXI2H STATOR IRON,F18.3/10X,6H ROTOR,F24.3/10 & D 226 \\
\hline \(2 \mathrm{X}, 5 \mathrm{H}\) YOKE,F25.3/110X, 6 (t TOTAL/IIXI8H (ELECTROMAGNETIC),F11.3) & - 227 \\
\hline WRITE (6,52) C1,CP,CM, CQ, Dl & D 228 \\
\hline FORNAT ILHL, 1OH CCNSTANTS//10X,35H Cl, FUNDAMENTAL/MAX. OF FIELD F & D 229 \\
\hline ILUX,F8.3/10X.18H CP, FCLE CONSIANT,F25.3/10X,27H CM, DEMAGNETIZATI & D 230 \\
\hline 2CN FACTER,F16.3/10X,31t CQ, CRESS MAGNETIZATION FACTOR,F12.3/10X,2 & D 231 \\
\hline 36H D1, POLE FACE LCSS FACTOR,F17.3) & D 232 \\
\hline WRITE (6,53) AG, PC, EW, PM, P5, P6, P7 & D 233 \\
\hline FCRMAT (1H1,31H PERMEANCES (LINES/AMPERE TURN)//10X,8H AIR GAP,F35 & D 234 \\
\hline 1.3,24H PER INCH CF CORE LENGTH/10X,3CH WINDING LEAKAGE - STATOR SL & D 235 \\
\hline 20T,F13.3/29X,10HSTATOR END,F14.3//10X, 8H LEAKAGE/13X,25H PM, FROM & D 236 \\
\hline 3ROTCR TO STATOR/15X,19H(BTWN. ROTOR TEETH),F19.3/13X,22H P5, ACROS & D 237 \\
\hline 4 S FIELO COIL,F18.3/13X,26H PG, FROM STATOR TO STATOR,F14.3/13X,24H & D 238 \\
\hline 5 P7, STATOR TC SHAFT EAD,F16.31 & D 239 \\
\hline WRITE (6,54) A, XR, XL, XC, XQ, XA, XB, XF, XU, SI, TC & D 240 \\
\hline FCRNAT (1HL, 11H REACTANCES//10x23H AMPERE CONOUCTORS/INCH,F20.3/10 & D 241 \\
\hline 1X17H REACTANCE FACTOR, F26.3/110x23H STATOR WINOING LEAKAGE,F20.3,1 & D 242 \\
\hline \(2 \mathrm{X}, 7 \mathrm{FPERCENT/10} \mathrm{\times 23H}\) ARM. REACTION (DIRECT), F20.3/10×22H ARM. REACTI & D 243 \\
\hline 3CN (QUAD.),F21.3/10X21F SYNCHRONOUS (DIRECT),F22.3/10x20H SYNCHRON & D 244 \\
\hline 4CUS (QUAD.), F23.3/10x14H FIELD LEAKAGE,F29.3/10x10H TRANSIENT,F33. & D 245 \\
\hline 53//10X22H FIELD SELF INDLCTANCE,F2L.3,1X7HHENRIES///10×27H OPEN CI & D 246 \\
\hline 6RCLIT TIME CCNSTANT/17X13H (FIELD ONLY),F23.5,1X7HSECONDS) & D 247 \\
\hline RETLRN & D 248 \\
\hline EAC & D 249- \\
\hline
\end{tabular}
```


APPENDIX B

DEFINITION OF FORTRAN VARIABLES

The following is an alphabetic listing of the major FORTRAN variables used in the program. The variables are defined and the units used in the program are given. The list includes approximately 75 percent of all FORTRAN variables appearing in the program.

A ampere-conductors per inch of stator periphery, A/in.
AA used for variety of calculations
$A B \quad$ used for variety of calculations
ABASE area used in rotor weight calculation, in. ${ }^{2}$
ABODY area used in rotor weight calculation, in. ${ }^{2}$
AC
ACR
AG specific air gap permeance per inch of core length per pole, lines/(A-turn)(in.)
AI points on material magnetization curve
AIRGAP NAMELIST name
AKVA generator output at load point G, kVA
ALH shaft length (between poles), in.
