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ABSTRACT 

The laminar  incompressible viscous flow in a shor t  cylindrical vortex chamber  is 
analyzed numerically. The flow i s  assumed to enter  the chamber  priphery with an a rb i ­
t r a r y  ratio of tangential to radial  velocity components and to exit a t  a line sink a t  the 
chamber ax is .  The numerical  technique permi ts  consideration of both the tangential and 
radial  momentum equations. Comparisons a r e  made with solutions available for  the 
limiting c a s e s  of zero swir l  and infinite swir l .  Resul ts  a r e  presented for  a wide variety 
of swir l  ra t ios ,  Reynolds numbers ,  and chamber aspect  ra t ios .  The resu l t s  include 
radial  and tangential velocity profiles, p r e s s u r e  distributions, and points of radial flow 
reversa l .  
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VISCOUS FLOW IN A SHORT CYLINDRICAL VORTEX 

CHAMBER WITH A FINITE SWIRL RATIO 

by Robert W. Hornbeck 

Lewis Research Center  

SUMMARY 

The problem of laminar incompressible viscous flow in a short cylindrical vortex 
chamber is analyzed using a numerical technique. This technique permits the consid­
eration of both the tangential and radial momentum equations as well as continuity, 
hence, the amount of swirl introduced into the flow at the periphery of the chamber may 
be varied. Velocity profiles and pressure distributions a r e  obtained, assuming that the 
radial- and tangential-velocity distributions at the peripheral inlet to  the chamber a r e  
uniform across  the height. Values of Reynolds number Re based on the radial inlet 
velocity and chamber height between 20 and 2000 a r e  considered. The swirl ratio S, 
defined as the ratio of tangential to radial inlet velocity, is varied from 0 to 50. Two 
values of chamber radius to  chamber half-height (R1 = 5 and 10) are considered. 

Overshoots in the radial velocity within the end-wall boundary layers a r e  found to 
occur somewhere in the chamber for all S > 1, and this overshoot (an increase in the 
radial velocity in the boundary layer over the velocity in the region far from the wall) 
is increased for increasing swirl and decreasing distance from the central axis of the 
chamber. For large values of Re, the end-wall boundary layers a r e  very thin; hence 
the radial velocity distributions show sharp spikes in the boundary layer and a r e  rela­
tively uniform over the remaining channel height. For small Re, the end-wall boundary 
layers a r e  sufficiently thick to f i l l  the chamber height, except for the region close to the 
peripheral inlet. 

For sufficiently high swirl ratios (greater than about 4 for most cases considered) a 
local reversal  in the radial velocity will occur at some value of the radius, on the 
chamber centerplane. When this radial outflow occurs, the numerical scheme becomes 
unstable and must be terminated at the radius at which it occurs. 

The pressure distributions are found to be virtually identical to the potential flow 
distributions for S > 1, but are dependent on Re and R1 for  S 5 1. Even small 
amounts of swirl are found to have a relatively significant effect on the pressure drop 
between any two radial stations in  the chamber. 



INTRODUCTION 

Considerable work has been done in recent years  toward the description of flow in a 
confined vortex. A typical confined vortex configuration might consist of a cylindrical 
chamber with a fluid injected both radially and tangentially at the chamber periphery and 
withdrawn at the central axis. The work has been motivated at least partly by interest 
in a number of devices that utilize such a vortex configuration, including the Ranque-
Hilsch tube, the magnetohydrodynamic vortex generator, the vortex nuclear reactor and, 
most recently, the vortex amplifier for  fluidics applications. An excellent historical 
review of the vortex literature is given in Anderson (ref. 1). Reference 1represents 
the most accurate solution to date for the velocity and temperature distributions inside a 
vortex chamber, but it is restricted to very high swirl so that the radial inflow velocity 
is negligible compared with the tangential (swirl)velocity in the stream between the end-
wall boundary layers. Numerical solutions are then obtained assuming that the f ree  
stream is either irrotational o r  in solid-body rotation. 

The influence of various swirl ratios was investigated experimentally by Donaldson 
and Snedeker (ref. 2) but only for  a cylindrical vortex chamber with a single end wall, 
rather than the fully confined vortex. In a recent analysis by Ostrach and Loper (ref. 3), 
finite swirl ratios were considered for the confined vortex, but it was necessary to  
linearize the basic equations in such a way as to  ignore the effect of swirl ratio on the 
boundary-layer thickness. The present analysis retains the essential nonlinearities of 
the basic equations and accurately accounts for all of the effects of swirl ratio. 

Savino and Keshock have presented the most reliable experimental work to date on 
the radial and tangential velocity distributions in a confined vortex (ref. 4). Although 
the flow was turbulent, this investigation allows at least a qualitative comparison with 
the work of Anderson (ref. 1)and the present study for the case of high s w i r l  ratios 
(>15). 