ALPHAE temperature coefficient of resistivity of damper winding at $20^{\circ} \mathrm{C},{ }^{\circ} \mathrm{C}^{-1}$
ALPHAR
ALPHAS
ALY
ALYC temperature coefficient of resistivity of field winding at $20^{\circ} \mathrm{C},{ }^{\circ} \mathrm{C}^{-1}$ temperature coefficient of resistivity of armature winding at $20^{\circ} \mathrm{C},{ }^{\circ} \mathrm{C}{ }^{-1}$ yoke dimension used in magnetic calculation, in.

ALYR yoke dimension used in magnetic calculation, in.

AN
AP
AS
ASH power factor angle, rad pole body cross-sectional area (solid area), in. ${ }^{2}$ field conductor area, in. ${ }^{2}$ shaft cross-sectional area, in. ${ }^{2}$

ATH
ATIP
AY
AYC
AYR
B
B1
B2
B3
BCL
BCLL
BCOIL
BETA angle used in rotor weight calculations, rad
BG
BK
BN
BO
BP
BPL
BPLL
BS
BSHL shaft flux density, kilolines/in. ${ }^{2}$
BSHLL shaft flux density at load point G, kilolines/in. ${ }^{2}$
BTL
BTLL tooth flux density, kilolines/in. ${ }^{2}$
BV width of cooling duct, in.
BYCL
BYCLL yoke flux density, kilolines/in. ${ }^{2}$
C
tooth cross-sectional area, in. ${ }^{2}$ area used in rotor weight calculation, in. ${ }^{2}$ yoke area $=T Y *(D U+T Y) * 3.14$, in. ${ }^{2}$ yoke area $=$ TYE $*(D Y C+T Y E) * 3.14$, in. ${ }^{2}$ yoke area $=T Y R *(\mathrm{DU}+2 . * \mathrm{TY}) * 3.14, \mathrm{in} .{ }^{2}$ rectangular damper bar slot width, in. stator slot dimension (see table VII(c)), in. stator slot dimension (see table VII(c)), in. stator slot dimension (see table VII(c)), in. core flux density at load point G, kilolines/in. ${ }^{2}$ core flux density, kilolines/in. ${ }^{2}$ field coil width, in. airgap flux density (no-load, rated voltage), kilolines/in. ${ }^{2}$ flux density at which core loss WL is given, kilolines/in. ${ }^{2}$ number of damper bars per pole stator slot dimension (see table VII(c)), in. pole body width, in. pole flux density, kilolines/in. ${ }^{2}$ pole flux density at load point G, kilolines/in. ${ }^{2}$ stator slot dimension (see table VII(c)), in. tooth flux density at load point G, kilolines/in. ${ }^{2}$ yoke flux density (over field coil) at load point G, kilolines/in. ${ }^{2}$ number of parallel armature winding circuits per phase

C1 ratio of fundamental maximum to actual maximum value of field form
$\mathrm{CC} \quad$ Carter coefficient (stator).
CCR Carter coefficient (rotor)
CDD current density in field at load point G, A/in. ${ }^{2}$

CE
CF
CK
CL
CM
CONST
CP
CQ
CS
CW
CX
D
D
D
D1
DAMPER
DASH
DB diameter of bender pin for forming armature coils, in.
DCOIL field coil outside diameter, in.
DD damper bar diameter, in.
DF distribution factor
DG
DI
DISH inside shaft diameter for hollow shaft, in.
DISH1 external shaft diameter (external to two stator stacks), in.

DL
DR
DSH
DT
DU
DW
DW 1
DX
DY
DYC
DZ

E

EB
EC
ED
EDD
EE
EF
EL
EP
ET
EW

EX
EZ
F
FACTOR FCL

FE
FF
damper losses at load pc $n t$ G, W
rotor diameter, in.
shaft diameter (under field coil), in.
smallest dimension of rectangular conductor (field and armature), in. stator outside diameter, in.
armature winding strand diameter or width (see table VII(d)), in. armature winding strand thickness (uninsulated) (see table VII(d)), in. used in rectangular conductor area calculation, in. ${ }^{2}$ used in rectangular conductor area calculation, in. ${ }^{2}$
yoke dimension (see table VII(j)), in.
used in rectangular conductor area calculation, in. ${ }^{2}$
alternator efficiency at load point G, percent
eddy factor (bottom)
number of effective armature conductors
excitation voltage at load point G, per unit
excitation voltage, per unit
line-to-line design voltage, rms V
field voltage at load point G, V
end extension length of armature coil, in.