In the present investigation, viscous incompressible flow in a confined vortex is ana­
lyzed by using a numerical marching technique that permits full consideration of both tan­
gential and radial momentum at all points in the chamber, thus allowing consideration of 
any s w i r l  ratio, as well as viscous effects over the entire chamber. In order to employ a 
numerical marching technique, it is necessary to drop certain te rms  in the basic equations 
This res t r ic ts  the solution to short vortex chambers (chambers in which the radius is larg­
e r  than the height). One drawback to the use of this numerical scheme is that the numer­
ical technique becomes unstable when radial outflow is present. A s  a result of this. the 
solution may only be carried inward from the periphery of the chamber until radial out­
flow begins to occur. Despite this shortcoming, the method does permit the detailed study 
of a large number of interesting cases,  particularly since the real  a rea  of interest in this 
investigation is for finite swirl ratios, where radial outflow is less  likely to occur. 
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PROBLEM AND BASIC EQUATIONS 

The problem configuration for a typical short vortex chamber is shown in figure 1. 
The fluid is assumed to enter the chamber both radially and tangentially with velocity 
distributions that a r e  uniform over the height of the chamber. The flow is assumed to 
be laminar and incompressible, with constant properties. The fluid is removed at the 
center of the channel by what is assumed to be a line sink. In the actual chamber, 
central exit tubes of relatively small diameter must be provided at the top and bottom 
of the chamber. These, presumably, will not have a large effect on the flow pattern in 
the chamber except close to the center. Axial symmetry is assumed throughout. 

The basic equations of motion for the steady flow of an incompressible, constant 
property fluid in cylindrical coordinates are 
r -direction momentum: 

w-+u- - - )ar vr2 =-,,,(;+?A 2 
+ - - - ­p (: 

2 ar2 r a r  .2
l a U  

8- direction momentum : 

continuity : 

2When an order of magnitude analysis is made and terms of 0 (h2/rl) a re  neglected, 

the basic equations are reduced to 
r-direction momentum: 
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0-direction momentum: 

continuity: 

Equations (4) to (6) apply only fo r  small (h/rl), that is, short vortex chambers. The 
boundary conditions on equations (4) to (6) are 

u(rl, Z)  = -ul = Constant 

u(r, h) = 0 i
au-(r, 0) = 0 
az 

v(r1, Z)  = v1 = Constant 

v(r,h) = 0 i 
w(r,O) = 0 J 

In order to attempt a numerical solution, it is first necessary to  put the basic 
equations into a dimensionless form which reduces the number of parameters that 
appear to a minimum. The dimensionless variables chosen are 
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Inserting the dimensionless variables (8) into equations (4)to (6) results in the following 
dimensionless forms of the basic equations: 

avw - + u - av+uv - 1 a2v 
az aR R Re az2 

where Re = pulh/p is a Reynolds number based on the channel height. This parameter 
is a natural result of the dimensionless variables chosen earlier. The boundary con­
ditions (?) in dimensionless form become 
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U(Rl,Z) = -1 

u(R, 1)= 0 

au- ( R , O ) = Oaz 

v1v(R1, Z)  = -= E 
u1 

v(R, 1)= 0 

E ( R , O ) = O  
az 

W(R, 1)= 0 

w(R, 0) = 0 

where 

The parameters (including boundary conditions) that must be considered for this problem 
a r e  a geometry parameter rl/h, the swir l  ratio vl/ul, and the Reynolds number 

pulhll-1. 

Fin i te  Di f ference Representat ion 

The finite difference grid employed in this analysis is shown in figure 2. Note that 
increasing j subscript corresponds to decreasing radius, since the marching direction 
will be from the outside of the chamber toward the center. Equations (9) to (11)will now 
be expressed in an implicit finite difference representation at a point (j + 1,k): 
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'j+l, k+l - 'j.1, k-1 + 'j, k - 'j+l, k - 'j, k 'j+l, k 
wj,k 2 A Z  j ,  k AR Rj  + 1 

- P.J - P.j + l  1 'j+l, k+l - 2uj+l, k +'j+l, k-1 _ -
AR +-Re 1 (W2 ­

'j+l, k+l - vj+l, k-1 + vj, k 'j.1, k + V.]+I, k 'j, k 
wj, k 2 AZ j ,k  

AR R j + l  

-- -1 I v j + l ,  k+l - 2vj+l,k + 'j+l, k - i  

Re L 

A Z  AR J 
Equations (13) to (15), written for k = O(1)n (i.e., fo r  k ranging from 0 to n in steps 
of l), constitute a complete set  of (3n + 3) equations in the (3n + 3) unknowns 

' j + l , O '  * * 'j+l,n; 'j+1,0' * * Vj+l,n;  w j + l , l '  * * . wj+l ,n ;  and 'j+l. 

Method of Solution 

In order to obtain a solution to equations (13) to (15), the first step will be to r e ­
arrange equations (13) and (14) into a more useful form. Equation (13) becomes 

-[s d' j+l ,k- l+[%+ J'j+l,k+[- wj, k - .] 'j+l,k+l 

Re(AZ) Re (A Z)  2(AZ) Re(AZ) 
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Equation (14) becomes 

'j+l, k-1 + 
'j+l, k 

+A- 'j+l, k+l = 
-'j, k 'j, k (17)E:') Re(:Z)2] 

AR 

Equations (16) and (17) for  k = O(1)n comprise (2n + 2) equations in the (2n + 3) unknowns 
Uj+l, o, . . . Uj-kl, n; Vj+l,  o, . . . Vj+l, n; and Pj+l. Rather than employing the 
continuity difference equation (15) to complete the set  thus introducing the Wi+l- krsas. 
additional unknowns, it is advantageous to introduce the integral form of continuhy 

Equation (18) may be written in finite difference form as 

Equation (19) together with equations (16) and (17) written for k = O(1)n now completes 
the set of (2n + 3) equations in the (2n + 3)  unknowns Uj+l. o, . . . 'j+l.n; 'j+l, 07 . 
Vj+l,n; and Pj+l. This is a significant reduction in number from the (3n + 3) equations 
which it would be necessary to solve if the continuity difference equation (15) were used. 
The use of an integral continuity equation of this type in finite difference analyses of 
confined flow problems was apparently first used by Bodoia and Osterle (ref. 5), and 
the techniques used herein have their foundations in  that work and in the work of 
Hornbeck, Rouleau, and Osterle (ref. 6) in which two momentum equations and continuity 
were solved simultaneously for  the entrance flow in a porous tube. 

The complete set  of equations may be written in matrix form as 
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 an-^ Bn-l Gn-1  0 

An Bn 0 
2 2 - - 2 2 0 0 0 0 0 0 0 0 

w h e r e  

Po = ~ 

- 5 , o  + 2 

AR Re(AZ)2  

-2
Yo = 

Re (A Z)2 

ak =--

-W 
j,k - 1 4 4  

2(AZ) Re (A Z)2 
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% = - -'j,k 

Rj+l 

-'j,o 'j oB =-+A+2 
0 

AR Rj+l Re(AZ)2 

G o =  - 2 

Re(AZ)2 

uj k +'+ 'j k 2 
Bk = -& Rj+l Re(AZ)2 

4fO) 

Fk = - 'j, 	 kvj, k 
AR 

The symmetry conditions have been included in equation (20)for k = 0. 
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The solution to equation (20) may be obtained by any of the standard methods used 
for simultaneous linear equation solutions, such as Gaussian elimination, a modification 
of Gauss-Seidel iteration, or inverting the coefficient matrix and multiplying the right 
hand side column vector by the inverse. 

Once the solution to the set of equations has  been obtained, it will be  necessary to 
obtain the values Wi+l- 1, . . . Wi+l-n before proceeding. This may be readily 
accomplished by solving equation (15) for Wj+l, k+l ,  yielding 

This solution for Wj+l, k+l  may be simply advanced in the direction of increasing k, 
starting from k = 0 and pr0ceedin.g step by step. 

After all values of Uj+l,k, Vj+l,k, Wj+l,k, and P.J+lhave been found, another 
step AR inward along the radius may be taken and the entire process repeated. 

Because of the computational difficulties that occur when the boundary layers a r e  
very thin and the velocity gradients high, it is advantageous to use a considerably smaller 
A Z  mesh close to the wall than that used toward the midplane of the chamber. The 
details of the method used for changing the mesh size are given in references 7 and 8. 

RESULTS AND DISCUSSION 

The equations derived in the previous section were solved on a high-speed digital 
computer. The axial mesh sizes used were A Z  = 0.1 toward the chamber centerplane 
and AZ = 0.015 in the region close to the walls, that is, Z > 0.7. For  a few of the 
high Reynolds number cases where the boundary layers were very thin, it was  necessary 
to, instead, use AZ = 0.005 for  Z > 0.9 and A Z  = 0.1 for Z < 0.9. The radial 
mesh sizes used were AR = 0.025 for  the Rl = 5 cases and AR = 0.05 for the 
R1 = 10 cases. 

The results presented include radial- and tangential-velocity profiles and pressure 
distributions. The values of parameters considered include R1 = 5 and 10; Re = 15, 
20, 50, 200, and 2000; and S = 0.2, 0. 5, 0.75, 1, 2, 4, 10, and 50. A rather detailed 
Presentation of radial-velocity distributions is given for S 2 1, but only a few repre­
sentative tangential-velocity profiles are shown because of the general similarity of 
these profiles. Pressure distributions a r e  illustrated for the full range of parameters. 
Also included is a graph of the radii at which radial flow reversal  takes place as a 
function of swir l  ratio and Reynolds number, and a set of comparisons with existing 
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solutions. 
Figure 3 compares the profiles of the radial velocity component obtained in this 

investigation with those obtained by Anderson (ref. 1) for very high swirl. Anderson's 
profiles were derived for two types of imposed rotational motion in the flow region 
outside the end-wall boundary layer: (1)irrotational vortex motion and (2) solid-body 
rotation. Anderson's profiles revealed a tendency for a small magnitude flow reversal  
to develop only when the main stream w a s  in a solid-body rotational mode. This re ­
versal  occurred near the outside diameter of the chamber in the region 0.8 < R/R1 < 
1.0. With the irrotational vortex motion case, Anderson found no tendency for the 
development of flow reversal. 