line-to-neutral design voltage, rms V
eddy factor (top)
specific stator end winding leakage permeance per inch of core length, lines/(A-turn)(in.)
eddy losses at load point G, W
eddy factor
frequency, Hz
dummy variabie used in slot leakage permeance calculation
core ampere turns, A-turn
mean length of one field coil turn, in. dummy variable used in slot leakage permeance calculation

FFL total ampere turns at load point G, A-turn
FFLL total ampere turns, A-turn
FGL airgap ampere turns, A-turn
FGLL airgap ampere turns at load point G, A-turn
FGML demagnetization ampere turns at rated load, A-turn
FGX demagnetizing ampere-turns at load point G, A-turn
FH airgap ampere turns (N. L., rated volt., for useful flux), A-turn
FI field current at load point G, A
FIELD NAMELIST name
FK1 field winding resistance at temperature TF, ohm
FPL pole ampere turns, A-turn
FQ useful flux per pole (no-load, rated voltage), kilolines
FS skew factor
FSC short-circuit ampere turns, A-turn
FSHL shaft (under field coil) ampere turns, A-turn
FSHLP shaft (under pole) ampere turns, A-turn
FTL tooth ampere turns, A-turn
FYCL yoke ampere turns, A-turn
FYL yoke ampere turns, A-turn
FYOKE yoke ampere turns, A-turn
FYRL yoke ampere turns, A-turn
airgap area, in. ${ }^{2}$
minimum air gap (air gap at center of pole) (see table VII(e)), in. effective airgap, in. constant used in load pole-face and damper loss calculations maximum airgap (see table VII(e)), in.
ratio of slot opening width to minimum airgap
useful flux per pole multiplying factor at load point G

GXX flux per pole multiplying factor

H
HC
HD
HM
HO
HP
HP1
HS
HT
HV
HW
HX
HY
IBN
IDELR
IPN
IPX
IQQ
IZZ
KSAT
LT
LTR
LTR1
LTS
MAGNET
OUTPUT
P rectangular damper bar thickness, in. stator depth below slot, in. damper bar slot opening height, in. armature conductor length ($1 / 2$ coil length), in. stator slot dimension (see table VII(c)), in. pole height (pole body + pole head) (see table VII(g)), in. effective pole height, in. stator slot dimension (see table VII(c)), in. stator slot dimension (see table VII(c)), in. number of cooling ducts per stator stack stator slot dimension (see table VII(c)), in. stator slot dimension (see table VII(c)), in. stator slot dimension (see table VII(c)), in. number of damper bars voltage by which R is incremented, percent number of phases number of poles number of stator slots stator slot type saturation indicator (if KSAT $=0$, part of alternator is saturated) lamination thickness (used in stacking factor calculations), in. pole body lamination thickness, in. pole head lamination thickness, in. stator lamination thickness, in. subroutine name subroutine name generator input power at load point G , kW
leakage permeance across field coil, lines/A-turn leakage permeance from stator to stator, lines/A-turn

P7
PBA
PC

PCOIL
PE
PF
PH57 leakage flux across field coil, kiloline
PH67
PH7L leakage flux from stator to rotor end extension, kiloline
PHL pole head length (axial direction), in.
PHW pole head width, in.
PI rated line current, A
PL pole body length (axial direction) (see table VII(g)), in.
PM
PML leakage flux from rotor to stator (see fig. 3), kiloline
PMLA leakage flux from rotor to stator (dummy variable), kiloline
PMLL leakage flux at load point G, kiloline
PP
PR
PS
PT
PX
PZ
QAGAT
QCAT
QCD
QFCUR field currents at voltage QPERV, A
QN
QPAT
leakage permeance from stator to shaft end, lines/A-turn phase belt angle, deg specific armature slot winding leakage permeance per inch of core length, lines/(A-turn)(in.)
field coil inside diameter, in.
pole embrace design power factor leakage flux from stator to stator, kiloline leakage permeance from rotor to stator, lines/A-turn pole face losses at load point G, W field losses at load point G, W armature conductor copper losses at load point G, W number of field turns number of poles alternator losses at load point G, percent airgap ampere-turns at voltage QPERV, A-turn core ampere-turns at voltage QPERV, A-turn flux density in core at voltage QPERV, kiloline/in. ${ }^{2}$
slots per pole per phase
pole ampere-turns at voltage QPERV, A-turn

QPD flux density in pole at voltage QPERV, kiloline/in. ${ }^{2}$

QPERV

QTAT

QVLL line-to-line voltage at which no-load saturation data are calculated, rms V line-to-neutral voltage at which no-load saturation data are calculated, rms V

QYAT yoke ampere-turns at voltage QPERV, A-turn

RC field coil weight, lb
RD field conductor diameter or width, in.