Typical radial velocity profiles obtained by Anderson and from the present numerical 
solution are compared in highly magnified form in figure 3(a) for Re = 15 and S = 20. 
For  these conditions, the irrotational and solid-body rotation solutions of Anderson a r e  
quite similar, and the solution obtained in the present investigation lies between the two 
and favorably agrees with both of the profiles in general shape and location of the peak. 
The agreement is best with the irrotational vortex-solution profile. The low Reynolds 
number solutions obtained in the present investigation behave in a qualitative way like 
the solid-body rotation solutions of Anderson, in that they show a distinct tendency to 
flow reversal quite close to the chamber periphery. The value of S = 20, which was 
used to obtain the results shown in figure 3(a) for the present investigation, was the 
largest value of swirl ratio that could be used for Re = 15 and still allow the radial 
position R = 9 to be reached without reversal. 

Figure 3(b) shows a comparison of the solution obtained from the present investi­
gation with the solutions of Anderson for Re = 2000 and S = 50. The profiles a r e  
very highly magnified and the agreement of the present solution with the irrotational 
vortex solution is excellent. The small discrepancies that are present a r e  caused at 
least partly by the fact that there is always some radial forced flow in the present 
investigation, whereas any radial flow present in Anderson's solution is entirely induced 
flow. This results in a somewhat higher radial flow rate for the results of the present 
investigation. This discrepancy would tend to decrease with increasing swirl ratio. 
The solid-body rotation solution does not give good agreement with the present solution. 
The profile shown fo r  the solid-body rotation solution has reversed at the chamber 
centerplane, but the profile from the present solution shows no tendency tOward flow 
reversal  at this high Reynolds number and differs significantly in the shape and magnitude 
of the peak from the solid-body rotation solution. 

The present investigation thus yields solutions that f a l l  somewhere between the 
irrotational vortex and solid-body rotation solutions of Anderson, with some character ­
istics of both, The best agreement over the entire range of parameters appears to be 
with the irrotational vortex solution. Further evidence that the vortex flow outside of 
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the end-wall boundary layers  is essentially irrotational may be found later in this 
report in  the discussion of tangential-velocity profiles. 

Figure 4 compares results of the present investigation and those of two other inves­
tigations for the radial pressure distribution with no swirl, that is, radial convergent 
flow between parallel plates, The solutions used for  comparison are those of Moller 
(ref. 9) and Comolet (ref. 10). Results identical with those of Comolet were also found 
independtly by Levesey (ref. 11). These analyses are momentum integral solutions in 
which some form of parabolic velocity profile is assumed. The agreement of the present 
numerical solution with the integral solutions is quite good. The numerical solution 
agrees very well  with that of Moller for R 2 3 and with that of Comolet for R < 3. 
In the region R > 5, the pressure drop of the present solution is higher than that 
obtained from either of the integral solutions, which is due at least in part to the higher 
pressure drop that results from the uniform inlet velocity profile used in the present 
analysis as opposed to the parabolic profile employed in the other investigations. 

A solution including inertia for zero swirl flow between parallel plates was carried 
out by Peube (ref. 12) using a ser ies  expansion, but, for  the values of parameters 
considered herein, the truncated form of the expansion given by Peube is not adequate, 
and presumably many more t e rms  would be required for reasonable accuracy. No 
comparison, therefore, will be made with this solution. 

Figure 5 shows radial velocity distributions for Reynolds numbers of 50, 200, and 
2000. For  each Reynolds number, values of R1 of 5 and 10 a r e  considered. The swirl 
ratio S appears on each graph as a parameter that varies from 1 to 50 for  Re = 50, 
from 1to 10 for Re = 200, and from 1to 4 for Re = 2000. Larger values for the upper 
limit of S for Re = 200 and Re  = 2000 were not felt to  be practical since the corre­
sponding Reynolds number based on the tangential velocity would exceed any reasonable 
limit for laminar flow. 

Figure 5(a) illustrates the radial-velocity overshoot in the boundary layer, which is 
the most striking characteristic of vortex flow. The higher the swirl ratio, the greater 
the tendency toward this overshoot, while the radial velocity near the chamber center-
plane is correspondingly decreased. This effect is also accentuated as the axis of the 
chamber is approached as may be seen by comparing figures 5(a-1) and (a-2). This 
overshoot phenomenon is caused by the tangential velocity decreasing rapidly in the 
boundary-layer region, which reduces the centrifugal effect in that region and allows the 
radial pressure gradient to drive the flow inward along the chamber wall. 

The end-wall boundary-layer thickness is an inverse function of the Reynolds 
number, and, fo r  Re = 50 and R1 = 10 in (fig. 5(a-1), the boundary layers have 
reached almost halfway to the chamber centerplane at only one-tenth of the distance from 
the periphery to  the axis of the chamber. 
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One significant result of the swirl is that, for even moderately high swirl ratios 
(S z-4), a significant portion of the radial flow is carried in the boundary layers close 
to the end walls. For example, in figure 5(a-2) we find that for S = 4 about one-third 
of the total radial flow is confined to the region between Z = 0.8 and the end wall when 
a radial position R = 5 halfway to the chamber axis has been reached. 

Figures 5(a-3) and (a-4) show results for the same Reynolds number of 50 used to 
obtain the results shown in figures 5(a-1) and (a-2) but for a chamber with a smaller 
dimensionless radius R1 = 5. The boundary layers occupy a slightly smaller fraction 
of the total chamber height for the R1 = 5 cases than for the R1 = 10 cases at the 
same relative radial location R/R1 when all other parameters are held constant. This 
seems to be the only significant effect of varying R, . 

Figure 5(b) shows a set  of radial-velocity profiles with Re = 200 and R1 = 10 and 
5. These results differ from those for the Re = 50 cases, primarily in the effect of 
boundary -layer thickness on the velociQ profile. Since the boundary layers become 
thinner for higher Reynolds numbers, the velociQ overshoot is confined to a smaller 
region close to the end walls. This thinner boundary layer has less effect on the 
centerplane radial velocity and thus there is less  tendency toward flow reversal  at the 
higher Reynolds numbers. The thinner boundary layer for Re = 200 causes a con­
siderable difference in appearance between the Re = 50 and the Re = 200 results, 
but for  S = 4 (fig. 5(b-2)), about one-third of the radial flow is confined to the region 
between Z = 0.8 and the end wall, which was the same result found for the correspond­
ing Re = 50 case. As before, the only effect of varying R1 seems to be to cause a 
slightly thinner boundary layer for the R1 = 5 cases shown in figures 5(b-3) and (b-4) 
as compqred with the R1 = 10 cases shown in figures 5(b-1) and (b-2). 

The radial velocity distributions for Re = 2000 shown in figure 5(c) continue the 
same trends discussed previously for the lower Reynolds numbers. For the case shown 
in figure 5(c-2) again about one-third of the radial flow rate  is contained between 
Z = 0.8 and the chamber end wall �or R = 5 and S = 4. 

Some representative tangential-velocity profiles are shown in figure 6. Figure 6(a) 
illustrates a low Reynolds number case which results in thick boundary layers. Despite 
this thick boundary layer, the centerplane tangential velocity follows a 1/R variation 
quite closely over the entire range of R. This indicates that the flow is close to 
irrotational at the chamber centerplane. For  the Re = 2000 case shown in figure 6(b), 
the boundary layer is much thinner, and the flow outside the boundary la.yer is essenti­
ally irrotational. Tangential-velocity profiles for the other values of the parameters 
have this same general behavior, with no velocity overshoots o r  inflections present. 

Figure 7 illustrates the relative radial position R/Rl at which radial-velocity 
reversals at the chamber centerplane begin for  R1 = 10. The point a t  which this 
reversal occurs is a function of Re and S. With increasing swirl ratio, the radial­
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velocity reversal takes place closer to the chamber periphery. The reversal  is retarded 
by higher Reynolds numbers due to the resultant thinner boundary layers. Reversal 
begins to take place somewhere in the chamber at S = 4 for Re = 50 and at S = 20 for  
Re = 200, while for  Re = 2000 no reversal  occurs, even for S = 50. Results for R1 = 5 
would appear much the same as those shown in figure 7, but all points would be lowered 
slightly since flow reversal  would have less tendency to occur due to the slightly thinner 
boundary layers that result for the R1 = 5 cases. 

The pressure distribution results are shown in figures 8 and 9. Figure 8 shows 
dimensionless pressure as a function of relative radial position R/R1 for  swirl ratios 
greater than 1. For this range of swirl ratios, the predominant factor in the pressure 
drop is the centrifugal effect, with the frictional pressure drop providing negligible 
contribu.tion. As a result of this, the single set of curves shown in figure 8 is sufficient 
to describe the pressure distribution completely independent of Re and R1. The 
pressure varies strongly along the radius for  these swirl ratios as the tangential velocity 
increases at the expense of the static pressure.  The pressure drop becomes essentially 
infinite as the center of the chamber is approached. 

Figure 9 shows the radial pressure distributions for swirl ratios less  than 1. In 
this range, the pressure distribution is a composite of frictional and centrifugal effects. 
Results a r e  presented for three Reynolds numbers: Re = 20, 200, and 2000. The 
results for Re = 20 shown in figures 9(a) and (b) a r e  somewhat different in shape for  
R1 = 5 and R1 = 10. For the Re = 200 and Re = 2000 cases shown in figures 9(c) 
and (d), the same set of curves results for both R1 = 5 and R1 = 10, indicating that 
R1 dependence is important only for  small Re. Therefore, in figures 9(c) and (d), the 
pressure distributions have been plotted as a function of R/Rl. To give some idea of 
the effect of adding swirl to the flow, the increase in S from 0 to 1gives an increase 
in the pressure drop at R/Rl = 0.2 ranging from about 25 percent for the Re = 20, 
R1 = 10 case shown in figure 9(b) to almost 100 percent for the Re = 2000 case shown 
in figure 9(d). 