RE damper bar resistivity at $20^{\circ} \mathrm{C}$, ($\mu \mathrm{ohm}$)(in.)

RF type of armature winding (random or form wound)
RG1 armature winding resistance at temperature TST, ohm
RK pole body stacking factor
RK1 pole head stacking factor
RM damper bar resistivity at temperature T3 and T33, ($\mu \mathrm{ohm}$)(in.)
ROTOR NAMELIST name
RPM rotor rotational speed, rpm
RR field coil resistivity at $20^{\circ} \mathrm{C}$, ($\mu \mathrm{ohm}$)(in.)
RRA armature winding resistance at load point G, ohm
RRB field winding resistance at load point G, ohm
armature conductor resistivity at $20^{\circ} \mathrm{C}$, (μ_{ohm})(in.)
field conductor thickness, in.
armature conductor current density at rated load, $\mathrm{A} / \mathrm{in} .^{2}$

SHAFT NAMELIST name
SI
SIGMA specific tangential force on rotor, psi
SK
SLOTS NAMELIST name
SM
SN
SN1
SP total losses at load point G, W
SS
ST
STAR
STATET
STATOR
STFK
STRAY
T1
T11
T2
T22
T3
T33 damper bar length, in.
number of conductors per stator slot short circuit ratio table VII(d)), in.
stacking factor (stator)
uninsulated armature winding strand height, in.
field self-inductance, H stator slot skew at stator inside diameter (for one stack), in.
tooth width at $1 / 3$ distance from narrowest section, in.
strands per armature conductor in depth
total strands per armature conductor
solid stator stack length (one stack), in.
stator ivoth losses at load point G, W
used in subroutine OUTPUT to print yoke diagram
number of effective armature winding turns
NAMELIST name
stacking factor for lamination thickness LT
miscellaneous load losses at load point G, W rated-load armature temperature, ${ }^{\circ} \mathrm{C}$
no-load armature winding temperature, ${ }^{\circ} \mathrm{C}$ rated-load field winding temperature, ${ }^{\circ} \mathrm{C}$
no-load field winding temperature, ${ }^{\circ} \mathrm{C}$ hot damper bar temperature, ${ }^{\circ} \mathrm{C}$ cold damper bar temperature, ${ }^{\circ} \mathrm{C}$
distance between centerline of armature winding strands (in depth) (see

TB damper bar pitch, in.
WN no-load pole face losses, W
WO damper bar slot opening width, in.
WPOLE weight of one pole, lb

WQ
WQL
WROTOR
WSHAFT
WT
WTOTAL
WU
WYOKE
XA
XB
XD
$\mathbf{X F}$
XL
XQ
XR
XU
YA
YOKE
YY
ZA
ZB

ZC

ZD
ZE
ZZ
ZZZ
no-load rated voltage core loss, W
stator core losses at load point G, W
rotor weight (=WSHAFT+PX*WPOLE), lb
shaft weight (including portion under poles), lb
no-load rated voltage tooth loss, W
total electromagnetic weight, lb
no-load damper loss at temperature T33, W
yoke weight, lb
synchronous reactance (direct), percent synchronous reactance (quadrature), percent armature reaction reactance (direct), percent field leakage reactance, percent stator winding leakage reactance, percent armature reaction reactance (quadrature), percent reactance factor transient reactance (direct axis), percent $=100 / \mathrm{G}$

NAMELIST name
slots spanned per coil (number of slots between coil sides +1) dummy variable used in slot leakage permeance calculation stator slot type (see table VII(c)) air gap reluctance over pole, A-turn/kiloline

APPENDIX C

DEFINITION OF INPUT VARIABLES FOR EACH NAMELIST NAME

This appendix defines all variables (FORTRAN symbols) that may be used as input to the homopolar inductor alternator computer program. Each variable is listed under the appropriate NAMELIST name. The NAMELIST names are arranged in the order in which the data cards must appear in the data deck. Units are given, where applicable, and each variable is classified as mandatory (M), conditional (C), or optional (O). A mandatory classification indicates that the variable must be read in. The conditional classification indicates that, for some alternator designs, the variable is required and that, for others, it may be omitted. Variables identified as optional are read in at the discretion of the user. In each case where an optional variable is omitted, an assumption regarding that variable is made internal to the program. This assumption is explained in the remarks column of the tables. The remarks column also gives other pertinent information.

TABLE VII. - DEFINITIONS OF INPUT VARIABLES

$\begin{gathered} \text { FORTRAN } \\ \text { symbol } \end{gathered}$	Definition	Classification (a)	Remarks
VA	Kilovolt-ampere rating of alterna		
EE	Line-to-line design voltage, rms V	c $\}$	Either one must be read in, or both may be
EP	Line-to-neutral design voltage, rms V	c)	read in
F	Frequency, Hz	c)	Any two must be read in, or all three may
RPM IPX	Shaft rotational speed, rpm Number of poles	$\left.\begin{array}{l}\text { c } \\ \text { c }\end{array}\right\}$	be read in
PF	Number of poies Design power factor	M	
G	Load points at which load characteristics	0	G is a subscripted variable (array size
	are calculated (see sample output,		is 5); if not read in, program assumes
	p. 25), percent or per unit		values, $0,0.75,1.0,1.25$, and 1.50 ; any one or all (except 0) may be changed
			by reading in different values; program
			automatically arranges values in increas-
			ing order; any number >9.0 is assumed
			to be in percent, ≤ 9.0 in per unit

(b) NAMELIST name STATOR

FORTRAN symbol	Definition	Classification (a)	Remarks
DI	Bore diameter (i.d.), in.	M	
DU	Stator lamination outside diameter, in.	M	
CL	Length of one stator stack, in.	M	
HV	Number of cooling ducts	c	If there are no cooling ducts, these need
BV	Width of cooling duct, in.	c	not be read in
SF	Stacking factor (stator)	c	Either one or both may be read in, if
LTS	Stator lamination thickness, in.	c $\}$	neither is read in, program assumes that stator in not laminated ($\mathrm{SF}=1.0$)
WL	Core loss at flux density BK, W/lb	M	-------------------------------------10-1
BK	Flux density at which core loss WL is given	M	----

[^1]TABLE VII. - Continued.
(c) NAMELIST name SLOTS

Types 1 and 5: Open slot, constant slot width. Type 5 slot is same as type 1 , but it contains only one coil side.

Type 3: Partly closed slot, con-
stant tooth width.

Type 2: Partly closed slot, constant slot width.

Type 4: Round slot.

FORTRAN symbol (a)	Definition	Classi- fication (b)	Remarks
ZZ		Slot type	
BO	Slot dimension, in.	C	See sketch
B3			
BS			
HO			
HX			
HY			
HS			
HT			
IQQ	Number of slots		

${ }^{\mathrm{a}}$ Variables shown in the sketch but not defined in this table are not allowable input. These variables are shown for reference only.
$\mathrm{b}_{\mathrm{M} \text {, mandatory; }} \mathrm{C}$, conditional.

TABLE VII. - Continued.
(d) NAMELIST name WINDNG

FORTRAN symbol	Definition	Classification (a)	Remarks
RF	Type of coil	M	RF $=1.0$ for form wound coil; $\mathrm{RF}=0$ for random wound coil
SC	Number of conductors per slot	M	
YY	Slots spanned per coil (number of slots between coil sides plus one)	M	
C	Number of parallel circuits per phase	M	
DW	Strand diameter or width, in.	M	See sketches
SN	Strands per conductor in depth (radial direction)	C	Read for rectangular wire only (in sketch, SN=4)
SN1	Total strands per conductor	M	In sketch SN1 $=8$
DW 1	Uninsulated stator strand thickness (radial direction), in.	C	Read for rectangular wire only; see sketches
CE	Straight portion of coil extension, in.	M	See sketches
SD	Distance between centerline of strands in depth, in.	M	See sketches
PBA	Phase belt angle, deg	0	If not read in, program assumes $\mathrm{PBA}=60^{\circ}$
SK	Stator slot skew at stator inside diameter (for one stack only), in.	0	If not read in, program assumes $\mathrm{SK}=0$
T1	Rated-load armature winding temperature, ${ }^{\circ} \mathrm{C}$	M	Used for loss and efficiency calculations
RS	Armature conductor resistivity at $20^{\circ} \mathrm{C}$, ($\mu \mathrm{ohm}$)(in.)	0	If not read in, program assumes copper resistivity (0.694)
ALPHAS	Armature conductor temperature coefficient of resistivity at $20^{\circ} \mathrm{C},{ }^{\circ} \mathrm{C}$	0	If not read in, program assumes copper temperature coefficient (0.00393)
T11	No-load armature winding temperature, ${ }^{\circ} \mathrm{C}$	M	Used for loss and efficiency calculations
TST	Armature winding temperature, ${ }^{\circ} \mathrm{C}$	0	Program calculates and prints out armafure resistance at this temperature; if not read in, program assumes $\mathrm{TST}=25^{\circ} \mathrm{C}$

[^2]TABLE VII. - Continued.