Since the experimental work of Savino and Keshoclc (ref. 4)w a s  for a turbulent flow 
situation, no direct comparisons with the present analysis can be made. Qualitative 
comparisons can be made however, and the experimental results for the radial velocity 
distributions show the same tendency toward a high radial velocity overshoot close to 
the end wall which increases in magnitude with decreasing radius. These experimental 
results were obtained fo r  a swirl ratio of about 15. All the experimental profiles show 
small radial outflow at or near the chamber centerplane, and the results obtained in the 
present investigation also show a tendency to flow reversal, particularly for high swirl 
ratios. The tangential velocities near the chamber centerplane in both the experimental 
work and the present analysis increase with decreasing radius with close to a 1/R 
variation. This variation is essentially that of an irrotational vortex. The depression 
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in the tangential-velocity profiles near the chamber centerplane, which was noted in the 
experimental work, does not occur in the present analysis since this effect occurs only 
in the presence of significant radial outflow. 

CONCLUSIONS 

The laminar, incompressible, viscous flow in a short cylindrical vortex chamber 
was analyzed numerically. The flow was assumed to enter the chamber with an arbi­
t ra ry  swirl ratio and to exit through a line sink at the chamber axis. The results may 
be summarized as follows: 

1. A velocity overshoot occurred in the radial velocity distribution close to the end 
wall of the chamber. This overshoot increased with increasing swirl ratio and decreasing 
radius. 

2. The radial velocity at the chamber centerplane decreased with decreasing radius 
and tended to become negative. This effect was strengthened with increasing swirl 
ratio. 

3. The boundary-layer thickness on the chamber end walls increased with decreasing 
Reynolds number and tended to weakly increase with increasing dimensionless chamber 
radius. 

4. The tangential flow pattern outside the end-wall boundary layers was essentially 
an irrotational vortex. 

5. The radial pressure variation could be adequately found by assuming the flow 
to be frictionless and the vortex to be irrotational as long as the swirl ratio was greater 
than 1. 

6. For  swir l  ratios l e s s  than o r  equal to 1, both swirl and viscous effects made 
significant contributions to the radial pressure drop. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, November 27, 1968, 
129-01-05-2 0-22. 
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APPENDIX - SYMBOLS 

A, B,F,G coefficients defined in matrix eq. (20) 

h 

P 

P 

P1 
Q 
R 

Re 

R1 
r 

S 

U 

U 

u1 
V 

V 

v1 
W 

W 

Z 

Z 

a,P7r 
AR 

A Z  

50 


P 

I.1 


chamber half -height 

dimensionless pressure, (p - pl)/pul2 

pressure 

pressure at peripheral inlet of chamber 

constant defined in eq. (20) 

dimensionless radius, r/h 

Reynolds number, pulh/p 

dimensionless outer radius of chamber, r l /h  

radial coordinate 

radius of chamber 

swir l  ratio, vl/ul 

dimensionless radial velocity, u/ul 

radial velocity component 

radial inlet velocity at chamber periphery 

dimensionless tangential velocity, v/ul 

tangential velocity component 

tangential inlet velocity at chamber periphery 

dimensionless axial velocity, w/ul 

axial velocity component 

dimensionless axial coordinate, z/h 

axial coordinate 

coefficients defined in eq. (20) 

radial finite difference mesh 

axial finite difference mesh 

coefficient defined in eq. (20) 

density 

viscosity 
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Subscripts: 

j denotes radial (R)location in  finite difference grid; those quantities having subscript 
j are known, those with subscript j + 1 are unknown 

k denotes axial (Z)  location in finite difference grid; k = 0 is chamber centerplane 

n denotes axial location one step (AZ) removed from channel end wall; channel end 
wall  is at  k = n + 1 

18 




- - 

.. -.... .. .....--._ .__ . .- ....... ..., ,,.
I 

REFERENCES 

1. Anderson, Olof L. : Numerical Solutions of the Compressible Boundary Layer 
Equations for Rotating Axisymmetric Flows. Ph. D. Thesis, Rensselaer 
Polytechnic Inst. , 1966. 

2. 	Donaldson, Coleman duP. ; and Snedeker, Richard S. : Experimental Investigation 
of the Structure of Vortices in  Simple Cylindrical Vortex Chambers. Rept. No. 47, 
Aeron. Res. Assoc. of Princeton, Jnc., Dec. 1962. 

3. 	Loper, David E. ; and Ostrach, Simon: Analysis of Confined Magnetohydrodynamic 
Vortex Flows. Phys. Fluids, vol. 11, no. 7, July 1968, pp. 1450-1465. 

4. 	Savino, Joseph M. ; and Keshock, Edward G. : Experimental Profiles of Velocity 
Components and Radial Pressure Distributions in  a Vortex Contained in a Short 
Cylindrical Chamber. NASA TN D-3072, 1965. 

5. 	Bodoia, J. R.; and Osterle, J. F. : Finite Difference Analysis of Plane Poiseuille 
and Couette Flow Developments. Appl. Sci. Res., Sec. A ,  vol. 10, 1961, 
pp. 265-276. 

6. 	Hornbeck, Robert W. ; Rouleau, Wilfred T. ; and Osterle, Fletcher: Effect of 
Radial Momentum Flux on Flow in the Entrance of a Porous Tube. J. Appl. 
Mech., vol. 32, no. 1, Mar. 1965, pp. 195-197. 

7. 	Hornbeck, Robert W. : The Entry Problem in Pipes with Porous Walls.  Ph.D. 
Thesis, Carnegie Institute of Technology, 1961. 