(e) NAMELIST name AIRGAP

FORTRAN symbol	Definition	Classi- fication (a)	Remarks
GC	Minimum air gap (air gap at center of pole), in.	M	See sketch
GP	Maximum air gap, in.	C	Need not be read in if air gap is constant (i. e. . if $G P=G C$); see sketch

(f) NAMELIST name CONST

TABLE VII. - Continued.

[^3]TABLE VII. - Continued.
(h) NAMELIST name DAMPER

FORTRAN symbol	Definition	Classification (a)	Remarks
BN	Number of damper bars per pole	M	If $\mathrm{BN}=0$, none of following variables for DAMPER need be read in
wo	Damper bar slot opening width, in.	C	
HD	Damper bar slot opening height, in.	C	
DD	Damper bar diameter, in.	C	For round damper bars only
H	Rectangular damper bar thickness, in.	c)	For rectangular damper bars only
B	Rectangular damper bar slot width, in.	c $\}$	
SB	Damper bar length, in.	C	--
TB	Damper bar pitch, in.	C	
T33	Cold damper bar temperature, ${ }^{\circ} \mathrm{C}$	\bigcirc	If this is not read $20^{\circ} \mathrm{C}$ will be assumed
T3	Hot damper bar temperature, ${ }^{\circ} \mathrm{C}$	C	
RE	Damper bar resistivity at $20^{\circ} \mathrm{C}$, ($\mu \mathrm{ohm}$)(in.)	0	0.694 Will be assumed unless otherwise read in
ALPHAE	Temperature coefficient of resistivity at $20^{\circ} \mathrm{C}$, ${ }^{\circ} \mathrm{C}^{-1}$	0	0.00393 Will be assumed unless otherwise read in

${ }^{a}{ }_{M}$, mandatory; C , conditional; O , optional.
(i) NAMELIST name SHAFT

FORTRAN symbol	Definition	Classification (a)	Remarks
DSH	Shaft diameter (under field coil), in.	M	
DISH	Inside shaft diameter (for hollow shaft), in.	C	Read in only for hollow shaft
DISH1	External shaft diameter (external to two stator stacks), in.	M	
A LH	Shaft length between poles, in.	M	

[^4]TABLE VII. - Continued.
(j) NAMELIST name YOKE

Type 1.

Type 2.

Type 3: same as type 2 except that end section are tapered for constant flux density.

FORTRAN symbol	Definition	Classification (a)	Remarks
TYPY	Type of yoke	M	Three types of yokes are allowable; see sketches
TY	Yoke dimensions, in. (see sketches)	M	
TYE		c)	
TYR		c	Needed for types 2 and 3 yokes only.
DYC	1	c)	

${ }^{\mathrm{a}} \mathrm{M}$, mandatory; C , conditional.

TABLE VII. - Concluded.