8. 	Hornbeck, Robert W. : Non-Newtonian Laminar Flow in the Inlet of a Pipe. Paper 

No. 65-WA/FE-4, ASME, 1965. 

9. 	Moller, P. S. : Radial Flow Without Swirl Between Parallel Discs. Aeron. Quart., 
vol. 14, pt. 2, May 1963, pp. 163-186. 

10. Comolet, Raymond: Flow of a Liquid Between Two Parallel Planes. Publ. Sci. and 
Tech. 334, Ministgre de llAir, France, Sept. 1957, p. 23. 

11. Livesey, J. L.: Inertia Effects inv iscous  Flow. Int. J. Mech. Eng. Sci., vol. 1, 
no. 1, Jan. 1960, pp. 84-88. 

12. Peube, J. L. : Sur 1'Ecoulement Radial Permanent d'un Fluide Visqueux 
Incompressible Entre Deux Plans Parallsles Fixes. J. de. Mgchanique, vol. 2, 
no. 4, Dec. 1963, pp. 377-395. 

19 




--- 

k = n + l  

k - n  

1 

AZ 


7­

k = l  

k = O  


R = r l /h  

Figure 1. 

20 


z = I  

r17j
I I  I 

R 

Figure 2. - Finite difference grid. 

Out 

Flow 
out 

- Typical short-vortex chamber configuration. 



m 
c 

c 

c 

0 

---- . 3  .93 	 Anderson (ref. 1) 
This  investigation 

. 4  

.952 . 5  .9f
-
.-	0 
VI m 

.E . 6  
n 

N­

m­
m 
.E . 7
E 
0
u 
-m._ 
x 
4 . E  

c ­
. 1  

I ....I1. ( 
04 .08 . 12 .16 .20  .24  0 .08 .16 .24 . 3 2  .40 

Radial velocity profile, UIS, dimensionless 

(a) Reynolds number, 15; sw i r l  ratio, 20; dimensionless radius, 9. (b) Reynolds number, 2000; sw i r l  ratio, 50; dimension­
less radius, 8. 

Figure 3. - Comparison of radial velocity prof i le wi th  those of reference 1. Dimensionless chamber radius 10. 

21 




A Mol ler  (ref. 9) 
0 Comolet (ref. IO) 

This  investioation 

30t 
=!20 

E" z!d 


.g lo 

1 - I I 1 I I 

"10 9 8 7 6 5 4 3 2 1 


Radius, R, dimensionless 


Figure 4. - Comparison of radial pressure distr ibutions fo r  zero swirl. Reynolds numher 711. t w i r l  ratin n. 
dimensionless chamber radius, 10. 

22 




0 

0-
Swir l  
ratio, 

S 
. 2 - 10 

4 2  
1 

.4­

(a-1) Dimensionless chamber radius, 10; dimensionless radius, 9. 
N­

a­
c 

m -.E c 
n
L

0 
V Swir l  ratio,
-
m._
2 . i  ­

1 
-.4 


. 6  

. 8  

1.0 
0 . 5  1. 0 1. 5 2. 0 2. 5 3. 0 3. 5 4. 0 4 5  

Negative radial velocity, -U, dimensionless 

(a-2) Dimensionless chamber radius, 10; dimensionless radius, 5. 

(a) Reynolds number, 50. 

Figure 5. - Radial velocity profiles. 

23 




VI 

VI W To peak value 10.818 - 
c 0 

1 I 1 ._ 
2 1. 0 
.- E 
N' 

(a-3) Dimensionless chamber radius, S; dimensionless radius, 4.5. 
U 

W- c 
m 

VI 

c 

.- 
4 -

VI 


-W 

0 ._
2 1. 0 
E 
U 


N' 

W­c 


.-	c 
E 0­
8 Swir l  
U 
m ratio, 

S 
.2- 10 

.8-

To peak value 10.818 

1 I 1 - 4 
(a-3) Dimensionless chamber radius, S; dimensionless radius, 4.5. 

To peak value 10.33 

4. 5 5.0 
Negative radial velocity, 4, dimensionless 

(a-4) Dimensionless chamber radius, 5; dimensionless radius, 2.5. 

(a) Concluded. 

Figure 5. - Continued. 

24 




VI 

c 
VI 

m 

0 

v)
a,
-
0 
._ 
c 


._E 
V 

N' 

ai 

c
c 
._ 
V
I

0 
U 

I LI 
(b-1) Dimensionless chamber radius, 10; dimensionless radius, 9. 

0 

. 2  

. 4  

. 6  

. a  

I
1. c
0 .5 1.0 1. 5 2.0 2.5 3.0 3. 5 4.0 4.5 5.0 

Negative radial velocity, -U, dimensionless 

(b-2) Dimensionless chamber radius, 10; dimensionless radius, 5. 

(b) Reynolds number, 200. 

Figure 5. - Continued. 

25 




0-
Swir l  
ratio, 

S 
.2- lo-, 

4 
“2 
‘1.4­

.6-

I J -
N‘ (b-3) Dimensionless chamber radius, 5; dimensionless radius, 4.5. 