	(k) NAMELIST nam	FIELD	
$\left\lvert\, \begin{gathered} \text { FORTRAN } \\ \text { symbol } \end{gathered}\right.$	Definition	Classification (a)	Remarks
PCOIL	Field coil inside diameter, in.	M	
DCOIL	Field coil outside diameter, in.	M	
PT	Number of field turns	M	
RD	Field conductor diameter or width, in.	M	
RT	Field conductor thickness, in.	C	Do not read in for round conductors
BCOIL	Field coil width, in.	C	Do not read in if BCOIL $=A L H$ (see table VII(i)
T2	Rated-load field temperature, ${ }^{\circ} \mathrm{C}$	M $\}$	Used in loss and efficiency calculations
T22	No-load field temperature, ${ }^{\circ} \mathrm{C}$	M]	Used in loss and effichey calculationo
RR	Field-coil resistivity at $20^{\circ} \mathrm{C}$, ($\mu \mathrm{ohm}$) (in.)	0	If not read in, 0.694 is assumed
ALPHAR	Temperature coefficient of resistivity at $20^{\circ} \mathrm{C}$, ${ }^{0} \mathrm{C}^{-1}$	0	If not read in, 0.00393 is assumed
TF	Field-coil temperature, ${ }^{\circ} \mathrm{C}$	0	Program calculates and prints out fieldcoll resistance at this temperature; if not read in, program assumes $T F=$ $25^{\circ} \mathrm{C}$

${ }^{\mathrm{a}}{ }_{\mathrm{M}}$, mandatory; C , conditional; O , optional.

REFERENCES

1. Ellis, J. N.; and Collins, F. A.: Brushless Rotating Electrical Generators for Space Auxiliary Power Systems. Vols. 1-5. Lear Siegler, Inc. (NASA CR-54320), Apr. 26, 1965.
2. Dryer, A. M.; Kirkpatrick, F. M.; Russel, E. F.; Wimsatt, J. M.; and Yeager, L. J.: Alternator and Voltage Regulator - Exciter Design and Development. Vol. I. General Electric Co., June 9, 1967.
3. Edkin, Richard A.; Valgora, Martin E.; and Perz, Dennis A.: Performance Characteristics of 15 kVA Homopolar Inductor Alternator for 400 Hz Brayton-Cycle Space-Power System. NASA TN D-4698, 1968.
4. Osborn, G. A.; Wimsatt, J. M.; Whipple, E. R.; Balke, R. L.; and Luddy, C. T.: Alternator Design and Development for the SNAP-8 Electrical Generating System. Rep. 30-12-15-65, General Electric Co., Dec. 15, 1965.
5. Repas, David S. ; and Valgora, Martin E.: Voltage Distortion Effects of SNAP-8 Alternator Speed Controller and Alternator Performance Results. NASA TN D-4037, 1967.
6. Kuhlmann, John H. : Design of Electrical Apparatus. Third ed., John Wiley \& Sons, Inc., 1950.
7. Kilgore, L. A.: Calculation of Synchronous Machine Constants - Reactances and Time Constants Affecting Transient Characteristics. AIEE Trans., vol. 50, 1931, pp. 1201-1214.
8. Gilman, R. E.: Eddy Current Losses in Armature Conductors. AIEE Trans., vol. 39, Pt. I, 1920, pp. 997-1047.
9. Spooner, T.; and Kinnard, I. F.: Surface Iron Losses with Reference to Laminated Materials. AIEE Trans., vol. 43, 1924, pp. 262-281.
10. Pollard, E. I.: Load Losses in Salient Pole Synchronous Machines. AIEE Trans., vol. 54, 1935, pp. 1332-1340.
11. Pollard, E. I. : Calculation of No-Load Damper Winding Losses in Synchronous Machines. AIEE Trans., vol. 51, 1932, pp. 477-481.
12. Vrancik, James E.: Prediction of Windage Power Loss in Alternators. NASA TN D-1686, 1968.
13. Barnes, E. C.: An Experimental Study of Machine End-Turn Leakage Reactances. AIEE Trans., Vol. 70, Pt. I, 1951, pp. 671-679.
14. Anon.: Test Procedures for Synchronous Machines. IEEE No. 115, Mar. 1965.
"The aeronautical and space activities of the United States shall be conducted so as to contribute . . to the expansion of buman knowledge of phenomena in the atmosphere and space. The Administration sball provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

- National Aeronautics and Space Act of 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Notes, and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

[^0]: ${ }^{\mathrm{a}}$ Test values from ref. 2.
 $\mathrm{b}_{\text {Test values from ref. } 4 .}$

[^1]: ${ }^{a_{M}}$, mandatory; C, conditional; 0 , optional.

[^2]: a_{M}, mandatory; C , conditional; O , optional.

[^3]: ${ }^{\mathrm{a}} \mathrm{M}_{\mathrm{M}, \text { mandatory; }} \mathrm{C}$, conditional; O , optional.

[^4]: ${ }^{\mathrm{a}} \mathrm{M}$, mandatory; C , conditional.