Swir l  
ratio, 

S 
10­

To peak value 10.41 

1.0 I 
0 . 5  1.0 1. 5 2.0 2.5 3.0 3.5 4.0 4. 5 5. 0 

Negative radial velocity, -U, dimensionless 

(b-4) Dimensionless chamber radius, 5; dimensionless radius, 2.5. 

(b) Concluded. 

Figure 5. - Continued. 

26 




VI 

c 

al 

1 

VI

al
-
0 
._ 
VI
c

F 


(c-1) Dimensionless chamber radius, 10; dimensionless radius, 9. 

Negative radial velocity, -U, dimensionless 


(c-2) Dimensionless chamber radius, 10; dimensionless radius, 5. 


(c )  Reynolds number, 2000. 


Figure 5. - Continued. 


27 




(c-3) Dimensionless chamber radius, 5; dimensionless radius, 4.5. 
N' 

0-
Swir l  
ratio, 

- S 
m.-
x .2- 4 -' a 	 2 

1 

.4­

.6­


.8­

(c-4) Dimensionless chamber radius, 5; dimensionless radius, 2.5. 

(c) Concluded. 

Figure 5. - Concluded. 

28 




Dimensionles! 
radius, 

R ,, 
9.0 -' 

Dimensionless 
radius, 

R ,/ 

9.0 -' 

1. 0 
2 4 

6.0 
4. c 

(a) Reynolds number, 50. 

6.0 
4.1 

3. 

I 

6 a 10 12 14 
Tangential velocity, V, dimensionless 

(b) Reynolds number, 2OW. 

Figure 6. - Tangential velocity profiles. Dimensionless chamber radius, 10; 
swi r l  ratio, 4. 

29 


0 



w 
0 


Relative radial location, R/Rl 

I 0 0 0  

I 
1 
1.0 .8 .6 . 4  . 2  0 

Relative radial position, R/R1, dimensionless 

Figure 8. - Radial-pressure distr ibutions for high swirl. 



v) 

c 

c 

VI 

a, 

35­

30 ­

-25 

-20 

-15 / 
-10 

VI
0) 5 ­-
0 
._ 
v)m 

.-E n I I !A 
0 5 4 3 2 1 . 9  . 8  . 7  .6 . 5  
a­


m- (a) Reynolds number, M; dimensionless chamber radius, 5. 
L 
3 

VI 


E n 
> ._+ m
P 
z 


20I ’ F  

:’5 

0,mI 
1 0 9  8 7 

I 1 1 I 
6 5 4 3 2 1 

Radius, R, dimensionless 

(b) Reynolds number, 20; dimensionless chamber radius, 10. 

Figure 9. - Continued. 

.. ..-.. ..- -.--- - .. .. 



L 

a, 

$ 35­
a,CL 


.-> 
c 


30 
z 


25 

20 

15 

10 

5 

Y­ 1 
*0-

1.0 . 9  .8 . 7  
. 

.6 
I 

. 5  
1 I 

. 3  
I 

. 2. 4  

32 NASA-Langley, 1969 -12 E-4226 

I
I 



NATIONAL AND SPACE ADMINISTRATION POSTAGE A N D  FEES PAIDAERONAUTICS 
D. C. 20546 NATIONAL AERONAUTICS ANWASHINGTON, 

SPACE ADMINISTRATION 
OFFICIAL BUSINESS FIRST CLASS MAIL 

POSTMASTER: 

‘ T h e  aeronautical and space activities of the  United States shall be 
condzicted so as t o  contribute . . . to  the expansion of h i m a n  knowl­
edge of phenoiiieiza in the atmospheve and space. T h e  Administration 
shall provide for the widest practicable and appropriate dissemination 
of inforniation concerning its actizlities and the res& thereof.’’ 

-NATIONALAERONAUTICSAND SPACE ACT OF 1958 

If Undeliverable (Section 15: 
Postal Manual) Do Not R e m  

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS 


TECHNICAL REPORTS: Scientific and 
technical information considered important, 
complete, and a lasting contribution to existing 
knowledge. 

TECHNICAL NOTES: Information less broad 
in scope but nevertheless of importance as a 
contribution to existing knowledge. 

TECHNICAL MEMORANDUMS: 
Information receiving limited distribution 
because of preliminary data, security classifica­
tion, or other reasons. 

CONTRACTOR REPORTS: Scientific and 
technical information generated under a NASA 
contract or grant and considered an important 
contribution to existing knowledge. 

TECHNICAL TRANSLATIONS : Information 
published in a foreign language considered 
to merit NASA distribution in English. 

SPECIAL PUBLICATIONS: Information 
derived from or of value to NASA activities. 
Publications include conference proceedings, 
monographs, data compilations, handbooks, 
sourcebooks, and special bibliographies. 

TECHNOLOGY UTILIZATION 
PUBLICATIONS: Information on technology 
used by NASA that may be of particular 
interest in commercial and other non-aerospace 
application$. Publications include Tech Briefs, 
Technology Utilization Reports and Notes, 
and Technology Surveys. 

Details on the availability of these publications may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 
Washington, D.C. 20546 


